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We present a sign-problem-free quantum Monte Carlo study of a model that exhibits quantum phase
transitions without symmetry breaking and associated changes in the size of the Fermi surface. The model
is an Ising gauge theory on the square lattice coupled to an Ising matter field and spinful “orthogonal”
fermions at half filling, both carrying Ising gauge charges. In contrast to previous studies, our model hosts
an electronlike, gauge-neutral fermion excitation providing access to Fermi-liquid phases. One of the
phases of the model is a previously studied orthogonal semimetal, which has Z2 topological order and
Luttinger-volume-violating Fermi points with gapless orthogonal fermion excitations. We elucidate the
global phase diagram of the model: Along with a conventional Fermi-liquid phase with a large Luttinger-
volume Fermi surface, we also find a “deconfined” Fermi liquid in which the large Fermi surface
coexists with fractionalized excitations. We present results for the electron spectral function, showing its
evolution from the orthogonal semimetal with a spectral weight near momenta f�π=2;�π=2g to a large
Fermi surface.
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I. INTRODUCTION

Quantum phase transitions involving a change in the
volume enclosed by the Fermi surface play a fundamental
role in correlated electron compounds. In the cuprates,
there is increasing evidence of a phase transition from a
low-doping pseudogap metal state with small density of
fermionic quasiparticles to a higher-doping Fermi-liquid
(FL) state with a large Fermi surface of electronic quasi-
particles [1–9]. In the heavy fermion compounds, much
attention has focused on the transitions between metallic
states distinguished by whether the Fermi volume counts
the localized electronic f moments or not [10–13].

Given the strong coupling nature of such transitions,
quantum Monte Carlo simulations can offer valuable
guides to understanding the consequences for experimental
observations. As the transitions involve fermions at non-
zero density, the sign problem is a strong impediment to
simulating large systems. However, progress has been
possible in recent years by a judicious choice of micro-
scopic Hamiltonians which are argued to capture the
universal properties of the transition but are nevertheless
free of the sign problem. Such approaches focus on density
wave ordering transitions [14–27], where spontaneous
translational symmetry breaking accompanies the change
in the Fermi volume: Consequently, both sides of the
transition have a Luttinger-volume Fermi surface, after the
expansion of the unit cell by the density wave ordering is
taken into account.
Our paper presents Monte Carlo results for quantum

phase transitions without symmetry breaking, accompanied
by a change in the Fermi surface size from a non-Luttinger
volume to a Luttinger volume. The phase with a
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non-Luttinger-volume Fermi surface must necessarily have
topological order and emergent gauge degrees of freedom
[12,28,29]. There have been a few quantum Monte Carlo
studies of fermions coupled to emergent gauge fields
[30–37], and our results are based on a generalization of
the model of Refs. [30,32], containing a Z2 gauge field
coupled to spinful “orthogonal” fermions fα (spin index
α ¼ ↑;↓) carrying a Z2 gauge charge hopping on the
square lattice at half filling. The parameters are chosen so
that the fα experience an average π flux around each
plaquette; consequently, when the fluctuations of the Z2

gauge flux are suppressed in the deconfined phase of theZ2

gauge theory, the fermions have the spectrum of massless
Dirac fermions at low energies. There are four species of
two-component Dirac fermions, arising from the twofold
degeneracies of spin and valley each. In addition to the Z2

gauge charges, the fα fermions also carry spin and global
U(1) charge quantum numbers and so are identified with
the orthogonal fermions of Ref. [38], and the deconfined
phase of the Z2 gauge theory is identified as an orthogonal
semimetal (OSM).
It is important to note that the OSM phase preserves all

the symmetries of the square lattice Hamiltonian, and it
realizes a phase of matter which does not have a Luttinger-
volume Fermi surface. This phase is compatible with the
topological nonperturbative formulation of the Luttinger
theorem (LT) [39], because Z2 flux is expelled (about a
π-flux background) and the OSM has Z2 topological order
[12,28,29]. There is a Luttinger constraint associated with
every unbroken global U(1) symmetry [40,41], stating that
the total volume enclosed by Fermi surfaces of quasipar-
ticles carrying the global charge [along with a phase space
factor of 1=ð2πÞd, where d is the spatial dimension] must
equal the density of the U(1) charge, modulo filled bands.
In Oshikawa’s argument [39], this constraint is established
by placing the system on a torus and examining the
momentum balance upon insertion of one quantum of
the global U(1) flux: The Luttinger result follows with the
assumption that the only low-energy excitations which
respond to the flux insertion are the quasiparticles near the
Fermi surface. When there is Z2 topological order, a Z2

flux excitation (a “vison”) inserted in the cycle of the torus
costs negligible energy and can contribute to the momen-
tum balance: Consequently, a non-Luttinger-volume Fermi
surface becomes possible (but is not required) in the
presence of topological order [12,28,29]. In the OSM,
the orthogonal fermions fα carry a global U(1) charge and
have a total density of 1: So, in the conventional Luttinger
approach, there must be two Fermi surfaces (one per spin)
each enclosing volume ð1=2Þð2πÞ2. However, with Z2

topological order, the OSM can evade this constraint,
and the only zero-energy fermionic excitations are at
discrete Dirac nodes, and the Fermi surface volume is
zero. Earlier numerical studies [30–32] present indirect
evidence for the existence of such a Luttinger-violating

OSM phase, and we present direct evidence here in
spectral functions.
Our interest here is in quantum transitions out of the

