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The partition of irreversible heating between ions and electrons in compressively driven (but subsonic)
collisionless turbulence is investigated by means of nonlinear hybrid gyrokinetic simulations. We derive a
prescription for the ion-to-electron heating ratio Qi=Qe as a function of the compressive-to-Alfvénic
driving power ratio Pcompr=PAW, of the ratio of ion thermal pressure to magnetic pressure βi, and of the ratio
of ion-to-electron background temperatures Ti=Te. It is shown that Qi=Qe is an increasing function of
Pcompr=PAW. When the compressive driving is sufficiently large, Qi=Qe approaches ≃Pcompr=PAW. This
indicates that, in turbulence with large compressive fluctuations, the partition of heating is decided at the
injection scales, rather than at kinetic scales. Analysis of phase-space spectra shows that the energy transfer
from inertial-range compressive fluctuations to sub-Larmor-scale kinetic Alfvén waves is absent for both
low and high βi, meaning that the compressive driving is directly connected to the ion-entropy fluctuations,
which are converted into ion thermal energy. This result suggests that preferential electron heating is a very
special case requiring low βi and no, or weak, compressive driving. Our heating prescription has wide-
ranging applications, including to the solar wind and to hot accretion disks such as M87 and Sgr A*.
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I. INTRODUCTION

Most astrophysical systems, e.g., the solar wind, low-
luminosity accretion disks, supernova remnants, and the
intracluster medium, are in a collisionless turbulent state.
The turbulent fluctuations are generally driven by a large-
scale free-energy source that is specific to each system.
These fluctuations are cascaded to small scales via non-
linear interactions, and they are converted ultimately into
thermal energy. This process is called turbulent heating.
In a collisionless plasma, heat is generally deposited into
ions and electrons unequally, resulting in a two-temperature
state, e.g., in the solar wind [1], accretion disks around
black holes [2,3], and the intracluster medium [4]. The

partition of turbulent energy between ions and electrons
is key to understanding many astrophysical phenomena.
Particularly, in the context of accretion disks around
black holes, determining the ion-to-electron heating ratio
Qi=Qe is critical for interpreting radio images from the
Event Horizon Telescope (EHT) [5]. While a recent EHT
observation was reproduced numerically using general-
relativistic magnetohydrodynamic (GRMHD) simulations
[6], the results strongly depend on the Qi=Qe prescription
used (see Refs. [7–10] for the GRMHD simulations with
different models ofQi=Qe). Thus, a physical determination
of Qi=Qe is required.
Kinetic, rather than fluid, models must be used in order

to calculate correctly the heating rates in a weakly colli-
sional plasma. For the last few years, turbulent heating
has been studied by means of particle-in-cell [11–18] and
gyrokinetic (GK) [19–22] simulations. In these kinetic
simulations, turbulence is excited by injection of artificially
configured box-scale fluctuations. Such box-scale fluctua-
tions are intended to mimic the fluctuations that cascade
from larger scales. In most of the kinetic simulations
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referenced above [23], the box-scale fluctuations were
Alfvénic, meaning that the inertial-range turbulence was
assumed to be predominantly Alfvénic. Spacecraft mea-
surements of the solar wind are qualitatively consistent with
this assumption, with less than 10% of the power contained
in compressive (slow-mode-like) fluctuations in the inertial
range [24,25]. However, there is no guarantee that inertial-
range fluctuations of turbulence in other astrophysical
systems are predominantly Alfvénic. For example, in our
recent study of turbulence driven by the toroidal magneto-
rotational instability, we found that the Alfvénic and
compressive fluctuations are nearly equipartitioned [26].
In this paper, we employ nonlinear GK [27,28] simu-

lations to calculate Qi=Qe in collisionless, subsonic
turbulence driven by a mixture of externally injected
compressive and Alfvénic fluctuations. The GK theory
shows that the energy partition between ions and electrons
is decided around the ion Larmor scale [29], meaning that
the energy that is not destined for the ion heating at the ion
Larmor scale will be channeled into the electron heating.
Therefore, the amount of electron heating can be computed
as Qe ¼ PAW þ Pcompr −Qi, where PAW and Pcompr are
the Alfvénic and compressive energy injection. Since the
electron kinetic effects are not necessary to obtain the
electron heating, we use a hybrid-GK model in which
electrons are treated as a massless, isothermal fluid [29].
To drive the compressive component of the turbulent

cascade, we use slow-mode-like fluctuations. In our pre-
vious, purely Alfvénically driven GK simulations [22], we
determined the dependence ofQi=Qe on the ratio of the ion
thermal pressure to the magnetic pressure βi ¼ 8πniTi=B2

0,
and on the ion-to-electron temperature ratio Ti=Te. We
found that Qi=Qe was an increasing function of βi, while
the dependence on Ti=Te was weak (similar to the result
arising from linear analysis of Landau or Barnes damping
[3,30]). In this work, we determine the dependence of
Qi=Qe on the ratio of the compressive to Alfvénic injection
power Pcompr=PAW. We also investigate the properties of
the phase-space spectra to understand the heating mecha-
nisms related to the compressive cascade.

