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Reservoir computing is a relatively recent computational paradigm that originates from a recurrent
neural network and is known for its wide range of implementations using different physical technologies.
Large reservoirs are very hard to obtain in conventional computers, as both the computation complexity and
memory usage grow quadratically. We propose an optical scheme performing reservoir computing over
very large networks potentially being able to host several millions of fully connected photonic nodes thanks
to its intrinsic properties of parallelism and scalability. Our experimental studies confirm that, in contrast to
conventional computers, the computation time of our optical scheme is only linearly dependent on the
number of photonic nodes of the network, which is due to electronic overheads, while the optical part of
computation remains fully parallel and independent of the reservoir size. To demonstrate the scalability of
our optical scheme, we perform for the first time predictions on large spatiotemporal chaotic datasets
obtained from the Kuramoto-Sivashinsky equation using optical reservoirs with up to 50 000 optical nodes.
Our results are extremely challenging for conventional von Neumann machines, and they significantly
advance the state of the art of unconventional reservoir computing approaches, in general.
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I. INTRODUCTION

Recent studies in machine learning show that large
neural networks can dramatically improve the network
performance; however, their realization with conventional
computing technologies is to date a significant challenge.
Toward this end, a number of alternative computing
approaches have emerged recently. Among them, one of
the most studied approaches is reservoir computing (RC).
RC is a relatively recent computational framework [1,2]
derived from independently proposed recurrent neural
network (RNN) models, such as echo state networks
(ESNs) [3] and liquid state machines (LSMs) [4]. The
main objective of ESNs and LSMs is the significant
simplification of the RNN training algorithm by using
fixed random injection and fixed internal connectivity
matrices. However, it was rapidly understood that the

*Corresponding author.
mrafayelyan @gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

2160-3308/20/10(4)/041037(11)

041037-1

Subject Areas: Computational Physics, Optics,
Optoelectronics

temporally fixed connections allow for the straightforward
implementation of RC in optics, electronics, spintronics,
mechanics, biology, and other fields [5—12]. Optics is one
of the most promising fields to realize large and efficient
neural networks due to its intrinsic properties of parallel-
ism, its ability to process the data at the speed of light, and
low energy consumption.

There are many interesting approaches to realize photonic
reservoir networks based on both time and spatial multi-
plexing of photonic nodes. The first approach is based on a
single nonlinear node with a time-delayed optoelectronic or
all-optical feedback in order to get time-multiplexed virtual
nodes in the temporal domain [12-24]. Such architectures
can reach supercomputer performances, e.g., gigabyte per
second data rates for chaotic time-series prediction tasks [25]
or million words per second classification for speech
recognition tasks [26]. However, their information process-
ing rate is inherently limited, as it is inversely proportional to
the number of virtual nodes of the reservoir. Furthermore, a
preprocessing of the input information is required, according
to the initially defined virtual nodes, which can bring
additional complexity to the problem, especially for the
large multidimensional inputs. To this end, multichannel
delay-based RC architectures consisting of several nonlinear
nodes are of special interest [27-31].
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Another popular approach of photonic RC is based on
spatially distributed nonlinear nodes. The latter is endowed
by its intrinsic property to process large-scale input
information without sacrificing the computation speed.
Several theoretical and experimental studies have been
performed using on-chip silicon photonics reservoirs con-
sisting of optical waveguides, optical splitters, and optical
combiners [32-35]. As reported in Ref. [35], a 16-node
reservoir network of modest sizes can reach high informa-
tion processing bitrates, potentially being able to surpass
100 Gbits~! in the future. An additional approach toward
the spatially extended photonics reservoir is based on a
network of vertical-cavity surface-emitting lasers and a
standard diffractive optical element (DOE) providing the
complex interconnections between the reservoir nodes [36].

Recently, an alternative strategy to spatially scalable
photonics reservoir has been introduced based on both
liquid crystal spatial light modulators (SLMs) and a digital
micromirror device (DMD) [37-41]. In particular, Bueno
et al. in Ref. [37] demonstrate a reservoir network of up to
2500 diffractively coupled photonic nodes using a liquid
crystal SLM coupled with a DOE and a camera. The input
and output information in their network is provided via
single nodes. This last limitation is waived by Dong et al. in
Ref. [38] using a DMD to encode both the reservoir and the
input information through the binary intensity modulation
of the light. Later, Dong et al. in Ref. [39] implemented the
same approach to get large-scale optical reservoir networks
using a phase-only SLM that could provide an 8-bit
encoding of the reservoir and the input information through
the spatial phase profile of the light instead of the former
binary encoding option. We stress that the key element in
both aforementioned optical networks is the strongly
scattering medium that guarantees random coupling
weights of a very large number of photonic nodes and
their parallel processing. Such networks practically can
host as many nodes as the number of pixels provided by the
DMD and the camera [42,43].