OSM and, in particular, into phases without Z2 topological
order. In previous studies [30–32], the Z2-confined phases
break either the translational or the global U(1) symmetry.
In both cases, there is no requirement for a Fermi surface
with a nonzero volume, and all fermionic excitations are
gapped once Z2 topological order disappears. Here, we
extend the previous studies by including an Ising matter
(Higgs) field τz, which also carries a Z2 gauge charge. This
field allows us to define a gauge-invariant local operator
with the quantum number of the electron [38]:

cα ¼ τzfα: ð1Þ

The τz matter fields do not carry global spin or U(1)
charges. With this dynamic Ising matter field present, it is
possible to have a Z2-confined phase which does not break
any symmetries and phase transitions which are not
associated with broken symmetries. In particular, the
Luttinger constraint implies that any Z2-confined phase
without broken symmetries must have large Fermi surfaces
with volume ð1=2Þð2πÞ2 for each spin. Our main new
results are measurements of the cα spectral function with
evidence for such phases and phase transitions.
One of the unexpected results of our Monte Carlo study

is the appearance of an additional “deconfined FL” phase:
See the phase diagram in Fig. 1(b). As we turn up the
attractive force between the fα fermions and the Ising
matter (Higgs) field τz, we find a transition from the OSM
to a phase with a large Luttinger-volume Fermi surface of
the cα but with the Z2 gauge sector remaining deconfined.
Such a phase does not contradict the topological arguments,
which do not require (but do allow) a Luttinger-violating
Fermi surface in the deconfined state. Only when we also
turn up theZ2 gauge fluctuations do we then get a transition
to a “confined FL” phase, which is a conventional Fermi
liquid with a large Fermi surface. Within the resolution of
our current simulations, we are not able to identify a direct
transition from the OSM to the confined FL, and we
indicate a multicritical point separating them in Fig. 1(b).
It is interesting to note that the deconfined FL phase has

some features in common with “fractionalized Fermi-liquid”
(FL*) phases used in recent work [8,42,43] to model the
pseudogap phase of the cuprates. These phases share the
presence of excitations with deconfined Z2 gauge charges
coexisting with a Fermi surface of gauge-neutral fermions
cα. There is a difference, however, in that the present
deconfined FL state has a large Fermi surface, while the
FL* states studied earlier have a small Fermi surface. Both
possibilities are allowed by the topological LT [12,28].
In passing, we note the recent study of Chen et al. [37],

which also examines a Z2 gauge theory coupled to
orthogonal fermions fα and an Ising matter field τz.
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However, their Z2-deconfined phase is different from ours
and earlier studies [31,32]: Their phase has a large,
Luttinger-volume Fermi surface of the fα fermions, which
move in a background of zero flux (such zero flux states are
also present in the studies of Refs. [30,34]). Consequently,
their Z2 confinement transition to the Fermi liquid does not
involve a change in the Fermi surface volume, which
weakens the connection to finite doping transitions in the
cuprate superconductors.
The rest of the paper is structured as follows. In Sec. II,

we introduce a lattice realization of the Ising-Higgs gauge
theory coupled to orthogonal fermions and discuss its
global and local symmetries. In Sec. III, we determine
the global phase diagram of our model using a sign-
problem-free quantum Monte Carlo (QMC) simulation.
In particular, we study the structure of the Fermi surface
and state of the gauge sector in the different phases and
comment on the nature of the numerically observed
quantum phase transitions. In Sec. IV, we present a
mean-field calculation of the physical fermion spectral
function in the OSM phase, and, lastly, in Sec. V, we
summarize our results, discuss relations to experiments,
and highlight future directions.

II. ISING-HIGGS GAUGE THEORY COUPLED
TO ORTHOGONAL FERMIONS

A. Lattice model

As a concrete microscopic model for orthogonal fer-
mions, we consider the square lattice model depicted in
Fig. 1(a). The dynamical degrees of freedom are Ising

gauge fields, σzb ¼ �1, residing on the square lattice bonds
b ¼ fr; ηg, with r being the lattice site and η ¼ x̂=ŷ, and
two types of matter fields: an Ising field τzr ¼ �1 and a
spinful orthogonal fermion fα;r, with α ¼ ↑;↓ labeling the
spin index. Both matter fields are defined on the lattice
sites. The dynamics is governed by the Hamiltonian
H ¼ HZ2

þHτ þHf þHc comprising the lowest-order
terms that are invariant under local Ising gauge trans-
formations, as we detail below.
The first two terms in H correspond to the standard

Ising-Higgs gauge theory [44]:

HZ2
¼ −K

X
□

Y
b∈□

σzb − g
X
b

σxb;

Hτ ¼ −J
X
r;η

σzr;ητ
z
rτ

z
rþη − h

X
r

τxr: ð2Þ

In the above equations, the operators σ ¼ fσx; σy; σzg and
τ ¼ fτx; τy; τzg are the conventional Pauli matrices, acting
on the Hilbert spaces of the Ising gauge fields and Ising
matter fields, respectively. The Ising magnetic flux term
Φ□ ¼ Q

b∈□ σzb in HZ2
equals the product of the Ising

gauge field belonging to the elementary square lattice
plaquettes, □. Hτ is a transverse-field Ising Hamiltonian
for the Ising matter field, where, in order to comply with
Ising gauge invariance, the standard Ising interaction is
modified to include an Ising gauge field σzb along the
corresponding bonds b.
The fermion dynamics is captured by the last two terms

in H:

(a) (b)

FIG. 1. (a) Lattice model of orthogonal fermions coupled to an Ising-Higgs lattice gauge theory. The matter fields fr;α (blue circle) and
τzr (red circle) reside on the square lattice sites, and the Ising gauge field σzr;η (green square) is defined on the lattice bonds. (b) Global
phase diagram of our model [Eqs. (2) and (3)] as a function of the hopping amplitude t and transverse field g. The phase boundaries are
determined by the location of the confinement transition and emergence of c fermions spectral weight; see the main text. Connecting
lines are guides to the eye.
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Hf ¼ −w
X
r;η;α

σzr;ηf
†
r;αfrþη;α þ H:c:

þ U
X
r

�
nfr;↑ −

1

2

��
nfr;↓ −

1

2

�
;

Hc ¼ −t
X
r;η;α

τzrf
†
r;ατzrþηfrþη;α þ H:c: ð3Þ

Here, Hf includes a gauge-invariant nearest-neighbor
hopping of orthogonal fermions and on-site Hubbard
interaction between fermion densities, nfr;α ¼ f†r;αfr;α.
The last term, Hc, defines nearest-neighbor hopping of
physical (gauge-neutral) cr;α fermions as can be readily
verified by substituting Eq. (1). The model is tuned to half
filling (the chemical potential vanishes).
In relation to past works, the model considered here

affords a nontrivial generalization of the ones studied
previously in Refs. [30–32]. In particular, in contrast to
prior studies, where the Ising matter fields τz are infinitely
massive [h → ∞ in Eq. (2)], here, varying the transverse
field h in Eq. (2) controls the excitation gap for τz particles.
Consequently, the Ising matter fields and, subsequently,
the physical (gauge-neutral) fermion cα ¼ fατz are now
dynamical degrees of freedom. This important extension
provides access to a more generic phase diagram and
observables that probe FL physics.