II. HYBRID-GYROKINETIC MODEL

We solve a hybrid-GK model in which ions are gyro-
kinetic, while electrons are treated as a massless, isothermal
fluid [29]:
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The electromagnetic fields are determined via the quasi-
neutrality condition and (parallel and perpendicular)
Ampère’s law:
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where e is the elementary charge, Ze is the ion charge, c is
the speed of light, B0 is the ambient magnetic field, z is
the coordinate along B0, ðx; yÞ is the plane perpendicular
to B0, v is the particle velocity, Fi is the ion equilibrium
distribution function assumed to be Maxwellian, δfi ¼
hi − Zeϕ=Ti is the perturbed ion distribution function, ni
and Ti ¼ miv2thi=2 are the ion density and temperature
associated with Fi, χ ¼ ϕ − v ·A=c is the GK potential,
C½…� is the Coulomb collision operator, h…iR is the
gyroaverage at fixed gyrocenter position R, h…ir is the
gyroaverage at fixed particle position r, δne is the electron
density perturbation, uke is the parallel electron flow
velocity, ne and Te are electron equilibrium density and
temperature, ϕ is the perturbed electrostatic potential, Ak is
the parallel component of the perturbed vector potential,
d=dt ¼ ∂t þ ðc=B0Þfϕ;…g, ∇k ¼ ∂z − ð1=B0ÞfAk;…g,
and ff; gg ¼ ð∂xfÞð∂ygÞ − ð∂xgÞð∂yfÞ. The remaining
symbols follow standard notation. The compressive fluc-
tuations are driven by an external parallel acceleration
aext in the ion-GK equation (1) [31], while the Alfvénic
fluctuations are driven by an external current jkext in
parallel Ampère’s law (5) [19–22,32,33]. We consider an
electron-proton plasma (Z ¼ 1).
The energy budget of the hybrid-GK system is

dWtot

dt
¼ PAW þ Pcompr −Qi −Qe; ð7Þ

where
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is the free energy,
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PAW ¼
Z

d3r
jjjext
c

∂Ajj
∂t ð9Þ

is the Alfvénic injection power,

Pcompr ¼
Z

d3r
Z

d3v
Tiaextvkhhiir
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is the compressive injection power, and

Qi ¼ −
Z

d3v
Z

d3R
TihihC½hi�iR

Fi
ð11Þ

is the ion heating rate [31]. The electron heating rate Qe is
calculated via the hyper-resistive and hyperviscous dis-
sipation of the isothermal electron fluid, which are added to
Eqs. (2) and (3), respectively [34]. In a statistically steady
state, PAW þ Pcompr ¼ Qi þQe, where each term is time
averaged.
This hybrid model is valid at k⊥ ≪ ρ−1e . When

k⊥ ≪ ρ−1i , the system follows the equations of kinetic
reduced MHD (RMHD), wherein compressive fluctuations
are passively advected by the Alfvénic ones (“Alfvén
waves,” AW), and the two types of fluctuations are
energetically decoupled [29,35]. The free energy (8),
therefore, can be split as Wtot ¼ WAW þWcompr, where
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where δE⊥ is the fluctuating perpendicular electric field, vA
is the Alfvén speed, and gi ¼ hδfiiR. In the RMHD range,
Alfvénic fluctuations follow fluid equations, whereas the
compressive fluctuations are determined by the ion drift-
kinetic equation [29,35]. Therefore, in the RMHD range,
only ion heating can occur through the phase mixing of
compressive fluctuations.
When ρ−1i ≪ k⊥ ≪ ρ−1e , the system follows kinetic

electron RMHD (ERMHD) [29], which includes two types
of fluctuations, ion entropy fluctuations and kinetic AWs
(KAWs) [36]. These fluctuations are again decoupled, and
the former are passively advected by the latter. While the
KAWs are ultimately dissipated into electron thermal
energy, the ion-entropy fluctuations lead to ion heating
through phase mixing [29].
There are two types of phase mixing in the GK

approximation that cause heating: linear Landau or
Barnes damping [39,40] and nonlinear phase mixing
[29,41–43]. The former creates small-scale structure of
the distribution function in the vk direction of velocity

space, which is thermalized via vk derivatives in the
collision operator C. The nonlinear phase mixing creates
small-scale structure in v⊥, and the v⊥ derivatives in C
cause ion heating. Previous Alfvénic turbulence simula-
tions showed that ion heating occurs in the ERMHD range
exclusively via nonlinear phase mixing for low to modest βi
[20–22,35], while at high βi, there is finite ion heating at
k⊥ ≲ ρ−1i via linear Landau damping [22]. We see shortly
how this scenario is amended when there is compressive
driving.