In this work, we exploit the potential of the platform
provided by Refs. [38,39] to extend our recent achieve-
ments toward multidimensional large chaotic systems
predictions. Accordingly, we report on the first experimen-
tal realization of the recently introduced state-of-the-art
benchmark test [44], performing recursive predictions on
the Kuramoto-Sivashinsky (KS) chaotic systems. To high-
light the scalability of our approach, we measure the
computation time of similar reservoir networks provided
either by a high-end conventional computer or by our
optical scheme. In contrast to conventional computers,
where the time of the computation scales quadratically with
the size of the network, the computation time of our optical
scheme is almost independent of the number of photonic
nodes. More precisely, we observe a relatively mild linear
dependence due to electronic overheads, while the optical
computation remains fully parallel and independent of

the reservoir size. Our results are hardly reachable by
the conventional von Neumann machines, and they sig-
nificantly advance the state of the art of the unconventional
reservoir computing approaches, in general.

II. CONVENTIONAL RESERVOIR COMPUTING

We now briefly introduce the concept of conventional
RC. An input vector i(z) of dimension D;, is injected to a
high-dimensional dynamical system called the “reservoir”
[see Fig. 1(a)]. The reservoir is described by a vector r(7) of
dimension D, that is the number of reservoir nodes. The
initial state of the reservoir is defined randomly. Let W
matrix define the internal connections of the reservoir
nodes and W;, matrix define the connections between
the input and the reservoir nodes. Both matrices are
initialized randomly and fixed during the whole RC
process. The state of each reservoir node is a scalar
r;(), which evolves according to the following recursive
relation:

I'([ + At) = f[wmi(t) + Wresr(t)]’ (1)
where At is the discrete time step of the input and f is an
elementwise nonlinear function. According to Eq. (1), the
reservoir is defined as a high-dimensional dynamical
system endowed with a unique memory property; namely,
each consequent state of the reservoir contains some
exponentially decaying information about its previous
states and about the inputs injected until that moment.
Interestingly, the memory capacity of the reservoir is
mainly defined by the number of reservoir nodes and
the nonlinear activation function f.

During the training phase, the input i(7), defined in the
time interval —7 <t <0, is fed to the reservoir, and the
corresponding reservoir states are recursively calculated.
The final step of the information processing is to perform a
simple linear regression that adjusts the W, weights so
that their linear combination with the calculated reservoir
states makes the actual output o(¢) to be as close as possible
to the desired output 6(7):

r(t) (b) r(t)
)

(a)
0, ¢ Do), i), G > o(t)
LW R 10 Wt LW O\ 10 Wt

FIG. 1. The sketch of the conventional reservoir computing
paradigm in (a) training and (b) predicting phases. The vectors
i(7), r(z), and o(t) describe the injected input, the corresponding
reservoir states, and the trained output, respectively. All three
layers of the network are described by W;,, W, and W,
interconnection matrices. The first two are initialized randomly
and are held fixed throughout the whole computation process,
while the last one is trained by linear regression. In the prediction
phase, the feedback loop from the predicted output defines the
next injected input.
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RMSE = DITZ o) o2, )

where
0(1) = Woy - 1(1). o)
W,,, = argmin(RMSE). )

RMSE is the root mean square error, and D, is the number
of the output nodes, i.e., the dimension of the vector o(z).
An additional regularization term A||W,y||* (4 is a scalar)
can be used to find the solution of Eq. (4) to avoid
overfitting, especially when the number of reservoir nodes
is larger than the number of training examples. Note that the
output weights are the only parameters that are modified
during the training. The random input and reservoir weights
are fixed throughout the whole computational process, and
they are used to randomly project the input into a high-
dimensional space, which increases the linear separability
of inputs.

In order to perform predictions about the future evolution
of i(7) (t > 0) using the calculated reservoir states r(z) in
—T <t <0, one needs to train the output weights W
to predict the next time step of the input, namely,
0(r) = i(z + Ar). Afterward, the future evolution of i(z)
for + > 0 can be predicted by replacing the input by the
subsequent prediction o(z), as shown in Fig. 1(b).
Consequently, during the prediction, the reservoir evolves
step by step, by replacing the subsequent input with the last
prediction every time.