B. Global and local symmetries

We now turn to discuss the global and local symmetries
of our model. H is invariant under a global SUsð2Þ
symmetry of spin rotations. Furthermore, because we tune
to half filling, particle-hole symmetry enlarges the U(1)
symmetry, corresponding to fermion number conservation,
to form a SUcð2Þ pseudospin symmetry [45]. Physically,
the SUcð2Þ symmetry generates rotations between the
charge density wave and s-wave superconductivity order
parameters.
The gauge structure of our model is manifest through

the invariance of H under an infinite set of local Z2

gauge transformations generated by the operators Gr ¼
ð−1Þnfr τxr

Q
b∈þr

σxb. Here, n
f
r ¼

P
α n

f
r;α andþr denotes the

set of bonds emanating from the site r. Because ½H;Gr�¼0
for all sites r, the eigenvaluesQr ¼ �1 ofGr are conserved
quantities. Physically,Qr is identified with the static on-site
Z2 background charge assignment.
To properly define a gauge theory, one must fix the

background charge configuration Qr. This procedure
enforces an Ising variant of Gauss’s law Gr ¼ Qr.
Requiring a translationally invariant configuration, two
distinct gauge theories may be defined: an even lattice
gauge theory with a trivial background (Qr ¼ 1) and an
odd lattice gauge theory with a single Ising charge at
each site (Qr ¼ −1). For concreteness, in what follows,
we consider only the case of an odd lattice gauge theory.

As explained in Ref. [32], at half filling, the corresponding
results for the even sector may be obtained by applying a
partial particle-hole transformation acting on one of the
spin species [45].
Our model is also invariant under discrete square lattice

translations. The operators T̂x and T̂y generate translation
by a lattice constant along the x and y directions, respec-
tively. When acting on fractionalized excitations, such as
the matter fields τzr and fr;α in our case, translations may be
followed by a Z2 gauge transformation. The symmetry
operation then forms a projective representation. In the
general case, this representation allows for a richer
group structure than the standard (gauge-neutral) linear
representation [46].
For the specific case of aZ2 gauge symmetry on a square

lattice, a projective implementation of translations is
potentially nontrivial. In particular, lattice translation along
the x and y directions may either commute or anticommute
[46], namely, TxTy ¼ �TyTx. Physically, the former cor-
responds to trivial translations, whereas the latter defines a
π-flux pattern threading each elementary plaquette of the
square lattice. While, for every given choice of a gauge-
fixing condition, the π-flux lattice inevitably breaks
lattice translations, as it leads to doubling of the unit cell,
for fractionalized excitations, translational symmetry is
restored by applying an Ising gauge transformation [46].
This key observation allows for the OSM phase to violate
LT without breaking translational symmetry.

III. QUANTUM MONTE CARLO SIMULATIONS

A. Methods

Our model is free of the numerical sign problem. We can,
therefore, elucidate its phase diagram using unbiased and
numerically exact (up to statistical errors) QMC calcula-
tions. To control the Trotter discretization errors, we set the
imaginary time step to satisfy Δτ ≤ 1=ð12jtjÞ, a value for
which we find that discretization errors are sufficiently
small to obtain convergent results. We explicitly enforce
the Ising Gauss law using the methods introduced in
Refs. [30,32]. Additional details discussing the implemen-
tation of the auxiliary-field QMC algorithm and its asso-
ciated imaginary-time path-integral formulation are given
in the Appendix A. Similar results are obtained without
imposing the constraint and using the algorithms for lattice
fermions (ALF) library [47].

B. Observables

To track the evolution of the c electron Fermi surface,
we study the imaginary-time two-point Green’s function
Gβ
αðk; τÞ ¼ −hT ½ck;αðτÞc†k;αð0Þ�i, where T denotes time

ordering and the operator c†k;α ¼
P

r f
†
r;ατzreik·r creates a

c fermion carrying momentum k and spin polarization α.
Expectation values are taken with respect to the thermal

GAZIT, ASSAAD, and SACHDEV PHYS. REV. X 10, 041057 (2020)

041057-4



density matrix, hOi ¼ 1=Z Tr½e−βHO�, with Z ¼ Tr½e−βH�
being the thermal partition function at inverse temperature
β ¼ 1=T. We emphasize that, in contrast to the orthogonal
f electron, for which, in the absence of a string operator,
gauge invariance requires that the two-point Green’s
function must vanish for all nonequal space-time points,
the c electron is a gauge-neutral operator, and, hence, its
associated spectral function may be nontrivial.
Determining the Fermi surface structure requires

knowledge of real-time quantum dynamics. Therefore,
some form of analytic continuation of the imaginary-time
QMC data to real frequency must be carried out. Quite
generically, devising a reliable and controlled numerical
analytic continuation technique is an outstanding chal-
lenge due to the inherent instability of the associated
inversion problem [48].
To overcome this difficulty, we employ a commonly

used proxy for the low-frequency spectral response [49].
More explicitly, by computing Gβðk; τÞ (the spin index is
omitted for brevity) at the largest accessible imaginary-time
difference τ ¼ β=2, we obtain an estimate for the single-
particle residue Z. To see how to relate this quantity to real-
time dynamics, we consider the integral relation

Gβðk; τ ¼ β=2Þ ¼ −
Z

∞

−∞
dω

Aðk;ωÞ
2 coshðβωÞ ; ð4Þ

where Aβðk;ωÞ ¼ −1=π Im Gβðk; iωm ¼ ωþ iδÞ is the c
fermion spectral function. Since coshðβωÞ−1 tends to unity
for βω ≪ 1 and rapidly vanishes in the opposite limit
βω ≫ 1, Gðk; τ ¼ β=2Þ amounts to an integral over the
spectral function Aðk;ωÞ over a frequency window of the
order of approximately T. Further assuming a well-behaved
spectral response for frequenciesω < T or, equivalently, no
additional low-energy excitations, we may use Z̃ðkÞ ¼
βGðk; τ ¼ β=2Þ as an estimate for the c electron single-
particle residue Z ¼ Aβðk;ω ¼ 0Þ.
To detect the presence of Dirac fermions, we study the

finite-size scaling properties of the superfluid stiffness ρs,
which captures the long-wavelength transverse current
density Jμðq;ωmÞ response to an external electromagnetic
gauge field Aνðq;ωmÞ. Within linear response theory,
Jμðq;ωmÞ ¼ Πμνðq;ωmÞAνðq;ωmÞ. Focusing on the
ν ¼ μ ¼ x component, the electromagnetic response func-
tion equals [50]