A. Limitations of the hybrid-GK model

Before proceeding to the main results, let us discuss
the limitations of our method, and why, despite these
limitations, this study is worthwhile.
First, GK ignores large-amplitude and high-frequency

fluctuations, resulting in the omission of stochastic heating
[44,45] and cyclotron-resonance heating [46], respectively.
GK also neglects short-parallel-wavelength fluctuations.
When the driving is at a very large (system-size) scale, the
large-scale magnetic field serves as an effective mean field
for the fluctuations at the smaller scales, and thus, the
inertial-range turbulence tends to be anisotropic (kk ≪ k⊥)
and small amplitude (δB=B0 ≪ 1) [47,48]. The frequencies
of sufficiently anisotropic fluctuations are well below the
ion cyclotron frequency even at k⊥ρi ∼ 1. Therefore, the
omission of the large-amplitude, high-frequency, and short-
parallel-wavelength fluctuations is a reasonable idealiza-
tion, and it is reasonable and physically meaningful to ask
how energy is partitioned between species in such an
idealized turbulence.
Second, we assume the background distribution is an

isotropic Maxwellian, but a number of studies have
reported that pressure anisotropy can play an important
role, e.g., in hot accretion flows [49–52], in the intracluster
medium [53], and in high-beta streams of the solar wind
[54]. Furthermore, the linear analysis of GK with an
anisotropic background pressure found that Qi=Qe can
differ by as much as an order of magnitude [55] from that
obtained via the linear analysis of GK with no background
pressure anisotropy [30]. The assumption of a Maxwellian
background also imposes the absence of nonthermal
particles (e.g., kappa distributions [56] or intermittent
beams [18,57]). While these limitations of our model must
be acknowledged, we believe they too represent a reason-
able idealization: The effect of pressure anisotropy can be
significant only for high-βi plasmas, so our results in the
low-βi regime should be fairly reliable, whereas at βi > 1,
we do not push our study to such high values of βi as to
render it inexcusably suspect.
Third, the use of the hybrid-GK approximation implies

neglect of the electron Landau damping. However, in
asymptotic terms, energy partition between ions and
electrons is determined at the ion Larmor scale [29], and
inclusion of electron Landau damping would be an attempt
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to account for finite-mass-ratio effects. The comparison
between the previous hybrid-GK [22] and full-GK simu-
lations [20] does not suggest that this makes a significant
difference, and, generally speaking, the experience of
working to the lowest order in the mass-ratio expansion
is that asymptotic theory does better than one might have
pessimistically assumed in capturing the fundamental
physics of the ion-scale transition.
Lastly, relativistic effects are neglected in our model. This

may be problematic when applying our results to ultra-high-
energy astrophysical systems; however, we expect that our
results are reasonably useful for hot accretion disks, including
the central region where the plasma is only transrelativistic
(electrons are relativistic while ions are not). Indeed, recent
two-temperature GRMHD simulations of Sgr A* show that
the electron temperature there is atmost kBTe=mec2 ∼ 10 [9],
so the increase in the electron inertia is not large enough to
break the scale separation between ρi and ρe, which is the
main physical characteristic of our plasma that sets its
behavior in what concerns energy partition. In this sense,
ignoring relativity is akin to ignoring finite-mass-ratio effects.
It is worth noting here that, while one might worry that
our model is not “relativistic enough,” currently feasible
simulations of relativistic kinetic turbulence tend to be
“too relativistic,” meaning that they employ the effective
mass ratio smaller than the realistic value [15,18]. Here, as is
the case of our neglect of electron Landau damping, we
choose to err on the side of greater asymptoticity.

III. NUMERICAL SETUP

We solve the hybrid-GK model using the AstroGK

code [34,58] with two sizes of the simulation domain:
the “fiducial” box 0.125 ≤ kxρi; kyρi ≤ 5.25 and the
“double-sized” box 0.0625 ≤ kxρi; kyρi ≤ 5.25. The grid
resolution of the phase space is ðnx; ny; nz; nλ; nεÞ ¼
ð128; 128; 32; 32; 16Þ for the fiducial box, where λ ¼
v2⊥=v2 is the pitch angle, and ε ¼ v2=2 is the particle’s
kinetic energy. Although this grid resolution is lower than
that used in some studies (e.g., Refs. [20,59,60]), this is the
price for being able to carry out an adequately broad
parameter scan. We also simulate a single higher-velocity-
space-resolution case ðnx; ny; nz; nλ; nεÞ ¼ ð128; 128; 32;
64; 32Þ to check the numerical convergence. A recursive
expansion procedure [61] is employed to reduce the
numerical cost of achieving a statistically steady state.
An oscillating Langevin antenna [33] is employed

