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We study the low-frequency properties of the bulk photovoltaic effect in topological semimetals. The
bulk photovoltaic effect is a nonlinear optical effect that generates dc photocurrents under uniform
irradiation, which is allowed by noncentrosymmetry. It is a promising mechanism for a terahertz
photodetection based on topological semimetals. Here, we systematically investigate the low-frequency
behavior of the second-order optical conductivity in point-node semimetals. Through symmetry and power-
counting analysis, we show that Dirac and Weyl points with tilted cones show the leading low-frequency
divergence. In particular, we find new divergent behaviors of the conductivity of Dirac and Weyl points
under circularly polarized light, where the conductivity scales as ω−2 and ω−1 near the gap-closing point in
two and three dimensions, respectively. We provide a further perspective on the low-frequency bulk
photovoltaic effect by revealing the complete quantum geometric meaning of the second-order optical
conductivity tensor. The bulk photovoltaic effect has two origins, which are the transition of electron
position and the transition of electron velocity during the optical excitation, and the resulting photocurrents
are, respectively, called the shift current and the injection current. Based on an analysis of two-band
models, we show that the injection current is controlled by the quantum metric and Berry curvature,
whereas the shift current is governed by the Christoffel symbols near the gap-closing points in semimetals.
Finally, for further demonstrations of our theory beyond simple two-band models, we perform first-
principles calculations on the shift and injection photocurrent conductivities as well as geometric quantities
of antiferromagnetic MnGeO3 and ferromagnetic PrGeAl, respectively, as representatives of real magnetic
Dirac and Weyl semimetals. Our calculations reveal gigantic peaks in many nonvanishing elements of
photoconductivity tensors below a photon energy of about 0.2 eV in both MnGeO3 and PrGeAl. In
particular, we show the ω−1 enhancement of the shift conductivity tensors due to the divergent behavior of
the geometric quantities near the Dirac and Weyl points as well as slightly gapped topological nodes.
Moreover, the low-frequency bulk photovoltaic effect is tunable by carrier doping and magnetization
orientation rotation. Our work brings new insights into the structure of nonlinear optical responses as well
as the design of semimetal-based terahertz photodetectors.
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I. INTRODUCTION

Topological semimetals are emerging as efficient infra-
red and terahertz photodetectors [1]. In contrast to semi-
conductors whose absorption spectrum is bounded below
by the band gap, semimetals can detect radiations down to
the terahertz range because of their gapless spectrum. A
promising mechanism for the generation of photocurrents
in semimetals is the bulk photovoltaic effect. It refers to the
generation of photocurrents under uniform irradiation of
light due to the intrinsic inversion asymmetry of the system.
Since the bulk photovoltaic effect does not require a bias
voltage for breaking inversion symmetry, dark current noise
can be suppressed [1].
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To achieve high photosensitivity, we need to understand
how to obtain large photoconductivity. It is believed that
band topology plays an important role [2–6]. The bulk
photovoltaic effect occurs due to the inversion-asymmetric
transition of electron position or velocity during the optical
excitation, and the resulting photocurrents are, respectively,
called the shift current and the injection current [7]. In
nonmagnetic systems, linearly polarized light induces shift
currents, while circularly polarized light induces injection
currents. Remarkably, both the linear shift [4] and circular
injection [5] currents were found to be intimately related to
the topological quantities, the Berry connection and the
Berry curvature, respectively. These discoveries have led to
various theoretical and experimental studies searching for
topological enhancement near the gap-closing points [8–19].
However, while there is a concrete proportional quanti-

tative relationship between the injection current and the
Berry curvature, no such quantitative relation exists
between the shift current and the Berry connection. For
example, a Dirac point (DP) in two dimensions has a
quantized π Berry phase and thus has a nontrivial Berry
connection. Nevertheless, such a Dirac point does not
generate a shift current because of its inversion symmetry.
Furthermore, no simple quantitative relation was found
between the shift current and the shift vector [20], a gauge-
invariant quantity related to the Berry connection, without
some special requirements like the momentum independ-
ence of the dipole matrix elements [21].
The bulk photovoltaic effect in magnetic topological

semimetals is more poorly understood, although a recent
work has revealed some general aspects [22]. Because of
time-reversal symmetry breaking in magnetic systems,
linearly (circularly) polarized light can generate injection
(shift) currents as well as shift (injection) currents. There
are some works highlighting the generation of large linear
injection currents in magnetic systems [22–27], but the
relationship between the response and band topology has
not been understood. Moreover, there has been very little
focus on the circular shift current, while the first concept of

the shift current appeared as a response to circularly
polarized light [28–30]. One reason for this lack of
attention is that injection currents are typically stronger
than the shift currents. Since there is rapid progress in the
experimental observation [31–33] and theoretical proposal
[34–42] of various magnetic topological semimetals,
addressing optical properties in magnetic topological semi-
metals is now a timely subject.
In this work, we reveal general low-frequency properties

of the shift and injection currents in magnetic and non-
magnetic point-node semimetals. By employing symmetry
and power-counting analysis, we determine the leading
low-frequency divergence near the gap-closing point, as
summarized in Table I. We show that tilted DP and Weyl
points (WPs) can generate the leading divergence. While
the bulk photovoltaic response in tilted Dirac and Weyl
points have been studied [13,23–25], here we approach
them in a unified way and discover new aspects. Our theory
covers type-I and type-II spectrums of Dirac and Weyl
points in any dimensions. In particular, our analysis
includes type-II Dirac points in two dimensions and
type-I and type-II Dirac points in three dimensions, which
are relevant to magnetic Dirac semimetals, whose shift and
injection currents have not been previously studied. It is
widely known that the protection of Dirac points against
opening the gap requires inversion symmetry, which for-
bids the bulk photovoltaic response. It is true in non-
magnetic systems. However, in magnetic systems,
symmetry under the combination of spatial inversion P
and time reversal T, which is PT symmetry, is enough for
the protection [39–42], so inversion symmetry can be
broken. Also, we study the largely overlooked circular
shift current in Weyl and Dirac systems. The circular shift
current grows fast as the photon frequency gets smaller, and
it scales as ω−1 in three dimensions. These results indicate
that Dirac semimetals in three dimensions can show
divergent photovoltaic responses like Weyl semimetals,
although the Berry curvature is identically zero due to PT
symmetry. In two dimensions, it grows faster as ω−2.

TABLE I. Low-frequency properties of second-order dc photovoltaic responses. Linear and circular indicate the polarization of light.
Injection and shift conductivities are defined by Eq. (4). The sign � indicates the parity of the conductivity tensor under the action of
time reversal T and spacetime-inversion PT. See Eqs. (9) and (10). In T- (PT-) symmetric systems, only the responses with the positive
T- (PT-) parity appear. All four responses can appear when T and PT symmetries are both broken. Based on their symmetry properties,
we call the linear injection and circular shift current responses PT-symmetric responses and the linear shift and circular injection current
responses T-symmetric responses. Symplectic Christoffel symbols indicate the symplectic analog of the Christoffel symbol of the first
kind [see Eq. (33)]. Here, we consider only interband-transitive processes in the clean limit, where the relaxation rate Γ ¼ τ−1 is smaller
than the photon frequency ω. In this case, the injection current is typically larger than the shift current, and they become comparable
when ω approaches Γ.

Response Linear injection Circular injection Linear shift Circular shift

Parity under T − þ þ −
Parity under PT þ − − þ
Geometric quantities Quantum metric Berry curvature Symplectic Christoffel symbols Christoffel symbols of the first kind
Leading divergence Oðτωd−3Þ Oðωd−4Þ
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We find that tilted Dirac and Weyl points show what we
call the separation of responses, where photocurrents of
different origins manifest through different current direc-
tions. For example, circular shift and circular injection
currents flow in different directions. This property can be
useful in the detection of shift currents in the coexistence of
the stronger injection currents. The separation of responses
can occur from the symmetry transformation property
under magnetic operations MT or C2T, where M and C2

are mirror and twofold rotation, so it remains robust in the
system beyond the k-linear approximation as long as those
symmetries are preserved.
Our symmetry and power-counting analyses are sufficient

for understanding the general pattern of the response for
systems with a linear spectrum. However, for a deeper
understanding of the response, we propose a new perspective
on the low-frequency bulk photovoltaic effect. We uncover
the full geometric nature of shift and injection currents. Here,
as well as in the Berry curvature, another geometric quantity
called the quantummetric has a crucial role. Since geometry
has more information than topology about quantum states,
we observe the consequence of band topology in a more
broad perspective through geometric quantities. We show
that the linear injection conductivity is determined only by
the quantum metric near the gap closing, in the same way as
the circular injection conductivity is determined by the Berry
curvature, which completes the geometric understanding of
the injection currents at the low-frequency regime.
Furthermore,we show that the shift conductivities are related
to more interesting quantities, which are the Christoffel
symbols. Unlike the Berry connection, which has a compli-
cated relationship to the magnitude of the shift current, the
Christoffel symbols directly control the magnitude of the
response. In this viewpoint, the enhancement of the shift and
injection current responses near the gap-closing point can be
attributed to the divergence of the geometric quantities
at the geometric singularity, i.e., the gap-closing point.
Furthermore, our unique perspective allows us to view the
bulk photovoltaic effect as novel tools for experimental
measurements of quantum geometry in materials.
Our geometric interpretation of the bulk photovoltaic

effect is clearly distinguished from the one in Ref. [22],
which also discusses the role of the quantum metric. In
Ref. [22], the shift current is decomposed into four parts,
and one of them is interpreted as the geometric contribu-
tion. The injection current is identified as having no
geometric origin. These are in contrast to our interpretation
in which both shift and injection currents are fully geo-
metric responses. Only through our direct quantitative
relationships can the bulk photovoltaic effect be identified
as a useful measure of quantum geometry in experiments as
well as a way to theoretically understand the low-frequency
divergent behavior.
Finally, for further demonstrations of our theory beyond

simple two-band models, we perform first-principles

relativistic band theoretical calculations of the shift and
injection photocurrent conductivities as well as geometric
quantities in antiferromagnetic (AF) MnGeO3 and ferro-
magnetic (FM) PrGeAl (as will be reported in Sec. VI
below), respectively, as representatives of real magnetic
Dirac and Weyl semimetals. In AF MnGeO3, although
both T and P symmetries are broken, the combined PT
symmetry is preserved [42]. Thus, AF MnGeO3 was
recently predicted to be a rare magnetic Dirac semimetal
[42]. As our theory predicts (Table I), we find nonzero
elements of circular shift and linear injection photocon-
ductivity tensors in AF MnGeO3. In fact, several nonzero
elements exhibit huge peaks below a photon energy of
about 0.2 eV. Our calculations reveal that there are at least
there Dirac points in the vicinity of the Fermi level, and two
of the Dirac points are each accompanied by a slightly
gapped Dirac point. The calculated quantum metric and
Christoffel symbol of the first kind exhibit divergent
behaviors near both the gapless and gapped Dirac points,
thus leading to the geometric enhancement in linear
injection and circular shift currents, respectively. In con-
trast, both T and PT symmetries are broken in FM PrGeAl
[43], and hence all four types of the bulk photovoltaic effect
may emerge in FM PrGeAl, as our theory predicts (Table I).
Indeed, we find that many nonzero elements of all shift and
injection conductivity tensors show gigantic peaks in the
low-frequency range up to 0.1 eV. There are at least 160
type-I and type-II Weyl points within�0.1 eV of the Fermi
level in FM PrGeAl [43]. Our calculations indicate that the
low-frequency peaks can be further increased by up to a
factor of 5 by raising the chemical potential from the Fermi
level to the energy of certain Weyl points. Our calculations
also reveal the divergent behaviors of both the quantum
geometric tensor and the quantum geometric connection
(symplectic Christoffel symbol and Christoffel symbol of
the first kind) near the Weyl points and also anticrossing
topological nodes, thus leading to the gigantic low-
frequency shift and injection currents in FM PrGeAl.
Furthermore, we notice that FM PrGeAl is a soft ferro-
magnet [44]. Thus, the magnetization direction can be
easily rotated away from the easy c axis to, e.g., the a axis,
which may cause a topology change of the Weyl-point
distribution in the Brillouin zone (BZ) [43], thereby
resulting in significant changes in the shift and injection
photoconductivities. Also, since the circular shift and
injection conductivity tensors are antisymmetric with
respect to the magnetization direction, they would change
sign when the magnetization direction is reversed. All these
observations show that the gigantic low-frequency shift and
injection photocurrents in FM PrGeAl can be tuned by
either carrier doping or magnetization direction rotation.
The outline of this paper is as follows. We explain the

shift and injection currents as a second-order optical
response in Sec. II. Then, we study the symmetry and
low-frequency divergence of the shift and injection currents
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in Sec. III. Section IVenriches our analysis by revealing the
quantum geometrical nature of the low-frequency
responses. We elaborate more on the symmetry and
divergence with concrete models and numerical calcula-
tions in Sec. V. In Sec. VI, we present our first-principles
calculations on the shift and injection photocurrent con-
ductivities as well as geometric quantities of AF MnGeO3

and FM PrGeAl. In particular, we analyze the gigantic
peaks in the calculated low-frequency photoconductivity
spectra in MnGeO3 and PrGeAl in terms of the divergent
behaviors of the geometric quantities near the gapless and
slightly gapped topological nodal points. Finally, we
discuss several issues about the low-frequency divergence
in Sec. VII.

II. SHIFT AND INJECTION CURRENTS

Let us expand current density j in increasing powers of
the electric field E as

jc ¼ σc;að1ÞEa þ σc;abð2Þ EaEb þ σc;abcð3Þ EaEbEc þ � � � : ð1Þ

The first term is the familiar linear response, and the other
terms are nonlinear responses. Since the current density
oscillates in-phase with the electric field in the linear
response, the dc photocurrent generation is inherently a
nonlinear optical effect. In our work, we assume that the
electric field is sufficiently small such that perturbation
theory works (we discuss in Sec. VII how small it should
be). While even-order responses to E vanish in centrosym-
metric systems, they are allowed in noncentrosymmetric
systems. The bulk photovoltaic effect studied in the present
paper is thus primarily a second-order response.
The second-order optical response under the uniform

illumination of light has the form jcðω1 þ ω2Þ ¼ σc;abðω1þ
ω2;ω1;ω2ÞEaðω1ÞEbðω2Þ, in general. Let us focus on the dc
generation

jcdc ¼ σc;abdc ðωÞEaðωÞEbð−ωÞ; ð2Þ

where jcdc ¼ jcð0Þ and σc;abdc ðωÞ ¼ σc;abð0;ω;−ωÞ. In the
clean limit—where the interband relaxation rate is
smaller than the photon frequency and the band gap,
interband transitions are described by two processes: shift
and injection [45]:

σc;abdc ¼ σc;abshift þ σc;abinj : ð3Þ

The shift and injection currents correspond to the current
generated by the change of the electron position and velocity,
respectively, during the interband transition of electrons [7].
One can see this correspondence by noting that the shift and
injection conductivities have the form of the Fermi golden
rule [7] (see the Appendix B for explicit calculations).
Explicitly, they have the form [47,48]

σc;abshift ¼ −
πe3

ℏ2

Z
k

X
n;m

fFDnmðRc;a
mn − Rc;b

nmÞrbnmramnδðωmn − ωÞ;

σc;abinj ¼ −τ
2πe3

ℏ2

Z
k

X
n;m

fFDnmΔc
mnrbnmramnδðωmn − ωÞ; ð4Þ

where
R
k ¼ R

ddk=ð2πÞd, fFDn is the Fermi-Dirac distribution
of the band n, fFDnm ¼ fFDn − fFDm , ℏωmn ¼ ℏωm − ℏωn is the
energy difference between bands m and n, Hjni ¼ ℏωnjni,
ramn ¼ hmji∂ajni, vcmn ¼ ℏ−1hmj∂cHjni, and we use the
notation ∂a ¼ ∂=∂ka. Note that Rc;a

mn ¼ rcmm − rcnn þ
i∂c log ramn is called the shift vector—characterizing the
interband transition of the displacement—and Δc

mn ¼ vcmm −
vcnn is the interband transition of the velocity. Here, τ is the
relaxation time that saturates the injection current: Without it,
the injection of moving electrons and holes leads to a constant
growth in time.We take the electron charge as−e (i.e., e > 0).
Equation (4) is validwith andwithout time-reversal symmetry.