Πxxðq;ωmÞ ¼ −½h−Kxi − hJxðq;ωmÞJxð−q;−ωmÞi�: ð5Þ

Here, Kx is the kinetic energy density associated with x
oriented links, and the second term is the current-current
correlation function. In our specific case,

Kx¼−
X
r;α

wσzr;xf
†
r;αfrþx̂;αþ tτzrf

†
r;ατzrþx̂frþx̂;αþH:c:; ð6Þ

and the current operator at site r along the x direction is
given by

Jr;x ¼ −i
�X

α

wσzr;xf
†
r;αfrþx̂;α þ tτzrf

†
r;ατzrþx̂frþx̂;α − H:c:

�
:

ð7Þ

With the above definition, we can compute ρs as the limit:

ρs ¼ lim
qy→0

ρsðqyÞ ¼ lim
qy→0

Πxxðqx ¼ 0; qy;ωm ¼ 0Þ: ð8Þ

It is convenient to express the superfluid stiffness in
terms of the orbital magnetic susceptibility χðqÞ ¼
−ρsðqÞ=q2. The singularity associated with the Dirac node
leads to a diverging magnetic response at low momenta
χðqÞ ¼ −gvgsvf=ð16jqjÞ [51], with gv (gs) being the valley
(spin) degeneracy and vf the Dirac fermion velocity.
Consequently, at low momenta, ρsðqyÞ ∼ qy ∼ 1=L, so that
ρs exhibits a slow decay that is inversely proportional to
the system size. By contrast, a Fermi liquid admits a
finite diamagnetic response at zero momentum (Landau
diamagnetism), such that the expected behavior is
ρsðqyÞ ∼ q2y ∼ 1=L2, which vanishes more rapidly than
before.
To probe a potential instability toward an antiferromag-

netic (AFM) order, we monitor the finite-momentum equal-
time spin fluctuations χSðkÞ ¼ hðPr e

ik·rSzrÞ2i, where Szr ¼
nf↑ − nf↓ is the f electron spin polarization along the z axis.
From χSðkÞ, we can compute the staggered magnetization
MAFM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χSðGAFMÞ=L2

p
, with GAFM ¼ fπ; πg being

the Bragg vector associated with AFM order. The
zero-temperature AFM order parameter is obtained by
taking the thermodynamic limit ΔAFM ¼ limL→∞ limβ→∞
MAFMðL; βÞ. In practice, for a given system size, we
monitor the convergence of the staggered magnetization
toward its zero-temperature value. Following that, we
extrapolate the finite-size data to the infinite system size
value, using a polynomial fit in powers of 1=L.
In the presence of dynamical matter fields, determining

whether the gauge sector is confined or deconfined is a
particularly challenging task due to charge screening.
Standard methods, relying on evaluating Wilson loops,
no longer sharply distinguish between the two phases.
Alternative methods based on extracting the topological
contribution to the entanglement entropy [52,53] and the
Fredenhagen-Marcu order parameter [54] are difficult to
reliably scale with system size in fermionic systems.
Instead, following Refs. [30,32], we probe the thermody-
namic singularity associated with the confinement transi-
tion by tracking the Ising flux susceptibility χB ¼
∂hΦi=∂K, a quantity that is expected to diverge at the
confinement-deconfinement transition, akin to the specific
heat singularity in classical phase transitions.
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C. Numerical results

To render the numerical computation tractable, we must
restrict the relatively large parameter space spanned by the
set of coupling constants appearing in H. Starting from
either the deconfined (g ≪ K) or confined phase (g ≫ K),
our goal is to probe the emergence of physical c fermions
and the resulting formation of FL phases in the limit of
large hopping amplitude t. To that end, we numerically map
out the phase diagram as a function of the transverse field g
and physical fermion hopping amplitude t. Throughout, we
consider a negative Ising flux coupling constant K < 0, for
which a π-flux lattice is energetically favorable in decon-
fined phases.
More concretely, we fix the microscopic parameters

w ¼ −1, J ¼ 0.1, h ¼ 1.0, U ¼ 0.1, and K ¼ −1. All
energy scales are measured in units of jKj. We note that
we choose h to be sufficiently large compared to J in order
to avoid condensation of Ising matter fields. The resulting
two-parameter phase diagram is depicted in Fig. 1(b).
We begin our analysis by examining the limiting case

t ≪ g. In this regime, together with the above choice of
microscopic parameters, the Ising matter field τz is gapped,
and, consequently, also the physical fermion c is expected
to be gapped. The low-energy physics then involves only
orthogonal fermions coupled to a fluctuating Ising gauge
field. This physical setting was already studied extensively
in previous works [30–32].
In the context of our problem, we expect to find a similar

structure of quantum phases in the above parameter regime:
(i) A confining phase (g ≫ K), where the orthogonal
fermions together with the on-site background static charge
(we consider an odd lattice gauge theory) form a localized
gauge-neutral bound state, leaving the electronic spin as the
only dynamical degree of freedom. Subsequently, quantum

fluctuations generate an effective antiferromagnetic
Heisenberg coupling, leading to AFM order at zero temper-
ature. (ii) In the deconfined phase (g ≪ K), on the other
hand, the orthogonal fermions are free, and their dispersion
is determined by the background flux configuration. For the
case of a π-flux lattice, the band structure consists of two
gapless and linearly dispersing bands.
To numerically test the above reasoning, in Fig. 2, we fix

t ¼ 0.2 and plot the evolution of the flux susceptibility and
staggered magnetization as a function of g. Indeed, in
agreement with Refs. [30–32], we can identify the afore-
mentioned phases: a deconfined OSM phase for small g,
and, with an increase in g, we observe a transition toward a
confining phase accompanied with AFM order. We use a
finite-size scaling analysis to estimate the location of both
the confinement and AFM symmetry-breaking transitions.
The flux susceptibility [see Fig. 2(a)] develops a peak at
gc ¼ 0.75ð5Þ that increases with system size and marks the
position of the confinement transition. Concomitantly, in
Fig. 2(b), we find that the AFM order parameter ΔAFM
begins to rise at gc ¼ 0.75ð5Þ.
Because of the increased complexity of the model

considered in this work, we find it challenging to reliably
estimate universal data associated with the OSM confine-
ment transition, such as critical exponents. Hence, we are
unable to make a direct comparison with previous works.
Nevertheless, the key signature of the OSM confinement
transition, namely, the nontrivial coincidence of confine-
ment and symmetry breaking [32], is fully consistent with
the numerical data.
We now turn to address the main inquiry of this study,

namely, the emergence of low-energy gauge-neutral c
fermions and their associated spectral signatures. With that
goal in mind, in Figs. 3(a)–3(c), we depict our numerical