to drive the Alfvénic and compressive fluctuations. We
choose ðkx=kx0;ky=ky0;kz=kz0Þ¼ð1;0;�1Þ and ð0; 1;�1Þ
for the driving modes (k0 is the box-size wave number),
0.9ωA0 for the driving frequency (ωA0 is the box-size
Alfvén frequency), and 0.6ωA0 for the decorrelation rate.
The amplitude of the Alfvén antenna and, therefore,
the power of the Alfvénic driving PAW is tuned so that
critical balance [37] holds at the box scale [33]. We set the

same frequency for the compressive driving and Alfvénic
driving because the compressive fluctuations are passively
advected by AWs in the RMHD range.
The ion-entropy fluctuations are dissipated by the ion

collision operator C. In our code, we employ a fully
conservative linearized collision operator [62,63] and set
the collision frequency to 0.005ωA0, meaning that ions are
almost collisionless. Since the spatial resolution of our
simulation is not sufficient to dissipate all of the ion-
entropy fluctuations via collisions, we add to C a hyper-
collisionality term proportional to k8⊥. Its contribution to
ion heating is added to Eq. (11). For the dissipation of
KAWs, we employ hyper-resistivity and hyperviscosity
terms proportional to k8⊥ [34] in the isothermal electron
fluid (2) and (3).
Given this setup, the free parameters are βi, Ti=Te,

and the relative amplitude of the compressive driving,
which sets Pcompr=PAW. We investigate βi ¼ ð0.1; 1; 4Þ and
Ti=Te ¼ ð1; 10Þ. For each case, we consider a range of
values of Pcompr=PAW.

IV. ION VS ELECTRON HEATING

Figure 1 shows the dependence of Qi=Qe on
Pcompr=PAW for various values of ðβi; Ti=TeÞ. When
Pcompr=PAW ¼ 0, we recover our previous Alfvénic results
[22]. When compressive driving is present, Qi=Qe is an
increasing function of Pcompr=PAW for all sets of
ðβi; Ti=TeÞ that we investigate. When βi ¼ 0.1, Qi=Qe ¼
Pcompr=PAW holds for all Pcompr=PAW, meaning that all of
the compressive power is converted into ion heating, and all
Alfvénic power is converted into electron heating. This

i

i

i

ii

ii

FIG. 1. Dependence of ion-to-electron heating ratio Qi=Qe
on Pcompr=PAW for Ti=Te ¼ 1 (left) and Ti=Te ¼ 10 (right).
The markers are simulation results, and the lines are the
prescription (14). The colors correspond to different values of
βi. The dashed lines correspond to Qi=Qe ¼ Pcompr=PAW. The
closed circles correspond to the “fiducial” box runs, the open
circles to the “double-sized” box runs, and the green open square
to the higher-velocity-space-resolution run (see Sec. III). The
value of Qi=Qe obtained in this higher-velocity-space-resolution
run is nearly identical to that of the “fiducial” box run with the
same (βi; Ti=Te; Pcompr=PAW), demonstrating numerical conver-
gence with respect to the velocity grid.
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result was theoretically predicted in Ref. [31] and is easy to
understand physically: When βi ≪ 1, ions are too slow to
resonate with AWs, and so the Alfvénic cascade goes from
the RMHD to ERMHD regime without losing power and
then gets dissipated on electrons. What is both new and
surprising in our present numerical result is that, even for
βi > 1, Qi=Qe approaches Pcompr=PAW when Pcompr=PAW

is large. In other words, regardless of βi, almost all the
compressive fluctuations in the inertial range are converted
into ion heat if the compressive fluctuations are sufficiently
large compared to the Alfvénic fluctuations.
The comparison of the left and right panels in Fig. 1

suggests that Qi=Qe does not depend on Ti=Te, which
already has been seen for the purely Alfvénic case [22];
here we find that it appears to be true also for the
compressively driven case. Admittedly, only two Ti=Te
cases (Ti=Te ¼ 1 and 10) are investigated in our simulation
campaign. Therefore, the weak dependence on Ti=Te that
is suggested by the present simulations may cover only
the values Ti=Te ≳ 1. In contrast, when Ti=Te ≪ 1 and
βi ≪ 1, namely, in the Hall limit [31], there is a theoretical
expectation of Qi=Qe → 1 for any Pcompr=PAW. Since this

theoretical expectation is inconsistent with Eq. (14), we
need to examine Ti=Te < 1 to see whether and when the
insensitivity of Qi=Qe to Ti=Te breaks.
Summarizing the parameter dependences that we find,

we propose a simple fitting formula for Qi=Qe:

Qi

Qe
ðβi; Ti=Te; Pcompr=PAWÞ

¼ 35

1þ ðβi=15Þ−1.4e−0.1=ðTi=TeÞ þ
Pcompr

PAW
: ð14Þ

The first term is our previous purely Alfvénic formula [22].
One finds that Qi=Qe ≥ 1, when Pcompr=PAW ≥ 1 for any
βi and Ti=Te; the implication is that preferential electron
heating occurs only for Alfvénic dominated turbulence at
low βi.

