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Experimental studies of protein-pattern formation have stimulated new interest in the dynamics of
reaction-diffusion systems. However, a comprehensive theoretical understanding of the dynamics of such
highly nonlinear, spatially extended systems is still missing. Here, we show how a description in phase
space, which has proven invaluable in shaping our intuition about the dynamics of nonlinear ordinary
differential equations, can be generalized to mass-conserving reaction-diffusion (MCRD) systems. We
present a comprehensive analysis of two-component MCRD systems, which serve as paradigmatic minimal
systems that encapsulate the core principles and concepts of the local equilibria theory introduced in the
paper. The key insight underlying this theory is that shifting local (reactive) equilibria—controlled by the
local total density—give rise to concentration gradients that drive diffusive redistribution of total density.
We show how this dynamic interplay can be embedded in the phase plane of the reaction kinetics in terms
of simple geometric objects: the reactive nullcline (line of reactive equilibria) and the diffusive flux-balance
subspace. On this phase-space level, physical insight can be gained from geometric criteria and graphical
constructions. The effects of nonlinearities on the global dynamics are simply encoded in the curved shape
of the reactive nullcline. In particular, we show that the pattern-forming “Turing instability” in MCRD
systems is a mass-redistribution instability and that the features and bifurcations of patterns can be
characterized based on regional dispersion relations, associated to distinct spatial regions (plateaus and
interfaces) of the patterns. In an extensive outlook section, we detail concrete approaches to generalize local
equilibria theory in several directions, including systems with more than two components, weakly broken
mass conservation, and active matter systems.
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I. INTRODUCTION

A. Motivation and background

Nonlinear systems are as prevalent in nature as they are
difficult to deal with conceptually and mathematically
[1–7]. Cases in which the equations describing such
systems can be solved in closed analytical form are rare,
making nonlinear problems appear inaccessible to math-
ematical analysis at first sight. A key insight, going back to
the work of Poincaré [8], is that geometric structures in the
phase space of a system can provide qualitative information
about the global dynamics (trajectories in phase space)
without an explicit solution of the differential equations.
The essence of this geometric reasoning can be understood
by considering simple systems with only two independent
variables; see, e.g., Refs. [1,2]. In this case, the key

geometric objects are nullclines, defined as curves in phase
space along which one of the system’s two variables is in
equilibrium. The points at which nullclines intersect mark
equilibria (fixed points) of the system. These geometric
objects organize phase-space flow and, thereby, allow one to
infer the qualitative dynamics from the shapes and inter-
sections of the nullclines. Key concepts like linear stability,
excitability, multistability, and limit cycles can be understood
in the context of such a geometric analysis [1,2]. Transitions
(bifurcations) between qualitatively different regimes are
revealed by structural changes of the flow in phase space as
the control parameters are varied. One key advantage of such
a geometric approach to nonlinear dynamical systems is that
it yields systematic physical insights into the processes
driving dynamics without requiring the explicit solution
of the full set of equations.
Generalizing these methods, developed for ordinary

differential equations (ODEs), to phenomena that explicitly
require a description on a spatially extended domain—and,
therefore, involve partial differential equations (PDEs)—
poses a huge, ongoing challenge. Instances where this
generalization has been successfully achieved are rare.
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One classical approach for nonlinear systems in one spatial
dimension is the construction of steady-state patterns
(including both stationary patterns and traveling-wave
solutions in a comoving frame). Mathematically, the steady
state in this case is described by a set of ODEs, which can
be analyzed based on their phase-space geometry (see, e.g.,
Refs. [9,10]). An elementary example of this case is the
phase-plane analysis of traveling waves of the Fisher-
Kolmogorov-Petrovsky-Piscounov equation [11,12] as
described in Ref. [13]. Here, we go beyond this approach
and gain physical insight into the global dynamics of
spatially extended systems from the analysis of geometric
objects in a low-dimensional phase space. Crucially, such a
theory should be able to explain both the dynamic process
of pattern formation—initiated, for instance, by a lateral
(Turing) instability—as well as the final stationary patterns
in terms of the same concepts and principles.
In its full generality, searching such a theory is likely a

futile task. Here, we restrict ourselves to mass-conserving
reaction-diffusion (MCRD) dynamics. A broad class of
systems that can be described by MCRD dynamics are
models for intracellular protein-pattern formation [14],
which is essential for the spatiotemporal organization of
many cellular processes, including cell division, motility,
and differentiation. Moreover, as we discuss in the outlook,
many pattern-forming systems are governed by a combi-
nation of mass-conserving dynamics and source terms that
break mass conservation. Studying such systems in the
nearly mass-conserving limit may help to tackle long-
standing questions like pattern selection (wavelength
selection) in the highly nonlinear regime [15].
Recent results indicate ways of making progress toward

a general theory rooted in mass conservation [16]. Based on
numerical simulations, this study suggests a new way of
thinking about pattern formation, namely, in terms of mass
redistribution that gives rise to moving local equilibria:
A dissection of space into (notional) local compartments
allows the spatiotemporal dynamics to be characterized
on the basis of the ODE phase space of local reactions.
As (globally conserved) masses are spatially redistributed,
the local masses in the compartments act as parameters
for the reactive phase-space flow within them. The proper-
ties (position and stability) of the local reactive equilibria
in the compartments are shown to depend on local
masses and, thus, act as proxies for the local phase-space
flow [17].
Diffusion acts to redistribute the conserved quantities

between neighboring compartments and, thereby, induces
changes in the local phase-space structure. This level of
description proves to be very powerful in explaining
chemical turbulence and transitions from chemical turbu-
lence to long-range order (standing and traveling waves)
far from onset of the (subcritical) lateral instability.
The prediction of chemical turbulence at onset, based
on numerical simulations in Ref. [16], was recently

confirmed experimentally [19]. Hence, the advances in
this “proof-of-principle” study [16] suggest that a compre-
hensive theory of pattern formation in reaction-diffusion
systems with conserved total densities (masses) can be
developed based on the concept of mass redistribution.
Here, we put this overarching idea on a general theoretical

foundation. To this end, we develop a number of new
theoretical concepts, exemplified by two-component
mass-conserving reaction-diffusion (2C-MCRD) systems
and based on simple geometric structures in the phase space
of the reaction kinetics. From these concepts, general geo-
metric criteria for lateral (Turing) instability and stimulus-
induced pattern formation emerge and allow us to obtain the
features and bifurcations of patterns from graphical con-
structions. Moreover, these advances reveal connections to
other pattern-forming phenomena like liquid-liquid phase
separation and shear banding in complex fluids.
In our work, general two-component systems serve two

purposes: first, as a paradigmatic and didactic example that
encapsulates the core concepts and principles of our theory
in a pedagogic and broadly accessible way. Second, they
provide an elementary basis for further generalizations.
Taken together, the role we envision for 2C-MCRD
systems is similar to the role of two-variable systems in
dynamical systems theory of ODEs.
The framework we present here has recently been

employed and generalized to study the principles under-
lying coarsening and wavelength selection [15], as well as
systems with spatially heterogeneous reaction rates [20]
and the role of advective flow in the cytosol [21]—all in the
context of two-component systems. Moreover, the concepts
of local equilibria and regional instabilities have recently
proven useful to disentangle the interplay of several distinct
instabilities that give rise to Min-protein patterns in vivo
and in vitro [22].
Potential future generalizations range from adding

more components and more conserved quantities to going
beyond strictly mass-conserving systems (see the outlook).
Mass conservation and, more generally, conserved quan-
tities are inherent to the elementary processes underlying
many pattern-forming systems. We therefore believe that
the local equilibria theory we present here offers a new
perspective on a broad class of pattern-forming systems—
including intracellular pattern formation, classical chemical
systems such as the BZ reaction, and even agent-based
active matter systems.

B. Structure of the paper

Put briefly, the paper is structured as follows. Section II
introduces 2C-MCRD systems, and their applications, most
prominently as conceptual models for cell polarization. The
concepts introduced in Secs. III and IV form the foundation
of the proposed framework and the subsequent analysis.
The following two sections present results that are par-
ticularly relevant in the biological context of intracellular
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pattern formation: a characterization of the possible pattern
types exhibited by 2C-MCRD systems (Sec. V) and a simple
heuristic for the threshold perturbation required for stimulus-
induced pattern formation (Sec. VI). Section VII delves into
a more technical analysis of the generic bifurcation structure
of 2C-MCRD systems. Here, we find striking similarities to
the phase diagram of phase-separation phenomena (such as
liquid-liquid phase separation and motility-induced phase
separation). This technical section also includes a weakly
nonlinear analysis in the vicinity of the lateral instability
onset that corresponds to a critical point in the language of
phase transitions. Finally, in Sec. VIII, we provide an
extensive discussion of the implications of our results and
an outlook to future research directions.

II. TWO-COMPONENT MASS-CONSERVING
REACTION-DIFFUSION SYSTEMS

Our goal is to find geometric structures in phase space
that allow the characterization of MCRD systems. The
simplest system of this type is a two-component reaction-
diffusion system with two scalar densities, mðx; tÞ and
cðx; tÞ:

∂tmðx; tÞ ¼ Dm∂2
xmþ fðm; cÞ; ð1aÞ

∂tcðx; tÞ ¼ Dc∂2
xc − fðm; cÞ; ð1bÞ

on a one-dimensional domain of length L with reflective
(no-flux) boundary conditions ∂xmj0;L ¼ ∂xcj0;L ¼ 0; all
results can straightforwardly be generalized to periodic
boundary conditions. The global average n̄ of total density
nðx; tÞ ¼ mðx; tÞ þ cðx; tÞ is conserved:

n̄ ¼ 1

L

Z
L

0

dx½mðx; tÞ þ cðx; tÞ�: ð1cÞ

We choose the above form for its conceptual simplicity.
However, the principles that characterize pattern formation
for this “minimal” model can be generalized to more
complex systems with more components and conserved
species [16,23] and even beyond strictly mass-conserving
systems [15]; see also Sec. VIII D.
Two-component systems of the above form are widely

studied as conceptual models for cell polarization [24–36],
where Eq. (1) describes the dynamics of a protein species
that cycles between membrane [slow diffusing, concen-
tration mðx; tÞ] and cytosol [fast diffusing, concentration
cðx; tÞ]. In this biological context, the nonlinear kinetics
term fðm; cÞ is of the form

fattach-detachðm; cÞ ¼ aðmÞc − dðmÞm; ð2Þ

where the non-negative terms aðmÞc and dðmÞm character-
ize the attachment of proteins from the cytosol to the
membrane and the detachment back into the cytosol,

respectively. This functional form results from the fact
that in intracellular systems chemical reactions are mainly
restricted to the cell membrane. We use kinetics of the
above form for illustration purposes; for specific examples,
see the Appendix A. Importantly however, our results hold
for general kinetics f and are not restricted to models for
intracellular pattern formation. Moreover, 2C-MCRD sys-
tems are also studied for slime mold aggregation [37],
cancer cell migration (glioma invasion) [38], precipitation
patterns [39,40], and simple contact processes [41,42].
Finally, nonisothermal solidification models [43] can also
be rewritten in the form Eq. (1); see, e.g., Refs. [44,45].
In the mathematical literature, 2C-MCRD systems with a

specific form of the reaction kinetics, fðm; cÞ ¼ c − gðmÞ,
are studied extensively [44,46–48]. The dynamics of these
systems can be mapped to a variational form (gradient flow
of an effective free-energy density). In this form, the
properties of the dynamics and the stationary patterns
can be analyzed analogously to the Cahn-Hilliard equation
which describes phase separation near thermal equilibrium
(see, e.g., Ref. [49]). In particular, one can prove that these
systems always exhibit uninterrupted coarsening; i.e., the
fully phase separated state is the only stable stationary state
of the system [47,48]. The theory we present here is
fundamentally different from these previous mathematical
approaches. Instead of an abstract mapping to a variational
form, our approach is grounded in concepts with a clear
physical interpretation that are not restricted to specific
reaction terms. Local equilibria, the overarching concept of
our theory, can be generalized to systems with more than
two components and more complex phenomena such as
waves, oscillations, and chaos [16,22].
In closing this section, we point out that systems which

are not strictly mass conserving may have a mass-conserv-
ing subsystem (or “core”) that captures essential aspects of
the system’s pattern formation dynamics. An example is the
Brusselator system [50], a widely used paradigmatic model
to study pattern formation. Its reaction kinetics has a core of
the same form as Eq. (1) with additional linear production
and degradation terms that break mass conservation. This
broken mass conservation can give rise to interesting new
phenomena, not present in the mass-conserving core. Still,
the core dynamics can be useful in understanding these new
phenomena by exploiting a timescale separation between
(fast) mass-conserving processes and (slow) production
or degradation processes [15,51,52]. In the outlook
(Sec. VIII D), we briefly discuss this example and the
broader prospects of such an approach to nonconservative
systems.

III. SETTING THE STAGE—GEOMETRIC
STRUCTURES IN PHASE SPACE

In this section, we introduce the basic geometric con-
cepts in phase space, which we later use for a full
characterization of pattern formation, including pattern
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types, bifurcations, and the corresponding characteristic
length and timescales. To this end, we first study the
spatially homogeneous (well-mixed) case, where we can
use the classical geometric tools for studying ordinary
differential equations [1,2,5]. Subsequently, we build on the
phase-space structures obtained from the well-mixed case
to also understand pattern formation in spatially extended
systems in terms of flow in phase space.