(a) (b)

FIG. 2. Orthogonal semimetal confinement transition. Evolution of the (a) flux susceptibility χB and (b) staggered magnetization
MAFM across the phase transition separating the OSM and the confined AFM as a function of the transverse field g for a fixed hopping
amplitude t ¼ 0.2. Different curves correspond to a set of increasing system sizes and inverse temperatures. ΔAFM is obtained through a
extrapolation of the finite-size data to the thermodynamic limit.

GAZIT, ASSAAD, and SACHDEV PHYS. REV. X 10, 041057 (2020)

041057-6



estimate for the momentum-resolved c electron residue
Z̃ðkÞ at g ¼ 0.55 and for several increasing values of t,
beginning from the OSM phase. Remarkably, we find that,
in the OSM phase, Z̃ðkÞ comprises four maxima located at
momenta k ¼ f�π=2;�π=2g. This result is at odds with
the conventional LT, which, at half filling and in the
absence of topological order or translational symmetry
breaking, predicts a large Fermi surface encompassing half
of the Brillouin zone. At large t values, it is energetically
favorable for the orthogonal fermion and τ particle to form
a gauge-neutral bound state, identified with the c electron,
which effectively decouples from the gauge sector. Indeed,
with an increase in t, the spectral function continuously
evolves into the standard diamond-shaped Fermi surface in
compliance with LT.
It is tempting to identify the observed “Fermi pockets”

with the nodal points of the OSM. This explanation,
however, is incorrect, because the orthogonal f fermion
is not a gauge-invariant object, and, in particular, the
location of the Dirac nodes in momentum space is a
gauge-dependent quantity. In Sec. IV, we provide a simple
explanation for this phenomenon using a mean-field
calculation of the spectral function in the background of
a static π-flux configuration.
To further track the appearance of c electrons, in

Fig. 4(a), we set g ¼ 0.55 and study the evolution of the

single-particle residue evaluated at the antinodal point,
Z̃ð0; πÞ, along the path connecting the OSM and decon-
fined FL phases as a function of t. Indeed, we observe that
the spectral weight vanishes for t < tc ≈ 2.0 and continu-
ously rises for t > tc, signaling the appearance of a large
Fermi surface.
Next, we examine how the emergence of a finite spectral

weight for the physical fermion c influences the Dirac
orthogonal fermions. To that end, in Fig. 4(b), we examine
the finite-size scaling behavior of the superfluid stiffness by
plotting Lρs as a function of t for g ¼ 0.55. We find that, for
t < tc, curves corresponding to different system sizes
collapse to a single curve; namely, the superfluid stiffness
follows a critical scaling ρs ∼ 1=L. As discussed before,
this scaling behavior is characteristic of a low-energy
gapless Dirac spectrum. Unexpectedly, for t > tc, a regime
in which we previously found a finite quasiparticle weight
at the antinodal point, we do not observe the expected
Fermi-liquid scaling ρs ∼ 1=L2 but rather a behavior
consistent with ρs ∼ 1=L. Although we cannot exclude
the possibility that this behavior is due to a finite-size
crossover, our numerical results indicate the presence of an
intermediate phase where orthogonal Dirac fermions and a
FL of physical fermions coexist. In Sec. III D, we provide a
candidate theoretical description of this scenario. Lastly, for
t ≈ 5.0, the product Lρs vanishes, signaling the absence of

(a) (b) (c)

(d) (e) (f)

FIG. 3. Momentum-resolved Z̃ðkÞ, for a linear system size L ¼ 16 and inverse temperature β ¼ 16, as a function of the hopping
amplitude t along two parameter cuts. (i) In (a)–(c), we fix g ¼ 0.55 and cross the transition between the OSM and deconfined FL
phases. Deep in the OSM phase, we find four maxima with a finite spectral weight centered about k ¼ f�π=2;�π=2g. With an increase
in t, a large diamond-shaped Fermi surface gradually appears upon approach to the deconfined FL phase. (ii) In (d) and (e), on the other
hand, we set g ¼ 1.2 and monitor the appearance of a Fermi surface, in the large t limit, starting from a featureless low-energy spectrum
deep in the confined AFM phase.
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low-energy orthogonal fermions. The parameter regime
t > 5 is beyond our current numerical capabilities.
To further examine the transition, we test for the

development of AFM order or confinement in the gauge
sector. In Fig. 4(c), we track the evolution of the staggered
magnetization as a function of the hopping amplitude t
(with g ¼ 0.55, as before). We do not find numerical
evidence for a finite AFM order, even when a large
Fermi surface is fully developed at large t. Moving to
the gauge sector, in Fig. 4(d), we probe χB along the same
trajectory as above. The flux susceptibility appears to cross
the transition smoothly. We can, therefore, conclude that
the Fermi surface reconstruction involves neither transla-
tional symmetry breaking nor the loss of topological order.
Thus, the phase at large t is a deconfined FL.
We remark that, due to the perfect nesting condition

of the half filled square lattice, the ground state is
expected to exhibit AFM order for arbitrarily small

Hubbard interaction. This phenomenon is not observed
in our simulations, since in the weak coupling regime
U ≪ t the magnetization is exponentially small in the
coupling constant, and its detection is a notoriously difficult
numerical task.
Next, we examine the path connecting the confined AFM

state and the FL phase, by setting g ¼ 1.2 and probing the
evolution of the spectral function as a function of t. The
results of this analysis are shown in Figs. 3(d)–3(f). We
observe a featureless flat spectrum deep in the confined
AFM phase, as expected due to the absence of fermionic
quasiparticles. By contrast, with an increase in t, a large
Fermi surface appears.
To better appreciate the above result, we note that, in a

confining phase, the low-energy spectrum must contain
solely gauge-neutral excitations. Indeed, in the confined
AFM phase, we can identify these excitations with spin
waves. However, fractionalized orthogonal fermions,