III. OPTICAL RESERVOIR COMPUTING

The experimental setup to perform the optical RC is
shown in Fig. 2 and detailed in the Appendix A. The key
optical components in the setup are the phase-only SLM,
the scattering medium, and the camera. The SLM provides
both the encoding of the input vector i(7) of dimension Dj,
and the encoding of the subsequent reservoir state r() of
dimension D, (total dimension D;, + D,.) into the phase
spatial profile of the light. The scattering medium ensures
their random linear mixing, which is equivalent to their
linear multiplications with large dense random matrices
consisting of independent and identically distributed (i.i.d.)
random complex variables [45,46] (see more details about
light scattering in Appendix B). Finally, the camera
performs a nonlinear readout of the complex field intensity
for the next reservoir state r(¢ + At), that is sent back by
the computer to the SLM in order to be displayed with new
input, and the process repeats. The upper and the lower
insets in Fig. 2 are respective examples of images displayed
on the SLM and detected by the camera.

There are a number of tunable parameters regarding the
encoding of the input and the reservoir states onto the SLM

Reservoir state Input
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O
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Next reservoir state

e+ AL
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FIG. 2. Experimental setup to perform an optical reservoir
computing. The SLM receives from the computer the consequent
input i(7) concatenated with the reservoir state r(¢) and imprints it
into the spatial phase profile of the reflected beam (see the upper
inset as a typical example). The scattering medium (SM) provides
a complex linear mixing of the whole encoded information.
Finally, the camera performs a nonlinear readout for the next
reservoir state r(z+ Az) (see the lower inset as a typical
example), which is sent by the computer back to the SLM to
be displayed with new input, and the process repeats. LP1 and
LP2, linear polarizers; HWP, half-wave plate; BE, beam
expander; BS, beam splitter; O1 and O2, objectives.

that we describe here. Without loss of generality, we
assume that the number of gray levels of the camera and
the SLM are equal to 256. The SLM is calibrated such that
the gray levels from O to 255 linearly map to phase delays
of 0 to 2z. Furthermore, we assume that the whole input
dataset is initially scaled from O to 255 and the acquisition
time of the camera is initially adjusted to provide unsatu-
rated reservoir states again ranging from 0 to 255.
Accordingly, the encoding of the input and the reservoir
states onto the SLM can be described by i(z) — s;,i(¢) and
r(1) = s.r(), respectively, with two scaling factors
0 < Sinjres < 1. Additionally, each scalar value from the
input and reservoir states can be encoded into multiple
number of SLM pixels forming a macropixel. These
modifications are performed in the computer every time
before sending the input and reservoir states to the SLM,
since we obtain their explicit forms for time ¢ only at r — At,
except the input states for training which are already known
before starting the training and can be modified a priori.
We note that the mentioned modifications require only
simple multiplication with scalar values and do not impose
a large computational overhead. The number of pixels in
one macropixel is denoted by p;, for the input encoding and
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Pres Tor the reservoir states encoding. Accordingly, the
reservoir computing in our optical scheme can be described
by the following recursive relation:

K+ A1) = Flsnr(t) © 3, sul() ©,,). (5)
where the function F' stands for the whole optical setup; i.e,
it takes the encoded matrices corresponding to the input and
the reservoir state as two arguments, sends them to the
SLM, and returns the next reservoir state detected by the
camera. The symbol @ refers to the Kronecker product, and
J,., e refers to the all-ones matrix with p;, ., number of

rows and columns in order to ensure the macropixel
encoding of the SLM.

In order to get a more detailed description of our optical
scheme, we also provide a mathematical relation that
models the light propagation and the consequent RC with
well-known mathematical functions:

r(t + A1) = f{Wieeglr ()] + Wingli(1)]}. (6)
where W, and W;, are random dense matrices describing
the scattering of the light in the setup. f and g are nonlinear
functions associated with the intensity readout by the camera
and the phase encoding by the SLM, respectively. Namely,
for a vector q = [q1, ¢», ...]7, £(q) = [|q1*, |g2/%, ...]" and
9(q) = [exp (insq; ), exp (insq,),...]T with 0<s<2.
Note that all above mentioned operations are implicitly
included in the function F in Eq. (5).