III. SYMMETRY AND POWER-COUNTING
ANALYSIS

To get a general perspective on the low-energy properties
of the shift and injection currents, we review their sym-
metry properties and then study the pattern of low-
frequency divergences. The key properties presented in
this section are summarized in Table I, and they serve as
basic ingredients for the analysis in Sec. V.

A. Symmetry of the shift and injection conductivities

Let us first decompose the second-order dc conductivity
into its real and imaginary parts:

σc;abðωÞ ¼ σc;abL ðωÞ þ iσc;abC ðωÞ: ð5Þ
Using E�ðωÞ ¼ Eð−ωÞ and Eq. (2), one can see that the
conductivity can be symmetrized such that

σc;abL ðωÞ ¼ σc;baL ðωÞ;
σc;abC ðωÞ ¼ −σc;baC ðωÞ: ð6Þ

Therefore, we always consider conductivity tensors satisfy-
ingEq. (6).Wenote that the expressions inEq. (4) are already
symmetrized. Assuming the form EðtÞ ¼ jEje−iωtðcosϕ;
sinϕ; 0Þ þ c:c: for linearly polarized light and EðtÞ ¼
jEje−iωtð1; i; 0Þþc:c: for circularly polarized light, the gen-
erated photocurrent is

jcL−dc ¼ ðσc;xxL cos2ϕþ σc;yyL sin2ϕ

þ 2σc;xyL sinϕ cosϕÞjE2j
jcC−dc ¼ ðσc;xxL þ σc;yyL − 2σc;xyC ÞjE2j: ð7Þ

The real part of the conductivity is responsible for the current
generation regardless of the polarization,while the imaginary
part of the conductivity is responsible for the current
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generated by the circularly polarized light. If one measures
the current difference between the ones generated by left-
circularly polarized light and right-circularly polarized light
∝ σc;xy − σc;yx, only the imaginary part contributes. In the
following, we call the real part σc;abL linear conductivity and
the imaginary part σc;abC circular conductivity.
From the definition in Eq. (2) and the transformation

properties of the current and electric field, it is clear that the
second-order optical conductivity transforms like a third-
rank tensor under spatial transformations. In other words,
σ0c1;a1b1dc ¼ Mc1cMa1aMb1bσ

c;ab
dc under a point-group sym-

metry transformation xa → x0a ¼ Mabxb. [49] However,
one should be careful when taking time reversal for
relaxational processes as is well known from the
Onsager reciprocity relations in linear response theory
[50–52]. For example, it seems like Eq. (2) implies that
time reversal reverses the sign of the dc conductivity for
linearly polarized light. However, we need to additionally
reverse the sign of the phenomenological relaxation rate Γ
in order to make the decay in time to the growth in time.
The correct time reversal for the second-order dc conduc-
tivity is

σc;abdc ðω;ΓÞ → σ0c;abdc ðω;ΓÞ ¼ −σc;badc ðω;−ΓÞ: ð8Þ

See Appendix C. When applying this equality, the delta
function and τ should be interpreted as π−1Γ=½ðωmn −
ωÞ2 þ Γ2� and Γ−1, so they reverse sign under Γ → −Γ.
Thus, the real part of the shift and injection conductivity
tensor transforms as

σ0c1;a1b1shift;L ¼ Mc1cMa1aMb1bσ
c;ab
shift;L;

σ0c1;a1b1inj;L ¼ ð−1ÞsTMc1cMa1aMb1bσ
c;ab
inj;L; ð9Þ

and the imaginary part transforms as

σ0c1;a1b1shift;C ¼ ð−1ÞsTMc1cMa1aMb1bσ
c;ab
shift;C;

σ0c1;a1b1inj;C ¼ Mc1cMa1aMb1bσ
c;ab
inj;C; ð10Þ

under the spacetime symmetry transformation ðt; xaÞ →
ðt0; x0aÞ ¼ (ð−1ÞsT t;Mabxb). Alternatively, one can verify
these transformation rules by examining transformations of
Rc;a
mn, ranm, and Δc

mn from the form in Eq. (4). See
Appendix D for a derivation.
Knowing these symmetry transformation properties, one

can use MTENSOR [53] in the Bilbao Crystallographic
Server to see which tensor components are required to
vanish by symmetry for any of 80 magnetic point groups.
For our purposes, the most important symmetries are
simply time-reversal T and spacetime-inversion PT sym-
metries (note, again, that P is always broken in the present
paper). We summarize their role in Table I. While only
linear shift and circular injection currents can be generated

in time-reversal-symmetric systems, they vanish in PT-
symmetric systems; thus, linear injection and circular shift
currents can be generated, and therefore, time-reversal
symmetry and spacetime-inversion symmetry are comple-
mentary to each other, as pointed out in Ref. [22]. This
behavior is manifested in the geometric quantities related to
the responses. As we show below in Sec. IV, T-symmetric
responses are related to both the Berry curvature and the
quantum metric, while PT-symmetric responses are related
to the quantum metric only. In general magnetic systems
without T and PT symmetries, all four types of currents can
be generated.
When there is MT or C2T symmetry instead, where M

and C2 are mirror and twofold rotation, a phenomenon of
“separation of responses” occurs, meaning that different
directions manifest different types of responses, because
those symmetries act like time-reversal symmetries in some
directions and act like spacetime-inversion symmetries in
the other directions. For example, MxT acts like time-
reversal symmetries in the y and z directions, whereas it
acts as spacetime-inversion symmetry in the x direction. In
this case, x-polarized light generates a shift current along y
and z while generating an injection current along x. We
demonstrate the separation of responses through model
calculations in Sec. V and also through first-principles
calculations in Sec. VI.

B. Power-counting analysis of the low-energy
divergence

Let us now examine the low-energy divergence of the
second-order responses in semimetals. We can estimate the
divergence by counting the power of photon frequency in
Eq. (4). Since the delta function has dimension ω−1, Rc and
ramn have dimension k−1, and Δc has dimension ω=k, the
shift and injection conductivity scales as

σc;abshift ∼
e3

ℏ2

1

ω
kd−3;

σc;abinj ∼
e3

ℏ2
τkd−3; ð11Þ

where k is the characteristic wave vector. When the system
has dispersion E ∝ kα, k ∼ E1=α ∼ ω1=α. Thus, a smaller α
is preferred to get large optical responses for small ω in 2D,
while it is independent of the dispersion in 3D.
In lattice systems, stable Weyl points (and also Dirac

points protected by symmorphic symmetries [54]) always
appear pairwise according to the Nielsen-Ninomiya theo-
rem [55,56]. Therefore, a response in semimetals should be
a sum of responses from different Weyl or Dirac points.
However, different gap-closing points are located at differ-
ent energy levels, in general, so it is expected that only a
particular point contributes to the low-energy response
significantly [5]. An exact cancellation or reinforcement
among different gap-closing points can occur due to
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symmetries, but it can be considered straightforwardly from
the symmetry transformation properties of the conductivity
tensor. In this regard, the response from a single gap-
closing point can be associated with the low-energy
response of a whole system.
Thus, we consider a gap-closing point with a linear

dispersion, described by a Dirac Hamiltonian

H0ðkÞ ¼ ℏv
Xd
a¼1

kaΓa; ð12Þ

where Γa are mutually anticommuting matrices, such that
the spectrum has the form

EðkÞ ¼ �ℏvjkj: ð13Þ

In this case, we have

σc;abshift ∼
e3

ℏ2

1

ω

�
v
ω

�
3−d

;

σc;abinj ∼
e3

ℏ2
τ

�
v
ω

�
3−d

ð14Þ

through a dimensional analysis. This divergence is expected
to occur in the absence of a symmetry cancellation. However,
Eq. (12) has toomany symmetries, sowe need to break them,
in general. A Dirac point has inversion symmetry (by
definition, it is nonchiral), so the second-order optical
response is forbidden. Also, as noted in Refs. [13,22,25],
a Weyl point described by Eq. (12) does not show a second-
order optical response by linearly polarized light because
Eq. (12) has SO(d) rotational symmetry in d spatial dimen-
sions. In 3D, the absence of mirror symmetry (chirality) in
Weyl semimetals allows one unique nonvanishing indepen-
dent component σ3;12inj;C under circularly polarized light.
Because a Weyl point in 3D has time-reversal symmetry
around the gap-closing point, the circular shift current
is also forbidden, and the generated dc current is the
circular injection current. Even for a more general linear
dispersion described by H ¼ P

d
a;i¼1 ℏvaikaΓi, which

apparently has less symmetry, only circular injection
currents for a Weyl point can be nonvanishing because the
conductivity for this Hamiltonian is given by σc;abdc ¼
v−3vaivbjvck detðvai=vÞσk;ijdc;0 [13], where σk;ijdc;0 is the con-
ductivity for vai ¼ vδai, which is the case for Eq. (12) (see
Appendix F for a derivation).
The only way to generate the leading divergence for shift

currents and linear injection currents is to tilt the Dirac or
Weyl cone, as shown in Fig. 1. Since it allows anisotropic
optical excitations around the gap-closing point, photo-
currents can flow whose direction depends on the direction
of the tilting. To see that other symmetry breaking gives
subleading power in ω−1, let us add symmetry-breaking
perturbations to the Dirac Hamiltonian,

HðkÞ ¼ H0ðkÞ þ ℏ
X
a

X∞
p¼0

λp;akpΓa: ð15Þ

Here, λp;a is a constant parameter, Γa≠0 are mutually
anticommuting matrices, and we also include Γ0 as the
identity matrix. Since the dimensionless parameter is
λp;akpω−1 ∼ λp;aω

p−1, responses due to perturbations in
λp;a have weaker low-frequency divergences for p > 1.
For example, let us consider a quadratic correction, resulting
in the dispersion relation E ¼ �ðℏvkþ λ2k2Þ. Optical
excitations occur in the region satisfying ω ¼ Eþ − E− ¼
2ðℏvkþ λ2k2Þ, i.e., k ¼ ω=vð1 − λ2ω=v2Þ þOðω3Þ. By
inserting this into Eq. (11), we have corrections to the
leading divergence by a fraction jðd − 3Þλ2ω=v2j ≪ 1 for
smallω. At thep ¼ 0 order, λ0;a comes as either the chemical
potential, the shift of the location of the gap-closing point, or
a mass term [57]; i.e., we can write the Hamiltonian
as HðkÞ ¼ −μþP

d
a¼1ðk − k0ÞaΓa þM

P
Γa>d. None of

them generates a nonvanishing shift or linear injection
currents. Note that μ breaks no symmetry, k − k0 can be
redefined ask such that the gap closes atk ¼ 0, and themass
term can serve as an inversion symmetry operator so that it
forbids second-order optical responses. Let us now consider

(a) (c)(b)

(d) (e)

FIG. 1. Optical excitation near a tilted Dirac or Weyl cone.
(a) Excitation of electrons by the absorption of a photon with
frequency ω. (b) Type-I spectrum, jv0=vj < 1. (c) Type-II spec-
trum, jv0=vj > 1. Here, v is the velocity of a Dirac or Weyl
fermion at zero tilting, and v0 is the overall velocity shift by
μ → μþ ℏv0kx, giving rise to a tilting of the cone. The gray
planes in panels (b) and (c) show the Fermi level. (d,e) Optically
active region in momentum space for (d) type-I and (e) type-II
cases. The small black dots at the center indicate the location of
the gap-closing point. Red circles around the points show the
surface satisfying ℏω ¼ ℏωc − ℏωv ¼ 2ℏvk, where k ¼ 0 at the
gap closing. Both conduction and valence bands are unoccupied
in the white region, only the valence band is occupied in the light
gray region, and both bands are occupied in the gray region.
Electrons can be optically excited only on the solid red arcs (i.e.,
θ− < θ < θþ, where θ is the absolute value of the polar angle in
either 2D or 3D), which is in the light gray region.
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p ¼ 1. Aswe show above, the linear spectrumwithout tilting
has zero shift and linear injection current responses. Thus, the
remaining possibility is tilting the cone by adding
λ1;0 ¼ −v0 cos θ, which gives an overall tilting of energy
levels by μ → μþ v0kx.
Our analysis shows that the shift and injection conduc-

tivity tensors of tilted, massless Dirac and Weyl points have
the form

σc;abshift ¼
e3

ℏ2

1

ω

�
v
ω

�
3−d

F c;ab
shift

�
2μ

ℏω
;
v0

v

�
;

σc;abinj ¼ e3

ℏ2
τ

�
v
ω

�
3−d

F c;ab
inj

�
2μ

ℏω
;
v0

v

�
: ð16Þ

Let us explain how the F ’s depend on v0=v and 2μ=ℏω, in
general. When μ ≠ 0, i.e., when the Fermi level is away
from the gap-closing point, the chemical potential sets the
lower bound for frequency, so the F ’s do not diverge
as ω → 0.
When the Fermi level is exactly at the gap-closing point,

i.e., μ ¼ 0, theF ’s show significantly different behavior for
jv0=vj < 1 and jv0=vj > 1, which are called type I and type
II [58], respectively [see Figs. 1(b) and 1(c)]. In the type-I
case, tilting cannot generate shift and injection currents
when μ ¼ 0 because, in this case, the Fermi surface is a
point; thus, anisotropic excitation cannot occur. Therefore,
only circular injection currents can be generated, which do
not need tilting for their generation.
In contrast, in the type-II case, the Fermi surface has a

finite size at μ ¼ 0, so anisotropic excitation can occur, in
principle. However, it depends on whether the response is T
symmetric or PT symmetric. While the T-symmetric
responses (linear shift and circular injection) have a non-
trivial response at μ ¼ 0 [13], the PT-symmetric responses
(linear injection and circular shift) have a vanishing
response at μ ¼ 0. This property is related to the fact that
a Hamiltonian with only k-linear terms has an emergent
CPT symmetry, where C is the particle-hole operator, and
CPT ¼ 1: ðCPTÞHðkÞðCPTÞ−1 ¼ −HðkÞ. At μ ¼ 0, PT-
symmetric responses should be zero since they also respect
an effective C symmetry also [where ðPTÞ−1 takes the role
of an effective C operator]—which reverses the direction of
the current, while T-symmetric responses lack C symmetry
and can be nontrivial.
Since PT-symmetric responses do not occur at μ ¼ 0,

magnetic and nonmagnetic systems have the same low-
frequency divergent behavior when μ ¼ 0 exactly.
Nevertheless, as long as μ is small but not exactly zero,
we can still expect enhanced PT-symmetric responses at
small frequency ω ∼ 2μ=ℏ by the factor in front of the F ’s
in Eq. (16). Therefore, PT-symmetric responses in mag-
netic systems can also show a divergent behavior associated
with the ω → 0 limit with a fixed ratio of
2μ=ℏω.