(a) (b)

(c) (d)

FIG. 4. Phase transition between the OSM and deconfined FL phases as a function of t for g ¼ 0.55. (a) Single-particle residue Z̃ðkÞ at
the antinodal points. (b) Critical finite-size scaling of the superfluid stiffness Lρs. (c) Staggered magnetizationMAFM.ΔAFM is computed
by an extrapolation to the thermodynamic limit. (d) Flux susceptibility χB.
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carrying U(1) electromagnetic charge, are localized. On the
other hand, with an increase in t, the attractive force
between τz and f allows forming a gauge-neutral bound
state of c fermions and a metallic state that supports both
spin and charge excitations at low energies.
We now turn to study the confinement transition along

a path connecting the deconfined and confined FL phases.
To detect the confinement transition, in Fig. 5(a), we plot
the flux susceptibility at t ¼ 3.0 as a function of g. Indeed,
we observe a divergence in χB at gc ¼ 0.85ð5Þ marking
the location of the confinement transition. The above
result demonstrates that our model sustains FL phases in
the background of either a confined or a deconfined
gauge sector.
Lastly, we summarize our spectral analysis in Fig. 5(b),

where we plot the spectral weight Z̃ð0; πÞ, evaluated on the
“antinodal” point as a function of the hopping amplitude t
for several values of g. As a starting point, at low t, we
consider both the OSM and AFM phases. We find that
for all g values the spectral weight is small at low t and
rises continuously starting from the energy scale tcðgÞ.
Operationally, we numerically estimate tcðgÞ by locating
the hopping amplitude for which Z̃ð0; πÞ > 0.01. This
analysis is used to mark the phase boundaries appearing
in Fig. 1(b). We remark again that at half filling the Fermi-
liquid phase is unstable toward the formation of AFM
order. Consequently, at strictly zero temperature Z̃ð0; πÞ
must vanish for all t, and the transition between the AFM
and Fermi-liquid phases is a smooth crossover.

D. Quantum phase transitions

We now briefly remark on the theoretical expectations
for the quantum phase transitions described above and
appearing in Fig. 1(b).

(i) The theory for the transition from the OSM to the
AFM is discussed in some detail in Ref. [32] and
identified as a deconfined critical point with an
emergent SO(5) symmetry.

(ii) Away from half filling, the AFM to confined FL
transition is a conventional symmetry-breaking tran-
sition between two confining phases and is expected
to be described by Landau-Ginzburg-Wilson theory
combining with damping from Fermi surface ex-
citations, i.e., Hertz-Millis theory [55].

(iii) The transition from the deconfined FL to the con-
fined FL phase is a confinement transition without a
change in the size of the Fermi surface. It is,
therefore, expected to be described by the conden-
sation of an Ising scalar, which can be viewed as
representing either the vison of the Ising gauge
theory or the Ising matter field τz [56]. The large
Fermi surface of electronlike quasiparticles damps
the quasiparticles, but this damping is much weaker
than that in Hertz-Millis theory: The resulting field
theory is described in Refs. [57,58]. We note that this
field theory also applies to the confinement tran-
sition in Ref. [25], where the damping is due to a
large Fermi surface of orthogonal fermions, and
there is no change in the size of the Fermi surface
across the transition.

(iv) We do not have a theory for a direct transition from
the OSM to the deconfined FL with a large Fermi
surface transition. Indeed, it may well be that this
transition occurs via an intermediate phase, with
gapless excitations of both electrons and orthogonal
fermions [40,59]. The presence of a regime within
the deconfined FL region of the phase diagram
where we appear to observe coexistence of a c
Fermi surface (as measured by the c spectral density)

(a) (b)

FIG. 5. (a) Flux susceptibility χB as a function of g for t ¼ 3.0 along the path connecting the confined and deconfined FL phases.
(b) Single-particle residue Z̃ðkÞ evaluated at the antinodal point k ¼ f0; πg as a function of t. Different curves correspond to different
values of g.
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with a ρs which vanishes as ∼1=L is evidence in
support of such an intermediate phase. The Luttinger
constraint requires that the orthogonal fermions
which are absorbed into the c Fermi surface must
be accounted for by those forming the Dirac nodes.
One way to preserve the Dirac nodes in an inter-
mediate phase, and also maintain consistency with
particle-hole symmetry, is to form electronlike and
holelike pockets of an equal area of the c fermions;
the c hole pockets would then be in ancillary trivial
insulator, similar to Refs. [60,61]. Our resolution is
not sharp enough to resolve such an intricate Fermi
surface evolution, which is likely present in the
intermediate phase, and we leave its study to
future work.

IV. MEAN-FIELD CALCULATION OF THE
PHYSICAL FERMION SPECTRAL FUNCTION

IN THE OSM PHASE

The numerical observation of a finite spectral weight
centered about the four nodal points k ¼ f�π=2;�π=2g is
surprising and requires further analytic understanding.
To that end, in this section, we present a simple and
intuitive explanation using a mean-field calculation of the
spectral function of c fermions in the OSM phase. In our
calculation, we consider a static background π-flux con-
figuration and neglect gauge field fluctuations. This
approximation is justified deep in the OSM phase, where
such fluctuations are small due to the finite vison gap. In
this setting, we can model the dynamics of the f electron

(a) (b)

(c)

(d)

FIG. 6. (a) Ising Landau gauge-fixing condition for the π-flux lattice; black (red) bonds correspond to σzb ¼ 1 (−1). (b) Energy
contours of the lower-band Dirac spectrum on the π-flux lattice using the above gauge fixing. (c) Leading-order Feynman diagram for
the physical fermion c propagator Gβ

cðk; iωmÞ. The bubble diagram evaluates to a convolution between the Ising matter field ϕz and
orthogonal fermion fσ propagators defined on the π-flux lattice. (d) Finite-temperature spectral function Aðk;ω ¼ 0Þ computed by a
numerical evaluation of the bubble diagram.
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(τz field) by a free fermion (scalar field) hopping in the
background of a π-flux lattice.
To make progress, we must choose a concrete a gauge-

fixing condition for the Ising gauge field. We take an Ising
variant of Landau’s gauge, σr;x̂ ¼ ð−1Þry and σr;ŷ ¼ 1; see
Fig. 6(a). We emphasize that, while the gauge-fixing
procedure inevitably breaks both lattice translations and
π=2 rotations, expectation values of physical (gauge-
neutral) observables must preserve these symmetries.
More concretely, we take the effective Hamiltonians