The mathematical framework describing our optical
network is very similar to the conventional RC network
provided by Eq. (1). The main difference is that an
additional complex exponent function is applied in
Eq. (6) to account for the phase encoding of the SLM,
which changes the overall nonlinearity in the recursive
relation. One can also note that W, and W;, are complex-
valued matrices here in contrast to the conventional
RC, where the connection matrices are real valued.
Accordingly, Eqs. (5) and (6) together give the whole
picture of information processing in our optical scheme.

During the training phase, as soon as the reservoir states
for the given time interval —7 <t <0 are optically
calculated, a simple linear regression is executed in the
conventional computer to adjust the W, weights such that
their linear combination with the calculated reservoir states
makes the actual output to be as close as possible to the next
time step of the input i(¢ 4+ A¢) [see Egs. (2)—(4)]. Finally,
to predict the future evolution of i(¢) for # > 0, we make a
feedback loop from the output to the input by replacing the
next input i(r+ Ar) on the SLM with the one-step
prediction W, r(f), as is done in conventional RC in
Fig. 1(b).

In general, the RC and its different optical imple-
mentations have proven to be very successful for various
tasks, such as spoken digits recognition, temporal

Exclusive OR task, Santa Fe, Mackey-Glass, or
Nonlinear Autoregressive Moving Average time-series
prediction [5,9,11,13,17,27,47]. Recently, Pathak et al.
[44,48] proposed a new state-of-the-art benchmark test
performing predictions on KS spatiotemporal chaotic data-
sets with the conventional RC (see more details about the
KS equation in Appendix C). In the next section, we use the
optical RC setup in Fig. 2 to predict the dynamical
evolution of KS spatiotemporal chaotic systems.

IV. EXPERIMENTAL RESULTS

Initially, we apply the optical RC scheme on the
spatiotemporal KS datasets with a similar set of parameters
as reported in Ref. [44]. Namely, the spatial domain size L
of the scalar field u(x, 7) is L = 22 in the KS equation [see
Eq. (C1) in Appendix C], which is integrated on the grid of
N, = 64 equally spaced spatial points and N, = 90500
equally spaced time steps with At = 0.25 (see more details
in Appendix C). The first 9 x 10° time steps of the dataset
are used to train the optical reservoir, while the remaining
500 time steps are kept in order to be compared with
predicted data. The input and reservoir sizes are D;, = 64
and D,., = 10*, respectively.

In general, it is believed that the optimum prediction
performance of RC schemes is reached when the reservoir
computer parameters are tuned to the edge of chaos [49].
Accordingly, before starting the actual experiment, we
perform a grid search to optimize a set of tunable
parameters in our optical scheme. It turns out that the
optimal prediction performance is observed when
Sres = Sip = 0.5; i.e., the input and reservoir states are
encoded between O and 128, thus providing a phase
modulation of the light from O to z. Furthermore, the
macropixel sizes are taken p., = 64 and p;, = 10000 to
ensure equal importance ratios between the input and
reservoir states encoded on the SLM. Consequently, during
the RC process, the total number of pixels occupied on the
SLM by the input and the reservoir states together is equal
0 PresDies + PinDin = 128 x 10*. We also apply a slight
regularization with 4 = 0.07 during the linear regression
process [see Egs. (2)-(4)]. Noteworthy, the nonlinear
activation function provided by the camera intensity read-
out may easily be further tuned by both digital and analog
ways and may substantially increase the performance of the
optical network (see further details in Appendix D).
Figure 3 shows an example of the true KS dataset [see
Fig. 3(a)], the corresponding prediction [see Fig. 3(b)], and
their difference [see Fig. 3(c)]. We observe that the optical
reservoir network can predict with excellent accuracy the
dynamical change of the KS dataset up to two Lyapunov
time. Lyapunov time is a characteristic quantity of dynamical
chaotic systems defining the minimum amount of the time for
two infinitesimally close states of the system to diverge by a
factor of e. The latter is defined by the largest Lyapunov
exponent A, and in this particular case A, = 0.043 (see
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FIG. 3. Experimental Kuramoto-Sivashinsky spatiotemporal

chaotic datasets prediction by optical reservoir computing. The
spatial domain size of the chaotic system is L = 22. The number
of the photonic nodes in the reservoir is D, = 10*. (a) Actual
data. (b) Reservoir prediction. (c) Error: (a) minus (b). t =0
corresponds to the start of the prediction in the test phase. Each
unit on the temporal axis represents the Lyapunov time defined by
the largest Lyapunov exponent A,,,, and detailed in Appendix C.