A. Phase-space analysis of a well-mixed system

For a well-mixed system, the dynamics reduces to a set
of ordinary differential equations

∂tm ¼ fðm; cÞ; ∂tc ¼ −fðm; cÞ: ð3Þ

Since the reaction kinetics conserve total density (protein
mass), n ¼ mþ c, the reactive flow in ðm; cÞ-phase space
is restricted to the reactive phase space, where n is a
constant of motion (i.e., ∂tn ¼ 0), as illustrated in Fig. 1(a).
The reaction kinetics are balanced at the reactive equilibria
(fixed points) u� ¼ ðm�; c�Þ:

u�ðnÞ∶
�
fðu�Þ ¼ 0;

m� þ c� ¼ n;
ð4Þ

which are given by the intersection points between the
reactive reactive nullcline (NC) (or “line of reactive
equilibria”), fðm�; c�Þ ¼ 0, and the reactive phase space

for a given mass n. The reactive flow in the respective phase
space is organized by the location and (linear) stability
of these fixed points (which are both functions of n); see
Fig. 1(a) and discussion below. By varying the total density
n, i.e., by shifting the reactive phase space, one can
construct a bifurcation diagram of the (reactive) equilib-
rium c�ðnÞ as a function of the total density n [Fig. 1(b)].
The total density is a control parameter of the reactive
equilibria. When the total density changes, the local
equilibria shift. These shifting (or moving) local equilibria,
introduced in Ref. [16], are the key to understanding the
mass-conserving reaction-diffusion dynamics as we see
repeatedly throughout this paper.
In each reactive phase space, we can eliminate (the

cytosolic density) cðtÞ and write the dynamics in terms
of (the membrane density) mðtÞ alone: ∂tmðtÞ ¼ f½mðtÞ;
n −mðtÞ�; equally well, mðtÞ could be eliminated. In the
vicinity of an equilibrium m�, the linearized reactive flow
reads ∂tmðtÞ ≈ ðfm − fcÞ½mðtÞ −m��, with fi ≔ ∂ifju� ,
i ∈ fm; cg. We can read off the eigenvalue σlocðnÞ ≔
fm − fc for the local equilibrium and obtain to linear order
in the vicinity of the reactive nullcline

fðm; cÞ ≈ σlocðnÞ · ½m −m�ðnÞ�
¼ −σlocðnÞ · ½c − c�ðnÞ�: ð5Þ

The sign of σloc—and, thereby, stability of the reactive
equilibria—can be inferred from the slope of the nullcline:

sncðnÞ ≔ ∂mc�ðmÞjn ¼ −
fm
fc

����
n
: ð6Þ

For fc > 0, which is always the case for attachment-
detachment kinetics where fc ¼ aðmÞ, local equilibria
are stable, σlocðnÞ < 0, if (and only if) the slope of the
reactive nullcline is less steep than the slope of the reactive
phase space:

sncðnÞ ¼ −1: ð7Þ

Figure 1(a) shows an example for reaction kinetics where
the dynamics is monostable except for a window of protein
masses exhibiting bistability with one unstable (open
circle) and two stable fixed points (filled circle). [Note
that the local eigenvalue σloc can be rewritten as
σloc ¼ fc · ð−snc − 1Þ, which shows why the slope cri-
terion, Eq. (7), for local stability is reversed for fc < 0.]

B. Stationary patterns are embedded
in a flux-balance subspace of phase space

To generalize the above approach to spatially extended
systems, one has to understand the role of diffusive
coupling. We start by studying stationary patterns. The
insights gained from this analysis later prove useful for

FIG. 1. Phase space and bifurcation structure of a well-mixed
2C-MCRD system. The conservation law mþ c ¼ n is geomet-
rically represented by 1-simplices in phase space, referred to as
reactive phase spaces. Local reactions give rise to a flow in phase
space (red arrows) which, due to mass conservation, is confined
to the reactive phase spaces. The flow vanishes along the reactive
nullcline fðm; cÞ ¼ 0 (black line), which is a line of reactive
equilibria. Each intersection of a reactive phase space with the
reactive nullcline is a reactive equilibrium u�ðnÞ for a given
total density n (shown as open and closed circles, for three
different values n1;2;3). The ðm; cÞ-phase portrait can be trans-
formed into a bifurcation diagram c�ðnÞ by the skew trans-
formation n ¼ mþ c. Because of the conservation law, the
well-mixed system has only one degree of freedom, so the only
possible bifurcations are saddle-node bifurcations (SN), where the
reactive nullcline is tangential to a reactive phase space.
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studying the dynamics (instability of the homogeneous
state and stimulus-induced pattern formation).
A stationary pattern ũðxÞ ¼ ½m̃ðxÞ; c̃ðxÞ� is a solution to

the steady-state equations

Dm∂2
xm̃þ fðm̃; c̃Þ ¼ 0; ð8aÞ

Dc∂2
xc̃ − fðm̃; c̃Þ ¼ 0; ð8bÞ

under the constraint of a given average total density n̄
[Eq. (1c)]. Figure 2(a) shows the sketch of a typical
stationary pattern m̃ðxÞ (solid line) and the corresponding
local equilibria m�ðxÞ (black disks) obtained from a
numerical solution of Eq. (8) with a reaction term as, for
instance, in Refs. [28,34,53] (see Appendix A). We study
patterns with monotonic density profiles, which serve as
elementary building blocks for more complex stationary
patterns (see Sec. V). Figure 2(a) shows an example for a
monotonic pattern profile exhibiting two plateau regions
connected by an interface region with an inflection point at
x0. (We later see that this type of pattern, termed “mesa,” is
one of three elementary pattern types found in two-
component reaction-diffusion systems; see Sec. V C.)
Here, we ask what can be learned about the stationary

pattern by applying geometric concepts in phase space
alone, i.e., without relying on an explicit numerical
solution. Observe that Eqs. (8) imply that the diffusive
fluxes of m and c have to balance locally at each position x
in the spatial domain ½0; L� in the steady state:

Dm∂xm̃ðxÞ ¼ −Dc∂xc̃ðxÞ: ð9Þ

This local flux-balance condition is obtained by adding the
two steady-state equations, Eqs. (8a) and (8b), integrating
over x and employing no-flux boundary conditions.
Integrating this relation once more from the boundary to
any point x in the domain yields that any stationary pattern
obeys the linear relation

Dm

Dc
m̃ðxÞ þ c̃ðxÞ ¼ η0; ð10Þ

where η0 is a constant of integration. (An alternative
derivation of this relation that directly generalizes to higher
spatial dimensions [cf. Eq. (14b)] is provided below.)
Equation (10) defines a family of linear subspaces in the
ðm; cÞ-phase plane parametrized by η0. We call these
subspaces the flux-balance subspaces (FBS), since they
represent the local balance between the diffusive fluxes on
the membrane and in the cytosol. Any stationary pattern is
confined to one such subspace; see Fig. 2(b). We learn later
(Sec. III C) how the value of η0ðn̄; LÞ is determined by the
balance of reactive processes.
Equation (10) has been previously used to mathematically

simplify the construction and analysis of stationary patterns
in two-component systems, by introducing the new phase-
space coordinate (orthogonal to the flux-balance subspace)

η ≔
Dm

Dc
mþ c ð11Þ

(a) (b)

FIG. 2. Illustration of a stationary pattern and its embedding in phase space which motivates the flux-balance construction based on the
reactive nullcline. (Movie 1 in the Supplemental Material [54] shows the dynamics that lead to such a stationary pattern.) (a) Local
(reactive) equilibriam�½ñðxÞ� (filled circles) act as a “scaffold” for the pattern profile which is tied to the equilibria by local reactive flows
(red arrows). At the inflection point x0, the flux-balance subspace intersects the reactive nullcline f̃½mðx0Þ; η0� ¼ 0. In a steady state, the
diffusive flux on the membrane (blue arrow) is balanced by an equal and opposite flux in the cytosol. Together, these fluxes exactly
cancel the cumulative reactive turnover on either side of the inflection point (indicated by red shaded areas). (b) The phase-space
trajectory corresponding to the stationary pattern is embedded in a flux-balance subspace (thin blue line). The local reactive flows (red
arrows) are restricted to the local phase spaces where total density is conserved locally. The intersections between the local phase spaces
and the reactive nullcline fðm; cÞ ¼ 0 yield the local equilibria (filled circles). Slow membrane diffusion (blue arrows) balances the
reactive flows toward the equilibria in the vicinity of x0 [cf. Eq. (20)]. The regions left and right of x0 can be intuitively characterized as
attachment and detachment zones based on the direction of the reactive flow in them. A balance of total turnovers [red shaded areas
between pattern and local equilibria in (a) and (b) determine η0 (cf. Eq. (19)].
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and describing the spatiotemporal dynamics in terms of the
scalar fields nðx; tÞ and ηðx; tÞ (cf. Refs. [25,34]). The
physical origin (diffusive flux balance) and the geometric
interpretation (flux-balance subspace) discussed above
explain why Eq. (10) has proven to be useful before (and
why it is central in our further analysis). In particular, note
that by adding Eqs. (1a) and (1b) one finds that gradients in
ηðx; tÞ drive mass redistribution:

∂tnðx; tÞ ¼ Dc∂2
xηðx; tÞ: ð12Þ

We therefore call ηðx; tÞ the mass-redistribution potential.
Substituting c using η, the reaction term reads

f̃ðm; ηÞ ≔ fðm; η −mDm=DcÞ; ð13Þ

and the stationarity conditions [Eqs. (8a) and (8b)] are
replaced by

Dm∂2
xm̃þ f̃ðm̃; η̃Þ ¼ 0; ð14aÞ

Dc∂2
xη̃ ¼ 0: ð14bÞ

From the second equation, we recover that, in the steady
state, the mass-redistribution potential must be constant in
space, η̃ ¼ η0, on a domain with no-flux or periodic
boundary conditions. This result also holds in higher spatial
dimensions, as one can see by analogy to the electric
potential in a charge free space. The mass-redistribution
potential plays a role analogous to the chemical potential in
model B dynamics [55]. However, it does not follow from a
free-energy density. Instead, it is determined by the local
concentrations via Eq. (11), and its spatial gradients re-
present the local imbalance of diffusive fluxes. Finally, note
that the equation for the mass-redistribution dynamics
Eq. (12) is not closed. Later, in Sec. IV, we introduce an
approximate “closure relation” for Eq. (12).
The above analysis can be generalized to systems with N

components whose total mass is conserved (describing, for
instance, a single protein species with N conformational
states). The mass-redistribution potential is the sum of
the concentrations weighted by their respective diffusion
constants. Respectively, the flux-balance subspace in the
N-dimensional concentration phase space is a (N − 1)-
dimensional hyperplane orthogonal to the vector of dif-
fusion constants ðD1; D2;…; DNÞ.

C. Stationary patterns are “scaffolded”
by local equilibria

Whenever the diffusion constants Dm and Dc are
unequal, the flux-balance subspace cannot coincide with
any reactive phase space (which has slope −1). Hence, a
nonuniform total density profile ñðxÞ ≔ m̃ðxÞ þ c̃ðxÞ is
innate to any stationary pattern [nonuniform m̃ðxÞ] when-
ever Dm ≠ Dc.

As we see next, this nonuniform total density profile is
key to understand the relationship between the stationary
pattern in real space and the reactive nullcline in the
phase plane.
Consider the system as being spatially dissected into

notional local compartments [16]. Within each such com-
partment, local reaction kinetics induce a reactive flow
fðm; cÞ that lies in the local phase space fðm; cÞ∶mþ c ¼
ñðxÞg which is determined by the respective local mass
ñðxÞ. We define the local equilibria

ffu�½nðx; tÞ�g ¼ 0;

m�½nðx; tÞ� þ c�½nðx; tÞ� ¼ nðx; tÞ; ð15Þ

analogously to Eq. (4), where we emphasize that the total
density nðx; tÞ is a function of position x and time t here.
The local equilibria are geometrically determined by
intersection points of the local phase space with the reactive
nullcline. Together with their linear stability, the local
equilibria serve as proxies for the local reactive flow in
each notional compartment [as in the well-mixed system
discussed in Sec. III A; cf. Eq. (5)]. Thus, by thinking about
a system as dissected into small compartments coupled by
diffusion, we can carry over the phase-space structure of
the local reaction kinetics to the spatially extended system
[Fig. 2(b)].
What is the relationship between the local equilibria

u�½ñðxÞ� and the stationary pattern ũðxÞ? To gain some
intuition, suppose the compartments are isolated from each
other; i.e., diffusive coupling between them is shut off. If
we choose the compartments small enough to be well
mixed, then the concentrations m and c in each of them
simply relax to the local equilibrium (black disks in Fig. 2)
determined by the total density ñðxÞ that varies from
compartment to compartment. In that sense, the local
equilibria act as a scaffold to which the pattern is “tied”
by local reactive flows. Because total density must be
conserved individually in each of the (now uncoupled)
compartments, the approach (red arrows) to the local
equilibria is confined to the reactive phase space (gray
lines) given by the total density in the compartment.
Let us now consider diffusive coupling between these

compartments. In essence, diffusion acts to remove spatial
gradients [as indicated by the small blue arrows along the
FBS in Fig. 2(b)] and is counteracted by reactive flows
toward the local equilibria [indicated by the red arrows
from the FBS to the local equilibria in Figs. 2(a) and 2(b)].
How does this competition play out in detail? In the steady
state, the net diffusive flux in and out of the compartment is
balanced by the deviation from local (reactive) equilibrium
[it is instructive to compare Eq. (4) for reactive equilibria
and Eqs. (8) for a stationary pattern]. If the gradient does
not change across the compartment, such that the fluxes
into and out of the compartment are identical, the net
diffusive flux vanishes: ∂x½Dm∂xm̃ðxÞ� ¼ 0. [Thanks to the
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flux-balance condition Eq. (9), the same holds automati-
cally for c̃ðxÞ.] In turn, the stationary pattern must coincide
with the local equilibria: ũðxÞ ¼ u�½ñðxÞ� when the gra-
dient does not change across a compartment. This identity
holds exactly at inflection points of the pattern. For
plateaus, the gradient is small, ∂xũðxÞ ≈ 0, in a spatially
extended region, and so is the local net flux, that is,
∂2
xũðxÞ ≈ 0. Hence, for plateaus, we have f½ũðxÞ� ≈ 0, such

that the pattern can be locally approximated by the
respective local equilibria, that is, ũðxÞ ≈ u�½ñðxÞ� in
plateau regions.