V. POWER SPECTRA

In order to investigate the nature of our simulated
turbulence, we plot its free-energy spectra in the top row
of panels of Fig. 2. The energy spectrum of each integrand

(a-1)

(b-1) (c-1) (d-1) (e-1)

(a-2)

(b-2)

(c-2)

(d-2)

(e-2)

(a-3)

(b-3) (c-3) (d-3) (e-3)

(a-4) (b-4) (c-4) (d-4) (e-4)

i i

i

i i i i i

iiiiii

i i i i i

i i i i

i
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i
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i
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i

i

i

i i i i i i i i

FIG. 2. Top row: power spectra of the electric and magnetic fields normalized by ρiWδB⊥ where WδB⊥ is the total perpendicular
magnetic energy. Second row: ratios of compressive-field spectra to the perpendicular-magnetic-field spectrum. The horizontal lines
correspond to the theoretical predictions for KAWs [29] [dotted lines for Eq. (15) and dashed lines for Eq. (16)]. Third row: spectrum of
the ion heating rate normalized by ρiQtot where Qtot ¼ Qi þQe is the total heating rate. Bottom row: the ion-heating-rate spectrum
integrated up to k⊥ and normalized by Qi. Parameter values: (a-1)–(c-4) βi ¼ 1, (d-1)–(e-4) βi ¼ 4, and Pcompr=PAW is increased from
left to right. The gray shaded region contains the corner modes in the ðkx; kyÞ plane. The results shown in (a-1)–(d-4) and (e-1)–(e-4) are
from simulations done in the “fiducial” and “double-sized” boxes, respectively (see Sec. III).
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in Eqs. (12) and (13) is denoted by E with a corresponding
subscript. We start by looking at the case of purely Alfvénic
driving (Pcompr=PAW ¼ 0). As expected, the compressive
field δBk is negligible compared to the Alfvénic fields δB⊥
and δE⊥ in the RMHD range. Alfvénic and compressive
fluctuations merge at k⊥ρi ∼ 1 and are reorganized into
KAWs and ion-entropy fluctuations in the sub-ρi range.
In the RMHD range, the spectra of AW turbulence are
EδB⊥ ∼ EδE⊥ ∼ k−5=3⊥ , while in the sub-ρi range, the spectra

are EδB⊥ ∼ k−7=3⊥ and EδE⊥ ∼ k−1=3⊥ , which match the
standard predictions for KAW turbulence [29]. We are
not primarily interested in the accuracy of the spectral
slopes because the dynamic ranges of either AW or KAW
cascades in our simulations are not wide, so these results
are not to be viewed as a contribution to the −5=3 vs −3=2
[64] or the −7=3 vs −8=3 [65] debates.
The panels in the second row of Fig. 2 show the spectral

ratios: EδBk , Eδne , Egi , and Euki divided by EδB⊥ (Euki is the

power spectrum of miniu2ki=2). In the ERMHD range, the

theoretical predictions based on the linear response for
KAW [29]

EδBk

EδB⊥
¼ βið1þ Te=TiÞ

2þ βið1þ Te=TiÞ
; ð15Þ

Eδne

EδB⊥
¼ 4

ð1þ Ti=TeÞ½2þ βið1þ Te=TiÞ�
ð16Þ

are quite accurately satisfied. Furthermore, uki rapidly
drops in the sub-ρi range, which is also consistent with
the KAW turbulence theory, where uki ¼ 0 [29]. While the
transition from AW to KAW turbulence is transparent at
k⊥ρi ≃ 1 for βi ¼ 1, the AW scaling starts to break at
k⊥ρi ≃ 0.5, and then KAW scaling starts at k⊥ρi ≃ 2 for
βi ¼ 4. This “intermediate” range at high βi was discovered
in our previous purely Alfvénic βi ¼ 100 simulation [22].
Next, we examine how the spectra change when the

compressive driving is present. We start by focusing on
the RMHD range. As the compressive driving increases,
the amplitudes of the compressive fields increase. One
finds that the amplitude of uki increases more rapidly than
those of δBk and δne, and dominates Egi . This is because
we drive the compressive fluctuations through an external
parallel acceleration of ions, aext [see Eq. (1)]. The
amplitude of gi is much greater than those of δBk and
δne when the compressive driving is large, meaning that the
compressive driving primarily goes to gi as it includes the
contribution from uki. On the other hand, examining the top
panels of Fig. 2, one finds that the Alfvénic fields do not
change as Pcompr=PAW increases, indicating that the com-
pressive driving does not contaminate the Alfvénic fields
and confirming that the compressive and Alfvénic fields
are indeed decoupled in the RMHD range. While this