Appendix C and Table I). Furthermore, for quantitative
analyses, we repeat the same experiment of Fig. 3 for 100
different sets of training and testing datasets. The RMSE
values for each testing sample are calculated and normalized
according to the standard deviation of target output. Figure 4
shows the NRMSE dependencies for each testing sample
[see Fig. 4(a)] and the mean NRMSE curve averaged over all
100 samples [see Fig. 4(b)]. We note that the prediction
performance varies significantly depending on the test
sample, as seen from Fig. 4(a). This effect is related to the
RC algorithm, in general, which is addressed in Ref. [50].

Although the prediction results of Figs. 3 and 4 indicate
the potential of the optical RC to predict large spatiotem-
poral chaos, we emphasize that, for larger sizes of the
problem, i.e., for larger values of L, in order to get
qualitatively similar prediction performances, one needs
to increase the size of the reservoir. To this end, we perform
experiments applying the same reservoir network hosting
D, = 10* photonic nodes on KS datasets with the spatial
sizes of L = 12, 22, 36, 60, and 100. As seen in Fig. 5(a),
the prediction performance of optical RC decreases rapidly
as the system size L increases. On the other hand, for the
given KS dataset of spatial size L = 60, Fig. 5(b) shows
that the prediction performance of our optical scheme is
recovered back by increasing the size of the network. We
note that large reservoirs mostly improve the prediction
performance in the intermediate temporal regions where the

Test/Train

—~
o
=

Mean
NRMSE
p —
wn

0 1 2 3 4 5
Amaxt
FIG. 4. (a) Normalized root mean square errors (NRMSE)

calculated for 100 sets of training and testing KS datasets having
the same parameters of the problem as in Fig. 3. (b) The mean
NRMSE as a result of averaging (a) along its vertical axis.

prediction is neither too simple nor too difficult. In both
plots, the temporal axis is normalized according to the
Aqax = 0.043 corresponding to L = 22; however, we note
that the value of the largest Lyapunov exponent is depen-
dent on the spatial domain size L of the system (see Table I
in Appendix C). Finally, the different reservoir dimensions
in Fig. 5(a) imply different macropixel sizes of encoding in
order to maintain the same overall encoding number of
pixels on the SLM corresponding to the reservoir states.
Note that the realization of large reservoir networks in
conventional computers is not an easy task, since the
computation time and the operative memory grow quad-
ratically with respect to the number of network nodes.
Therefore, Pathak et al. propose in Ref. [44] a new
approach realizing distributed computing on a large set
of parallel reservoirs of moderate sizes, each of which hosts
5000 neurons and predicts a local region of the spatio-
temporal chaos. Although the parallel reservoir approach
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FIG. 5. (a) The mean NRMSE in the predictions of the KS
system as a function of time using the same optical network as in
Figs. 3 and 4 but for different system sizes L = 12, 22, 36, 60,
and 100. (b) For the case of L = 60, we observe improvement of
the prediction performance as the number of photonic nodes in
reservoir increases from D, = 10* to D, = 5 x 10*.
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works well for predicting KS systems, it is valid if only
local spatial nodes in the system get coupled at each time
step. In other words, the total effective reservoir—that
consists of these parallel reservoirs—provides nonzero
connections only close to the diagonal region. The latter
can be crucial for more complicated problems where fully
connected spatial nodes might be required, such as many-
body problems. In this context, our optical scheme allowing
fast and large optical reservoirs with nonzero and all-to-all
randomly coupled optical nodes may perform better.

To test the scalability of our approach, we perform a
number of experiments on our optical scheme for different
reservoir sizes and record the average time of the reservoir
updating process. We use the same parameters of the problem
as in Fig. 3 but without applying a Kronecker product in
Eq. (5), since p..s = pin = 1; i.e., each pixel of the SLM is
one node in the optical network. However, the computation
time accounts for all the other conventional computing
resources that are needed to our optical setup to calculate
the reservoir states, such as the concatenation and rescaling.
In order to make a thorough comparison, we perform
numerical computations of reservoir states for the same
reservoir sizes using both state-of-the-art CPU and GPU
technologies (see their characteristics in Refs. [51,52]).
Figure 6 shows that the optical RC is slower only for small
reservoir sizes. The situation changes rapidly for large
network sizes, since the computation time of conventional
RC approaches based on CPU and GPU technologies grows
quadratically, while optical RC scales only with a mild linear
dependence with respect to the number of nodes of the