D. The flux-balance construction
on the reactive nullcline

Combining these insights with the fact that the stationary
pattern must be embedded in a flux-balance subspace, we
can identify plateaus and the inflection point as intersection
points of a flux-balance subspace and the nullcline (FBS-
NC intersections). As illustrated in Fig. 2, these “landmark
points” in phase space enable us to graphically construct
the spatial patterns in real space as two plateaus connected
by an interface (flux-balance construction).
Near the interface, the densities ũðxÞ of a stationary

pattern deviate from the corresponding local equilibria. The
ensuing reactive flows (red arrows) left and right of the
inflection point are of opposite sign and correspond to
attachment and detachment zones for protein patterns [see
Fig. 2(a)] [14]. Linearizing the phase-space flow around
the landmark points later enables us to further quantify the
spatial profile of stationary patterns, i.e., to determine the
relevant length scales.

E. Turnover balance determines η0
Integrating one of the stationarity conditions [Eq. (14a)]

over the whole spatial domain ½0; L� yields that in the steady
state the total reactive turnover must vanish:Z

L

0

dxf̃½m̃ðxÞ; η0� ¼ 0: ð16Þ

This total turnover balance determines the position η0 of
the flux-balance subspace in the steady state. A math-
ematically more convenient form of turnover balance is
obtained by multiplying Eq. (8a) with ∂xm̃ðxÞ before
integrating: Z

m̃ðLÞ

m̃ð0Þ
dmf̃ðm; η0Þ ¼ 0: ð17Þ

In this form, it becomes evident that the total turnover
balance does not depend on the full density profile m̃ðxÞ but
only on the densities at the boundaries, m̃ð0Þ and m̃ðLÞ.
Total turnover balance [Eq. (17)], together with the statio-
narity condition for m̃ðxÞ [Eq. (14a)], fully determines the
stationary patterns.

Geometrically, total turnover balance can be interpreted
as a kind of (approximate) Maxwell construction in the
ðm; cÞ-phase plane (balance of areas shaded in red in
Fig. 2). This interpretation requires the following approx-
imations. First, we linearize the reactive flow around the
reactive nullcline [cf. Eq. (5)]:

f̃ðm; η0Þ ≈ σloc½ñðmÞ� · fm −m�½ñðmÞ�g; ð18Þ

where ñðmÞ ≔ η0 þ ð1 −Dm=DcÞm, because the pattern is
embedded in the flux-balance subspace; cf. Eq. (10). The
expression in the curly braces of Eq. (18) is simply the
distance of the reactive nullcline from the flux-balance
subspace measured along the respective local phase space.
Furthermore, suppose for the moment that the local
eigenvalue σlocðnÞ is approximately constant in the range
of total densities attained by the pattern. Turnover balance
[Eq. (17)] is then represented by a balance of the areas
between nullcline and flux-balance subspace on either side
of the inflection point [see areas shaded in red (light gray)
in Fig. 2(b)]:

Z
m̃ðLÞ

m̃ð0Þ
dmfm −m�½ñðmÞ�g ¼ 0: ð19Þ

In the characterization of pattern profiles in Sec. V, we
use that, for a spatial domain size L much larger than the
interface width, one can approximate the plateau concen-
trations by FBS-NC intersections: m̃ð0Þ ≈m−ðη0Þ and
m̃ðLÞ ≈mþðη0Þ. In this case, Eq. (17) is closed and can
be solved for η0, either numerically or geometrically using
the approximate “Maxwell construction” [Eq. (19)].
Multiplying the stationarity condition [Eq. (14a)] by

∂xm̃ðxÞ [as we do to obtain Eq. (17) for total turnover
balance] and integrating over the spatial subinterval ½0; x0�,
one obtains a relation that depends only on η0 and the
boundary concentrations m̃ð0Þ and m̃ðLÞ:

1

2
Dmð∂xm̃jx0Þ2 ¼

Z
m0ðη0Þ

m̃ð0Þ
dmf̃ðm; η0Þ

¼ −
Z

m̃ðLÞ

m0ðη0Þ
dmf̃ðm; η0Þ: ð20Þ

These equations state that the net turnover on either side of
the pattern inflection point x0 has to be balanced by the net
diffusive flux across that point as illustrated by the blue
arrow in Fig. 2(a). Because the reactive flow changes sign
at the inflection point, the reactive turnover (integrated
flow) is extremal there and determines the maximal slope
m̃0ðx0Þ of the pattern profile. Depending on how the
reactive turnover saturates on either side of the inflection
point, the system exhibits, as we learn in Sec. V C, three
distinct characteristic elementary pattern types, classified
by the shape of the concentration profile m̃ðxÞ: mesas,
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peaks and troughs, and nearly harmonic (or “weakly
nonlinear”) patterns.

F. Summary of geometric structures in phase space

Let us pause for a moment and briefly summarize our
findings so far. We have established three major geometric
structures in ðm; cÞ-phase space: First, the reactive nullcline
fðm; cÞ ¼ 0, along which the local reaction kinetics are
balanced; second, the local phase spaces mþ c ¼ ñðxÞ,
determined by the local total densities ñðxÞ—local equi-
libria u�½ñðxÞ� are intersections of the reactive nullcline and
the local phase spaces; third, the family of flux-balance
subspaces, within which diffusive flows in membrane and
cytosol balance each other. The position of the flux-balance
subspace η0 of a stationary pattern is determined by total
turnover balance [Eq. (17)], which represents a balance of
reactive processes.
This geometric picture underlies the key results we

present in the remainder of the paper. Up to now, we
discussed only the embedding of the pattern in the ðm; cÞ-
phase plane. To study the possible pattern profile shapes
m̃ðxÞ in real space, we need to understand the dynamic
process of pattern formation, in particular, the factors
determining the interface region. As we see below
(Sec. V), the interface of a pattern is inherently connected
to lateral instability. We therefore first analyze lateral
instability and the dynamic process of pattern formation
in the following section. With these tools at hand, we then
are able to characterize the distinct pattern types exhibited
by 2C-MCRD systems.

IV. LATERAL INSTABILITY

How can the geometric structures introduced in the
previous section help us to understand the physical process
of pattern formation? Previous research [16] suggests that
the total densities are the essential degrees of freedom and
their redistribution is the key dynamic process. Building
on this insight, we systematically connect the geometric
structures established above (Sec. III) to the lateral insta-
bility, i.e., instability against spatially inhomogeneous
perturbations, of a homogeneous steady state.

A. Mass-redistribution instability

Consider the dynamics of the local total density
nðx; tÞ ¼ cðx; tÞ þmðx; tÞ. Because the kinetics conserve
local total density, the time evolution of nðx; tÞ is driven
only by diffusion due to spatial gradients in the concen-
trations cðx; tÞ and mðx; tÞ:

∂tnðx; tÞ ¼ Dc∂2
xcðx; tÞ þDm∂2

xmðx; tÞ: ð21Þ

As a result of mass redistribution, the local equilibrium
concentrations u�½nðx; tÞ� change. In turn, these locally
shifted equilibrium concentrations induce changes in the

local reactive flows and, thereby, result in altered spatial
gradients in uðx; tÞ. This intricate coupling between redis-
tribution of total mass, reactive flows, and diffusive flows
drives pattern formation.
Qualitatively, this coupling between reactive and diffu-

sive flow can be understood by observing that the dynamics
depends mainly on the direction in which the local
equilibria shift due to increasing or decreasing local total
density. Let us, therefore, posit that the relevant diffusive
gradients can be (qualitatively) estimated by replacing
the local concentrations by the (locally stable) local
equilibrium

uðx; tÞ → u�½nðx; tÞ�; ð22Þ

such that the local mass nðx; tÞ is the only remaining degree
of freedom:

∂tnðx; tÞ ≈Dc∂2
xc�ðnÞ þDm∂2

xm�ðnÞ: ð23Þ

We term this approximation the local quasi-steady-state
approximation. Note that this approximation becomes
exact in the long-wavelength limit where diffusive redis-
tribution is much slower than chemical relaxation; see
Sec. IV B and Appendixes C and D for a detailed
discussion. Applying the chain rule once, we can rewrite
the mass-redistribution dynamics as

∂tnðx; tÞ ≈ ∂x½ðDc∂nc� þDm∂nm�Þ∂xn�; ð24Þ

which is simply a diffusion equation for the total density
nðx; tÞ. For locally stable equilibria, the effective diffusion
constant becomes negative (which entails antidiffusion) if

∂nc�

∂nm� ¼ sncðnÞ ¼ −
fm
fc

< −
Dm

Dc
; ð25Þ

where sncðnÞ ¼ ∂mc�ðmÞjn is the slope of the reactive
nullcline c�ðmÞ [cf. Eq. (6) in Sec. III A; note that local
stability ensures ∂nm� > 0 when fc > 0; for fc < 0, the
inequality Eq. (25) is reversed]. Hence, starting from a
homogeneous steady state u�ðn̄Þ, a lateral instability due to
effective antidiffusion takes place if (and only if)

sncðn̄Þ < −
Dm

Dc
: ð26Þ

This condition for lateral instability has a simple geometric
interpretation in the ðm; cÞ-phase plane: A spatially homo-
geneous steady state with total density n̄ is laterally
unstable if the slope of the nullcline is steeper than the
slope of the flux-balance subspace. We term the mechanism
a mass-redistribution instability to emphasize the under-
lying physical process and to contrast this mechanism
with the “activator-inhibitor mechanism” (see Sec. VIII B 3
in the discussion). Importantly, the mass-redistribution
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instability in reaction-diffusion systems is a Turing insta-
bility [56], in the sense that it is a diffusion-driven
instability of a system that is stable in a well-mixed
situation (i.e., stable against spatially homogeneous per-
turbations) [57]. The bifurcation where a homogeneous
steady state becomes laterally unstable, i.e., Turing unsta-
ble, is referred to as a Turing bifurcation.
The mass-redistribution dynamics [Eq. (24)] can be

rewritten most compactly using the mass-redistribution
potential η [cf. Eq. (12)]:

∂tnðx; tÞ ≈Dc∂x½∂nη
�ðnÞ∂xn�: ð27Þ

This result implies that a mass-redistribution instability
occurs if an increase in total density entails a decrease of the
mass-redistribution potential (i.e., ∂nη

�jn̄ < 0).
Importantly, the instability condition [Eq. (25)] can be

related directly to an underlying physical mechanism. For
illustration purposes, let us disregard membrane diffusion
(Dm ¼ 0). Following a small modulation δn of the mass on
a large length scale, the local reactive equilibrium within
each compartment shifts [1 in Fig. 3(a)]. The instability
criterion [Eq. (25)] requires the slope of the reactive
nullcline to be negative. In this case, the equilibrium shifts
to lower cytosolic concentration c�ðnÞ as total density n is
increased. In other words, in regions with a higher total
density, there is a reactive flow onto the membrane (red
arrows) as the shifted local equilibrium is approached—
thus creating cytosolic sinks [2 in Fig. 3(a)]. Conversely,
the regions with lower total density become cytosolic
sources. The ensuing cytosolic gradient leads to diffusive
mass redistribution (3), resulting in a further shift of the
local equilibria (4), thus sustaining and amplifying the
diffusive flux—the cycle feeds itself. Taken together, this
reasoning shows that themass-redistribution instability is a
self-amplifying mass-redistribution cascade. In contrast,
when the cytosolic equilibrium density rises due to an

increase in total density (i.e., for positive nullcline slope
∂nc�jn̄ > 0), the compartment with more total density
becomes a cytosolic source inducing mass redistribution
that brings the system back to a homogenous state.

B. Diffusion- and reaction-limited regimes

On sufficiently large length scales, diffusive relaxation
(transfer of mass) is slow compared to chemical relaxation
Dcq2 ≪ jσlocj, such that the local quasi-steady-state
approximation Eq. (22) becomes exact—the concentrations
are slaved to the local equilibria. This is the diffusion-
limited regime: The growth rate of the lateral instability is
limited by cytosolic redistribution via diffusion (σlat ≈
−∂nc� ·Dcq2). In contrast, if cytosolic diffusion is much
faster than chemical relaxation (Dcq2 ≫ jσlocj), the lateral
instability is limited by the rate at which the shifting
equilibria are approached (σlat ≈ ∂nc� · σloc ¼ fm). This is
the diffusion-limited regime. Importantly, the concept of
shifting local equilibria still informs about the presence of
the lateral instability in this regime. But it no longer yields
the growth rate quantitatively. A more detailed discussion
of the local quasi-steady-state approximation is provided in
Appendix D.
The principle of shifting local equilibria provides insight

into the spatial dynamics of systems with more than two
components: In a five-component MCRDmodel for in vitro
Min patterns, the concept of scaffolding allowed one to
predict the transition to chaos (qualitative change of the
local attractors from a stable fixed point to limit cycle) [16].
Notably, in this system, the onset of lateral instability is not
a long-wavelength instability but takes place for a band of
unstable modes bounded away from q ¼ 0, corresponding
to “type I” instability in the Cross-Hohenberg classification
scheme. Thus, the principle of shifting local equilibria is
not restricted to systems with a long-wavelength (type I)
instability.