HMF
f ¼ −tf

X
r;η

tr;ηf
†
rfrþη þ H:c:;

HMF
ϕ ¼

X
r

π2r
2m

þmω2

2

�X
r

Δϕ2
r þ

X
r;η

ðϕr − tr;ηϕrþηÞ2
�
:

ð9Þ

Here, ϕr is a scalar real field and πr is its canonically
conjugate momentum, ½ϕr; πr0 � ¼ iδr;r0 . With the above
gauge choice, the hopping amplitudes are set to tr;η ¼
½ð−1Þryδη;x̂ þ δη;ŷ�. The scalar field Hamiltonian is para-
meterized by the inertial mass m, oscillation frequency ω,
and Δ, which allows controlling the single-particle exci-
tation gap for ϕ particles.
We tune Δ to work in a regime where, on the one hand,

the scalar field has a finite gap to avoid condensation, but,
on the other hand, it is sufficiently small to render the
physical fermion gap small. The lowest-order diagram [62]
contributing to Gβ

cðk; iωmÞ is the bubble diagram shown in
Fig. 6(c). Evaluating the diagram boils down to a con-
volution of the Ising matter field propagator Gβ

ϕðk; iωmÞ and
the orthogonal fermion propagator Gβ

fðk; iωmÞ. Both propa-
gators can be readily computed by diagonalizing the
quadratic Hamiltonians in Eq. (9). Further details of this
calculation are given in Appendix B.
In Fig. 6(d), we depict the zero-frequency spectral

function Aβðk;ω ¼ 0Þ ¼ −1=π ImGβðk; iωm ¼ i0þÞ,
evaluated for the microscopic parameters t ¼ m ¼ ω ¼ 1
and Δ ¼ −1.1 and inverse temperature β ¼ 1=32.
Remarkably, our simplified model displays a finite spectral
weight located at the nodal points k ¼ f�π=2;�π=2g, in
agreement with the exact QMC calculation. As a nontrivial
check of our computation, we observe that, unlike the
gauge-fixed hopping Hamiltonians of Eq. (9), the physical
spectral function respects the full square lattice C4 point
group symmetry. We note that, at strictly zero temperature,
the spectral weight must vanish due to the nonzero Ising
matter field gap.
An intuitive understanding of this result may be derived

by examining the Dirac band structure in the π-flux phase,
shown as a contour plot in Fig. 6(b). At low temperatures,
the orthogonal fermions occupy all k-space modes up to the
Dirac point at f�π=2; π=2g. However, the Ising matter field

τz follows Bose statistics and, hence, concentrates at the
band minimum f0=π; 0g. As a result, the integral over the
internal momentum in Fig. 6(c) is appreciable only at
momentum transfer k ¼ f�π=2;�π=2g [black arrow in
Fig. 6(b) connecting the f and τz particle]. In other words,
the momentum-space splitting of the two flavors of matter
fields is responsible for the unconventional spectral
response of the OSM phase.

V. DISCUSSION AND SUMMARY

We study a lattice model of orthogonal fermions coupled
to an Ising-Higgs gauge theory. The absence of the sign
problem enables us to determine its global phase diagram
and explore related phase transitions using a numerically
exact QMC simulation. A key ingredient of our study,
which nontrivially distinguishes it from previous works, is
the introduction of an Ising matter field that together with
the orthogonal fermion may form a physical fermion. This
crucial feature of our model enables access to the study of
FL phases in the presence of Z2 topological order.
Notably, our model hosts both non-FL quantum states

that violate LT due to Z2 topological order and also
LT-preserving FL states, where the gauge sector is
either confined or deconfined. On tuning of microscopic
parameters, we are able to cross quantum critical points
that separate these phases, some of which appear to be
continuous.
It is interesting to make a connection, even if suggestive,

between our numerical results and experimental signatures
of Fermi surface reconstruction observed in cuprate mate-
rials. In particular, the OSM phase shares several properties
with the pseudogap phase: a strong depletion in the
density of states at the antinodal points and a concentration
of finite fermionic spectral weight at the nodal points
k ¼ f�π=2;�=2g. Most importantly, there is experimental
evidence that these phenomena occur in the absence of
translational symmetry breaking. We also describe phase
transitions involving the appearance of a large Fermi
surface from such a state, and these transitions have
connections to phenomena in the cuprates near optimal
doping [1–8].
Our study leaves some open questions. In particular, it

would be interesting to develop a field theory description to
the transition between the OSM and deconfined FL, which
numerically appears to be continuous. Such a description
will have to address the unusual finite-size scaling of the
superfluid stiffness in the deconfined FL phase. From the
numerical perspective, simulations on larger lattices are key
in resolving the properties of this transition. In addition, it
would be interesting to study the fate of the OSM phase and
neighboring phases away from half filling. This study can
be achieved, using a sign-problem-free QMC, at least for
the even lattice gauge theory case. We leave these interest-
ing questions for future studies.
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Note added.—Recently, we became aware of a related work
by Chen et al. [37] studying a lattice model of orthogonal
fermions in a parameter regime complementary to our
work, which we describe briefly in Secs. I and III D.