We investigate the symmetry properties of the tilted
Dirac and Weyl points more closely in Sec. V by explicitly
calculating the conductivity tensors. Before that, we derive
the general formula for the shift and injection conductivities
for arbitrary Dirac Hamiltonians and provide their geo-
metric aspects in the following sections. This process adds
more perspective on the transformation rule in Eqs. (9)
and (10) and the divergent behavior near the gap-clos-
ing point.

IV. QUANTUM GEOMETRIC ASPECTS

In the previous section, we analyzed the overall trend of
shift and injection currents using symmetry and power-
counting analyses. Here, we show that every detail of the
conductivity profile for the shift and injection currents is
determined by quantum geometric quantities in the low-
frequency regime. It was pointed out in Refs. [4,6] that the
shift current is related to quantum geometry because the
shift vector includes the Berry connection—a geometric
quantity. Following these works, the geometric nature of
the shift and injection currents was previously discussed in
several works [5,22]. However, no simple quantitative
relationship between the response and the geometric
quantities has been found except for the circular injection
conductivity [5]. In this section, we show that the shift and
injection conductivities are proportional to geometric
quantities that have natural geometric meaning on the
Bloch sphere. These relationships are not limited to massless
Dirac andWeyl points and are exact for any two-band system
orPT-symmetric four-band system. It implies that interband-
transitive photovoltaic responses at the low-frequency
regime probe the quantum geometry of materials. In this
perspective, the low-frequency divergence of the shift and
injection current responses of gap-closing points can be
attributed to their geometrically singular nature. Also, time-
reversal symmetry transformations of the conductivity ten-
sors, which are quite confusing, can be simply understood
from the transformation properties of the geometric quan-
tities. In the following, we first derive the formula that relates
injection and shift currents with the Bloch vector of general
Dirac Hamiltonians with an arbitrary matrix size in any
spatial dimensions. Then, we provide a quantum geometric
interpretation of our formula.

A. Shift and injection conductivity for Dirac
Hamiltonians

We consider the low-energy effective model systems
described by the following dM × dM Dirac Hamiltonian:

HðkÞ ¼ −μðkÞ þ
X
i

fiðkÞΓi; ð17Þ

where Γi are mutually anticommuting matrices. This
Hamiltonian described a single Dirac or Weyl point when
fiðkÞ ¼ ki; however, here, we do not need to assume linear
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dispersion, and we consider a general form of fiðkÞ’s. In
particular, the above Hamiltonian describes general two-
band Hamiltonians when dM ¼ 2, where Γi¼1;2;3 are three
Pauli matrices, and it describes general four-band PT-
symmetric Hamiltonians [with ðPTÞ2 ¼ −1] when dM ¼ 4,
where Γi¼1;…;5 are five Gamma matrices.
Let us express the injection and shift conductivities in

terms of the fi’s. This method makes theoretical analysis
and numerical calculations convenient. As for the injection
current, one can integrate the delta function easily by using
Δc

mn ¼ ∂cωmn such thatΔc
mnδðωmn − ωÞ ¼ ∂cΘðωmn − ωÞ.

Next, we obtain

σc;abinj ¼ −τ
2πe3

ℏ2

Z
ωcv¼ω

dd−1k
ð2πÞd ðn̂ · ĉÞQba ð18Þ

for ω > 0, where ℏωcv is the energy gap between the
conduction and valence bands, n̂ is the surface normal
vector, and

Qba ¼
X
n∈occ

X
m∈unocc

rbnmramn

¼
X
i;j

∂bfi∂afj
dMðδij − f̂if̂j þ iJijÞ

8f2
ð19Þ

is the so-called quantum geometric tensor [59] (see
Appendix G for a derivation of the second equality).
Here, f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼1 f

2
i

p
, and Jij ¼ −i

P
k ϵijkf̂k for dM ¼

2 and Jij ¼ 0 for dM ¼ 4. The vanishing of Jij for dM ¼ 4

is due to the presence of PT symmetry. Note that Qba is
called the quantum geometric tensor because its real and
imaginary parts are related to the quantum metric gba and
the Berry curvature Fba by

Qba ¼ gba −
i
2
Fba: ð20Þ

The relationship between the circular injection current and
the Berry curvature was found in Ref. [5]. On the other
hand, the role of the quantum metric in determining the
linear injection current was not discussed in the literature.
We explain more on the geometric meaning of the quantum
geometric tensor in Sec. IV B.
The shift current has a more complicated form, and it can

be related to the matrix elements of the derivatives of the
Hamiltonian as [60]

Rc;a
mnrbnmramn ¼ i

vbnm
ω2
mn

�
wac
mn −

vcmnΔa
mn þ vamnΔc

mn

ωmn

�

þ vbnm
ω2
mn

X
ωp≠ωm;ωn

�
vcmpvapn
ωmp

−
vampvcpn
ωpn

�
; ð21Þ

where wac
mn ¼ ℏ−1hmj∂a∂cHjni is the diamagnetic term.

The second line involves virtual transitions among three

different bands, so it vanishes in our Dirac system, which
only has two energy levels, with energy ℏωc ¼ f0 þ f and
ℏωv ¼ f0 − f, where f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼1 f

2
i

p
. It then follows

that [61]

σc;abshift ðωÞ ¼ −i
2πe3

ℏ2

Z
k
fFDvc Cbcaδðωcv − ωÞ ð22Þ

for ω > 0, where

Cbca ¼−i
X
n∈occ

X
m∈unocc

Rc;a
mnrbnmramn

¼ dM
8f2

X
i;j

ðδij − f̂if̂jþ iJijÞ

×

�
∂bfi∂a∂cfj−

1

f
ð∂bfi∂cfj∂afþ ∂bfi∂afj∂cfÞ

�
:

ð23Þ

A special case of this formula was derived in Ref. [60] for
two-band models with time-reversal symmetry. Our formula
in Eq. (23) extends the existing formula to describe arbitrary
systems described by the Dirac Hamiltonian in Eq. (17).
We show below that Cbca has geometric meaning as a
connection.

B. Geometry on the generalized Bloch sphere

Let us explain the geometric meaning of the quantum
geometric tensorQba as geometric quantities defined on the
generalized Bloch sphere. This point of view is helpful for
understanding the geometric meaning of Cbca as well as
that of Qba.
We consider the following general Dirac Hamiltonian in

Eq. (17). Then, the generalized Bloch vector fðkÞ is a map,

f∶ BZ → RdΓ ; ð24Þ

where dΓ is the number of Gamma matrices. This map
defines a pullback of the quantum geometric tensor from
the f space to the Brillouin zone.
Let us recall that the quantum geometric tensor has the

following form:

Qab ¼
X
i;j

∂afi∂bfjqij; ð25Þ

where

qij ¼
dMðδij − f̂if̂j þ iJijÞ

8f2
; ð26Þ

and f ¼ jfj. This form is a pullback of the quantum
geometric tensor qij defined in the f space to the momen-
tum space by a transformation ∂afi of tangent vectors
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∂a ¼ ð∂afiÞ∂i; ð27Þ

where ∂i ¼ ∂=∂fi. The quantum metric and the Berry
curvature are given by

gab ¼
X
i;j

∂afi∂bfjηij;

1

2
Fab ¼

X
i;j

∂afi∂bfjϵij; ð28Þ

where ηij and ϵij are the real and imaginary parts of qij, i.e.,
qij ¼ ηij − iϵij. In this viewpoint, the quantum metric and
the Berry curvature are pullbacks of the metric ηij and the
symplectic form ϵij defined on the Bloch sphere. The
metric ηij measures length ds through ds2 ¼ ηijdfidfj,
and the symplectic form ϵij measures the oriented area dA
through dA ¼ ϵijdxidxj in the f space.
While the geometric quantity ηij is defined on the whole

f space, it can be regarded to measure the length on the unit
sphere with f ¼ 1, and it is irrelevant for the radial
direction f ¼ jfj [62]. For example, ds2 ¼ ð1=4Þðdθ2 þ
sin2 θdϕ2Þ in polar coordinates when dM ¼ 2. To see this
example without a coordinate transformation, first note that
Pij ¼ δij − f̂if̂j is the projection to the plane perpendicular
to f̂. The metric measures the length only along the angular
directions on a sphere with a fixed f. Also, the f−2 factor
normalizes the length such that only the angle between two
points on a sphere is measured. Similarly, the symplectic
form also measures the area on the unit sphere. In this
sense, the quantum geometric tensor is a geometric quantity
defined on the generalized Bloch sphere (f ¼ 1).
Another geometric quantity, called the Levi-Civita con-

nection, can also be constructed on the generalized Bloch
sphere. Its components are called the Christoffel symbols,
and they can be written in two ways—the first and the
second kinds. The Christoffel symbols of the second kind
γkij are defined by

∂iej ¼
X
k

γkijek; ð29Þ

where ei is the projection of the unit vector along the fi
direction to the tangent space by Pij ¼ δij − f̂if̂j. It
measures how vectors and tensors change as we move
them parallel to the direction of the curved surface (which
is the generalized Bloch sphere in our case). [64] We have

γkij ¼ −
fi
f2

ðδjk − f̂jf̂kÞ −
fj
f2

ðδik − f̂if̂kÞ: ð30Þ

It is related to the metric tensor ηij by

γkij ≡
X
l

ðη−1Þkl 1
2
ð∂iηjl þ ∂jηil − ∂lηijÞ; ð31Þ

where ðη−1ηÞij ¼ δij − f̂if̂j. Using the Christoffel symbols
of the second kind and the quantum metric tensor, we
define the Christoffel symbols of the first kind as

γkij ≡
X
l

ηklγ
l
ij

¼ −
fi
f2

ηkj −
fj
f2

ηki: ð32Þ

Here, we distinguish the first and second Christoffel
symbols by the uppercase and lowercase letters for the
first component, while we do not distinguish the uppercase
and lowercase letters for other quantities. We can also
define a similar quantity using the symplectic form rather
than the metric tensor by [65]

γ̃kij ≡
X
l

ϵklγ
l
ij

¼ −
fi
f2

ϵkj −
fj
f2

ϵki: ð33Þ

To write γkij and γ̃kij in a unified way, we introduce

ckij ¼ γkij − iγ̃kij: ð34Þ

We call ckij the quantum geometric connection, in analogy
with the quantum geometric tensor.
The Levi-Civita connection does not transform like a

tensor under coordinate transformations [66], which is due
to the derivative acting on tensorial quantities in the
definition of the Christoffel symbols of the second kind
[see Eq. (29)]. The Christoffel symbols of the second kind
defined on the generalized Bloch sphere γkij are related to
those defined in the Brillouin zone Γc

ab by Γc
ab ¼P

dðg−1Þcd 1
2
ð∂bgdaþ ∂agdb − ∂dgabÞ ¼

P
i;j;l ∂lkc∂afi∂b×

fjγlijþ
P

i;j ∂ikc∂a∂bfjδij, where the second term shows
the nontensorial transformation property. It follows that the
quantum geometric connection in the Brillouin zone has the
form

Ccab ¼
X
i;j;k

∂cfk∂afi∂bfjckij þ
X
ij

∂cfi∂a∂bfjqij; ð35Þ

where Ccab ¼ QcdΓd
ab. It is identical to the quantity defined

in Eq. (23), as one can see by using ∂af ¼ P
k f

−1fk∂afk.
This quantity—the quantum geometric connection—
reveals the geometric nature of the low-frequency shift
current in the most transparent way. Let us note that, in
general relativity, the equivalence principle requires that the
Levi-Civita connection does not appear directly as an
observable quantity because it is not invariant under a
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coordinate transformation. However, here we do not have
such an equivalence principle for the Bloch vector f, so we
can observe the Levi-Civita connection (or quantum geo-
metric connection).

C. More on the geometric aspect of the shift current

Equation (22) shows that the linear (circular) shift
current corresponds to the imaginary (real) part of the
quantum geometric connection. Thus, the circular shift
current reveals the Christoffel symbol of the first kind
Γcab ¼ 1

2
ð∂bgca þ ∂agcb − ∂cgabÞ. On the other hand, the

linear shift current is related to the Berry curvature as well
as the quantum metric (through the Christoffel symbols of
the second kind). Combined with the geometric property of
the injection current in Eq. (18), it shows that PT-
symmetric responses originate from the quantum metric
only and that T-symmetric responses are controlled by both
the Berry curvature and the quantum metric. When the
diamagnetic term wac

mn in Eq. (E7) vanishes, the relation
between the shift conductivity and the quantum metric and
Berry curvature can be made more direct from

σc;abshift ¼ −
i
ω

2πe3

ℏ2

Z
ωcv¼ω

dd−1k
ð2πÞd ½ðn̂ · âÞQbc − ðn̂ · b̂ÞQ�

ac�

ð36Þ

for ω > 0, when the diamagnetic term vanishes. This
formula can be applied, e.g., to Dirac and Weyl
Hamiltonians that are, at most, linear in momentum.
Note that the real and imaginary parts of the conductivity
in Eq. (36) have the form of the Berry curvature dipole [67]
and the quantum metric dipole [68], respectively.

D. Generalization to multibands

Let us discuss generalizing our geometric interpretation
to include three or more bands (when bands are doubly
degenerate due to PT symmetry, this means that we
consider six or more bands). The shift and injection
conductivity takes the form

P
n∈occ

P
m∈unocc

R
k I

c;ab
nm δðω −

ωmnÞ for ω > 0. Because the energy conservation imposed
by the delta function chooses a particular set of unoccupied
bands m for an occupied band n, the interband-transitive
optical response is, in general, not associated with a
property of the occupied band alone. On the other hand,
for example, the quantum geometric tensor Qba is defined
by summing over all occupied n and unoccupied m indices
of the matrix elements by

P
n∈occ

P
m∈unocc r

b
nmramn,

so it becomes a property of the ground stateP
n∈occ

P
m∈all r

b
nmramn −

P
n∈occ

P
m∈occ r

b
nmramn, depend-

ing only on the occupied states.
In our analysis, though, we focus on Dirac and Weyl

points where the quantum geometric tensor diverges at the
gap-closing points. Thus, the geometric quantities of the
occupied bands are dominated by the property of the two

crossing bands n ¼ 1 and m ¼ 2, through a large value of
rb12r

a
21 and their derivatives, and they manifest through the

shift and injection currents for small ω. Similarly, when
bands are Kramers degenerate due to PT symmetry, the
matrix elements involving the indices for the four crossing
bands are dominant contributions. Thus, at low frequencies,
we have a good geometric approximation for the conduc-
tivity tensors by

σc;abinj ðωÞ ≈ −τ
2πe3

ℏ2

X
n;m

Z
k∶ωmn¼ω

fFDnmðn̂ · ĉÞQba;

σc;abshiftðωÞ ≈ −i
2πe3

ℏ2

Z
k

X
n;m

fFDnmCbcaδðωmn − ωÞ; ð37Þ

where Qba and Cbca are the quantum geometric tensor and
quantum geometric connection, respectively, defined by

Qba ¼
X
n∈occ

X
m∈unocc

rbnmramn;

Cbca ¼
1

2
Qbdðg−1Þdeð∂cgba þ ∂agbc − ∂bgcaÞ; ð38Þ

where gba ¼ Re½Qba� as above. In general, the injection
conductivity tensors in Eq. (37) differ from the exact
expression in Eq. (4) because the former has the information
of all band indices rather than the specific bands n
andm involved in the optical transition.Moreover, additional
differences can be found in the shift conductivity
tensors due to the virtual transition terms: Cbca ¼
−i

P
n∈occ

P
m∈unocc R

c;a
mnrbnmramn þ virtual transitions (see

Appendix I). When the optical excitation occurs very close
to a gap-closing point, however, only the band indices near
the gap closing significantly contribute to the geometric
quantities, effectively selecting specific band indices. Also,
virtual transition terms are suppressed by a factor ðω=ΔEÞ2
[5], whereΔE is the characteristic energy difference between
the crossing bands and the other bands. Thus, Eq. (37)
becomes a good approximation near the gap closing. Let us
note that, in two-band or PT-symmetric four-band models,
Eq. (37) becomes exact and corresponds to Eqs. (18) and
(22) above.
On the other hand, insulators or ordinary metals do not

have geometric singularities, in general, and the geometric
approximation Eq. (37) does not apply to them so well.
Nevertheless, recalling that the Berry curvature of each band
(rather than that of thewhole occupied bands) iswell defined,
we can hope for the possibility of a well-defined geometric
quantity associated with a pair of bands also. Let us see
whether it makes sense to give a geometric meaning to the
matrix element ranmrbmn ≡ gab;nm − iFab;nm=2 by focusing on
the real part gab;nm (we note that it is different from the non-
Abelian quantum metric [69,70] of the occupied bands,
defined by ðgabÞn1n2 ¼

P
m∈unoccðran1mrbmn2). Since gab;nm

is a positive-semidefinite symmetric rank-2 tensor,
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i.e., gaa;nm ≥ 0 for all a for given n and m, this quantity is
meaningful as a metric tensor, although its interpretation is
not clear. This point of view can help us to understand the
structure of the circular shift current. One can see that the
matrix element of the circular shift currentRc;a

nmrbnmramn can be
written as Γbca;nm þ virtual transitions, where Γbca;nm is the
Christoffel symbol of the first kind defined by the metric
gba;nm (see Appendix I for a derivation). Therefore, one may
still regard the shift current as originating from a Christoffel-
symbol-like quantity, when the virtual transitions are
negligible.