(a) (b)

FIG. 3. Mass-redistribution instability. (a) Illustration of the underlying mechanism. Consider a small amplitude modulation of the
total density (purple line in the real space plot) on a large length scale (1). As diffusion is slow on large scales, the system locally relaxes
to its reactive equilibrium (2). The resulting cytosolic density profile δcðxÞ ≈ ∂nc�ðnÞjn̄δnðxÞ is shown by the blue line in the real space
plot. If the cytosolic equilibrium density decreases due to an increase of total density (i.e., if the nullcline slope snc is negative), the
ensuing diffusive fluxes in the cytosol (3) amplify the modulation of the total density profile (4), thus driving an instability. The
membrane gradient is opposite to the cytosolic one, such that membrane diffusion counteracts the instability and suppresses it if
snc > −Dm=Dc; cf. Eq. (25). (b) Dispersion relation (solid blue line). In the limit Dc → ∞, the dispersion relation approaches the
function fm −Dmq2 shown as a gray, dashed line. This limit is discussed in Appendix C 3.
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C. The marginal mode qmax reveals the role
of membrane diffusion

Let us compare the instability criterion Eq. (25) to
“classical” linear stability analysis of Eq. (1) around the
homogenous steady state (see Appendix C). There, one
obtains the dispersion relation σðqÞ for the growth rate σ of
a mode with wave number q [see Fig. 3(b)]. It exhibits a
band of unstable modes, σðqÞ > 0 for 0 < q < qmax, with

q2max ≔
fm
Dm

−
fc
Dc

¼ f̃m
Dm

; ð28Þ

if and only if fm=Dm > fc=Dc, i.e., exactly when the slope
criterion [Eq. (25)] is fulfilled. Equation (28) can be
rewritten as q2max ¼ fc=Dmð−snc −Dm=DcÞ, which shows
why the slope criterion Eq. (25) is reversed for fc < 0.
The instability condition Eq. (25) and the expression for

the edge of the band of unstable modes Eq. (28) inform
about the role of membrane diffusion as counteracting the
cytosolic mass redistribution that drives the instability. This
result is because the membrane gradient is always opposed
to the cytosolic gradient whenever the nullcline slope is
negative ð−1 < ∂nc� < 0Þ (because δm ¼ δn − δc and
δc� ¼ δn∂nc�).
The expression for qmax can be found quite easily by

utilizing phase-space geometry. We start from the obser-
vation that qmax is a nonoscillatory marginal mode; it
cannot be oscillatory for a locally stable fixed point,
σloc < 0, as shown in Appendix C. Hence, the eigenvalue
σðqmaxÞ ¼ 0, so the mode ∼ cosðqmaxxÞ must fulfill the
steady-state condition [Eq. (8)], and the corresponding
eigenvector must point along a flux-balance subspace
∝ ð1;−Dm=DcÞT in phase space. The steady-state condi-
tion in flux-balance subspace is given by Eq. (14a), which,
in linearization around a homogeneous steady state, reads

0 ¼ Dm∂2
xδmðxÞ þ

�
fm −

Dm

Dc
fc

�
n̄
δmðxÞ: ð29Þ

This equation is solved by the mode δmðxÞ ∝ cosðqmaxxÞ
with q2max ¼ fm=Dm − fc=Dc [cf. Eq. (28)]. To conclude,
the two effects of membrane diffusion are interlinked in the
expression for qmax: (i) The condition qmax ¼ 0 determines
the critical NC slope (scritnc ¼ −Dm=Dc) for the (long-
wavelength) onset of lateral instability. (ii) In the laterally
unstable regime, qmax determines the smallest unstable
length scale l ¼ q−1max. In the limit of large Dc, this length
scale is given by l2 ≈Dm=fm, i.e., a balance of membrane
diffusion and reactive flows. In the next section, it is shown
that the marginal mode qmax at the pattern inflection point
determines (to leading order) the interface width of a
stationary pattern.

V. CHARACTERIZATION OF STATIONARY
PATTERNS

With an intuitive picture of the principles underlying
pattern formation in 2C-MCRD systems in hand, we now
return to the spatially continuous system. We first study the
characteristic types of stationary patterns exhibited by
2C-MCRD systems, focusing on elementary stationary
patterns with monotonic concentration profiles on a domain
with no-flux boundaries. More complex, nonmonotonic
stationary patterns (also in domains with periodic boundary
conditions) can always be dissected into such elementary
patterns at their extrema (recall that due to the diffusive
flux-balance condition [Eq. (9)] extrema in m̃ðxÞ and c̃ðxÞ
must coincide). Previous studies observe that 2C-MCRD
systems typically exhibit coarsening [24,25,34,59]. In a
follow-up work building on the concepts presented here,
we show that coarsening is indeed generic in all 2C-MCRD
systems, independently of the specific form of the reaction
kinetics [15].

A. Interface width

The width of the interfacial region, lint, is the only
intrinsic length scale of the elementary patterns. Recall that
the pattern inflection point, which defines the position of
the interface region, is in local reactive equilibrium—
geometrically determined by an FBS-NC intersection
ðm0; c0Þ (cf. Fig. 2 in Sec. III C). The interface is main-
tained by a balance of diffusion and the reactive flow in the
vicinity of the inflection point. Therefore, the interface
m̃ðx − x0Þ ≈m0 þ δm̃ðxÞ is to leading order determined by
linearizing the steady-state equation [Eq. (14a)] around the
inflection point:

0 ¼ Dm∂2
xδm̃ðxÞ þ

�
fm −

Dm

Dc
fc

�
n0

δm̃ðxÞ; ð30Þ

where n0 ¼ m0 þ c0 and we use the flux-balance subspace
constraint [Eq. (10)] to substitute the cytosol concentration
δc̃ðxÞ. Equation (30) exactly resembles the equation that
determines the marginal mode sinðqmaxxÞ in the dispersion
relation (right-hand edge of the band of unstable modes).
Hence, the interface length scale is determined by the
marginal mode of the dispersion relation at the inflection
point:

lint ≃ π=qmaxðn0Þ ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm=f̃mjn0

q
: ð31Þ

The interface shape is approximated by the corresponding
eigenfunction δm̃ðxÞ ∝ sin½qmaxðn0Þx�.
Let us pause for a moment to look at the interface

region from the perspective of mass redistribution: The
total density n0 at the inflection point is such that the
corresponding reactive equilibrium is laterally unstable,
because the nullcline slope is steeper than the FBS slope
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there; see Fig. 4, where we elaborate on this point in terms
of spatial regions. From the spectrum of modes, only the
marginally stable one qmaxðn0Þ fulfills the (linearized)
stationarity condition. Thus, intuitively, it must be the
qmax mode that determines the interface length scale.
Importantly, because the pattern is formed by mass redis-
tribution, the total density n0 at the inflection point does not
coincide, in general, with the average total density n̄. The
interface width is determined by qmaxðn0Þ, not by qmaxðn̄Þ.
This result also implies that the interface width depends on
the FBS position η0, because the inflection point ðm0; c0Þ,
and hence n0 ¼ m0 þ c0, is determined geometrically as
the FBS-NC intersection point. We explicitly denote the
interface width by lintðη0Þ when we use this relationship in
the following.
Finally, to approximate the stationary concentration

profile of the interface, we use that its maximal slope
m̃0ðx0Þ is attained at the pattern inflection point x0 and can
be calculated by flux-turnover balance (20). Together with
the harmonic mode δm̃ðxÞ ∝ sinðπx=lintÞ obtained by
linearizing phase-space flow, we find

m̃ðxÞ ≈m0 þ m̃0ðx0Þ
lint

π
sin

�
π
x − x0
lint

�
; ð32Þ

in the vicinity of the inflection point. To go beyond this
leading-order approximation, one can perform a perturba-
tive expansion of f̃ðm0 þ δm; η0Þ and m̃ðx0 þ δxÞ in
Eq. (14a) around the pattern inflection point ðm0; η0Þ.
The solution of this expansion can then be matched to
the plateaus to obtain an approximation of the interface
profile shape. Linearization around the plateaus yields
exponential decay toward the plateaus (“exponential tails”)
∼ expð−x=l�Þ, where the decay lengths are given by
l2
� ¼ Dm=f̃mðn�Þ.

B. Regions generalize the concept
of local compartments

Not only the interfaces (n0) but also the plateaus (n�) of
patterns correspond to FBS-NC intersection points in phase
space (Fig. 4). However, in contrast to the interface, the
plateaus lie on laterally stable sections of the nullcline

(a)

(b)

(c)

(d)

FIG. 4. Decomposition of a stationary pattern (a) into spatial regions that correspond to ðm; cÞ-phase-space regions in the vicinity
of landmark points. (b) Three characteristic spatial regions of the pattern (plateaus and the interface) can be notionally isolated.
(c) The different average total densities n−, n0, and nþ in three spatial regions determine the phase-space regions corresponding to
these spatial regions. The phase-space region associated to laterally unstable nullcline segment is shaded in green. (d) Linearization
of the reaction-diffusion dynamics around the reactive equilibria at n−, n0, and nþ yields regional dispersion relations that determine
the properties of the regions. The plateaus are laterally stable regions, while the interface region is necessarily laterally unstable. The
interface width can be estimated by the marginally stable mode qmaxðn0Þ at the right-hand edge of the dispersion relation of the
interface region: lint ≃ π=qmaxðn0Þ.
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where sncðn�Þ > −Dm=Dc; recall the slope criterion for
lateral instability [Eq. (25)]. Put more precisely, the pattern
profile becomes flat in the vicinity of n� because of
regional lateral stability [60].
Thus, the FBS-NC intersection points act as “landmark

points” that enable us to (notionally) dissect the pattern
profile into spatial regions (plateaus and interface) in such a
way that these spatial regions can be associated with
regional phase spaces. The (linearized) properties of the
reaction-diffusion dynamics—encoded in the regional
dispersion relations [Fig. 4(d)]—in the vicinity of these
landmark points can be used to determine the regional
properties in real space. Within each of these regions, we
can ask what would happen there if we were to isolate it
from the rest of the system, akin to the question we ask in
the context of local equilibria. Just as the local equilibria
scaffold the interface, these regional “attractors” serve as
scaffolds for the global pattern. The regional properties
depend on the average regional mass which is redistributed
between regions by diffusion, and the properties of the full
pattern can be pieced together by (characteristically dis-
tinct) isolated regions (plateaus and interfaces).
Taken together, the nonlinear kinetics is encoded by the

nullcline shape. The internal properties of the spatial
regions are determined by regionally linear properties of
phase-space flow, encoded in the regional dispersion
relations. We will therefore refer to this method as the
method of regional phase spaces and regional attractors.
This method bridges the gap between the linear and the
highly nonlinear regime.
Finally, let us note that, based on the region decom-

position (cf. Fig. 4), the interface position—determining
the global spatial structure—can be pictured as a collective
degree of freedom. A conceptually similar, but technically
more involved, approach to study interfaces (also called
“kinks” or “internal layers”) and their dynamics is singular
perturbation theory (specifically matched asymptotic
expansion), where one uses an asymptotic separation of
spatial scales; see, e.g., Ref. [65] and references therein.
Such methods also facilitate a phase-space geometric
analysis [9].

C. Pattern classification

Employing the concept of regions, we now turn to the
classification of patterns. We distinguish two generic
pattern types: mesas and peaks. Mesa patterns are com-
posed of plateaus (low density and high density) connected
by an interface [Figs. 5(a), 5(c), and 5(d)], while the term
peak refers to an interface concatenated to a plateau only on
the low-density site [Fig. 5(b)] [66]. For small systems,
close to onset, there is an additional pattern type comprising
only an interface that spans the whole system; see
Sec. VII D.
What are the conditions for the formation of a peak

pattern versus the formation of a mesa pattern? A mesa

pattern requires two plateau regions, each characterized
by an FBS-NC intersection point, one at low density and
one at high density. The low-density plateau is generically
present, because the densities must be positive and, thus,
are bounded from below. In contrast, the position of the
FBS-NC intersection point at high density depends sensi-
tively on the shape of the nullcline and the slope of the
diffusive flux-balance subspace −Dm=Dc. Let us first
consider the case of fast cytosol diffusion Dc ≫ Dm. For
an N-shaped nullcline, i.e., one that has an “upward-
pointing” tail [see Fig. 5(a)], the flux-balance construction
presented in Sec. III C yields a mesa pattern. The situation
is different for a “Λ-shaped” nullcline that has an asymp-
totically flat tail for large m [e.g., approaching c�ðmÞ → 0
for m → ∞]; see Fig. 5(b). In that case, the third FBS-NC
intersection point generically is far away from the first two;
in Fig. 5(b), it lies out of frame. The requirement of total
turnover balance (approximated by a balance of the areas
shaded in light red in Fig. 5) limits the maximum

(a) (b)

(c) (d)

FIG. 5. Nullcline shape, FBS slope (diffusion constant ratio),
and average total density determine whether a mesa or a peak
pattern forms. Top row: fast cytosol diffusion; bottom row: slow
cytosol diffusion. Each panel shows the pattern profile (top) and
the respective phase portrait (bottom). (a),(c),(d) Mesa patterns;
the average total density n̄ determines the position of the
interface; see Eq. (36). (c) A peak pattern forms if the pattern
amplitude does not saturate in a third FBS-NC intersection point.
The peak amplitude is determined by the average total density n̄
via the interface width lint; see Eq. (39). As n̄ is increased, the
peak amplitude grows, eventually reaching the third FBS-NC
intersection point such that a mesa pattern forms.
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membrane concentration m̂, such that there is no high-
density plateau and the pattern assumes a peak profile
instead [Fig. 5(b), bottom]. In the detailed analysis of peak
patterns below, we show that the FBS position η0, and
thus the peak amplitude, is determined by the total mass in
the system.
Let us now consider what happens if the FBS is made

steeper by lowering the ratio of diffusion constantsDc=Dm.
As the FBS becomes steeper, the third FBS-NC intersection
point moves toward lower membrane concentration.
Eventually, this movement limits the total turnover on
the right-hand side of the inflection point, such that the
peak amplitude saturates in a plateau; i.e., a mesa pattern
forms [Fig. 5(d)]. In the case of an N-shaped nullcline,
lowering Dc reduces the concentration difference between
the two plateaus, because the FBS-NC intersection points
move closer together [Fig. 5(c)].
Taken together, the phase-plane analysis reveals how the

interplay of nonlinear reactions (encoded in the nullcline
shape) and diffusion (encoded in the FBS slope) determine
the pattern type and pattern amplitude.