2
0 100 E
10-1 3
0.15 =)
g @
g 102 o ¢
g :
£ 0l 107 ¢
= Memory
2 )
g 104+ limits
© 005t 103 10¢ 105 10°]
0

x 103

DI'ES

FIG. 6. Computation time of one reservoir state for different
reservoir sizes performed on high-end CPU, GPU, and the
proposed optical scheme. The inset shows the performance
curves in a logarithmic scale extended for larger reservoir sizes.
The turning points where the optical scheme starts to perform
faster than the CPU and GPU correspond to D, ~ 5000 and
D,.s = 25000, respectively. Note that the largest reservoir size
used in this work for the prediction task is 50 000 (see Fig. 5),
which is close to the CPU and GPU memory limits and where our
implementation is about 4 times faster than the GPU and 100
times faster than the CPU.

reservoir. Hence, for large reservoir sizes, our optical net-
work is much faster than conventional reservoir computers.
Noteworthy, the optical computation in our setup is inher-
ently parallel, and the linear slope is due only to the limited
communication bandwidth from the camera to the SLM. As
another crucial advantage, large reservoirs require tremen-
dous capacities of operating memory from the conventional
computers to store the large random connection matrices
W, and W;, (see the memory limits region in the inset in
Fig. 6), while our optical scheme can leverage a large number
of photonic nodes without using large operating memory.
However, the limited stability time of our optical scheme
does not allow us to use such a large number of photonic
nodes in practical problems, e.g., the prediction of the KS
systems, since the large number of photonic nodes implies a
longer computation time of one reservoir state in our optical
scheme. We emphasize that further improvements of the
stability time of our optical scheme will allow one to
implement reservoirs with larger capacities than 50 000
photonic nodes used in Fig. 5. Furthermore, faster SLMs
and cameras are available that can considerably lower the
absolute time of computation in our optical scheme while
maintaining its linear dependence on the size of the reservoir
(see more information about the SLM and camera used in our
setup in Appendix A). As both optical and conventional
reservoir computing approaches use the same conventional
linear regression procedures and only at the end of the
training phase, it requires relatively small computation time
compared to the reservoir state calculation process.
Accordingly, to clearly distinguish the advantage that our
optical approach brings into reservoir computation, we do
not include the linear regression in Fig. 6 measurements.
Finally, we stress that the advantage of our optical
scheme over other optical realizations is not only due to
the possibility of using a large number of pixels from the
camera and SLM as nodes in the optical network. An
important advantage lies in using the complexity of the
multiply scattering medium, that ensures all-to-all random
mixing of millions of SLM modes with millions of CCD
pixels to reach such large network sizes. Although some
correlations may be present when measuring all input-
output channels, in particular, due to the so-called bimodal
distribution of eigenvalues [42], these correlations wash out
very quickly when measuring a partial transmission matrix,
for instance, with a nonideal numerical aperture, or
measuring only one polarization, and one quickly retrieves
the results predicted for uncorrelated i.i.d random matrix
theory [53,54]. Other indirect experiments probing the fact
that strongly scattering media have a large number of
uncorrelated modes can be found, for instance, in Ref. [43],
where the authors achieve light focusing through the
scattering medium with an unprecedented enhancement
factor greater than 10°, with more than 1 million controlled
modes, showing no apparent limitation by correlation of the
medium. We also note the work of Keriven, Garreau, and
Poli [55], where the authors achieve 10° independent
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modes using a similar optical architecture as in our case. In
all these experiments, the main limitation is the measure-
ment time, and there is no indication that the number of
connections would saturate. Consequently, we believe that
optical reservoirs using strongly scattering media can be
scaled to millions of nodes in the future. Finally, we note
that relatively large network sizes are also reachable using
periodic diffraction gratings; for instance, the possibility to
reach up to 30 000 nodes is claimed in Ref. [56], however,
without supporting all-to-all random connectivity between
photonic modes.

V. DISCUSSION AND CONCLUSION

To measure the computing performances our simple
setup can reach, we can estimate the average number of
operations per second performed during the process of the
RC. As a rough estimate, the optical scheme we propose
can host 10° photonic nodes in the network (limited by the
pixel numbers on SLM and CCD, respectively). One
iteration of the network thus corresponds to about 10
trivial mathematical operations in Eq. (1), such as multi-
plication, sum, etc. Assuming that the SLM and the camera
have typical speeds of 100 Hz, our optical setup performs in
the order of 10'* OPS (operations per second). This result is
not far from the current state of the art of supercomputers,
which ranges from 10" to 107 OPS. Consequently,
without significant energy consumption or a large number
of processors, our optical setup can perform a RC close to
the performances of the state-of-the-art supercomputer
technologies. Note that similar calculations have been
performed using the optical processing unit developed
by LightOn, with a different modulation scheme (binary
amplitude modulation), in Refs. [38,57].