APPENDIX A: PATH INTEGRAL FORMULATION

The partition function ZðβÞ at inverse temperature β is
given by

ZðβÞ ¼ Tr½P̂e−βH�; ðA1Þ

where the projection operator P̂ ¼ Q
i Pi with

P̂i ¼
1

2

�
1þ ð−1Þnfi τxi

Y
þ
σxij

�
: ðA2Þ

We rewrite the projection operator using a discrete
Lagrange multiplier as

P̂i ¼
X
λi�1

P̂i;λ ¼
X
λi¼�1

eiðπ=2Þð1−λiÞf
P

þ½ð1−σxi;jÞ=2�þ½ð1−τxi Þ=2�þnfi g:

ðA3Þ

Next, we use Trotter decomposition to write e−βH ¼Q
M−1
m¼0 e

−ϵH with ϵ ¼ β=M and insert a resolution of

identities in the σz and τz basis, 1 ¼ P jτz; σzihτz; σzj,
leading to

ZðβÞ ¼
X
λ;τz;σz

Trfhτz0; σz0j
Y
i

P̂i;λe−ϵHjτzM−1; σ
z
M−1i…

× hτz1; σz1je−ϵHjτz0; σz0i: ðA4Þ

We first focus on the last time step, which contains P̂i;λ.
In the Ising sector, the only off-diagonal (in the σz, τz basis)
terms are the transverse field and the constraint. Focusing
on a specific site i, for the Z2 matter field we obtain the
matrix element

hτzi;0jeiðπ=2Þð1−λiÞ½ð1−τ
x
i Þ=2�þϵhτxi jτzi;M−1i

¼
X
τxi¼�1

hτzi;0jeiðπ=2Þð1−λiÞ½ð1−τ
x
i Þ=2�þϵhτxi jτxi ihτxi jjτzi;M−1i

¼ 1

2

X
τxi¼�1

eϵhτ
x
i eiπ½ð1−τ

x
i Þ=2�f½ð1−λiÞ=2�þ½ð1−τzi;0Þ=2�þ½ð1−τzi;M−1Þ=2�g

¼ 1

2
ðeϵh þ e−ϵheiπf½ð1−λiÞ=2�þ½ð1−τzi;0Þ=2�þ½ð1−τzi;M−1Þ=2�gÞ

¼
� coshðϵhÞ λiτ

z
i;0τ

z
i;M−1 ¼ 1;

sinhðϵhÞ λiτ
z
i;0τ

z
i;M−1 ¼ −1:

ðA5Þ

The effective Boltzmann weight is then

Wðλi; τzi;0; τzi;M−1Þ ∝ eγτ
z
i;0λiτ

z
i;M−1 ; ðA6Þ

where γ ¼ −1=2 log½tanhðϵhÞ�. Physically, the above
action corresponds to the gauge-invariant Ising interaction
along the temporal direction. Importantly, we must take
h > 0 in order to avoid a sign problem.
Similarly to Ref. [30], the constraint term associated with

the Ising gauge field leads to a spatiotemporal plaquette
term in the 3D Ising gauge theory, and the f fermion
Green’s function is modified by the introduction of a
diagonal matrix P½λi� with diagonal elements Pii ¼ λi.

APPENDIX B: DETAILS OF THE
MEAN-FIELD CALCULATION

To evaluate the bubble diagram in Fig. 6(c), we first
express the mean-field Hamiltonians [Eqs. (2) and (3)]
in momentum space defined on a reduced Brillouin zone
(0 < kx < 2π; 0 < ky < π), as imposed by the gauge-fixing
choice in Fig. 6(a). Explicitly, for the fermionic part,
substituting fr ¼ 1=

ffiffiffiffi
N

p P
k e

ikrfk (N being the number
of lattice sites) gives
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HMF
f ¼ −tf

X
k;k0

f†kfk0 ½2 cosðkyÞδk;k0 þ 2 cosðkxÞδk;k0þπk̂y
�

¼ −tf
X

0<kx<2π;0<ky<π

ð f†k;0 f†k;π Þ
�
2 cos ky 2 cos kx
2 cos kx −2 cos ky

��
fk;0
fk;π

�
; ðB1Þ

where f†k;0 ¼ f†k and f†k;π ¼ f†
kþπk̂y

. Diagonalizing the above Hamiltonian, we obtain the fermionic eigenspectrum ϵ�ðkÞ
and eigenmodes fαðkÞ ¼ Vα;γðkÞfγðkÞ, where γ ¼ �, α ¼ 0=π, and Vα;γ is the diagonalizing matrix.

A similar analysis is carried out in order to diagonalize the scalar field ϕ mean-field Hamiltonian. Writing Eq. (9) in
momentum space gives (ϕr=πr ¼ 1=

ffiffiffiffi
N

p P
k ϕk=πkeikr)

Hϕ ¼
X
k

πkπ−k
2

þmω2

2

�X
k

Δϕkϕ−k þ
X
k;k0

ϕkϕk0 ½4 − 2 cosðkyÞδk;−k0 − 2 cosðkxÞδk;−k0þπk̂y
�
�

¼
X

0<kx<2π;0<ky<π

X
α

πk;απ−k;α
2

þmω2

2

X
α;α0

ϕk;αKα;α0 ðkÞϕ−k;α0 ; ðB2Þ

where the spring constant matrix equals

Kα;α0 ðkÞ ¼
�Δþ 4 − 2 cosðkyÞ −2 cosðkxÞ

−2 cosðkxÞ Δþ 4þ 2 cosðkyÞ
�
: ðB3Þ

By diagonalizingKα;α0 (the mass matrix is already diagonal), we obtain the eigenfrequenciesωκðkÞ and the normal modes
ϕk;α ¼ Uα;κðkÞϕk;κ. As before, κ ¼ �, and α ¼ 0; π. With the above definitions, our final expression of the bubble diagram
amplitude reads

Gcðk; iωmÞ ¼
X

q;q0;νm;γ;κ

δpðqÞ;pðq0Þδpðk−qÞ;pðk−q0ÞVαðqÞ;γ½pðqÞ� × Vαðq0Þ;γ½pðq0Þ�Uαðk−qÞ;κ½pðk − qÞ�Uαðk−q0Þ;κ½pðk − q0Þ�

×
1

iνm − ϵγ½pðqÞ�
1

ðνm − ωmÞ2 þ ω2
κ ½pðk − qÞ� : ðB4Þ

Here, the reduced momentum pðqÞ is defined as pðqÞ ¼
fqx; qy mod πg and the momentum index αðqÞ equals 0ðπÞ
if qy ∈ ½0; π� (qy ∈ ½π; 2π�), as before. We note that the
resulting momentum integration is restricted to the two
cases q ¼ q0 or q ¼ q0 þ πq̂y.
The Matsubara sum can be evaluated analytically:

X
νm

1

iνm − ϵγ

1

ðνm − ωmÞ2 þ ω2
κ

¼ −βωκ tanhðβϵγ2 Þ þ βðϵγ − iωmÞ cothðβωκ
2
Þ

2ωκ½ω2
κ − ðϵγ − iωmÞ2�

; ðB5Þ

and we are left with the momentum integration that is
computed numerically on a discretized momentum grid.
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