1. Mesa patterns

To characterize mesa patterns in the limit L ≫ lint, we
first determine the FBS position η0, using total turnover
balance [Eq. (17)] (cf. Sec. III C). Since the plateaus are
scaffolded by (laterally stable) local equilibria, we can
approximate the boundary concentrations

m̃ð0Þ ≈m−ðη0Þ; m̃ðLÞ ≈mþðη0Þ; ð33Þ
where the plateau scaffolds m�ðη0Þ are geometrically
determined in phase space as intersection points m�ðη0Þ
of FBS and NC:

f̃ðm�; η0Þ ¼ 0: ð34Þ
With the approximation [Eq. (33)], the total reactive turn-
over balance condition [Eq. (17)] becomes

η∞0 ∶
Z

m∞
þ

m∞
−

dmf̃ðm; η∞0 Þ ¼ 0; ð35Þ

where m∞
� ¼ m�ðη∞0 Þ and η∞0 denotes the FBS position in

the large system size limit. Equation (35) is closed and can
be solved for η∞0 . Once one determines η∞0 , the interface
width lintðη∞0 Þ can be estimated with Eq. (31).
This total turnover balance condition implicitly deter-

mines the FBS offset η0 ¼ η∞0 . Note that Eq. (35), and
hence η∞0 , depends only on the function f and the ratio of
the diffusion constants, but not on the average mass n̄ or the
domain size L in the limit L ≫ lint. Instead, the average
total density n̄ determines the position x0 of the interface.
Again assuming an interface much narrower than the
domain size, the contribution of the interface region can
be neglected, Ln̄ ≈ n∞− x0 þ n∞þ ðL − x0Þ, which yields

x0 ≈ L
n∞þ − n̄
n∞þ − n∞−

; ð36Þ

where n∞þ and n∞− are the average total densities in the
plateau regions:

n∞� ≔ η∞0 þ ð1 −Dm=DcÞm�ðη∞0 Þ: ð37Þ

This result shows that the amplitude of mesa patterns is
geometrically determined by the reactive nullcline alone
and does not sensitively depend on average mass n̄ or
system size L ≫ lint. Moreover, far away from the critical
point Dmin

c (cf. Sec. VII A), the mesa-pattern amplitude
becomes independent of the ratio of the diffusion constants.
Adding mass to a mesa pattern shifts the interface position
x0, as the additional mass is redistributed between the two
plateau regions.
Notably, a geometric argument shows that mesa patterns

are the generic pattern for L → ∞ when the ratio of the
diffusion constants is nonzero Dm=Dc > 0, and m ≥ 0,
c ≥ 0 (as must be the case for concentrations): The FBS
intersects the m axis (c ¼ 0) at ðDc=DmÞη0 and, hence,
must intersect the nullcline at some finite value
m < ðDc=DmÞη0. For L → ∞ keeping the average mass
n̄ constant, the pattern profile eventually reaches this third
FBS-NC intersection point and, thus, becomes a mesa
pattern. Next, we discuss the conditions under which peak-
trough patterns occur.
The approximation Eq. (33) for the plateau densities,

and, in turn, also Eq. (36) for the interface position, breaks
down when the distance of the interface to one of the
system boundaries becomes smaller than the interface
width lintðη∞0 Þ. Then, the stationary pattern no longer
exhibits a plateau on that side and, instead, becomes a
plateau-interface pattern, forming either a peak when n̄ is
close to n∞− or a trough (“antipeak”) when n̄ is close to n∞þ .
An estimate for these transitions from mesa to peak-trough
patterns can be obtained based on the approximated inter-
face position [Eq. (36):

Ljn̄ − n∞� j≲ lintðη∞0 Þðn∞þ − n∞− Þ: ð38Þ

2. Peak patterns

Let us now study these peak-trough patterns. Their
defining characteristic is that a plateau, corresponding to
a laterally stable FBS-NC intersection point, forms only on
one side of the interface. Correspondingly, the reactive
turnover saturates on the side where the plateau forms,
while it depends on the variable pattern amplitude on the
other side. For specificity, we focus on peak patterns here.
As explained above, such a peak pattern forms when the
nullcline is Λ-shaped and flux-balance subspace is very
shallow (Dc ≫ Dm); see Fig. 5(b).
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Suppose for a moment that we can freely choose the FBS
position η0 and that the total mass is not fixed. Given some
η0, the FBS-NC intersection point (1) determines the low-
density plateau at the foot of the interface and, thus, the
total turnover on this side, corresponding to the enclosed
area in the interval between (1) and (2). This turnover must
be balanced by an equal and opposite turnover on the right.
Using again the (approximate) correspondence to the
enclosed phase-plane area, it becomes obvious that this
balance of areas determines the peak amplitude m̂ (3).
Using that the interface profile can be approximated as
∝ sin½ðx − x0Þ=lint�, where lint is determined by the steady-
state equation linearized around the pattern inflection point
(see Sec. VA), we can roughly estimate the total mass in a
peak as [67]

Npeakðη0Þ ≈
1

2
lintðη0Þ½m̂ −m−ðη0Þ�: ð39Þ

The sinusoidal shape of the interface furthermore mandates
that the inflection point m0 is approximately halfway
between the plateau m− and the maximum m̂, such that
we can eliminate m̂ ≈m− þ 2ðm0 −m−Þ in Eq. (39). The
remaining unknowns m0 and m− are determined geomet-
rically (FBS-NC intersections) as functions of η0. Thus, we
obtain a relation for the average total density n̄ðη0Þ ≈
n−ðη0Þ þ Npeakðη0Þ=L as a function of η0. The inverse of
this relation yields the FBS position η0ðn̄Þ as a function the
control parameter n̄. This estimate holds until the peak
density m̂ reaches the third FBS-NC intersection point
mþðη0Þ, where a second plateau starts to form, such that the
peak pattern transitions to a mesa pattern. In Appendix G,
we present the details of the peak approximation and a
comparison to numerical solutions.
Our estimate for the peak mass Eq. (39) and the resulting

relation η0ðn̄Þ show that, in contrast to mesa patterns, the
amplitude of peak patterns sensitively depends on the total
mass N ¼ Ln̄ and the membrane diffusion constant [via
l2
int ∼Dm=fm; cf. Eq. (31)]. In addition, the position of the

third FBS-NC intersection point mþðη0Þ that limits the
maximum peak density sensitively depends on the FBS
slope−Dm=Dc. In the limitDm=Dc → 0, the third FBS-NC
intersection point mþ moves to infinity. Hence, in this
limit, a system with an asymptotically flat nullcline tail
never exhibits mesa patterns.

3. More general nullcline shapes

Here, we consider two types of nullcline shapes—N- and
Λ-shaped—that both have a single maximum in the ðm; cÞ-
phase plane but differ in their “tail behavior.” Beyond these
two prototypical nullcline shapes, more general nullcline
shapes are possible. For instance, reaction kinetics of the
attachment-detachment form [Eq. (2)] with higher-order
nonlinearities (e.g., fifth-order polynomials) may exhibit
nullclines with multiple maxima in the ðm; cÞ-phase plane.

For general reaction kinetics fðm; cÞ, more exotic shapes of
the nullclines, e.g., with multiple disconnected branches,
are possible. Our findings equally apply to such nullclines,
since our phase-space analysis is based on simple geo-
metric properties such as slopes and intersection points
with the FBS. Additional care is required if fc changes sign
along the nullcline, since the slope criteria for local and
lateral stability [Eqs. (7) and (25)] are reversed for fc < 0.
Conveniently, for reaction kinetics of the attachment-
detachment form [Eq. (2)], one has fc ¼ aðmÞ, which is
generally positive for systems of biochemical origin.

D. Generic bifurcation structure under variation
of the average mass n̄

Now that we have classified the different types of
stationary patterns exhibited by 2C-MCRD systems, we
turn to study bifurcations where the patterns change
structurally or in stability. The bifurcation parameter we
study first is the average total density n̄. This parameter
does not affect the phase-space geometry (NC and FBS),
which makes it particularly easy to study. Later, in Sec. VII,
we generalize our findings to bifurcation parameters that
change the phase-space geometry: Diffusion constants
change the FBS slope, whereas kinetic rates affect the
nullcline shape. For biological systems, the average total
density n̄ is a natural parameter, as it can be tuned by up- or
down-regulating the production of a protein.
Let us begin with the bifurcations where the homog-

enous steady state becomes laterally unstable. We already
learned in Sec. IV that there is a band of unstable modes,
½0; qmax�, if the NC slope sncðn̄Þ is negative and steeper than
the FBS slope, −Dm=Dc [cf. Eq. (25) and Fig. 3(a)]. Hence,
a band of unstable modes exists if n̄ is in the range
ðn−lat; nþlatÞ, bounded by the points n�lat where the flux-
balance subspace is tangential to the reactive nullcline
[dash-dotted green lines in Fig. 6(a)]. [Note that a system
of finite size L is unstable if the longest-wavelength
mode lies in the band of unstable modes π=L < qmaxðn̄Þ,
where q2max ¼ f̃m=Dm, as defined in Eq. (28) and
f̃m ¼ fm − fcDm=Dc ¼ ð−Dm=Dc − sncÞfc.]
What about the range where stationary patterns exist?

The plateau scaffoldsm�ðη0Þ are geometrically determined
by the reactive nullcline via the FBS-NC intersection
points. The position η0 of the flux-balance subspace
generally depends on n̄ and L via total turnover balance
[Eq. (17)]. However, in the large system size limit
(L → ∞), the FBS position η∞0 is independent of n̄ and
L [cf. Eq. (35)]. For patterns to exist, the average total
density n̄ must lie in between the plateau densities n∞� ;
see Fig. 6(a); cf. Eq. (36). Hence, in the limit L → ∞,
stationary patterns exist in the range n∞− < n̄ < n∞þ .
Importantly, the range of pattern existence generically

extends beyond the range of lateral instability (n−lat > n∞−
and nþlat < n∞þ ) by geometric necessity for N-shaped
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nullclines; see Fig. 6(a). This range implies that generically
there are regions of multistability in parameter space, where
stable stationary patterns exist, and the homogeneous
steady state is stable (regions shaded in blue in Fig. 6).
To gain some intuition on the steady states in the

multistable regimes, we perform numerical continuation
(see Appendix F for details) of the stationary patterns for
an example 2C-MCRD system using the attachment-
detachment kinetics Eq. (A2) from Ref. [28] which exhibit
an N-shaped nullcline. Figure 6(b) shows the numerically
obtained bifurcation structure where we plot the pattern
amplitude jm̃ðLÞ − m̃ð0Þj against the bifurcation parameter
n̄. The star marks a typical stable mesa pattern [see the inset
in Fig. 6(a)] in the central region of the branch of stable
patterns (solid blue line). As the plateaus are scaffolded by
the FBS-NC intersections m�ðη∞0 Þ, the pattern amplitude
stays approximately constant (mþ −m−, dotted blue line)
across the whole range of n̄ where patterns exist. Changing
total average density simply shifts the interface position
[cf. (ii) and (iii) in Fig. 6(c)]. When the interface position is
in the vicinity of a boundary, mesa pattern transitions to
peak patterns [see (i) and (iv) in Fig. 6(c)] as we learn in the
previous section [Eq. (38) in Sec. V C]. The numerical
continuation shows that the peak-trough patterns are then
annihilated in saddle-node bifurcations (SN), where the
branch of stable patterns meets a branch of unstable
patterns (dashed red line). Because of the finite system
size, the exact positions of the SN-bifurcation points are
slightly offset from n∞� (by an amount of approximately
lint=L). The branches of unstable patterns emerge from the
homogenous steady state in subcritical pitchfork bifurca-
tions (P) at the Turing bifurcations (n�lat). (In a finite-sized
system, the onset of lateral instability is offset by an amount
of approximately L2 from the geometrically defined points
n�lat, because the system is unstable only if the longest-
wavelength mode lies within the band of unstable modes;
see Sec. VII D.) In the multistable regions (shaded in blue),
patterns can be triggered by a finite amplitude perturbation.
The unstable patterns are “transition states” (or “critical
nuclei”) that lie on the separatrix separating the basins of
attraction of the stable patterns and the stable homogeneous
steady state. The actual separatrix is a complicated object in
the high-dimensional PDE phase space. In the next section
(Sec. VI), we show that a heuristic can be inferred from the
nullcline shape to estimate the threshold for stimulus-
induced pattern formation for a prototypical class of spatial
perturbation profiles.
Because the unstable patterns are peak-trough patterns,

they can be approximated by the “peak approximation”
introduced in Sec. V C (see also Appendix G). Thus, the
qualitative structure of the branches of unstable patterns is
determined by ðm; cÞ-phase-space geometry independently
of the details of the reaction term fðm; cÞ, as long as the
reactive nullcline fðm; cÞ ¼ 0 is N-shaped.