Although light propagation in our optical setup provides
fully parallel information processing, Fig. 6 shows that the
electronic feedback from the camera to SLM is a bottleneck
resulting in a slight linear growth of the overall computa-
tion time as the number of nodes increases. One way to
overcome this might be the use of the field-programmable
gate arrays (FPGAs) instead of the computer to provide
the information transfer in much larger bandwidths.
Furthermore, FPGAs contain an array of programmable
logic blocks that can be configured to apply a given
complex operation on the data transferred from the camera
to the SLM. Another approach that can impact the overall
computation speed is based on nonlinear light-matter
interactions, where the naturally generated response from
the matter can be used as feedback of the RC network
[58-62].

In conclusion, we propose an optical reservoir comput-
ing network that can perform, for the first time to our
knowledge, predictions on large multidimensional chaotic
datasets. We use the Kuramoto-Sivashinsky equation as an
example of a spatiotemporal chaotic system. Our predic-
tions on the chaotic systems of large spatial sizes confirm

that in order to have comparable prediction performances
one has to increase the optical network sizes, too. Finally,
we experimentally demonstrate that our optical network
can be scaled to a million nodes. Its computation time
grows linearly only when the number of nodes increases,
due to electronic overheads, while the speed of the optical
part (the matrix multiplication) is independent of the
reservoir size and does not require any memory storage.
Our results, that are very hard to achieve by conventional
von Neumann machines, open the prospect to achieve
predictions on very large datasets of practical interest, such
as turbulence, at high speed, and low energy consumption.

VI. CODE AND DATA AVAILABILITY
All data and codes can be accessed at Ref. [63].
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APPENDIX A: EXPERIMENTAL SETUP

The laser beam with 532 nm wavelength is expanded
using a 10x beam expander (BE). The linear polarizer LP1
and the half-wave plate (HWP) are used to polarize the light
parallel to the extraordinary axis of the liquid crystal SLM
to ensure a pure phase shaping of the light. The SLM
receives from the computer the consequent input informa-
tion i(7) concatenated with the reservoir state r(z) at the
given moment and imprints it into the phase spatial profile
of the reflected beam. The light propagates further through
the first objective O1 with 10x optical magnification and
numerical aperture NA = 0.1. Furthermore, the light gets
focused on the strongly scattering medium (SM) with
0.5 mm thickness and collected by the second objective
02 with 20x magnification and NA = 0.4. The resulted
intensity speckle pattern is detected by the CMOS camera
through a crossed linear polarizer LP2 with respect to the
initial polarization of the beam in order to enhance the
contrast of detected speckle pattern. Finally, the camera
sends back to the computer the detected speckle pattern as a
new state of the reservoir, that is going to be displayed on
the SLM with new input, and the process repeats. We use in
our experimental setup a liquid crystal SLM from
Meadowlark Optics (Model No. HSP192-532) and
CMOS camera from Basler (Model No. acA2040-55um),
respectively, having 1920 x 1152 and 2048 x 1536 spa-
tially distributed pixels and, respectively, providing ~50
and 64 Hz speeds at fully functioning regimes.
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APPENDIX B: LIGHT SCATTERING

When light encounters refractive index inhomogeneities,
it gets scattered, modifying its direction of propagation.
Light scattering through the thick scattering medium is a
complex process accompanied by a large number of
scattering events resulting in a speckle pattern at the exit
of the scattering medium which is the total interference
between all complex scattering paths. Thanks to a large
number of scattering events, the speckle image is seemingly
random, and its statistical properties are well characterized
[64]. It represents a signature of the particular disordered
medium and for a given incident field is different from one
scattering sample to another.

Light propagation through the scattering medium still is
a linear process. Therefore, the output over a set of
detectors for the given set of input sources can be described
as the product between the incident electric field and the
transmission matrix (TM). So, the TM is a characteristic for
the particular setup including the input sources, output
detectors, and all the optical elements with the scattering
medium used inside the setup. As shown in Refs. [42,46],
the TM is a dense random matrix when a thick disordered
medium is placed between the SLM and the camera, and it
can be measured experimentally. Nowadays, SLMs and
cameras based on silicon photonics can afford a few
millions of pixels; thus, the TM in conventional computers
can reach gigantic sizes. We cannot possibly hope to
measure such a large matrix, as it requires very large
computation time, and it is impossible to store it in the
memory of a computer. However, we can leverage the very
large dimensionality of TM without measuring it by using
well-developed algorithms where the explicit form of the
TM is not required [45]. One of those algorithms is RC,
which requires large random matrices held fixed through-
out the whole computation process.