decoupling is a theoretical result that has been accepted for
some time [29], the theoretical prediction is based on an
asymptotic expansion in k⊥ρi ≪ 1 and relies on a number
of assumptions—most importantly, locality of nonlinear
interactions, which is not a completely uncontroversial
approach (e.g., Ref. [66]). Thus, the numerical confirma-
tion of the decoupling shown in Fig. 2 is a nontrivial result,
and a confirmation that a certain way of thinking about
plasma turbulence problems is a reasonable one, and that
reassuringly, asymptotic theory gives one a decent grasp of
the problem even when the small parameter—k⊥ρi in this
case—is only moderately small.
Let us now examine the effect of compressive driving

on the sub-ρi-range cascade. Even with sufficiently large
Pcompr=PAW, the spectra of the KAW fields EδB⊥ and EδE⊥
do not change. The absolute values of spectral amplitude
are also preserved. Therefore, the effect of the compressive
driving on KAWs is minor. In contrast, Egi increases at all
scales as Pcompr=PAW increases. This result means that the
compressive fluctuations in the RMHD range are directly
connected to the ion-entropy fluctuations in the sub-ρi range,
while the connection with KAWs appears to be absent. If
there were an energy-transfer path from the inertial-range
compressive fluctuations to KAWs, the amplitudes of KAWs
in the compressively driven case would be larger than
those in the purely Alfvénic case because EδB⊥ and EδE⊥
are proportional to ε2=3KAW, where εKAW is the energy flux
of the KAW cascade [29]. Nonetheless, the comparison of
Figs. 2(d-1) and 2(e-1) shows that EδB⊥ and EδE⊥ in the
compressively driven case are less than double the purely
Alfvénic ones even for Pcompr=PAW larger than 30. In the
low-βi regime, the absence of a path between the inertial-
range compressive fluctuations and KAWs was analytically
proven in Ref. [31]. Here, even at βi ¼ 4, we find that
compressive driving affects only the ion-entropy fluctua-
tions. This is the reason why Qi=Qe ≃ Pcompr=PAW is
satisfied for Pcompr=PAW ≫ 1 even at βi ≳ 1.
The panels in the third row of Fig. 2 show the spectrum

of the ion heating rate. For βi ¼ 1 and Pcompr=PAW ¼ 0,
most of the ion heating occurs at sub-ρi scales. This
heating-rate spectrum is consistent with the full GK
simulation at the same parameters, spanning both the ion
and electron kinetic scales [19–21]. As Pcompr=PAW

increases, the heating rate both in the RMHD range and
at sub-ρi scales increases. For βi ¼ 4 and Pcompr=PAW ¼ 0,
there is ion heating in the RMHD range with comparable
amplitude to the sub-ρi heating. The ion heating in
k⊥ρi ≲ 0.3 is due to the Landau damping of AWs since
there are no compressive fluctuations at k⊥ρi ≲ 0.3. This
indicates that the box scale of βi ¼ 4 simulation is not
precisely asymptotically in the RMHD range even though
the electromagnetic spectra at k⊥ρi ≲ 0.3 look like those
of RMHD turbulence, viz., EδB⊥ ∼ EδE⊥ ∼ k−5=3⊥ . Similar to
the βi ¼ 1 case, the heating rate both in the RMHD range
and at sub-ρi scales increases as Pcompr=PAW increases.
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We note that ion heating near the injection scale may
be an artifact when the compressive driving is present:
Recent drift-kinetic simulations [35] showed that compres-
sive driving directly heated the ions at the injection scale
because the turbulent cascade was not yet well developed at
that scale. However, in our simulations, the contribution of
the heating at the injection scale to the total heating rate is
negligible. To show this, we plot in the bottom panels
of Fig. 2 the ion-heating-rate spectrum integrated up to k⊥
and normalized by Qi, viz.,

R k⊥
k⊥0

dk0⊥EQi
ðk0⊥Þ=Qi, where

k2⊥0 ¼ k2x0 þ k2y0. This value is the fraction of ion heating
rate contained at the scales larger than k−1⊥ . We find for all
cases, most of the ion heating (approximately 80%) occurs
at sub-ρi scales. While the compressive driving increases
the heating rate both in the RMHD and sub-ρi ranges (the
third row of Fig. 2), the contribution to the total ion heating
is predominantly from the sub-ρi range. It is also evident
that the (possibly artificial) box-scale heating in the
presence of the compressive driving is negligible, being
only ≃5% of the total.