(a)

(b)

(c)

FIG. 6. Bifurcations of mesa patterns in the large system size
limit (L → ∞) can be constructed geometrically using the
reactive nullcline. (a) Geometric construction of pattern bi-
furcation points for an example two-component system:
Eq. (A2) with k ¼ 0.07, Dm ¼ 1, and Dc ¼ 10. The laterally
unstable regime (shaded in green) is delimited by Turing
bifurcations where the FBS is tangential to the NC (green
dots, nlat� ). FBS-NC intersection points (blue dots, n∞� ) delimit
the range of pattern existence (shaded in blue), where the FBS
position η∞0 is determined by global turnover balance
[Eq. (17)]. Inset in the top right corner: membrane density
m̃ðxÞ of a stable mesa pattern for n̄ ¼ 2.4 [see the star in (b)].
(b) Bifurcation structure of the pattern amplitude jm̃ðLÞ −
m̃ð0Þj for the control parameter n̄ obtained by numerical
continuation (cf. Appendix F) for a system size of L ¼ 100.
The branch of stable patterns (solid blue line) and the branches
of unstable patterns (dashed red line) meet in fold bifurcations
of patterns. Because of the finite system size, these fold
bifurcations are offset from n∞� (vertical solid blue lines) by
an amount of approximately lintðη∞0 Þ=L. The unstable patterns
emerge in subcritical pitchfork bifurcations (P) from the
homogeneous steady state (black line) at the Turing bifurca-
tions (vertical dash-dotted green lines). (c) Profiles m̃ðxÞ of
stationary patterns (solid blue line, stable; dashed red line,
unstable) for the average total densities n̄ ¼ 2.09, 2.2, 2.6, and
2.72 [see the thin dashed lines in (b)]. The plateau scaffolds
m�ðη∞0 Þ are shown as thin black lines.
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In summary, we conclude that the qualitative form of the
bifurcation structure shown in Fig. 6(b) is determined by
geometric relations in ðm; cÞ-phase space. In particular, we
find that 2C-MCRD systems generically have regions of
multistability and that the onset of lateral instability is
generically subcritical for large system size L ≫ lint.
Furthermore, this result implies that such systems exhibit
stimulus-induced pattern formation and that there is hys-
teresis of stationary patterns when the total average density
is varied.

VI. PERTURBATION THRESHOLD FOR
STIMULUS-INDUCED PATTERN FORMATION

Before we delve into the more technical analysis of
bifurcation structures, we would like to discuss one more
important aspect of pattern formation: stimulus-induced
pattern formation, i.e., the ability to induce the transition
from one stable attractor (homogeneous steady state) to
another (stationary pattern) by a large enough perturbation
(stimulus). (In the context of phase separation, this process
is called nucleation and growth.) Stimulus-induced pattern
formation is a particularly important aspect of 2C-MCRD
systems, because, as we show above, these systems
generically have regions of multistability. Furthermore,
biologically, it is often desirable to be able to form a
pattern following an external or internal stimulus that
exceeds a certain threshold (“nucleation threshold”). As
of yet, this threshold could be determined only numerically
[29]. In the following, we show how simple heuristic
reasoning—based on regional lateral instability—yields a
geometric criterion for the perturbation threshold in the
ðm; cÞ-phase plane.
As we show in the previous section, the hallmark of a

stationary pattern is a laterally unstable region surrounding
the pattern inflection point x0 (even if the homogeneous
state of the system is laterally stable). In the proposed
framework, the phase-space dynamics are simply repre-
sented by the expansion of the system in the ðm; cÞ-phase
plane due to mass redistribution. Hence, to lead to a
stationary pattern, a trajectory in the (high-dimensional)
phase space of a PDE must enter and remain in a (linearly)
laterally unstable region in the ðm; cÞ-phase plane (shaded
in green in Fig. 7). The laterally unstable region in ðm; cÞ
space corresponds to a respective region in real space. If the
homogenous state is laterally stable, then a finite perturba-
tion (stimulus) is required to create a laterally unstable
region. Let us study a prototypical perturbation able to
induce a laterally unstable region: a step function that
represents moving a “block” of protein mass (total density)
from one end of the system to the other; for an illustration
of the spatial perturbation and the resulting flows in phase
space, see Fig. 7. Generalization to other perturbations is
straightforward and based on analogous arguments. Such
perturbations can be created by various means of “active”
mass redistribution, e.g., active transport in the cell cortex,

along microtubules, and hydrodynamic cytosolic flows;
see, for instance, Ref. [68].
Following a (large-amplitude) perturbation, there are two

distinct processes that are triggered in phase space as shown
in Fig. 7. On the one hand, in the laterally unstable region
(green shaded area), a mass-redistribution instability starts
to form a pattern, thus further amplifying the perturbation.
On the other hand, because the perturbation shifts the
regional reactive equilibria (black disks), there are reactive
flows (red arrows) in the regions that induce a cytosolic
gradient which leads to mass redistribution between the
regions by cytosolic diffusion (large blue arrows). If the
cytosolic density in the laterally stable region is lower than
in the laterally unstable one, the regional instability may not
be sustained and the system returns to a homogenous
steady state [Fig. 7(b)]. Conversely, if the cytosolic density
is lower in the laterally unstable region than in the laterally
stable region, then the cytosolic flow between the regions
(blue arrow) sustains the regional instability [Fig. 7(c)].
Because the mass-redistribution instability creates a self-
organized and self-sustaining cytosolic sink, the laterally
unstable region can be self-sustained. The heuristic cri-
terion for a (self-)sustained laterally unstable region is that
the perturbation must cross the nullcline [see Fig. 7(c)].
Then, the overall cytosolic concentration in the laterally
unstable region is decreased by reactive flows (red arrows)
such that cytosolic diffusion (blue arrow) between the
regions sustains the laterally unstable region.
In Appendix H, we show that this simple criterion already

provides a very good approximation for the threshold in
comparison to full numerical simulation. We conclude that
the reactive nullcline provides the key information for
understanding pattern formation dynamics, in a similar
way as for the characterization of stationary patterns
(Sec. V) and the analysis of the linear mass-redistribution
instability (Sec. IV). Specifically, it enables one to estimate
the basins of attraction of the uniform steady state and the
polarized pattern. We further learn that regional lateral
instability underlies stimulus-induced pattern formation
from laterally stable homogeneous steady states.
The threshold estimate provided here might help to

understand this “nucleation” of patterns from laterally stable
homogeneous steady states. The unstable peak-trough pat-
terns (dashed red lines in Fig. 6) are part of the separatrix
between the basin of attraction of stable stationary patterns
and can be pictured as a canonical critical nucleus [69]. The
peak approximation described in Sec. V C and compared to
numerical continuation in Appendix G provides a simple
estimate for this critical nucleus.

VII. COMPLETE BIFURCATION STRUCTURE

Bifurcation diagrams of 2C-MCRD systems were pre-
viously studied for specific choices of the reaction kinetics
fðm; cÞ using numerical methods [53]. Furthermore, based
on numerical studies of various models, it is hypothesized

BRAUNS, HALATEK, and FREY PHYS. REV. X 10, 041036 (2020)

041036-16



that there might be a general bifurcation scenario under-
lying cell polarity systems [32]. Here, we use the insight
gained on phase-space geometry to systematically build the
complete general bifurcation structure of 2C-MCRD sys-
tems. Our findings generalize previous results and unify
them in the context of phase-space geometry. For a large
system size, the bifurcation structures are fully determined
geometrically. We illustrate the effect of a finite system size
using numerically computed bifurcation diagrams shown
in Appendix F.
Above, we study the bifurcation diagram of stationary

patterns for the bifurcation parameter n̄ in a system with
monostable kinetics; see Sec. V D and Fig. 6 therein. Recall
that, in large systems (L → ∞), the bifurcation points in n̄
can be found based on geometric reasoning in phase space:
(i) Lateral instability is identified by a criterion on the
nullcline slope: sncðn̄Þ < −Dm=Dc. Hence, the range of
lateral instability is bounded by points n�lat where the FBS is
tangential to the NC: sncðn�latÞ ¼ −Dm=Dc. (ii) FBS-NC
intersection points m�ðη∞0 Þ provide the scaffold for the
plateaus of mesa patterns, where the FBS position η∞0 is
determined by total turnover balance [Eq. (35)]. Mesa
patterns exist as long as the average total density can be
distributed between two plateaus n∞� , i.e., in the range
n∞− < n̄ < n∞þ ; recall that n∞� ¼ n�ðη∞0 Þ depend on the
position η∞0 and slope −Dm=Dc of the FBS [cf. Eq. (37)].

Both of these geometric bifurcation criteria depend on
the diffusion constants via the slope of the flux-balance
subspace −Dm=Dc. We keep Dm fixed—thus fixing the
smallest characteristic length scale l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dm=fm
p

, where
spatial structures can be maintained against membrane
diffusion—and vary Dc to rotate the FBS in ðm; cÞ-
phase space.

A. Generic bifurcation structure of stationary
patterns for monostable reaction kinetics

We construct the ðn̄; DcÞ-bifurcation diagram by infer-
ring n�lat and n∞� , as described above, as functions of Dc.
Qualitatively, this construction can even be done manually
with pen and paper in the spirit of a graphical construction
(see, e.g., Ref. [1]) based on the geometric criteria (i) and
(ii) above, as shown in Fig. 6. Figure 8(a) shows the
qualitative structure obtained by this graphical construc-
tion. A quantitative construction of the bifurcation diagram
can be performed with simple numerical implementation
of the bifurcation criteria described above, e.g., in
Mathematica (see Supplemental Material [54] file flux-
balance-construction nb and Fig. 20 for figures of quanti-
tative bifurcation structures). As we see in the following,
the structure of the bifurcation diagram is qualitatively the
same for all monostable, N-shaped nullclines, independ-
ently of the details (nonlinearities and kinetic rates) of the

(a)

(b)

(c)

FIG. 7. Subcritical stationary patterns can be induced by perturbations above a threshold that can be heuristically estimated from the
reactive nullcline. (a) After a small perturbation (blue profile, yellow arrows in phase space) that does not induce a laterally unstable
region, the system returns to its uniform steady state (purple line). (b) A perturbation that creates a laterally unstable region but does not
cross the nullcline. Because the cytosolic concentration is lower in the laterally stable region, mass redistribution (illustrated by the blue
arrow) disbands the laterally unstable region. (c) A perturbation that crosses the nullcline not only induces a laterally unstable region, but
also shifts the cytosolic equilibrium concentration in this region such that the lateral instability is (self-)sustained by mass redistribution
from the stable into the unstable region (blue arrow).
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reaction term fðm; cÞ. The bifurcation diagram is qualita-
tively different when the nullcline has a segment of
bistability (where snc < −1; cf. Fig. 1). We analyze this
case and, in particular, the role of bistability further below
in Sec. VII B.
As Dc is decreased, the flux balance subspace becomes

steeper, and, thus, the bifurcation points n�lat and n
∞
� start to

converge (see Fig. 8; cf. Fig. 6). They meet in the inflection
point of the reactive nullcline, ninf , where the nullcline
slope sinfnc is extremal (∂nsncjninf ¼ 0). The extremal null-
cline slope at the nullcline inflection point determines the
minimal cytosolic diffusion constant

Dmin
c ≔

Dm

−sncðninfÞ
; ð40Þ

above which there are three FBS-NC intersection points.
When the “critical” point ðninf ; Dmin

c Þ is traversed in the Dc
direction, the FBS-NC intersections bifurcate in a (super-
critical) pitchfork bifurcation; see Fig. 8(b). Since the FBS-
NC intersection pointsm� are the scaffolds for the plateaus
(in short, plateau scaffolds; cf. Fig. 2), this bifurcation at
the critical point ðninf ; Dmin

c Þ is a bifurcation of the scaffold
itself. Importantly, the actual pattern is bounded by the
plateau scaffolds. Thus, if there are no plateau scaffolds

(i.e., only one FBS-NC intersection point), there cannot be
stationary patterns. For L → ∞, patterns emerge slaved to
the plateau scaffold, such that the pattern bifurcation is
supercritical at the nullcline inflection point (n̄ ¼ ninf ).
Away from the nullcline inflection point (n ≠ ninf ), the
lateral instability bifurcation is always subcritical for
L → ∞, because the range ðn∞− ; n∞þ Þ where patterns exist
always exceeds the range ðn−lat; nþlatÞ of lateral instability, as
we learn above in Sec. V D (cf. Fig. 6).
As we see below in Sec. VII D, for finite L, the

bifurcation is supercritical in the vicinity of the nullcline
inflection point. The transition from super- to subcriticality
depends on a subtle interplay of diffusive and reactive flow
together with geometric factors like nullcline curvature.
Interestingly, the regimes and their interrelation in the

ðn̄; DcÞ-bifurcation diagram, as shown in Fig. 8(a), are
phenomenologically similar to the phase diagram of (near-
equilibrium) phase-separation kinetics for binary mixtures,
described by the Cahn-Hilliard equation [70]. In a previous
study using the amplitude equation formalism (Ref. [71]), a
mapping from 2C-MCRD models to model B has been
found for the vicinity of the critical point, where the pattern
emerges from the Turing bifurcation in a supercritical or
weakly subcritical pitchfork bifurcation (see Sec. VII D).
Strikingly, our geometric reasoning shows that the

physics implied by the bifurcation diagram is the same
as in phase-separation kinetics (binodal and spinodal
regimes) for all N-shaped nullclines and far away from
the critical point. We discuss this finding in Sec. VIII C.

B. Locally bistable kinetics

Changing the kinetic rates deforms the nullcline shape.
When the nullcline slope becomes smaller than −1, a
regime of locally bistable reaction kinetics emerges
(cf. Fig. 1).