V. MODEL CALCULATIONS

Our theoretical analysis reveals the circular shift current
as an interesting new component of the interband bulk
photovoltaic response in magnetic systems. Also, the full
generality of our theory allows us to understand the shift
and injection currents in Dirac and Weyl semimetals in
arbitrary spatial dimensions in a unified way. In this
section, we investigate the shift and injection current
responses of tilted Dirac and Weyl points more closely,
with explicit calculations of the conductivity tensors. We
first deal with massless Dirac and Weyl Hamiltonians up to
linear order in momentum, which cover both type-I and
type-II spectra in arbitrary spatial dimensions. In addition
to the symmetry and divergence properties investigated
above, we show the phenomenon of separation of
responses, meaning that nonvanishing PT-symmetric
responses and the T-symmetric responses do not coexist
in the same component. This phenomenon can occur
generically in tilted Dirac and Weyl systems having C2x
or MxT symmetry, where x is the direction of tilting. Next,
we study a model of Dirac surface states of magnetic
topological insulators, which includes k2 and k3 terms in
the Hamiltonian.

A. Tilted Weyl and Dirac semimetals: k-linear order

Let us first revisit the model of a tiltedWeyl point [13,25]
to understand its general second-optical response in more
detail. The Hamiltonian has the form

HWeyl ¼ −μ − ℏv0kx þ ℏvðkxσx þ kyσy þ kzσzÞ: ð39Þ

TheWeyl point described by this Hamiltonian is called type
I when jv0=vj < 1 and type II when jv0=vj > 1 [58]. The

spectra for the two cases are shown in Figs. 1(b) and 1(c).
When light with frequency ω > 0 is illuminated, optical
excitation occurs when two bands have energy difference
ℏωcv ¼ 2ℏvk ¼ ℏω due to the energy conservation, and
only the lower band is occupied, i.e., ℏωv ¼ −μþ
v0k cos θ − vk < 0 and ℏωc ¼ −μþ v0k cos θ þ vk > 0
(Fig. 1), where k ¼ jkj and kx ¼ k cos θ. When v0 ≠ 0,
the range of θ does not cover the whole sphere and is
confined to a subspace θ− < θ < θþ, in general (Fig. 1),
where θ� are functions of dimensionless parameters 2μ=ℏω
and v0=v. The minimal angle θ− is always zero for a type-I
Weyl point, but it is typically nonzero for a type-II Weyl
point [Figs. 1(d) and 1(e)]. This asymmetric excitation
leads to a nonzero optical conductivity given by

σc;abshift ¼
e3

2πℏ2

1

ω

�
v
ω

�
3−d

½F c;ab
shiftðθþÞ − F c;ab

shiftðθ−Þ�;

σc;abinj ¼ e3

2πℏ2
τ

�
v
ω

�
3−d

½F c;ab
inj ðθþÞ − F c;ab

inj ðθ−Þ�: ð40Þ

The forms of F c;abðθÞ for nonvanishing components are
summarized in Table II. Because of the SO(2) rotational
symmetry around the x axis, there are four independent
components,

σx;xxL ; σx;yyL ¼σx;zzL ; σy;xyL ¼σz;xzL ; σy;zxL ¼−σz;yxL ð41Þ

for the real component, and three independent components,

σx;yzC ; σy;xyC ¼ σz;xzC ; σy;zxL ¼ −σz;yzC ð42Þ

for the imaginary component of the conductivity. Note that
F c;abðθÞ follows the same symmetry. Remarkably, PT-
symmetric responses (linear injection and circular shift)
and T-symmetric responses (linear shift and circular injec-
tion) do not coexist in the same component. To understand
this property, let us note that PT ¼ C2yMyT ¼ C2zMzT.
Since our model has C2yT and C2zT symmetries, non-
vanishing PT-symmetric responses appear in the compo-
nents that are invariant under My and Mz, whereas T-
symmetric responses appear in the components that reverse
sign under My and Mz.
Figure 2 shows some representative components calcu-

lated from quantum geometric quantities by Eqs. (18), (19),
and (36). There are some features that need to be discussed.

TABLE II. F c;abðθÞ of a single Weyl or Dirac point in two and three dimensions. Here, 0 ≤ θ ≤ π is the absolute value of the polar
angle from the x axis. The linear shift and circular injection parts vanish for a Dirac point because of PT symmetry.

System F x;xx
inj;L F x;yy

inj;L F y;xy
inj;L F y;xy

shift;C F y;zx
shift;L F x;yz

inj;C F y;zx
inj;C

3D Weyl − 1
8
cos2 θ þ 1

16
cos4 θ − 1

16
cos2 θ − 1

32
cos4 θ − 1

32
sin4 θ − 1

4
sin θ − 1

8
cos θ þ 1

8
cos3 θ − 1

12
cos3 θ − 1

8
cos θ þ 1

24
cos3 θ

3D Dirac − 1
4
cos2 θ þ 1

8
cos4 θ − 1

8
cos2 θ − 1

16
cos4 θ − 1

16
sin4 θ − 1

2
sin θ 0 0 0

2D Dirac 1
3
sin3 θ sin θ − 1

3
sin3 θ − 1

3
sin3 θ − sin θ 0 0 0
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First, as we explained in Sec. III, only the circular injection
current is nonvanishing at the neutral filling μ ¼ 0 in the
type-I case where jv0=vj < 1. In this case, the Fermi surface
is a point, so anisotropic excitation cannot occur. The
circular injection response is quantized because of the
quantized Berry curvature from a Weyl point, as found in
Ref. [5] [see Eq. (18)]. Other responses are significant near
ℏω ¼ 2μ, where the anisotropic excitation occurs.
However, there are significant differences between the

PT-symmetric responses and the linear shift response. The
PT-symmetric responses have peaks at ℏω ¼ j2μj, i.e.,
when the excitation occurs on a full hemisphere, while T-
symmetric responses vanish at ℏω ¼ j2μj and change sign
there [13]. For the linear injection current, the peak at ℏω ¼
j2μj is natural because the transition of the electron velocity
during the excitation from the valence band v to the
conduction band c, Δx

cv ¼ vxc − vxv, is all positive or all
negative on the hemisphere. There is no simple analogous
way to understand the trend of the shift current response
based on the shift vector, but the vanishing of the linear
shift current response at ℏω ¼ j2μj can be attributed to the
T-symmetric nature. Since T symmetry requires that the
current generated from one hemisphere is equal to the
current generated from the other hemisphere, both hemi-
spheres should generate zero currents because linear shift
currents are not generated when excitations occur on the
full sphere. There are also interesting differences between
the PT-symmetric responses and T-symmetric responses at
μ ¼ 0 in the type-II case where jv0=vj > 1. As explained in
Sec. III, emergent CPT symmetry at μ ¼ 0 requires that the
former has a vanishing response while the latter can have a

nontrivial response. In other words, PT-symmetric
responses do not distinguish type-I and type-II cones at
μ ¼ 0, whereas T-symmetric responses distinguish them.
Aswe understand a singleWeyl point, it is straightforward

to extend our knowledge to Dirac points in two and three
dimensions. In both 2D and 3D, the protection of a Dirac
point requires PT symmetry. In 2D, the Dirac Hamiltonian
has the form H2D ¼ −μ − ℏv0kx þ ℏvðkxτx þ kyτyÞ, where
τi¼x;y;z are Pauli matrices for the orbital degrees of freedom,
and spinless PT ¼ σzK symmetry forbids the mass term
mσz. In 3D, the Dirac Hamiltonian has the form
H3D ¼ −μ − ℏv0kx þ ℏvðkxτx þ kyτyσx þ kzτzÞ, and the
twofold degeneracy (Kramers degeneracy) of bands at every
momentum requires PT ¼ iσyK symmetry. Here, τi¼x;y;z

and σi¼x;y;z are Pauli matrices for the orbital and spin degrees
of freedom, respectively. In 3D, even in the presence of PT
symmetry, two mass terms are allowed, which are m1τyσy
and m2τyσz. We need threefold or fourfold rotational
symmetry to protect the Dirac point in 3D by disallowing
mass terms. Our massless Dirac model has continuous θ
rotational symmetry around the x axis under Cθ ¼
eiθðσxþτxσx=2Þ, satisfying CθHðkÞC−1

θ ¼ HðCθkÞ. Keeping
either threefold C3x or fourfold C4x rotational symmetry in
crystals preserves the gap closing [54,71,72], which we
assume here. Because gapless Dirac points have PT sym-
metry, they can only have linear injection or circular shift
current responses. These responses have the same pattern
shown for a Weyl point.
Here, we emphasize again that while multiple responses

coexist in magnetic Weyl and Dirac semimetals, each
response occurs through different components of the
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conductivity. This property helps us measure each response
separately. In particular, it facilitates the measurement of
the circular shift current in magnetic Dirac and Weyl
semimetals. Table II and Eq. (7) show that the current
generated along the y direction under the illumination of
circularly polarized light propagating in the z direction is
only the circular shift current. The photocurrent along the y
direction should thus be identified with the circular shift
current.

B. Dirac surface state

As an application to a more realistic model with
k-nonlinear terms, we study the single Dirac surface state
of magnetic topological insulators. Let us begin with the
following effective Hamiltonian studied in Refs. [23,24]:

H ¼ −μþ ℏ2k2

2m
þ ℏvðkxσy − kyσxÞ þ Δσy: ð43Þ

Here, Δ ≠ 0 is due to spin ordering along the y direction,
and it breaks Mx ¼ iσx, rotation C2z ¼ −iσz, and time-
reversal T ¼ iσyK symmetries. Since this in-plane ordering
preserves C2zT symmetry, it does not open the gap, and it
just shifts the location of Dirac points by −Δ=ℏv from the
time-reversal-invariant momentum. The shifting tilts the
Dirac cone because of the quadratic term: If we write
ðkx; kyÞ ¼ ð−Δ=ℏvþ qx; qyÞ, the Hamiltonian has the
form H ¼ −μ − ðℏΔ=mvÞqx þ ℏvðqxσy − qyσxÞ up to lin-
ear order in q, which is studied above. Assuming C3z
symmetry of the nonmagnetic state, we add a hexagonal
warping term in order to account for the crystalline
symmetry of the real system,

hwarp ¼ λðk3x − 3kxk2yÞσz: ð44Þ

This term breaks My ¼ iσy symmetry and C2zT symmetry,
which are preserved by the spin ordering, so it opens a
small band gap (about 0.8 meV for parameters given
below). Since T and C2zT symmetries are both broken,
all four types of shift and injection currents can be
generated in this system. However, the residual MxT
symmetry imposes that the separation of responses remains
exact: Nonvanishing components of the conductivity are
σy;xxshift;L, σ

y;yy
shift;L, σ

x;xy
shift;L for the linear shift current, σ

x;xx
inj;L, σ

x;yy
inj;L,

σy;xyinj;L for the linear injection current, σy;xyshift;C for the circular
shift current, and σx;xyinj;C for the circular injection current.
For a numerical calculation, we take μ ¼ 50 meV, m ¼

0.13me (where me is the free electron mass),
ℏv ¼ 2.5 eVÅ−1, λ ¼ 250 eVÅ−3, and ℏτ−1 ¼ 1 meV
and use Eqs. (18) and (22). Figure 3 show the calculated
photoresponsivity κc;ab ¼ 2σc;ab=ϵ0c, which has the dimen-
sion of the photocurrent density per unit of intensity of light
[60]. The peak value (occurring at ℏω ∼ 2μ ¼ 100 meV) of
the linear injection part is the strongest, and the others are

smaller by 2 orders of magnitude. However, since the
circular shift current grows as ω−2 while the linear injection
current grows as ω−1, the circular shift current can be
comparable to or larger than the linear injection current
when the peak is located below 10 meV. On the other hand,
the small-frequency divergence of the linear shift current is
weaker because it is due to λ ≠ 0 [10] and is not from the
tilting; thus, the peak value scales likeOðω0Þ as μ is lowered.
Therefore, the y-component photocurrent generated by a
circularly polarized light, jy ¼ ðκyxxshift;L þ κyyyshift;L − 2κy;xyshift;CÞI,
is dominated by the circular shift (κy;xyshift;C) current when
ℏω ∼ 2μ < 100 meV. The magnitude of the linear shift
current and the circular shift current can be compared in
experiments since the circular parts can bemeasured from the
current difference between the left-circularly polarized light
and the right-circularly polarized light.
In experiments, the value of the observed photocurrents

can be smaller than the value predicted here. For example,
the photocurrents observed in Ref. [24] show photores-
ponsivity of about 5 nA cm−1W−1 at ω ∼ 250 meV, which
is 2 orders of magnitude smaller than the calculated value
here. While several factors can contribute to this reduction,
one is from the cancellation between the top and bottom
surfaces. This cancellation can be reduced by increasing the
thickness of the sample because light attenuates more while
propagating within the bulk such that the photocurrent is
generated significantly on only one surface that is directly
illuminated.

VI. FIRST-PRINCIPLES CALCULATIONS FOR
REAL TOPOLOGICAL SEMIMETALS

For further demonstrations of our theory beyond simple
two-band models, we perform first-principles calculations
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FIG. 3. Photoresponsivity of the magnetic Dirac surface state.
Here, μ¼50meV,m¼0.13me, ℏv¼2.5 eVÅ−1, λ¼ 250 eVÅ−3,
and ℏτ−1 ¼ 1 meV. Blue, green, and red curves correspond to
Δ ¼ 30 meV, 0 meV, and −30 meV, respectively, and κc;ab ¼
1 nA cmW−1 is equivalent to σc;ab ¼ 1.33pA cm−1 V−2.
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on the shift and injection photocurrent conductivities as
well as geometric quantities of antiferromagnetic MnGeO3

and ferromagnetic PrGeAl, respectively, as representatives
of real magnetic Dirac andWeyl semimetals. We notice that
such calculations on the bulk photovoltaic effects in real
magnetic topological semimetals have not been reported
yet, despite the fact that topological semimetals are
expected to be efficient infrared and terahertz photodetec-
tors [1].