VI. VELOCITY-SPACE STRUCTURE

In order to investigate the heating process, we show the
velocity-space structure of gi. We are particularly interested

in the small-scale structures of gi in velocity space as they
are the route to heating (i.e., to activating the collision
operator) in weakly collisional plasmas [41,67]. Figure 3
shows snapshots of gi and gi=Fi in the z ¼ 0 plane for
zero and large compressive driving when βi ¼ 0.1 and 4.
The normalization by Fi helps accentuate the structure at
large jvj [68]. In all panels, the top half is taken at kx ¼
ky ¼ 0.375ρ−1i , and the bottom half is taken at kx ¼ ky ¼
5.25ρ−1i . A rough trend is common for both low and high
βi, with and without the compressive driving: In the RMHD
range, gi has small-scale structure in the vk direction and
little structure in the v⊥ direction; in contrast, in the
ERMHD range, there is small-scale structure both in vk
and v⊥. The small-scale structure in vk is due to linear
Landau damping [39,69,70]; the small-scale structure in v⊥
is created by nonlinear phase mixing [29,41–43].
In order to investigate quantitatively the heating mecha-

nism, we examine the Hermite and Laguerre spectra
[22,35,60,70–75] of gi, viz., jĝm;lj2, defined by

ĝm;l ¼
Z

∞

−∞
dvjj

Hmðvjj=vthiÞffiffiffiffiffiffiffiffiffiffiffi
2mm!

p

×
Z

∞

0

dðv2⊥ÞLlðv2⊥=v2thiÞgiðvjj; v2⊥Þ; ð17Þ
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FIG. 3. The real part of the gyroaveraged perturbed ion distribution function gi (a)–(d) and gi=Fi (e)–(h) in the z ¼ 0 plane; βi ¼ 0.1
(a),(c),(e),(g) and βi ¼ 4 (b),(d),(f),(h); the compressive driving is off (a),(b),(e),(f) and on (c),(d),(g),(h). For each panel, the top half is at
ðkxρi; kyρiÞ ¼ ð0.25; 0.25Þ and the bottom half is at ðkxρi; kyρiÞ ¼ ð3.75; 3.75Þ. The vertical pink lines in (a)–(d) and black lines in (e)–(h)
correspond to the Landau resonance vk ¼ �ω=kkvA which is a solution to the linear dispersion relation of the hybrid-GK model.

ION VERSUS ELECTRON HEATING IN COMPRESSIVELY … PHYS. REV. X 10, 041050 (2020)

041050-7



where HmðxÞ and LlðxÞ are Hermite and Laguerre poly-
nomials, respectively. The top panels of Fig. 4 show the
Hermite spectra in the RMHD and ERMHD (sub-ρi) ranges
when the compressive driving is on or off for βi ¼ 0.1
and 4. The Hermite spectrum quantifies the filamentation in
vk and indicates whether Landau damping is significant or
not: The signature of Landau damping is m−1=2 [70]; a
steeper spectrum, which in our simulations is measured to
bem−1 (cf. Refs. [72,75]) may be an indication that Landau
damping (phase mixing) is suppressed by the stochastic
echo effect [22,35,72,75]. We find that, at both high and
low βi, the compressive driving does not change the
Hermite spectral slope, viz., m−1 for βi ¼ 0.1 and m−1=2

for βi ¼ 4 in the RMHD range andm−1=2 both for βi ¼ 0.1
and βi ¼ 4 in the ERMHD range. Therefore, regardless of
whether the compressive driving exists or not, ion Landau
damping is suppressed for βi ¼ 0.1 but is active for βi ¼ 4
in the RMHD regime [76,77]. Note, however, that the

m−1=2 spectrum in the ERMHD range should be viewed
subject to the following caveat. Since there is small-scale
structure both in vk and v⊥ directions in ERMHD, and we
use the ðλ; εÞ grid rather than the ðvk; v⊥Þ grid, the small-
scale structure in v⊥ may contaminate the Hermite spec-
trum, and thus, the m−1=2 spectrum may turn out to be a
numerical artifact. Higher velocity-space resolution (cur-
rently too expensive) is necessary to determine if this is
the case.
The bottom panels of Fig. 4 show the Laguerre spectrum,

which quantifies the filamentation in v⊥ and is, thus, a
diagnostic of nonlinear phase mixing. In contrast to the
Hermite spectrum, the Laguerre spectrum in the RMHD
range is noticeably modified by compressive driving;
for both βi ¼ 0.1 and 4, the Laguerre spectrum becomes
shallower when the compressive driving is present. This
result indicates that the additional heating in the RMHD
range due to compressive driving [Figs. 2(b-3), 2(c-3),
and 2(e-3)] is caused by the emergence of small-scale
structures in v⊥, presumably triggered by nonlinear phase
mixing. Whereas nonlinear phase mixing has been con-
sidered to start at k⊥ρi ∼ 1 in Alfvénic turbulence, we find
that RMHD-range compressive fluctuations triggers non-
linear phase mixing at k⊥ρi ≪ 1. We believe that this
nonlinear phase mixing is due to the effect of ∇δBk drifts
[28] but leave further investigation of this detail to future
work. In the ERMHD range, on the other hand, compres-
sive driving does not change the Laguerre spectrum. For
both βi ¼ 0.1 and 4, the Laguerre spectrum is shallower in
the ERMHD range than that in the RMHD range, indicating
that the ion heating in the ERMHD range is mediated by the
nonlinear phase mixing, as indeed expected theoreti-
cally [29].