1. Fronts in bistable media

To elucidate the role of bistability, let us first consider the
case of equal diffusion constantsDc ¼ Dm ≕D. (Although
this case does not make sense in the intracellular context
anymore, where typically Dc > Dm, we stick to the
notation with concentrations m and c.) Then, mass redis-
tribution decouples from the kinetics ∂tn ¼ D∂2

xn; i.e., the
total density becomes uniform by diffusion (see the mass-
redistribution dynamics [Eq. (12)] and note that ηðx; tÞ ¼
nðx; tÞ for equal diffusion constants). As a consequence, the
system can be reduced to one component, for instance, the
membrane density

∂tm ¼ D∂2
xmþ fðm; n̄ −mÞ; ð41Þ

where the local kinetics is bistable at every point in space
(Fig. 9). This equation corresponds to a (classical) one-
component model for bistable media which generically

(a) (b)

FIG. 8. ðn̄; DcÞ-bifurcation diagram of stationary patterns for a
system with monostable kinetics (same color code as in Fig. 6).
(a) The bifurcation diagram for a large system (L → ∞) is
obtained by tracking the geometrically constructed bifurcation
points n�lat and n∞� as Dc, and thus the slope and position of the
FBS, are varied (cf. Fig. 6). The onset of lateral instability (Turing
bifurcation shown as a green dash-dotted line) is generically
subcritical, since there exist stationary patterns outside the range
of lateral instability ðn−lat; nþlatÞ; in the blue regions, the system is
multistable (both the stationary patterns and the homogenous
steady state are stable). The scaffolds for the low- and
high-density plateaus (n∞� ) bifurcate supercritically from the
homogenous steady state at the critical point ðninf ; Dmin

c Þ (purple
point). (b) The critical point in the ðn̄; DcÞ-bifurcation diagram
corresponds to the inflection point of the nullcline ninf , where the
nullcline slope −fm=fc reaches its extremal value sinfnc and, thus,
determines the minimal cytosolic diffusion Dmin

c (purple line);
cf. Eq. (40). At Dmin

c , the scaffolds of the plateaus, m�, bifurcate
in a supercritical pitchfork bifurcation from the nullcline in-
flection point minf (see the inset).
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exhibits propagating fronts [3]. A standard calculation,
commonly performed by “Newton mapping” (briefly
described in Sec. III C) or by phase-space analysis [in
ðm; ∂xmÞ-phase space] shows that the propagation velocity
v of a front is proportional to the imbalance in reactive
turnover [3]: v ∝

R
mþ
m−

dmfðm; n̄ −mÞ. Hence, a stationary

front can be realized only by fine-tuning of parameters,
e.g., the average total density n̄, such that total turnover is
balanced:

nstat∶
Z

mþ

m−

dmfðm; nstat −mÞ ¼ 0: ð42Þ

The balanced (fine-tuned) case corresponds to the Allan-
Cahn equation [72] (also called “model A” dynamics [55]).
(In a finite size system, there is logarithmic coarsening; see
Ref. [65] and references therein.)
With respect to the concept of local equilibria as

scaffolds for patterns (cf. Sec. III C), the bistable local
equilibria (fixed points m�) can be regarded as a static
scaffold for front solutions; see Fig. 9. Because there is no
mass redistribution, the scaffold must remain static and
cannot adapt to balance the total reactive turnover. Instead,
fine-tuning of parameters (e.g., n̄), is required to obtain a
balance of total turnover and, thus, a stationary front. In the
ðn̄; DcÞ-bifurcation diagram [Fig. 10(a)], the stationary
bistable front with a static scaffold appears only at a
singular point ðn̄; DcÞ ¼ ðnstat; DmÞ.

FIG. 9. Phase-space structure for bistable local kinetics in the
case of equal diffusion constants, Dm ¼ Dc, where there is no
mass redistribution such that the system can be reduced to a one-
component system [Eq. (41)]. The stable equilibria m� form a
static, spatially homogenous scaffold; the equilibrium m0 is
locally unstable. Only if the local kinetics are fine-tuned such
that the total turnover vanishes (e.g., by tuning n̄ ¼ nstat) is the
front stationary (marginally stable).

(a) (b)

(b)

FIG. 10. Geometrically determined, schematic ðDc; n̄Þ-bifurcation diagram in the large system size limit for a system with bistable
kinetics [the locally bistable region is shaded in gray in both the bifurcation diagram (a) and the phase-space plots (b)]. (a) Bifurcation
diagram: The regions where stationary patterns exist (shaded in red and blue) and where a homogenous steady state is laterally unstable
(shaded in green and orange) are constructed based on the same geometric criteria as in the case of monostable kinetics (cf. Fig. 6).
Along the purple line Dc ¼ Dm, there is no mass redistribution, and the system exhibits classical traveling fronts within the bistable
regime (cf. Fig. 9). A marginally stable front exists at the singular point at ðDc ¼ Dm; nstatÞ where total reactive turnover is balanced by
fine-tuning n̄ [cf. Eq. (42)]. Outside the regions shaded in red and blue, there are no stationary patterns. There might, however, be
nonstationary patterns like the traveling fronts in the bistable medium for Dc ¼ Dm. Nonstationary patterns for Dc≷Dm are outside the
scope of this study. (b) Phase-space plot showing the reactive nullcline (black line, dashed in the locally unstable region). The sections of
the nullcline where the homogenous steady state is laterally unstable (shaded in green and orange) are delimited by points where the FBS
is tangential to the NC. Intersection points (blue dots) of the flux-balance subspace (thick blue line) with the reactive nullcline determine
the range n∞� where stationary patterns exist. (c) Phase-space plot for the case Dc < Dm, where the slope of the FBS (thick red line) is
more negative than −1. The plateau scaffolds of stationary patterns can be constructed via FBS-NC intersection points (red dots), as long
as Dc > Dmin

c [cf. Eq. (40)]. These patterns are unstable, though [cf. Eq. (43)].
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What happens when the diffusion constants are unequal
Dc ≠ Dm? Then, mass is redistributed, leading to shifting
of the local equilibria that scaffold the pattern. As we know
from our analysis for monostable reaction terms, this
dynamic scaffold is able to self-balance the total reactive
turnover—fine-tuning of n̄ is no longer required to obtain
stationary patterns. Interestingly, for a bistable reaction
term, stationary patterns can be constructed both for
Dm > Dc and for Dm < Dc, as we discuss next; see
Figs. 10(b) and 10(c). To determine the stability of these
patterns, we examine below (after the description of the
bifurcation diagram) how the scaffold self-balances via
mass redistribution.

2. Bifurcation diagram for locally
bistable reaction kinetics

The bifurcation diagram [Fig. 10(a)] for the large system
size limit (L → ∞) is obtained using the same geometric
criteria as for the case of locally monostable reaction
kinetics [see Fig. 10(b); cf. Fig. 6(a)]. The presence of a
bistable nullcline segment does not affect the feasibility of
the geometric construction itself. However, the bifurcation
diagram one obtains is qualitatively different from the
monostable case, as we see next. We discuss the regimes of
stationary patterns (shaded in blue and red) first, before we
analyze the regions of lateral instability (shaded in green
and orange).
The region where stable stationary patterns exist (shaded

in blue) is delimited by lines n∞� ðDcÞ. These lines converge
in a singular point ðnstat; Dc ¼ DmÞ, where a marginally
stable front exists in a bistable medium without mass
redistribution (Sec. VII B 1). Along the entire line
Dc ¼ Dm, in the phase diagram Fig. 10(a) the dynamics
can be reduced to a classical one-component system
[Eq. (41)]. Such a system exhibits propagating waves
within the region of bistability located between the two
SN bifurcations of local equilibria [gray area in Fig. 10(a)];
compare the bistable (gray) area in Figs. 9 and 10(b)
and 10(c), where the nullcline slope is more negative
than −1. Only for the fine-tuned value right at n̄ ¼ nstat
is the front velocity zero (purple dot). At ðnstat; DmÞ, the
dynamic scaffold that self-adapts via mass redistribution for
Dc≷Dm bifurcates from the static scaffold m�ðnstatÞ of the
marginally stable front.
For bistable kinetics, the slope at the inflection point

of the nullcline, sinfnc , is necessarily more negative than −1
so stationary patterns may also exist for Dmin

c < Dm
[cf. Eq. (40)], since they can be constructed from FBS-
NC intersection points as shown in Fig. 10(c). (We stick to
the notation with concentrations m and c, although they
are not meaningful as “membrane” and “cytosolic” con-
centrations, in the case Dc < Dm. Instead, they should be
understood as abstract concentrations [73].) The corre-
sponding region where such stationary patterns exist is
shaded in red in the bifurcation diagram shown in

Fig. 10(a). In the bottom half of this “balloon-shaped”
region, the equilibria that form the plateau of the con-
structed pattern are locally unstable. Hence, these patterns
cannot be stable. As we see in the next subsection, all
stationary patterns for Dc < Dm are unstable (even if their
plateaus are locally stable), since they are destabilized by
the imbalance of reaction turnover induced by any (infini-
tesimal) perturbation. In contrast, stationary patterns for
Dc > Dm are stable, because the self-adapting scaffold
rebalances the reactive turnover.
The regions with a laterally unstable homogeneous

steady state [NC slope steeper than FBS slope;
cf. Eq. (25)] are shaded in green and orange to distinguish
in the bistable region which of the two locally stable
reactive equilibria is laterally unstable; see Fig. 10(b) [74].
In conclusion, we find the generic ðn̄; DcÞ-bifurcation

diagram of stationary patterns for an N-shaped nullcline
with a bistable segment using the same geometric argu-
ments as for the case of a monostable nullcline. Since
our analysis crucially relies on the flux-balance subspace,
it is limited to stationary patterns. For the special case
Dc ¼ Dm, the existence of nonstationary patterns (traveling
fronts) in the locally bistable regime is well known. By
continuity, we expect that there are traveling fronts also
Dc ≠ Dm. Furthermore, we speculate that there are non-
stationary patterns outside the regime of local bistability,
because mass redistribution may dynamically create a
region of bistability that travels through the system.

3. The dynamic scaffold self-balances by shifting
the flux-balance subspace

In the following, we assess the stability of the stationary
(mesa) patterns found by the geometric construction above.
(We discuss only the stability of mesa patterns, which are
generic in the limit of large system size, L → ∞.) The
phase-portrait analysis in the phase space of chemical
reactions facilitates a simple heuristic approach to study
pattern stability: Instead of a full stability analysis of the
stationary pattern, we consider only the stability of the FBS
position [mass-redistribution potential ηðx; tÞ] as a proxy
for the pattern stability. Intuitively, in the direction along
the FBS, the pattern is quickly stabilized due to scaffolding
by local equilibria. In the following, we present a simple
stability criterion for stationary patterns, derived from this
intuition. Details of the (ad hoc) derivation and a com-
parison to numerical analysis are presented in Appendix I.
A mathematically rigorous stability analysis of stationary
patterns (using, for instance, the “singular limit eigenvalue
problem” introduced by Ref. [75]; see Ref. [65] for a
survey) is outside the scope of this paper.
Recall that in the steady state η̃ðxÞ ¼ η∞0 is spatially

uniform and determined by total turnover balance
[Eq. (17)] that can be geometrically interpreted as a
Maxwell construction [balance of the red-shaded areas in
Figs. 2(b) and 11]. How does the system evolve following a
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perturbation of the FBS position η? Consider a spatially
uniform shift δη̄ > 0. Then, the area between NC and FBS
to the left of m0 (inflection point of the pattern) decreases,
while the area on the right increases; see Figs. 2(b) and 11.
The net reactive flow (“sum of the arrows in the two areas”)
leads to a change of the average concentrations m and c (in
the interface region) which amounts to a shift of the FBS
position, as shown in the insets in Fig. 11. Because the
net reactive flow points along a reactive phase space
(slope −1), the direction in which the FBS shifts due to
turnover imbalance depends on its slope. For Dc > Dm,
i.e., an FBS slope larger than −1, it will move down and,
hence, relax back to η∞0 (recall that we consider an upward
shift as perturbation; the arguments work analogously for a
downward shift). In other words, the scaffold adapts until
total reactive turnover is balanced again. We conclude that
the scaffold is self-balancing when Dc > Dm. Conversely,
when Dc < Dm, the FBS moves further in the direction of
the perturbation, thus destabilizing the pattern.
This qualitative stability argument can be expressed

mathematically, to obtain a quantitative approximation
for the growth rate of perturbations δηðx0; tÞ ≔
ηðx0; tÞ − η∞0 in the vicinity of a stationary mesa pattern
½m̃ðxÞ; η∞0 � (see Appendix I):

∂tδηðx0; tÞ ≈ δηðx0; tÞ
Dm=Dc − 1

mþ −m−

Z
mþ

m−

dmf̃ηðm; η∞0 Þ;

ð43Þ

where f̃η ¼ ∂ηf̃. Comparison to numerically computed
linear stability (dominant eigenvalue) of stationary patterns

confirms that Eq. (43) is a good lowest-order approxi-
mation for pattern stability; see Appendix I and Fig. 25.
The integral over f̃η is the turnover imbalance due to a
shift of the FBS and, thereby, captures the geometric
intuition based on the Maxwell construction (area
balance) we outline above. The prefactor ðDm=Dc − 1Þ
determines the direction in which FBS shifts, because the
integrand is always positive for fc > 0 [f̃ηðm; η∞0 Þ ¼
fcðm; η∞0 −mDm=DcÞ > 0]. We hence recover the stability
criterion from our geometric argument above.