A. Antiferromagnetic Dirac semimetal MnGeO3

MnGeO3 forms a centrosymmetric rhombohedral struc-
ture [see Fig. 9(a)] with space group R3̄ [73], and
consequently, it does not exhibit any bulk photovoltaic
effects. Interestingly, it becomes antiferromagnetic below
38 K [73], and the AF structure (magnetic space group −30)
[see Fig. 9(a)] breaks both T and P symmetries while
preserving the combined PT symmetry [42], thus leading
to AF-induced bulk photovoltaic effects with linear injec-
tion and circular shift currents (see Table I). Furthermore, it
was recently predicted to be a Dirac semimetal with PT
symmetry-protected Dirac points (DPs) [42].
In AF MnGeO3, because of its PT symmetry, there are

only nonvanishing circular shift photocurrents and linear
injection photocurrents, as mentioned before (see Table I).
Furthermore, the−30magnetic space group admits only three
nonvanishing independent matrix elements (i.e., xxz ¼
−xzx ¼ yzy, xyz ¼ −xzy ¼ −yxz, and zxy ¼ −zyx) of
the circular shift conductivity tensor and six nonvanishing
independent matrix elements (i.e., xxx ¼ −xyy ¼ −yxy,
xyz ¼ −yxz, xxz ¼ yyz, xxy ¼ yxx ¼ −yyy, zxx ¼ zyy,
and zzz) of the linear injection conductivity tensor [53].
Hereafter, we use the shorthand notation cab for σc;ab. We
display these nonvanishing conductivity elements in the low
photon energy range in Fig. 4. For simplicity,weplot only the
four pronounced xxx, xxz, zxx, and zzz elements of the linear
injection conductivity tensor inFig. 4.Here,ℏτ−1 ¼ 10 meV
is assumed. We notice that the magnitudes of the linear
injection conductivity elements (σc;ab) are gigantic in the
photon energies below 0.25 eV (Fig. 4). The magnitudes are
of order τe3=ð2πℏ2Þ ¼ 500 μA=V2, which are 1 order of
magnitude larger than those in archetypical polar semi-
conductors CdS and CdSe [74]. Circular shift photocurrents
(Fig. 4) are also 10 times larger than linear shift currents in
semiconductors CdS and CdSe [74]. This fact is remarkable
because it demonstrates that the AF magnetism-induced
linear injection and circular shift photocurrents, respectively,
can be as large as circular injection and linear shift currents in
nonmagnetic noncentrosymmetric materials. Furthermore,
the photocurrents in AF semimetals can be controlled via
manipulating the magnetism with, e.g., an applied magnetic
field [26].
AFMnGeO3 hosts at least three DPs near the Fermi level

EF along the kz axis, as shown in Fig. 5. In particular, there
is a DP just above EF (at 1.7 meV), located close to the Γ

point [at kDP1 ¼ ð0; 0;−0.00364Þ2π=a]. This DP could
explain the large values of the calculated photocurrents, as
shown in Figs. 4(a) and 4(c). To further examine the
important contributions of the DPs to the photocurrents, we
also calculate the conductivity spectra with the Fermi level
set to the DP2 Dirac point energy (i.e., E ¼ 46.5 meV).
DP2 is located at kDP1 ¼ ð0; 0; 0.11112Þ2π=a above the
kz ¼ 0 plane in the k space [see Fig. 5(a)]. We notice that
both the shapes and magnitudes of all the conductivity
spectra, except the conductivity element σxxz, roughly
remain the same. For example, the gigantic peak of about
1000 μA=V2 at about 100 meV in the Re(σzzz) linear
injection current spectrum appears in both cases [see green
curves in Figs. 4(a) and 4(b)]. Nonetheless, its sharp
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negative peak at 50 meV disappears in the case where the
chemical potential μ is tuned to μ ¼ EDP2, and a sharp
positive peak larger than 700 μA=V2 occurs at 20 meV
instead. Interestingly, there is a sharp positive peak at a
photon energy of 5 meVin the ImðσxxzÞ circular shift current
calculated by setting μ ¼ EDP2. This peak is due to the ω−1

behavior of the shift conductivity near the Dirac point.
Comparing the red curves in Figs. 1(c) and 1(d) for
ImðσxxzÞ, one can also see that the large negative peak
moves fromphoton energy65meV to25meV [seeFig. 4(d)].
While an enhanced joint density of states (JDOS),

ρðωÞ ¼ R
k

P
m;n fnmδðωmn − ωÞ, is a possible origin of

large conductivity tensors in insulators [60], it cannot
explain the peaks shown here. Figure 4(e) shows that
the JDOS is suppressed at low frequencies rather than being
enhanced. As we show above, linear injection and circular
shift currents are, respectively, related to quantum metric
(gab) and Christoffel symbols of the first kind (Γc;ab) at low
energies through Eq. (37). Thus, the large enhancement of
conductivity tensors has geometric origin. To demonstrate
this origin, we display gab and Γc;ab at μ ¼ EF and also at
μ ¼ EDP2 along the symmetry lines in Fig. 5. For most of

the DPs, a DP is associated with a gapped DP (gDP) located
approximately at the inverted position in k space. For
example, the associated gPD for DP2 is gDP1 at
kDP1 ¼ ð0; 0;−0.11051Þ2π=a, and the DP2 energy level
falls within the gDP1 band gap [see Fig. 5(a)]. On the other
hand, there is no gDP associated with DP1. Figures 5(b)
and 5(d) clearly show that for μ ¼ EF, gab and Γc;ab have
sharp peaks near DP1 along the kx and ky directions. Note
that gxx and gyy also peak sharply at the positions of the
DP2 and gDP1 along the kz axis, even though
μ ¼ EF ≠ EDP2. This result indicates that the gigantic
linear injection and circular shift currents stem, respec-
tively, from the large values of the quantum metric and
Christoffel symbol in the vicinity of the DP1 Dirac point.
Furthermore, gzz has prominent peaks in the vicinity of (but
slightly away from) the DP2 and gDP1 points along the kx
and ky directions, which are mainly caused by the interband
transitions from the lower (occupied) Dirac cone to higher
(empty) Dirac cone with transition energies of about 0.1 eV
[see Fig. 5(b)]. These gzz peaks thus give rise to the gigantic
peak in the linear injection current Re(σzzz) at around
0.1 eV [see green curves in Fig. 4(a)].
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For μ ¼ EDP2, as expected, gab and Γc;ab exhibit sharp
peaks close to both the DP2 and gDP1 points [see Figs. 5(c)
and 5(e)]. In particular, gzz has huge positive peaks near the
DP2 and gDP1 points along all three Cartesian coordinate
directions, thus resulting in the prominent peak at 0.1 eV in
linear injection conductivity Re(σzzz) [Fig. 4(b)], as in the
μ ¼ EF case [Fig. 4(a)]. Nevertheless, Fig. 5(e) shows that
the Γc;ab peaks near the DP2 and gDP1 have opposite signs.
This behavior could explain why the circular shift con-
ductivity elements ImðσxyzÞ and ImðσzxyÞ become smaller
when the Fermi level is raised from EF to EDP2 [Figs. 4(c)
and 4(d)] because the contributions from the DP2 and gDP1
cancel each other to some extent. In contrast, the linear
injection current elements remain almost unchanged,
mainly because the gab peaks have the same signs.
Nonetheless, there is a huge peak in the Γxxz at gDP1,
which is absent at DP2, because now the Fermi level falls
within the gDP1 gap [see Fig. 5(e)]. This peak results in the
large low-energy peaks in the ImðσxxzÞ conductivity
element [see red curves in Fig. 4(d)].

B. Ferromagnetic Weyl semimetal PrGeAl

PrGeAl forms a body-centered tetragonal structure [see
Fig. 9(b)] with noncentrosymmetric space group I41md and
point group 4mm [75]. It becomes ferromagnetic at TC ¼
16 K [44], and the FM structure [Fig. 9(b)] has no T
symmetry nor PT symmetry. Therefore, all four types of
photocurrents may emerge in FM PrGeAl (Table I).
Interestingly, it was recently predicted to be a rare ferro-
magnetic noncentrosymmetric Weyl semimetal [43].
Furthermore, the Weyl nodes and surface Fermi arcs in
PrGeAl were observed in very recent photoemission spec-
troscopy experiments [44]. Thus, FM PrGeAl provides a
valuable platform for studying all types of bulk photovoltaic
effects in Weyl semimetals.
The crystalline point group of PrGeAl is 4mm. Thus, there

are three inequivalent nonvanishing matrix elements (i.e.,
xxz ¼ yyz, zxx ¼ zyy, and zzz) of linear shift conductivity
and one nonvanishing element (xxz¼ yyz¼−xzx¼−yzy)
of circular injection conductivity in PrGeAl above TC ¼
16 K [53]. The magnetic point group of FM PrGeAl is
4m0m0. Consequently, in addition, there are two nonvanish-
ing elements (i.e., xyz ¼ −xzy ¼ −yxz and zxy ¼ −zyx) of
circular shift conductivity and one nonvanishing element
(xyz ¼ −yxz) of linear injection conductivity in PrGeAl
below TC [53]. Here, the presence of MxT and MyT
symmetries forbids linear shift and injection conductivities
to be simultaneously nonvanishing in the same component.
The same is true for the circular polarization. The calculated
conductivity spectra of these nonvanishing matrix elements
are displayed in Fig. 6. We notice that all the shift current
elements have large peaks below a photon energy of 0.25 eV
[see Figs. 6(a) and 6(b)]. These large peaks are due to theω−1

enhancement of the shift conductivity tensors at low frequen-
cies. Indeed, the magnitudes of these peaks below 0.1 eVare

comparable to those in archetypical nonmagnetic Weyl
semimetal TaAs [16], which also has the I41md space group.
The linear shift current element Re(σzzz) is also large in the
higher energy range between 0.4 eVand 1.0 eV. This peak is
not due to magnetic order because it is observed in T-
symmetric responses. It is hardly related to the responses of
Weyl points. The peak is far from the Fermi level; also, the
conductivity components showing the large peaks are not
generated by linearly dispersingWeyl points (seeTable II, for
example). We do not aim to explain its origin here. The
calculated circular shift conductivity elements below 0.2 eV
are comparable to that of the linear shift current (Fig. 6), and
remarkably, they are 1 order ofmagnitude larger than those in
the AF Dirac semimetal MnGeO3 [see Figs. 4(c) and 4(d)].
No first-principles calculation of the circular shift current in
other semimetals has been reported yet.
Similar to the linear shift conductivity, circular injection

conductivity ImðσxxzÞ has a gigantic broad peak between
0.5 eV and 1.0 eV, and the peak value is almost 1 order of
magnitude larger than that of linear injection conductivity
in AF MnGeO3 (see Fig. 4). It also has large peaks below
0.15 eV, although the magnitudes of these peaks are a few
times smaller than the gigantic peak in the higher energy
region. Linear injection conductivity Re(σxyz) in FM
PrGeAl is also large and is about 10 times larger than that
of AF MnGeO3 in the very-low-energy region. This 1-
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FIG. 6. Conductivity tensors and geometric quantities in
ferromagnetic PrGeAl. (a,b) Shift and (c) injection conductivity
tensors. (d) JDOS as a function of photon energy. The cases with
μ ¼ EWP1 and μ ¼ EWP2 are also shown. (e) Energy bands,
(f) quantum metric gab, (g) Berry curvature Fab, (h) Christoffel
symbol Γc;ab, and (i) symplectic Christoffel symbol Γ̃c;ab along
the high-symmetry lines in the Brillouin zone [see Fig. 9(d) in
Appendix K].
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order-of-magnitude enhancement can be related to the
presence of manyWeyl points, as we analyze further below.
As in MnGeO3, JDOS is suppressed at low energies

[Fig. 6(d)]. Thus, the origin of the large low-frequency
photocurrents should be attributed to the geometric
enhancement. We have calculated all four geometric
quantities along the symmetry lines in the Brillouin zone
[Fig. 9(d)], as displayed in Fig. 6. We find that all four
quantities have sharp peaks in the vicinity of the Σ and Σ1

points, where there are several anticrossing nodal points,
with the Fermi level falling within their gaps [see Fig. 6(e)].
Since these gaps near the anticrossing points are mostly
within 0.1 eV, the large peaks in the geometric quantities
thus give rise to the sharp photoconductivity peaks around
0.1 eV and below. In particular, Christoffel symbols Γxyz

and Γzxy have gigantic peaks near the Σ and Σ1 points with
the same signs, thus resulting in sharp peaks in circular shift
conductivities ImðσxyzÞ and (σzxy), respectively, below a
photon energy of 0.1 eV [Fig. 6(a)].
FM PrGeAl has been reported to be a rare noncentro-

symmetric FM Weyl semimetal with at least 160 WPs
within �0.1 eV of the Fermi level [43]. Furthermore, there
are both type-I and type-II WPs among them. Here, we
consider two WPs, one type I and the other type II, and
study their influences on the photocurrents. The type-I WP
(WP1) sits at k ¼ ð0.160; 0.204;−0.003Þ2π=a in the BZ
and is located at 53.9 meV above EF (EWP1). The type-II
WP (WP2) is at k ¼ ð0.015; 0.255; 0.217Þ2π=a, and its
energy is 67.4 meV above EF (EWP2). They correspond,
respectively, to Weyl points W1

3 and W1
2 reported in

Ref. [43]. To study the influences of the WPs on the
photocurrents, we calculate all the nonvanishing conduc-
tivity elements and all the geometric quantities with the
Fermi level set to EWP1 and also to EWP2.
The conductivity and geometric quantity spectra

obtained by setting the Fermi level to the WP1 energy
(EWP1) are plotted in Fig. 7. Remarkably, compared with
the μ ¼ EF case in Fig. 6, all the photoconductivity
elements within the photon energy of 50 meV increase
by a factor of 2 or more. In particular, the linear shift
conductivity element Re(σzxx) is enhanced by a factor of 5
[Fig. 7(b)]. Other changes include that the peak at about
70 meV in circular shift conductivity elements ImðσxyzÞ and
ImðσzxyÞ is significantly reduced [Fig. 7(a)] and that the
positive peak at about 40 meV in linear shift conductivity
element Re(σzzz) changes to a negative peak [Fig. 7(a)].
Nonetheless, the features of all the conductivity elements
above 100 meV remain essentially unchanged.
The changes causedbymoving theFermi level to theWP1

energy mentioned above can be largely explained by the
distributionsof the fourgeometricquantities in thevicinityof
the WP1, as displayed in Figs. 7(e)–7(h). For example, the
symplectic Christoffel symbol Γ̃zxx has high positive peaks
along all three coordinate directions near theWP1 [see Fig. 7
(h)]. These peaks thus give rise to the fivefold increased

linear shift conductivity Re(σzxx). Note that although in the
μ ¼ EF case Γ̃zxx also has sharp peaks near the Σ and Σ1

points, these peakshave both positive andnegative signs [see
Fig. 6(i)], and thus their contributions to the linear shift
conductivity cancel each other to some extent.
The results obtained by setting the Fermi level to the

energy of the type-II WP2 are plotted in Fig. 8. We notice
that, as in the WP1 case, all the photoconductivity spectra
remain more or less unchanged for photon energies larger
than 100 meV. As for the WP1 case, the peak height of
linear shift conductivity Re(σzxx) at a very low energy of
about 10 meV gets doubled, although the sign of the peak
changes from positive to negative [see Fig. 8(b)]. However,
in contrast to the WP1 case, many low-energy peaks,
especially of shift current conductivity elements, become
smaller [Figs. 8(a) and 8(b)]. In particular, the peak at
10 meV in both circular shift elements ImðσxyzÞ and
ImðσzxyÞ decreases by a factor of nearly 2, and also the
peak sign changes to the opposite sign. These different
changes in the low-energy photoconductivity spectra
between the type-I and type-II Weyl-point cases may be
attributed to their different energy dispersions and hence
the different distributions of the four geometric quantities
near the Weyl points (see Figs. 7 and 8). Figure 7(d) shows
that in the type-I WP1 case, the upper and lower Weyl cone
bands lie, respectively, above and below the WP1 energy.
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As a result, the low-energy inter-Weyl-band transitions may
occur in all three coordinate directions when the Fermi
level is set to EWP1. This can result in large peaks in the four
geometric quantities near the WP1, thus leading to the
many-fold enhancements in photocurrents, as discussed
above. In the type-II WP2 case, in contrast, both upper and
lower Weyl bands along the −kx and þky directions lie
below EWP2 [see Fig. 8(d)]. This hinders the low-energy
inter-Weyl-band transitions along these two directions
when EF is set to EWP2 and thus reduces the peaks in
the geometric quantities near the WP2, thereby leading to
several smaller peaks in the photocurrents below about
20 meV. Of course, in a real topological semimetal such as
in the present system, the situation could be more com-
plicated. Figure 8(d) shows that other bands may come
quite close to the WP2 in energy; thus, they enable, e.g., the
transitions from two Weyl bands below EWP2 to the other
bands above EWP2 along the −kx and þky directions, also
giving rise to prominent peaks in the geometric quantities
near the WP2 [see Figs. 8(e)–8(h)].