APPENDIX C: KURAMOTO-SIVASHINSKY
TIME SERIES

The KS equation is a model of nonlinear partial differ-
ential equation frequently encountered in the study of
nonlinear chaotic systems with intrinsic instabilities, such
as the velocity of laminar flame front instabilities or the
hydrodynamic turbulence [65]. The one-dimensional KS
partial differential equation is

U, = —uu, — (C1)

Uyy = Uyxxxs

where we assume the scalar field u = u(x, r) is periodic
with L, u(x+ L,t) = u(x, 1), and, thus, the solution is
defined in the interval [0, L). Note that the dimension of the
attractor is defined by the value of L, and the dependence is
linear for large values of L. We integrate Eq. (C1) with
periodic boundary conditions on a grid of Q = 64 equally
spaced spatial points with Af =0.25 time step as in

TABLE 1. The largest Lyapunov exponent for different spatial
domain sizes.

L 12 22 36 60 100
Amax 0.003 0.043 0.080 0.089 0.088

Ref. [44] (see Fig. 4.2 from Ref. [66] for the MATLAB
code to solve the KS equation). As an initial condition for
u(x,0), we take a random vector with elements varying
between 0 and 0.25. The obtained solution contains Q time
series, which we denote by the vector u(z) and use as the
reservoir input.

The dynamics of chaotic systems can be described by a
quantity called the Lyapunov exponent that measures the
exponential divergence of initially close trajectories in the
phase space of the system in which all possible states of a
system are represented as unique points. As is known,
the spatial domain size L of the KS system strongly affects
its dynamics, thus changing the corresponding largest
Lyapunov exponent. We provide in Table I the A, values
for typical domain sizes as measured in Ref. [67].

APPENDIX D: NONLINEAR ACTIVATION
FUNCTION IN THE OPTICAL RESERVOIR
COMPUTING SCHEME

Nonlinear activation function of the optical reservoir can
be tuned using both digital and analog approaches. To
implement an analog nonlinearity, one can tune the camera
gain or exposure time above the saturation level resulting
an additional analog inverted ReLU-like nonlinear function
applied to the output intensity image. Moreover, it is also
possible to modify the look-up table of the camera to
engineer any fixed analog nonlinear function applied to
the intensity image. Both these methods are done at the
hardware level without any computational overhead. The
digital approach is easier to implement but requires addi-
tional computation power. Accordingly, one needs to apply
the nonlinear function numerically on the detected intensity
image before sending it back to the SLM. All approaches
may improve the performance of such optical RC but
require thorough grid searches to find the appropriate
nonlinear function and tune its parameters.

To demonstrate the potential of the additional non-
linearity in such optical schemes, we perform simulations
of conventional RC [see Eq. (1)] on a similar KS dataset
presented in Fig. 3 both for the standard intensity readout,
f(q) = |q|*>, and for an additional nonlinear function
applied on it, f(q) = 1 — tanh(2.06|q|?); see Fig. 7. The
hyperbolic tangent nonlinearity with appropriately tuned
parameters improves the prediction performance by
approximately 50%. The state of the reservoir at t =0
for both activation functions is initialized by a random
normal distribution with a mean value of 0.5 and with a
standard deviation of 0.2. The interconnection matrices W,
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Amaxt Amaxt

FIG. 7. Kuramoto-Sivashinsky spatiotemporal chaotic datasets
prediction by conventional reservoir computing that models
(a)—(c) the standard intensity readout activation function and
(d)—(f) the appropriately tuned hyperbolic tangent nonlinear
function applied on it. (a),(d) Actual datasets. (b),(e) Reservoir
predictions. (c),(f) Errors. The spatial domain size of the chaotic
system and the number of the photonic nodes in the reservoir are
the same as in Fig. 3.

and W, for both activation functions are initialized with a
zero mean value, while their standard deviations for the
intensity readout are 0.78 and 0.41, respectively, and for the
hyperbolic tangent activation function are 0.9 and 0.54,
respectively. All the parameters are monitored throughout
the grid search to optimize the prediction performance.
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