VII. CONCLUSIONS

In this paper, we obtain the ion-to-electron irreversible-
heating ratioQi=Qe in compressively driven (but subsonic)
gyrokinetic turbulence. Summarizing the dependence on
the free parameters, Qi=Qe is (i) an increasing function
of Pcompr=PAW, (ii) an increasing function of βi, and
(iii) almost independent of Ti=Te. With regard to (i),
Qi=Qe ≃ Pcompr=PAW for any βi when the compressive
driving is sufficiently large. This result suggests that
preferential electron heating Qi=Qe ≪ 1 occurs only when
βi ≪ 1 and Pcompr=PAW ≪ 1, a fairly special case. A very
simple fitting formula for the heating ratio is presented in
Eq. (14) and is shown to work remarkably well by Fig. 1.
This function can be useful in modeling a variety of
astrophysical systems, such as the solar wind, AGN jets
[78,79], and accretion disks around black holes. Especially
for accretion disks, Qi=Qe is important for interpreting
observations by the EHT. We offer this prescription to the
modelers with a word of caution that our results may not be
precisely, quantitatively applicable beyond the limitations

i

i i

ii

FIG. 4. Hermite (top) and Laguerre (bottom) spectra of the
gyroaveraged perturbed ion distribution function gi (normalized
by the total energy) at k⊥ρi ¼ 0.33 (left) and at k⊥ρi ¼ 5.27
(right). The blue and orange lines correspond to βi ¼ 0.1 and
βi ¼ 4, respectively. The crosses (circles) correspond to the cases
without (with) compressive driving. m and l stand for the
Hermite and Laguerre moments, respectively. The spectra are
integrated over z and v⊥ for the Hermite spectrum and over z and
vk for the Laguerre spectrum. For the Hermite spectra, the
auxiliary lines m−1 (suggesting suppressed Landau damping or
phase mixing [35,72,75]) and m−1=2 (suggesting strong Landau
damping [72]) are shown for reference. The green squares
correspond to the higher-velocity-space-resolution run, and they
are consistent with the “fiducial” runs, suggesting numerical
convergence with respect to the velocity grid.
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discussed in Sec. II A. We also note that the parameter sets
used for determining our Qi=Qe function are limited, i.e.,
βi ¼ ð0.1; 1; 4Þ and Ti=Te ¼ ð1; 10Þ. A wider parameter
scan is necessary to extend our prescription Eq. (14)
beyond this range, e.g., to the Hall limit, Ti=Te ≪ 1 and
βi ≪ 1, which may be a special case [31].
We also analyze the phase-space spectra of our turbu-

lence to quantify the distribution, and flows, of free energy.
The spectra show that compressive driving affects the
compressive fluctuations in the RMHD range and the
ion-entropy fluctuations in the sub-ρi range, while AWs
in the RMHD range and KAWs in the sub-ρi range are
unaffected. This result indicates that compressively injected
energy is predominantly converted to ion heating. The
spectra of the ion heating rate (Fig. 2) show that most
heating happens in the sub-ρi range, regardless of whether
compressive driving is applied or not. The analysis of the
ion distribution function and its velocity-space spectra
quantifies various phase mixing processes, which are routes
to free-energy thermalization. We find that compressive
driving does not change the linear phase mixing in the
RMHD range, viz., the presence (absence) of phase mixing
at high (low) βi; however a new channel of heating through
the enhanced nonlinear phase mixing in the RMHD range
emerges when compressive driving is present. While most
of these results conform to theoretical expectations
[29,31,72], ours appears to be the first study in which
some of them have received their numerical corroboration.
In order for results like those reported here to be useful in

large-scale modeling, the modeler must know how the
turbulent energy injected into their plasma system at large
(system-size) scales is partitioned into Alfvénic and com-
pressive (slow-wave-like) cascades in the inertial range.
This is an unsolved problem in the majority of astrophysi-
cal contexts, but it is a solvable one: Such a partition is
decided at fluid (MHD) rather than kinetic scales. We hope
to present a solution to this problem for turbulence driven
by the magnetorotational instability [80] with near-azimu-
thal mean magnetic field in a forthcoming publication [26].
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