VII. DISCUSSION

Let us discuss some issues related to the smallness of the
frequency. We note that our theory is reliable for the photon
frequency above 1 THz because we assume ω ≫ Γ. Since
the typical relaxation time in semimetals is 1 picosecond,

ω=2π > 1 THz should be taken for our theory to apply.
Thus, the divergence of the responses in our model should
not be interpreted as a physical divergence, and it is cut off
at ω ∼ Γ. Moreover, intraband (i.e., nontransitive) second-
order optical responses exist in magnetic systems, and they
become comparable to the interband responses when
ω≲ Γ. To estimate the magnitude of the intraband
responses, let us consider the semiclassical second-
order optical response σc;abSC ðωÞ ¼ −ðe3=ℏ2Þðω2 þ Γ2Þ−1×P

n

R
k f

FD
n ∂a∂bvcn. It has the same symmetry property as

the linear injection current (so it appears in magnetic
systems where time-reversal symmetry is broken) and
scales as ω−2μ2−d near tilted Dirac or Weyl points. Since
the ω−2 factor enhances the semiclassical response at low
frequencies, it becomes comparable to the peak value of the
linear injection response at ω≲ τ−1 ¼ Γ if we take μ ∼ ω.
Another issue at low frequencies is the validity of

perturbation theory. We suppose that the photovoltaic
responses are dominated by the second-order responses
since the electric field is generally weak enough.
However, at small frequencies, A ¼ E=ω becomes large,
so higher-order responses can become significant.
According to the Floquet theory analysis in Ref. [4],
perturbation theory works well for jω−1eEvj ≪ ℏΓ, where
we assume that the interband velocitymatrix element has the
same order of magnitude as the intraband velocity. It sets a
lower bound for ω. For ℏv ∼ 1 eVÅ−1 and Γ ∼ 1 THz, the

lower bound isωmin ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=ðW=cm2Þ

p
THz.While this bound

is very small for typical laserswith intensity I < 1 W=cm2, it
should be taken into account for an analysis of the exper-
imental results obtained by using high-intensity pulse lasers.
In the nonperturbative regime, light absorption occurs

faster than the interband relaxation, so electrons are excited
until the system reaches a new equilibrium where the
absorption and emission of light find a balance. The
relaxation plays an important role here because a mismatch
between the absorption and emission, which generate
opposite photocurrents, requires a finite relaxation [4].
Even in a very clean system with an extremely small Γ, the
low-frequency divergent behavior we discuss above is cut
off because of this reason.
At finite temperature, thermal fluctuation can signifi-

cantly reduce low-frequency photovoltaic response in
tilted-Dirac or Weyl semimetals [13]. When the peak value
is considered, the relevant frequency scale where the peak
value is reduced to half is 2jv=v0jkBT=ℏ for type I and
2kBT=ℏ for type II. It sets a quite-high lower bound since
2kBT=ℏ ¼ 12 THz at room temperature (cf. 0.17 THz at
4.2K and 3.2 THz at 77 K). When the tilting is small such
that jv0=vj < 0.4, the cutoff scale is larger than 30 THz at
room temperature, which is the highest edge of the terahertz
radiation. Therefore, cooling will be needed in order for
tilted-Dirac or Weyl semimetals to work as an efficient
terahertz photodetector.
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Throughout this work, we focused on the dc generation.
However, let us note that our results can also be applied to the
second harmonic generation, where an alternating current of
frequency 2ω is generated by a uniform illumination of light
with frequency ω. Since the second harmonic generation is
associated with the shift vector [4,13], its low-energy
divergence has the same form as that for the shift current
[13], and thus it can be related to the quantum geometric
connection.We believe that similar geometric interpretations
of other quantities are also possible. It will be an interesting
topic to explore quantum geometric properties of the third-
order optical conductivity. Since it has four components, we
expect the existence of a third-order optical response con-
trolled by the Riemann curvature tensor Ra

bcd ¼ ∂cΓa
db−∂dΓa

cb þ
P

eðΓa
ceΓe

db − Γa
deΓe

cbÞ.
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Note added.—Recently, Hikaru Watanabe and Yoichi
Yanase studied the bulk photovoltaic responses in magnetic
systems independently of ours [76]. They also figured out

the circular shift current and discussed its enhancement
near gap-closing points. Our results are consistent with the
results in their preprint when there is an overlap.

Note added in proof.—The conclusionof a somewhat adhoc
discussion in the paragraph containing Appendix Eq. (E8)
can be justified by fully taking the degeneracy into account.
For this purpose, we need to write the generalized derivative
in Eq. (E3) with the U(N) Berry connection, instead of the
U(1) Berry rcmm and rcnn. See Ref. [76]. Then, the virtual
transition terms in Eq. (E7) appears as the sum over non-
degenerate states (ωp ≠ ωn;ωm).

APPENDIX A: FREQUENTLY USED IDENTITIES

In this Appendix, we use the following two identities:

hmj∂aOjni ¼ ∂aOmn − iðrampOpn −OmprapnÞ
¼ ∂aOmn − i½ra; O�mn; ðA1Þ

where we integrate by parts in the first line. The following
is a specific example of the above identity with O ¼ H=ℏ,
and it is used very often in the subsequent Appendixes:

vamm ¼ ∂aωm;

vamn ¼ iωmnramn ðm ≠ nÞ: ðA2Þ

APPENDIX B: SHIFT AND INJECTION
CURRENTS FROM THE FERMI GOLDEN RULE

Let us derive the expression of the shift and injection
currents from the Fermi golden rule. Here, we drop the light
polarization dependence of the shift vector. Since
EðtÞ ¼ EðωÞe−iωt þ Eð−ωÞeiωt, where Eð−ωÞ ¼ EðωÞ�,
both the ω and −ω components contribute:

jcshift ¼
Z
k

X
n∈occ

m∈unocc

ð−eRc
mnÞfFDnmMm←n

¼
�Z

k

X
n∈occ

m∈unocc

ð−eRc
mnÞfFDnm

2π

ℏ

����
X

a
hmj ie

ℏω
EaðωÞ∂aHjni

����
2

δðℏωmn − ℏωÞ
�
þ ðω → −ωÞ

¼ −
2πe3

ℏ

Z
k

X
n;m;a;b

fFDnmRc
mn

hnj∂bHjmi
ℏωmn

hmj∂aHjni
ℏωmn

EaðωÞEbð−ωÞδðℏωmn − ℏωÞ

¼ −
2πe3

ℏ2

Z
k

X
n;m;a;b

fFDnmRc
mnrbnmramnδðωmn − ωÞEaðωÞEbð−ωÞ;

∂tjcinj ¼
Z
k

X
n;m;a;b

ð−eΔc
mnÞfFDnmMm←nðωÞ

¼ −
2πe3

ℏ2

Z
k

X
n;m

fFDnmΔc
mnrbnmramnδðωmn − ωÞEaðωÞEbð−ωÞ; ðB1Þ
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where Mm←n is the probability of the transition from n to
m. We note that this Fermi golden rule calculation gives an
overall (−1) sign that is absent in the results in
Refs. [19,22], while they also take −e as the electron
charge. Also, our expressions differ from the results in
Refs. [19,22] by the sign of ω in the electric fields.

APPENDIX C: TIME-REVERSAL
TRANSFORMATION OF THE SECOND-ORDER

OPTICAL CONDUCTIVITY

Let us consider the most general second-order optical
conductivity tensor defined by

jcðω̃Þ ¼ σc;abðω̃; ω̃1; ω̃2ÞEaðω̃1ÞEbðω̃2Þ; ðC1Þ

where ω̃ ¼ ω̃1 þ ω̃2 and ω̃1;2 ¼ ω1;2 þ iΓ. We can sym-
metrize the conductivity without loss of generality such that

σc;abðω̃; ω̃1; ω̃2Þ ¼ σc;baðω̃; ω̃2; ω̃1Þ: ðC2Þ

The current and the electric field transform as

jcðω̃Þ → j0cðω̃Þ ¼ −jcð−ω̃Þ;
Eaðω̃1Þ → E0

aðω̃1Þ ¼ Eað−ω̃1Þ; ðC3Þ

under time reversal t → −t. Equation (C1) is equivalent to
−j0cð−ω̃Þ ¼ σc;abðω̃; ω̃1; ω̃2ÞE0

að−ω̃1ÞE0
bð−ω̃2Þ. It can be

written as

j0cðω̃Þ ¼ σ0c;abðω̃; ω̃1; ω̃2ÞE0
aðω̃1ÞE0

bðω̃2Þ ðC4Þ

if we define σ0c;ab by

σ0c;abðω̃; ω̃1; ω̃2Þ ¼ −σc;abð−ω̃;−ω̃1;−ω̃2Þ
¼ −σc;bað−ω̃;−ω̃2;−ω̃1Þ: ðC5Þ

In the case of the dc generation, where ω1 ¼ −ω2, which
reduces to

σ0c;abðω;ΓÞ ¼ −σc;baðω;−ΓÞ; ðC6Þ

where σc;abðω;ΓÞ ¼ σc;abð0;ωþ iΓ;−ωþ iΓÞ.

APPENDIX D: DERIVATION OF EQS. (9) AND
(10)

Let M be a point-group symmetry operation:
xa → x0a ¼ Mabxb. The Bloch state transforms as

jψnki → jψ 0
nki ¼ M̂jψnM−1ki: ðD1Þ

When the system has M symmetry (i.e., M̂−1HM̂ ¼ H),
jψ 0

nki ¼ jψmkiMmnðkÞ is satisfied, where MmnðKÞ
is a unitary matrix that is nonzero only when

EmðkÞ ¼ EnðM−1kÞ. Here, we do not assume that the
system has M symmetry, and we focus on how quantities
transform under M. From the transformation property of
the Bloch state, it follows that

junki → ju0nki ¼ M̂junM−1ki: ðD2Þ

Then,

ramnðkÞ → ra
0

mnðkÞ ¼ gabrbmnðM−1kÞ: ðD3Þ

We show this transformation property as follows:

r0amnðkÞ≡ hu0mkji∂aju0nki
¼ hM̂umM−1kji∂ajM̂u0nM−1ki

¼ ∂ðM−1kÞb
∂ka hM̂umM−1kji∂ðM−1kÞb jM̂u0nM−1ki

¼ MabrbmnðM−1kÞ; ðD4Þ

where we use that ðM−1Þba ¼ Mab. Similarly, we have

v0amnðkÞ
≡ ℏ−1hu0mkj∂aH0ðkÞju0nki
¼ ℏ−1hM̂umM−1kj∂aðM̂HðM−1kÞM̂−1ÞjM̂u0nM−1ki
¼ MabvbmnðM−1kÞ; ðD5Þ

where H0ðkÞ ¼ M̂HðkÞM̂−1 and HðkÞ ¼ e−ik·r̂Heik·r̂ is
the Bloch Hamiltonian. From these properties, one can find
that

σ0c1;a1b1dc ðω;ΓÞ ¼ Mc1cMa1aMb1bσ
c;ab
dc ðω;ΓÞ; ðD6Þ

where σ0c;abdc is defined by the M-transformed state ju0nki
and Hamiltonian H0ðkÞ.
We can repeat this process for time reversal,

junki → jψ 0
nki ¼ T̂jun;−ki: ðD7Þ

For the dipole matrix elements,

r0amnðkÞ≡ hu0mkji∂aju0nki
¼ hT̂um;−kji∂ajT̂u0n;−ki
¼ hT̂um;−kjT̂ð−iÞ∂au0n;−ki
¼ hð−iÞ∂au0n;−kjum;−ki
¼ hu0n;−kji∂ajum;−ki
¼ ranmð−kÞ; ðD8Þ

where we use the antiunitary property of time reversal in the
third line, and we integrate by parts in the fourth line:
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v0amnðkÞ≡ ℏ−1hu0mkj∂aH0ðkÞju0nki
¼ ℏ−1hT̂um;−kj∂aðT̂Hð−kÞT̂−1ÞjT̂u0n;−ki
¼ ℏ−1hT̂um;−kjT̂∂a½Hð−kÞ�u0n;−ki
¼ ℏ−1h∂a½Hð−kÞ�u0n;−kjum;−ki
¼ −ℏ−1hð∂aHÞð−kÞu0n;−kjum;−ki
¼ −vbnmð−kÞ: ðD9Þ

We have

σ0c;abdc ðω;ΓÞ ¼ σc;abdc ðω;ΓÞ; ðD10Þ

for linear shift and circular injection, and

σ0c;abdc ðω;ΓÞ ¼ −σc;abdc ðω;ΓÞ; ðD11Þ

for circular shift and linear injection under time reversal,
which proves Eqs. (9) and (10). Let us note that the time-
reversal transformations derived here are consistent
with Eq. (C6).

APPENDIX E: GENERAL FORM OF SHIFT
CURRENT MATRIX ELEMENTS

In the clean limit, the dc conductivity corresponding to
the shift current is

σc;abshift ¼
πe3

ℏ2

X
n;m

Z
k
fFDnmI

c;ab
nm δðωmn − ωÞ; ðE1Þ

where

Ic;abnm ¼ −iðrbnmramn;c − rbnm;cramnÞ ðE2Þ

and

ramn;c ≡ ∂cramn − iðrcmm − rcnnÞramn: ðE3Þ

One can see that Ic;abnm is identical to ðRc;a
mn − Rc;b

nmÞrbnmramn.
Let us transform this to an expression involving only matrix
elements of the derivatives of the Hamiltonian. Here, it is
enough to consider n ∈ occ and m ∈ unocc because of the
Fermi-Dirac distribution function. We first use Eq. (A2) to
write the derivative of ramn in terms of the velocity matrix
elements:

∂cramn ¼ ∂c

�
vamn

iωmn

�

¼ 1

iωmn

�
∂cvamn − vamn

∂cωmn

ωmn

�
: ðE4Þ

The derivative of the velocity matrix element can be
decomposed further as

∂cvamn ¼ ℏ−1hmj∂a∂cHjni þ iℏ−1½rc; ∂aH�mn

¼ wac
mn þ ircmmvamn − ivammrcmn

þ ircmnvann − ivamnrcnn

þ i
X
p≠m;n

ðrcmpvapn − vamprcpnÞ

¼ wac
mn þ iðrcmm − rcnnÞvamn − ircmnΔa

mn

þ
X
p≠m;n

�
vcmpvapn
ωmp

−
vampvcpn
ωpn

�
; ðE5Þ

where we use Eq. (A1) and separate the p ¼ m or p ¼ n
components from the p ≠ m, n components in the sum-
mation in the second line, and we use Eq. (A1) again in the
last line. Using the notation ∂cωnm ¼ vcnn − vcmm ¼ Δc

nm,
we have

ramn;c ¼
1

iωmn

�
wac
mn −

vcmnΔa
mn þ vamnΔc

mn

ωmn

þ
X
p≠m;n

�
vcmpvapn
ωmp

−
vampvcpn
ωpn

��
: ðE6Þ

Accordingly, we have

rbnmramn;c ¼
vbnm
ω2
mn

�
wac
mn −

vcmnΔa
mn þ vamnΔc

mn

ωmn

�

þ vbnm
ω2
mn

X
p≠m;n

�
vcmpvapn
ωmp

−
vampvcpn
ωpn

�
: ðE7Þ

Let us note that the last term in Eq. (E7) (the virtual
transitions), in fact, should be summed over nondegenerate
transitions; i.e.,

P
p≠n;m should be

P
ωp≠ωn;ωm

. To see this,
wenote that the three-band term [which is themost clear from
diagrammatic calculations with the substitutionω → ωþ iΓ
in the calculation of σc;abðω;ω1;ω2) [19,22] ] is

vbnm
ω2
mn

X
p≠m;n

vcmpvapn
ωmp þ iΓ

−
vampvcpn
ωpn þ iΓ

: ðE8Þ

Applying rapn ¼ vapn=iωpn (and also ramp ¼ vamp=iωmp) gives
Eq. (E7), assuming nondegeneracy of bands and taking
Γ → 0. However, in the degenerate case where ωp ¼ ωn for
p ≠ n, vapn ¼ iωpnrapn does not imply rapn ¼ vapn=iωpn.
Those degenerate cases should be omitted in the summation
in Eq. (E7) because vmpvpn ∝ ωpmωnp ¼ 0 when degen-
eracy occurs.

APPENDIX F: SECOND-ORDER RESPONSE OF
GENERAL k-LINEAR DIRAC HAMILTONIAN

Let us show that the following Hamiltonian has vanish-
ing shift current and linear injection current responses:
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HðkÞ ¼ ℏ
Xd
a;i¼1

vaikaΓi: ðF1Þ

Since this Hamiltonian is linear in momentum, the dia-
magnetic term wac

mn in Eq. (E7) vanishes. It follows that the
integrand of the second-order optical conductivity is a
tensor under the map fðkÞ, where fi ¼ ℏ

P
a vaika, i.e.,

σc;abdc ¼
Z

ddk∂cfk∂afi∂bfjTijk; ðF2Þ

where Tijk is a tensor in f space,

σc;abdc ¼
Z

ddf det

�∂fi
∂ka

�
−1∂cfk∂afi∂bfjTkij

¼ ℏ3vaivbjvck detðℏvaiÞ
Z

ddfTkijðfÞ

¼ ℏ6vaivbjvck detðvaiÞ
Z

ddkTkijðkÞ

¼ ℏ6vaivbjvck detðvaiÞσk;ijdc;0; ðF3Þ

where we changed the name of the variable from f to k in
the third line, and σk;ij0 ¼ R

ddkTkijðkÞ is the conductivity
for ℏvai ¼ δai. Since the shift current and linear injection
current parts of σk;ijdc;0 vanish, this finishes the proof.

APPENDIX G: QUANTUM GEOMETRIC TENSOR
FOR DIRAC HAMILTONIANS

1. Quantum geometric tensor

The quantum geometric tensor of the occupied states is
defined by

Qab ¼
X
n∈occ

X
m∈unocc

ranmrbmn; ðG1Þ

where ranm ¼ ihnj∂ajmi. Its symmetric and antisymmetric
parts, respectively, correspond to the quantum metric and
the Berry curvature of the occupied states.

To see this, let us take occupied bands n1 and n2. Then,

X
m∈unocc

ran1mr
b
mn2

¼
X

m∈unocc
hn1ji∂ajmihmji∂bjn2i

¼
X

m∈unocc
h∂an1jmihmj∂bn2i

¼ h∂an1j∂bn2i −
X
p∈occ

h∂an1jpihpj∂bn2i

¼ 1

2

�
h∂an1j∂bn2i −

X
p∈occ

h∂an1jpihpj∂bn2i þ ða ↔ bÞ
�

þ 1

2

�
h∂an1j∂bn2i −

X
p∈occ

h∂an1jpihpj∂bn2i − ða ↔ bÞ
�

¼ ðgabÞn1n2 −
i
2
ðFabÞn1n2 ; ðG2Þ

where the symmetric part

ðgabÞn1n2 ¼
1

2

�
h∂an1j∂bn2i −

X
p∈occ

h∂an1jpihpj∂bn2i
�

þ ða ↔ bÞ ðG3Þ

is the non-Abelian quantum metric of the occupied states,
and the antisymmetric part

ðFabÞn1n2 ¼ ih∂an1j∂bn2i− i
X
p∈occ

h∂an1jpihpj∂bn2i

−ða↔bÞ
¼∂arbn1n2 −∂bran1n2 − iðran1prbpn2 −rbn1pr

a
pn2Þ ðG4Þ

is the non-Abelian Berry curvature of the occupied states,
where ran1n2 ¼ ihn1j∂ajn2i is the non-Abelian Berry con-
nection of the occupied states. It follows that

Qab ¼
X
n∈occ

ðgabÞnn −
i
2
ðFabÞnn

¼ gab −
i
2
Fab: ðG5Þ

2. Dirac Hamiltonian

Here, we consider the following dM × dM Dirac
Hamiltonian:

H ¼ f0 þ
X
i

fiΓi: ðG6Þ
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Let us note that this kind of Hamiltonian describes generic
two-band systems when dM ¼ 2 and generic PT-symmet-
ric four-band systems with ðPTÞ2 ¼ −1 when dM ¼ 4. Let
us suppose that half of the bands are occupied. Then, since
ℏωunocc − ℏωocc ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiP
i f

2
i

p
¼ 2f, we have

Qab ¼
ℏ2

4f2
X
n∈occ

X
m∈unocc

vanmvbmn: ðG7Þ

Also, the velocity matrix elements are given by

ℏvam≠n ¼ hmj∂aHjni ¼
X
i

∂afihmjΓijni: ðG8Þ

It follows that

Qab ¼
1

4f2
X
i;j

∂afi∂bfj
X
n∈occ

X
m∈unocc

hnjΓijmihmjΓjjni:

ðG9Þ

Let us evaluate the summation

X
n∈occ

X
m∈unocc

hnjΓijmihmjΓjjni

¼
X
n∈occ

�
hnjΓiΓjjni −

X
m∈occ

hnjΓijmihmjΓjjni
�
: ðG10Þ

The first term is

X
n∈occ

hnjΓiΓjjni ¼
X
n∈occ

1

2
hnjfΓi;Γjgjni þ

1

2
hnj½Γi;Γj�jni

¼ dM
2

ðδij þ iJijÞ; ðG11Þ

where we use the property of Gamma matrices fΓi;Γjg ¼
2δij and define

Jij ≡ i
dM

X
n∈occ

hnj½Γi;Γj�jni: ðG12Þ

As for the second term, we note that for m; n ∈ occ,

hmjΓjjni ¼ −
fj
f
δmn ¼ −f̂jδmn: ðG13Þ

One can see this as follows. First, if we take the dot
product of hmjΓjjni and f, we have hmjΓjjnifj ¼
hmjfjΓjjni ¼ −fδmn. On the other hand, for a vector n
perpendicular to f, hmjΓjjninj ¼ hmjnjΓjjni ¼ 0 because
njΓj anticommutes with fiΓi. Since hmjΓjjni is parallel to
fi, we have Eq. (G13). To sum up, we have

Qab ¼
X
i;j

∂afi∂bfj
dMðδij − f̂if̂j þ iJijÞ

8f2
: ðG14Þ

In two-band systems, we have Jij ¼ −ϵijkf̂k because
½Γi;Γj� ¼ 2iϵijkΓk, where Γi ¼ σi is a Pauli matrix. On
the other hand, in four-band systems described by a Dirac
Hamiltonian, which are PT-symmetric four-band systems,
we have Jij ¼ 0.

APPENDIX H: COMPATIBILITY BETWEEN
METRIC, SYMPLECTIC FORM, AND

CONNECTION

1. Metric connection

A connection γkij is called metric compatible if the inner
product done by the metric is invariant under parallel
transport [66]:

∇η ¼ 0: ðH1Þ

In components, it reads

∂kηij − ηilγ
l
kj − ηjlγ

l
ij ¼ 0; ðH2Þ

which can be written as

0 ¼ ð∇kηÞij
¼ ei ·∇kη · ej

¼ ∇kðei · η · ejÞ −∇kei · η · ej − ei · η ·∇kej

¼ ∂kηij − γlkiηlj − ηilγ
l
kj; ðH3Þ

where we use the notation ηij ¼ ei · η · ej and the definition
∇kei ¼ γlkiel. A metric compatible connection is called a
metric connection. If a metric connection γkij satisfies the
torsion-free condition γkij ¼ γkji (torsion is the antisymmet-
ric part of γkij), it is uniquely determined to be

γkij ¼ gkl
1

2
ð∂iηlj þ ∂jηli − ∂lηijÞ; ðH4Þ

and it is called the Levi-Civita connection.

2. Symplectic connection

Similarly, a connection is called a symplectic connection
when it satisfies

∇ϵ ¼ 0: ðH5Þ

In components, it reads

∂kϵij − ϵilγ
l
kj þ ϵjlγ

l
ki ¼ 0; ðH6Þ

LOW-FREQUENCY DIVERGENCE AND QUANTUM GEOMETRY OF … PHYS. REV. X 10, 041041 (2020)

041041-23



which follows from

0 ¼ ð∇kϵÞij
¼ ei ·∇kϵ · ej

¼ ∇kðei · ϵ · ejÞ −∇kei · ϵ · ej − ei · ϵ · ∇kej

¼ ∂kϵij − γlkiϵlj − ϵilγ
l
kj

¼ ∂kϵij þ γlkiϵjl − ϵilγ
l
kj: ðH7Þ

Unlike the metric compatibility, this condition alone cannot
uniquely determine the connection, even after imposing the
torsion-free condition γkij ¼ γkji. However, adding metric
compatibility makes the connection unique. On the gen-
eralized Bloch sphere, the Levi-Civita connection is the
unique connection that is compatible with both the metric
and the symplectic form.

APPENDIX I: GEOMETRIC INTERPRETATION
OF THE CIRCULAR SHIFT CURRENT WITH

MORE THAN TWO BANDS

Here, we show that the matrix element of the
circular shift conductivity is related to the Christoffel

symbol of the first kind defined between the n and m
bands:

Γbca;nm ¼ 1

2
ð∂cgba;nm þ ∂agbc;nm − ∂bgca;nmÞ; ðI1Þ

where we define

gab;nm ¼ ReðranmrbmnÞ: ðI2Þ

By using the identity

rbnmramn;c þ rbnm;cramn ¼ rbnm∂cramn − irbnmramnðrcmm − rcnnÞ
þ ð∂crbnmÞramn − irbnmramnðrcnn − rcmmÞ

¼ ∂cðrbnmramnÞ; ðI3Þ

we obtain

Γbca;nm ¼ 1

2
ð∂cgba;nm þ ∂agbc;nm − ∂bgca;nmÞ

¼ 1

2
Re½∂cðrbnmramnÞ þ ∂aðrbnmrcmnÞ − ∂bðrcnmramnÞ�

¼ 1

2
Re½rbnmramn;c þ rbnm;cramn þ rbnmrcmn;a þ rbnm;arcmn − rcnmramn;b − rcnm;br

a
mn�

¼ 1

2
Re½2rbnmramn;c þ rbnmðrcmn;a − ramn;cÞ − ðrcnm;b − rbnm;cÞramn − rcnmðramn;b − rbmn;aÞ�; ðI4Þ

where we add 0 ¼ rbnmramn;c − rbnm;cramn − ðrbnmramn;c −
rbnm;cramnÞ in the last line and use Reðrbnm;arcmnÞ ¼
Reðrcnmrbmn;aÞ for the last term. Let us note that rcmn;a −
ramn;c terms in the parentheses are virtual transitions, as can
be seen from Eq. (E6). Thus, we have

Γbca;nm ¼ Re½rbnmramn;c� þ virtual transitions: ðI5Þ

Equivalently, we find that the matrix element of the circular
shift current is given by

Re½rbnmramn;c − rbnm;cramn�
¼ Γbca;nm − Γacb;nm þ virtual transitions: ðI6Þ

An analogous proof for the complex part will be more
challenging because it requires the calculation of the
inverse quantum metric because Γ̃bca ¼ 1

2
Fbdðg−1ÞdeΓeca.

APPENDIX J: SYMMETRY TRANSFORMATIONS
OF GEOMETRIC QUANTITIES

Under the transformation

ðt; xaÞ → ðt0; x0aÞ ¼ (ð−1ÞsT t;Mabxb); ðJ1Þ
the quantum geometric tensor and the quantum geometric
connection transform as

QbaðMkÞ ¼ Mbb0Maa0Q�
b0a0 ðM−1kÞ;

CbcaðkÞ ¼ ð−1ÞsTMbb0Mcc0Maa0C�
b0c0a0 ðM−1kÞ: ðJ2Þ

Equivalently, we can write them as

gbaðkÞ ¼ Mbb0Maa0gb0a0 ðM−1kÞ;
FbaðkÞ ¼ ð−1ÞsTMbb0Maa0Fb0a0 ðM−1kÞ;
ΓbcaðkÞ ¼ ð−1ÞsTMbb0Mcc0Maa0Γb0c0a0 ðM−1kÞ;
Γ̃bcaðkÞ ¼ Mbb0Mcc0Maa0 Γ̃b0c0a0 ðM−1kÞ: ðJ3Þ
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APPENDIX K: DETAILS OF FIRST-PRINCIPLES
CALCULATIONS

Manganese germanate MnGeO3 forms a rhombohedral
ilmenite structure with a P-symmetric space group R3̄ [73]
[see Fig. 9(a)]. The unit cell contains two formula units
(f.u.). It becomes antiferromagnetic below 38 K with the
same unit cell [73]. Although the AF structure [Fig. 9(a)]
breaks both T and P symmetries, AF MnGeO3 with
magnetic space group −30 has the combined PT symmetry
[42]. PrGeAl crystallizes in the body-centered tetragonal
structure [see Fig. 9(b)] with a broken P symmetry space
group I41md [75]. The unit cell also contains two f.u. It
becomes ferromagnetic at 16 K [44], and the FM structure
[Fig. 9(b)] has no T symmetry nor PT symmetry.
The electronic band structure and magnetic properties of

MnGeO3 and PrGeAl are calculated based on first-princi-
ples density functional theory with the generalized gradient
approximation (GGA) [77]. The experimental structural
parameters for MnGeO3 [73] and PrGeAl [75] are used in
the present calculations. To better describe the Coulomb
correlation among Mn 3d electrons and also among Pr 4f
electrons, we adopt the GGAþU scheme [78]. Following
the recent studies [42,43], we use the effective U value of
4.0 eV for both Mn 3d and Pr 4f electrons. The calcu-
lations are performed using the accurate projector-
augmented wave (PAW) method [79], as implemented in
the Vienna ab initio simulation package (VASP) [80,81].
The fully relativistic PAW potentials are adopted in order to
include the spin-orbit coupling (SOC) effect. Large

plane-wave cutoff energies of 450 eV and 500 eV are used
for MnGeO3 and PrGeAl, respectively. For the Brillouin
zone integration, k-point meshes of 12 × 12 × 12 and 16 ×
16 × 16 are used for MnGeO3 and PrGeAl, respectively.
All the calculations are performed with an energy con-
vergence within 10−6 eV between the successive iterations.
Here, we consider MnGeO3 and PrGeAl, respectively, in

the AF and FM states with the magnetic moments being
parallel to the c axis. The calculated relativistic band
structures of MnGeO3 and PrGeAl are displayed in
Figs. 10(a) and 10(b), respectively. They are both semi-
metals with low density of states at the Fermi level (EF) of
0.315 states/eV/f.u. and 0.133 states/eV/f.u., respectively.
The calculated Mn spin magnetic moment in MnGeO3 is
4.29 μB and that of Pr in PrGeAl is 1.89 μB. The calculated
band structures agree well with those reported previ-
ously [42,43].
Nonlinear optical photocurrents are calculated based on

the linear response formalism with the independent particle
approximation, as described above. Specifically, the dc
shift and injection photocurrent conductivity tensors are
calculated using Eq. (4) in Sec. II. Since a large number of
k-points are needed to get accurate NLO responses [82,83],
we use the efficient Wannier function interpolation method
based on maximally localized Wannier functions (MLWFs)
[84–86]. For MnGeO3, 68 MLWFs per unit cell of Mn d,
Ge p, and O p orbitals are constructed by fitting to the
GGA+U+SOC band structure. In PrGeAl, 76 MLWFs per

FIG. 9. Crystal and magnetic structures of (a) MnGeO3 and
(b) PrGeAl. The associated Brillouin zones are shown in panels
(c) and (d), respectively.
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FIG. 10. Fully relativistic band structures of (a) antiferromag-
netic MnGeO3 and (b) ferromagnetic PrGeAl. The Fermi level
(EF) is at 0 eV.
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unit cell of Pr d and f orbitals, as well as Ge p and Al sp
orbitals, are adopted. The band structures obtained by the
Wannier interpolation are nearly identical to those from the
GGA+U+SOC calculations (see Fig. 10). The shift current
conductivity tensors are then evaluated by taking very
dense k-point meshes of 200 × 200 × 200 for MnGeO3 and
of 160 × 160 × 220 for PrGeAl. We find that the conduc-
tivity tensors obtained using such dense k-point meshes
converge within a few percent. Here, we consider the
“cold” semimetals; i.e., the Fermi-Dirac function in Eq. (4)
is taken to be a step function. Furthermore, the Dirac δ
function is replaced by a Lorentzian function with a
broadening width of ℏτ−1 ¼ 10 meV. Accordingly, in
the injection conductivity calculations, we use the relax-
ation time τ given by ℏτ−1 ¼ 10 meV.
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Space Inversion and Time Reversal Symmetry, Phys. Rev. B
102, 155103 (2020).

[42] Y. Xu, L. Elcoro, Z. Song, B. J. Wieder, M. G. Vergniory, N.
Regnault, Y. Chen, C. Felser, and B. A. Bernevig, High-
Throughput Calculations of Antiferromagnetic Topological
Materials from Magnetic Topological Quantum Chemistry,
arXiv:2003.00012.

[43] G. Chang, B. Singh, S.-Y. Xu, G. Bian, S.-M. Huang, C.-H.
Hsu, I. Belopolski, N. Alidoust, D. S. Sanchez, H. Zheng
et al., Magnetic and Noncentrosymmetric Weyl Fermion
Semimetals in the R AlGe Family of Compounds
(R ¼ Rare Earth), Phys. Rev. B 97, 041104(R) (2018).

[44] D. S. Sanchez, G. Chang, I. Belopolski, H. Lu, J.-X. Yin, N.
Alidoust, X. Xu, T. A. Cochran, X. Zhang, Y. Bian et al.,
Observation of Weyl Fermions in a Magnetic Non-Centro-
symmetric Crystal, Nat. Commun. 11, 3356 (2020).

[45] Recently, another process has been proposed for metallic
systems, which was termed a resonant photovoltaic effect
[46]. We do not consider this effect here.

[46] P. Bhalla, A. H. MacDonald, and D. Culcer, Resonant
Photovoltaic Effect in Doped Magnetic Semiconductors,
Phys. Rev. Lett. 124, 087402 (2020).

[47] C. Aversa and J. E. Sipe, Nonlinear Optical Susceptibilities
of Semiconductors: Results with a Length-Gauge Analysis,
Phys. Rev. B 52, 14636 (1995).

[48] F. de Juan, Y. Zhang, T. Morimoto, Y. Sun, J. E. Moore, and
A. G. Grushin, Difference Frequency Generation in Topo-
logical Semimetals, Phys. Rev. Research 2, 012017 (2020).

[49] We define σ0c;abdc by j0cdc ¼ σ0c;abdc E0
aE0

b, where j
0c1 ¼ Mc1cj

c

and E0
a1 ¼ Ma1aEa2 .

[50] L. Onsager, Reciprocal Relations in Irreversible Processes.
I., Phys. Rev. 37, 405 (1931).

[51] R. Kubo, Statistical-Mechanical Theory of Irreversible
Processes. I. General Theory and Simple Applications to
Magnetic and Conduction Problems, J. Phys. Soc. Jpn. 12,
570 (1957).

[52] Y. Tokura and N. Nagaosa, Nonreciprocal Responses from
Non-centrosymmetric Quantum Materials, Nat. Commun.
9, 3740 (2018).

[53] S. V. Gallego, J. Etxebarria, L. Elcoro, E. S. Tasci, and J. M.
Perez-Mato, Automatic Calculation of Symmetry-Adapted
Tensors in Magnetic and Non-magnetic Materials: A New
Tool of the Bilbao Crystallographic Server, Acta Crystal-
logr. Sect. A 75, 438 (2019).

[54] B.-J. Yang and N. Nagaosa, Classification of Stable Three-
Dimensional Dirac Semimetals with Nontrivial Topology,
Nat. Commun. 5, 4898 (2014).

[55] H. B. Nielsen and M. Ninomiya, A No-Go Theorem for
Regularizing Chiral Fermions, Phys. Lett. 105B, 219
(1981).

[56] E. Witten, Three Lectures on Topological Phases of Matter,
Nuovo Cimento 39, 313 (2016).

[57] If we allow the transformation of a 4 × 4 Dirac point to
different kinds of nodes, other possibilities exist, which
include the splitting of a Dirac point into two Weyl points or
the inflating of a Dirac point to a nodal line. These require
mabΓaΓb terms. In the former case, each of the Weyl points
can be understood in our framework. Understanding the
second-order response of nodal lines appearing in the latter
case is an interesting topic, but it is out of the scope of this
work.

[58] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X.
Dai, and B. A. Bernevig, Type-II Weyl Semimetals, Nature
(London) 527, 495 (2015).

[59] J. P. Provost and G. Vallee, Riemannian Structure on
Manifolds of Quantum States, Commun. Math. Phys. 76,
289 (1980).

[60] A. M. Cook, B. M. Fregoso, F. de Juan, S. Coh, and J. E.
Moore, Design Principles for Shift Current Photovoltaics,
Nat. Commun. 8, 14176 (2017).

[61] In fact, the integrand should be ðCbca − C�
acbÞ=2 since it has

the form ðRc;a
mn − Rc;b

nmÞrbnmramn, but Cbca gives the same value
of the real part of the current. For linearly polarized light, the
conductivity is symmetric under a ↔ b. In this case, Cbca þ
C�
acb þ a ↔ b is real, such that it contributes to the

imaginary part of the conductivity and thus to the imaginary
part of the current. For circularly polarized light, since
Cbca þ C�

acb − a ↔ b is imaginary, the conductivity takes a
real value, so it contributes to the imaginary part of the
current for circularly polarized light.

[62] A metric having this property is called the Fubini-Study
metric, so the quantum metric is often called the Fubini-
Study metric [63].

LOW-FREQUENCY DIVERGENCE AND QUANTUM GEOMETRY OF … PHYS. REV. X 10, 041041 (2020)

041041-27

https://doi.org/10.1126/science.aav2873
https://doi.org/10.1126/science.aav2873
https://doi.org/10.1126/science.aav2327
https://doi.org/10.1126/science.aav2334
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1038/nmat4684
https://doi.org/10.1088/1361-648X/aaa52b
https://doi.org/10.1088/1361-648X/aaa52b
https://doi.org/10.1038/s41524-019-0237-5
https://doi.org/10.1038/s41524-019-0237-5
https://doi.org/10.1103/PhysRevMaterials.3.021201
https://doi.org/10.1038/nphys3839
https://doi.org/10.1038/nphys3839
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevB.102.155103
https://doi.org/10.1103/PhysRevB.102.155103
https://arXiv.org/abs/2003.00012
https://doi.org/10.1103/PhysRevB.97.041104
https://doi.org/10.1038/s41467-020-16879-1
https://doi.org/10.1103/PhysRevLett.124.087402
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevResearch.2.012017
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1107/S2053273319001748
https://doi.org/10.1107/S2053273319001748
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1393/ncr/i2016-10125-3
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1007/BF02193559
https://doi.org/10.1007/BF02193559
https://doi.org/10.1038/ncomms14176


[63] M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov,
Geometry and Non-adiabatic Response in Quantum and
Classical Systems, Phys. Rep. 697, 1 (2017).

[64] This property is shared by another connection, the non-
Abelian Berry connection Aa

mn ¼ hmji∂ajni, but the differ-
ence is that γkij is the connection for the Bloch vector f while
Aa
mn is the connection for the quantum state jni.

[65] I. Gelfand, V. Retakh, and M. Shubin, Fedosov Manifolds,
arXiv:dg-ga/9707024.

[66] M. Nakahara, Geometry, Topology and Physics (IOP
Publishing, Bristol, 2003).

[67] I. Sodemann and L. Fu, Quantum Nonlinear Hall Effect
Induced by Berry Curvature Dipole in Time-Reversal
Invariant Materials, Phys. Rev. Lett. 115, 216806 (2015).

[68] Y. Gao and D. Xiao, Nonreciprocal Directional Dichroism
Induced by the Quantum Metric Dipole, Phys. Rev. Lett.
122, 227402 (2019).

[69] A. T. Rezakhani, D. F. Abasto, D. A. Lidar, and P. Zanardi,
Intrinsic Geometry of Quantum Adiabatic Evolution and
QuantumPhase Transitions, Phys. Rev. A 82, 012321 (2010).

[70] Y.-Q. Ma, S. Chen, H. Fan, and W.-M. Liu, Abelian and
Non-Abelian Quantum Geometric Tensor, Phys. Rev. B 81,
245129 (2010).

[71] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H.
Weng, X. Dai, and Z. Fang, Dirac Semimetal and Topo-
logical Phase Transitions in A3Bi (A ¼ Na, K, Rb), Phys.
Rev. B 85, 195320 (2012).

[72] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three-
Dimensional Dirac Semimetal and Quantum Transport in
Cd3As2, Phys. Rev. B 88, 125427 (2013).

[73] K. Tsuzuki, Y. Ishikawa, N. Watanabe, and S. Akimoto,
Neutron Diffraction and Paramagnetic Scattering from a
High Pressure Phase of MnGeO3 (Ilmenite), J. Phys. Soc.
Jpn. 37, 1242 (1974).

[74] F. Nastos and J. E. Sipe, Optical Rectification and Current
Injection in Unbiased Semiconductors, Phys. Rev. B 82,
235204 (2010).

[75] E. Gladyshevskii, N. Nakonechna, K. Cenzual, R.
Gladyshevskii, and J.-L. Jorda, Crystal Structures of

PrAlxGe2−x Compounds, J. Alloys Compd. 296, 265
(2000).

[76] H. Watanabe and Y. Yanase, Chiral Photocurrent in Parity-
Violating Magnet and Enhanced Response in Topological
Antiferromagnet, arXiv:2006.06908.

[77] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
Gradient Approximation Made Simple, Phys. Rev. Lett. 77,
3865 (1996).

[78] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J.
Humphreys, and A. P. Sutton, Electron-Energy-Loss Spec-
tra and the Structural Stability of Nickel Oxide: An
LSDAþ U Study, Phys. Rev. B 57, 1505 (1998).

[79] P. E. Blöchl, Projector Augmented-Wave Method, Phys.
Rev. B 50, 17953 (1994).

[80] G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for
Liquid Metals, Phys. Rev. B 47, 558 (1993).

[81] G. Kresse and J. Furthmüller, Efficient Iterative Schemes for
Ab Initio Total-Energy Calculations Using a Plane-Wave
Basis Set, Phys. Rev. B 54, 11169 (1996).

[82] G. Y. Guo, K. C. Chu, D. S. Wang, and C. G. Duan, Linear
and Nonlinear Optical Properties of Carbon Nanotubes
from First-Principles Calculations, Phys. Rev. B 69,
205416 (2004).

[83] C.-Y. Wang and G.-Y. Guo, Nonlinear Optical Properties of
Transition-Metal Dichalcogenide MX2 (M ¼ Mo, W;
X ¼ S, Se) Monolayers and Trilayers from First-Principles
Calculations, J. Phys. Chem. C 119, 13268 (2015).

[84] X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Ab
Initio Calculation of the Anomalous Hall Conductivity
by Wannier Interpolation, Phys. Rev. B 74, 195118
(2006).

[85] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Maximally Localized Wannier Functions:
Theory and Applications, Rev. Mod. Phys. 84, 1419
(2012).

[86] J. Ibañez-Azpiroz, S. S. Tsirkin, and I. Souza, Ab Initio
Calculation of the Shift Photocurrent by Wannier Interpo-
lation, Phys. Rev. B 97, 245143 (2018).

AHN, GUO, and NAGAOSA PHYS. REV. X 10, 041041 (2020)

041041-28

https://doi.org/10.1016/j.physrep.2017.07.001
https://arXiv.org/abs/dg-ga/9707024
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.122.227402
https://doi.org/10.1103/PhysRevLett.122.227402
https://doi.org/10.1103/PhysRevA.82.012321
https://doi.org/10.1103/PhysRevB.81.245129
https://doi.org/10.1103/PhysRevB.81.245129
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1143/JPSJ.37.1242
https://doi.org/10.1143/JPSJ.37.1242
https://doi.org/10.1103/PhysRevB.82.235204
https://doi.org/10.1103/PhysRevB.82.235204
https://doi.org/10.1016/S0925-8388(99)00539-3
https://doi.org/10.1016/S0925-8388(99)00539-3
https://arXiv.org/abs/2006.06908
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.69.205416
https://doi.org/10.1103/PhysRevB.69.205416
https://doi.org/10.1021/acs.jpcc.5b01866
https://doi.org/10.1103/PhysRevB.74.195118
https://doi.org/10.1103/PhysRevB.74.195118
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevB.97.245143