C. The cusp scenario is generic

In some previous literature, it is argued that bistability of
the reaction kinetics is an essential prerequisite for polari-
zation to emerge in 2C-MCRD systems [28,29]. This claim
was questioned recently [76].
Above, we conclusively show that bistability is not

necessary for pattern formation. Instead, in systems with
conserved quantities, a (nonhomogeneous) pattern scaffold
can generically self-organize due to shifting local equilibria
when there is mass redistribution (Dc ≠ Dm). However,
there is an interesting and more subtle connection between
bistability and the ability to form patterns. This connection
is revealed by studying the transition from monostable to
bistable kinetics due to variation of kinetic parameters.
Variations in the kinetic parameters changes the shape of

the reactive nullcline. This change may lead to not only
quantitative but also qualitative changes in the ðn̄; DcÞ-
bifurcation diagram, namely, if there is a transition from a
monostable to a bistable reaction kinetics: Imagine that
variation of some rate k in the reaction kinetics generates
nullcline deformations as shown in Fig. 12(a). Let us start
with a nullcline that is strictly monotonically increasing
with m. Then, according to the geometric criterion
[Eq. (25)], there is no lateral instability and, hence, no
stationary patterns; recall that we show in Sec. VA that an
interface, the elementary element of a pattern, must be a
laterally unstable region. Upon further changing the kinetic
rate k, there may eventually be a threshold value ksaddle
beyond which the nullcline shows a region with a negative
slope. A regime of lateral instability, and with it a
regime where patterns can exist, emerges once the nullcline
slope first becomes steeper than the slope of the FBS:
scritnc ¼ −Dm=Dc. Eventually, at k ¼ kcusp, a further defor-
mation of the nullcline may create a segment with slope
snc < −1 where there is bistability of local equilibria. The
bistable regime (shaded in gray) emanates in a cusp
bifurcation where the two SN bifurcations of the reactive
equilibria meet in a single point, and the nullcline inflection
point has slope sinfnc ¼ −1 such that it is tangential to the
reactive phase space mþ c ¼ ninf ¼ ncusp; see Fig. 12(b).
The surface of reactive equilibria in the two-parameter
bifurcation structure starts to fold over itself at the cusp
point. Because the Turing bifurcations lie on different

FIG. 11. Geometric construction of the stability of the FBS
position η0 due to total turnover imbalance which serves as
proxy for the stability of the pattern that is embedded in the
FBS. In the steady state, the reactive turnovers (illustrated by
red arrows) on either side of the inflection point must be
balanced. Inset boxes: A perturbation δη (yellow arrow) that
shifts the FBS position η0 induces an imbalance of reactive
turnovers (red arrow). Projecting this net reactive turnover
onto the η axis (dashed blue line) yields the movement of the
FBS induced by the turnover imbalance (green arrow). For
Dc > Dm, the FBS returns to its steady-state position η0.
Conversely, for Dc < Dm, the FBS is driven further away from
its steady-state position, such that the initial perturbation is
further amplified in a destabilizing feedback loop.
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sheets of the folded surface of local equilibria, the Turing-
bifurcation line (dash-dotted green line) crosses over itself
in the bistable region of the bifurcation diagram.
At the cusp point, the topology of the ðn̄; DcÞ-bifurcation

diagram changes from the topology characteristic for
monostable reaction kinetics [leftmost panel in Fig. 12(c);
cf. Fig. 8] to the one characteristic for bistable reaction
kinetics (rightmost panel; cf. Fig. 10). At k ¼ kcusp, the
bifurcation diagram has the singular topology shown in the
center panel, with the cusp critical point at ðncusp; DmÞ.

Interestingly, by changing kinetic rates, the reactive
nullcline of any system that is able to form stationary
patterns can be deformed to undergo such a cusp
bifurcation of (local) reactive equilibria. First recall that,
to obtain stationary patterns, there must be a segment where
the nullcline slope is snc < −Dm=Dc < 0, i.e., necessarily
negative. This segment can be deformed into a bistable
region (slope snc < −1) by a dilation of the nullcline
in the c direction in phase space; see Fig. 13. Let us
denote the scale factor by ζ, and then the dilated nullcline is
determined by fðm; ζ−1cÞ ¼ 0. A slope snc of the original
nullcline fðm; cÞ ¼ 0 becomes a slope ζ · snc for the
dilated nullcline. In particular, dilation by a factor
ζ ¼ jsinfnc j−1 leads to a nullcline with slope −1 at its
inflection point, a hallmark of a cusp bifurcation of the
reactive equilibria (cf. Fig. 13). Any further dilatation
leads to a bistable region (nullcline segment with slope
more negative than −1). We conclude that the generic
bifurcation scenario underlying all pattern-forming 2C-
MCRD systems is a cusp bifurcation of reactive equilibria.
Our geometric reasoning, thus, explains previous numerical
observations [32].

D. Sub- and supercriticality of lateral instability
in finite-sized systems

So far, we focus on the large system size limit (L → ∞)
where bifurcation diagrams can be constructed from

(a)

(b)

(c)

FIG. 12. Schematic of the cusp bifurcation scenario
(“unfolding”) in the ðk; n̄; DcÞ-bifurcation diagram (same color
code as Figs. 6, 8, 10, and 20). (a) We analyze the effect of a series
of deformations of the reactive nullcline parametrized by the
(notional) kinetic rate k. The respective (schematic) ðk; n̄Þ-
bifurcation diagram of stationary patterns (for Dm=Dc → 0
and L → ∞) is shown in (b). Initially, the nullcline is monotonic
and, hence, does not facilitate pattern formation. At ksaddle a
segment of negative nullcline slope, snc, emerges in a saddle point
(snc ¼ 0 at the inflection point), such that patterns can form for
Dm=Dc → 0 [generally, the critical nullcline slope scritnc for pattern
formation is simply the ratio −Dm=Dc; cf. Eq. (40)]. The regimes
of lateral instability (green) and pattern existence (blue) emanate
from this critical point. At kcusp, a region of bistability (shaded in
gray, bounded by saddle-node bifurcations) emanates from a cusp
bifurcation (snc ¼ −1 at the nullcline’s inflection point). At this
point, the topology of the ðn̄; DcÞ-bifurcation diagram changes
[see (c)]. [In the small gray triangular region in the top-right
corner of the ðk; nÞ-bifurcation diagram, the system is locally
bistable but does not exhibit stable stationary patterns.] (c) Sche-
matic ðn̄; DcÞ-bifurcation diagrams for ksaddle < k < kcusp (mono-
stable kinetics, Fig. 8), at the cusp (k ¼ kcusp), and for k > kcusp
(bistable kinetics, Fig. 10).

FIG. 13. Any nullcline with a segment of negative slope can be
deformed by simple dilation to exhibit cusp bifurcation where two
SN bifurcations of the reactive equilibria meet (see the inset). The
generic deformation to achieve this is a dilation in the c direction
by a scale factor ζ [i.e., replacing c in the reaction term fðm; cÞ by
ζ−1c, such that the dilated nullcline is given by fðm; ζ−1cÞ ¼ 0].
Say the original nullcline (black curve, ζ ¼ 1) has a slope sinfnc < 0
at the inflection point minf . Then, the nullcline dilated by ζ ¼
jsinfnc j−1 (green curve) has the slope −1 at its inflection point, thus
yielding a cusp point of reactive equilibria (see the inset; cf. Fig. 12).
Upon further dilation, the nullcline (purple curve) has a segment
with slope more negative than −1 (dashed line, region shaded in
gray), where the reactive equilibria are bistable. Each of the three
nullclines in the phase space corresponds a vertical line of the same
color in the bifurcation diagram (inset).
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phase-space geometry. In particular, we find that the onset
of a mass-redistribution instability is generically subcriti-
cal. To analyze sub- versus supercriticality in the case of
finite system size, we use a perturbative approach (weakly
nonlinear analysis; see, e.g., Ref. [77]) for the pattern close
to onset. In the vicinity of the homogenous steady state
ðm�; c�Þ, we expand a stationary state ½m̃ðxÞ; η0� in har-
monic functions (eigenmodes of the Laplace operator under
no-flux boundary conditions):

m̃ðxÞ ¼ m� þ
X∞
k¼0

δmk cosðkπx=LÞ: ð44Þ

As we learn in Sec. IV, the band of unstable modes always
extends to long wavelengths (q → 0) in a 2C-MCRD
system [“type II” instability; cf. Fig. 3(b)]. Therefore, in
a finite size system, the mode that becomes unstable first at
the onset of the lateral instability is the longest-wavelength
mode: cosðπx=LÞ. We want to study the steady-state
amplitude of this mode in the vicinity of the onset
bifurcation. It is not sufficient, though, to keep only this
first harmonic in the mode expansion [Eq. (44)], since
higher harmonics couple to it through the nonlinear terms.
For an expansion to third order in the first mode amplitude
δm1, one needs to include only the first and second
harmonics in Eq. (44). Higher harmonics are not needed,
because they couple to δm1 through higher nonlinearities
Oðδm4

1Þ. To leading order, the ansatz thus reads

m̃ðxÞ ≈m� þ δm0 þ δm1 cosðπx=LÞ ð45aÞ

þ δm2 cosð2πx=LÞ;
η0 ≈ η� þ δη0; ð45bÞ

where ðm�; η�Þ denotes the homogenous steady state:
f̃ðm�; η�Þ ¼ 0. Using this ansatz in Eq. (14a) and keeping
terms up to third order yields for the steady-state pattern
amplitude δm1 (see Appendix J for details)

0 ¼ F1δm1 þ F3δm3
1 þOðF1δm3Þ þOðδm5

1Þ: ð46Þ

The first-order and third-order coefficients read

F1 ¼ f̃m −Dmπ
2=L2; ð47aÞ

F3 ¼
f̃mmm

8
þ f̃2mm

24

L2

π2Dm
−
f̃mm

4

∂̃mσloc
σloc

; ð47bÞ

respectively, where ∂̃m ¼ ∂m − ðDm=DcÞ∂c is the deriva-
tive along the direction of the flux-balance subspace.
The first harmonic amplitude δm1, the solution to

Eq. (46), undergoes a pitchfork bifurcation at F1 ¼ 0.
This bifurcation is simply the Turing bifurcation, as it
coincides with the onset of lateral instability: The

homogenous steady state δm1 ¼ 0 is laterally unstable
only if the longest-wavelength mode q1 ¼ π=L is within
the band of unstable modes: π2=L2 < q2max ¼ f̃m=Dm, i.e.,
if F1 > 0 [cf. Eq. (47a)]. Hence, the sign of the third-order
coefficient F3, evaluated at the bifurcation point F1 ¼ 0,
determines whether the bifurcation is supercritical (F3 < 0)
or subcritical (F3 > 0); see Fig. 14(b).
On the basis of this weakly nonlinear analysis, we can

study the bifurcation at F1 ¼ 0 in any control parameter μ
(for instance, the average total density n̄, the system size L,
kinetic rates, and diffusion constants). With the critical
value μc, defined by the condition F1ðμcÞ ¼ 0, we intro-
duce the reduced control parameter δμ ¼ μ − μc and
linearize Eq. (46) to lowest order in δμ:

0 ¼ ∂μF1jμcδμδm1 þ F3ðμcÞδm3
1: ð48Þ

To leading order, the branch of the solution that bifurcates
at F1 ¼ 0 then reads

δm1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂μF1

−F3

����
μc

δμ

s
: ð49Þ

(a) (b)

(c)

FIG. 14. Pattern bifurcation for finite domain size. (a) Sche-
matic bifurcation structure for a system with monostable reaction
kinetics [an analogous plot obtained by numerical continuation
for a concrete reaction term, Eq. (A2), is shown in Fig. 22,
Appendix J]. The gray lines indicate the bifurcation structure for
L → ∞ for comparison [cf. Fig. 8(a)]. The Turing bifurcation
(green dashed line, f̃m ¼ Dmπ

2=L2) is supercritical in the
vicinity of ninf , i.e., the nullcline inflection point. In the vicinity
of onset (small pattern amplitude δm1), the third-order coefficient
F3 [cf. Eq. (47b)] of a weakly nonlinear expansion [cf. Eq. (45)]
determines if the bifurcation is super- or subcritical. The
schematical bifurcation diagrams (b) and (c) correspond to the
small gray arrows in (a). Unstable patterns that emerge in a
subcritical pitchfork bifurcation [see (b)] meet the stable patterns
in a fold bifurcation (saddle-node of patterns; cf. Fig. 6). These
fold bifurcations terminate in points where the lateral instability
bifurcation switches from sub- to supercritical (red points),
indicated by a vanishing third-order coefficient F3 ¼ 0 in the
weakly nonlinear expansion [cf. Eq. (46)]. Along the line of
supercritical lateral instability (dashed green line), stable patterns
emerge directly in a supercritical pitchfork bifurcation; see (c).
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At singular points where local stability and lateral stability
change simultaneously, i.e., σloc ¼ 0 and F1 ¼ 0, the last
term in F3 diverges. Such codimension-two points require a
more technically involved analysis (unfolding) that is
outside the scope of this study (see, e.g., Refs. [78,79]).
From the third-order coefficient F3 [see Eq. (47b)],

we can analyze the type of bifurcation in terms of
geometric features [nullcline curvature κðnÞ ∼ −f̃mmjn;
see Appendix K] together with the quantity that character-
izes the relaxation rate to local equilibrium [σloc;
cf. Eq. (5)]. The first two terms in F3 encode geometric
properties of the reactive nullcline (curvature and its rate
of change), i.e., how the local equilibria shift as mass
redistribution shifts the local phase spaces. The last term in
F3 represents the rate of change of the timescale for
relaxation σloc to the local equilibria. In the following,
we discuss the various regimes that arise due to the
interplay of the three terms in F3. [To simplify notation,
we implicitly assume that all coefficients (f̃m, etc.) in F3

are evaluated at the bifurcation point μc.]
(i) At the nullcline inflection point f̃mm ¼ 0, only the first

summand of F3 remains: F3 ¼ f̃mmm=8. The third
derivative f̃mmm is proportional to the rate of change of
the curvature (f̃mmm ∼ −∂mκ; see Appendix K). The
curvature of a typical N-shaped nullcline must be
positive (bent upward) to the right of the inflection
point and negative (bent downward) to the left of it;
otherwise, it is impossible to smoothly connect
laterally unstable regions (f̃m < 0) to laterally stable
regions (f̃m < 0). This constraint implies that
f̃mmm < 0, and we conclude that the bifurcation at
the nullcline inflection point is supercritical. This
conclusion confirms our geometric argument above
(cf. Fig. 8 and thin gray lines in Fig. 14).

(ii) In the large system size limit (L → ∞) away from
the inflection point (f̃mm ≠ 0), the second term in
Eq. (47b) dominates. Because this term is always
positive, the Turing bifurcation in large systems is
generically subcritical (cf. Fig. 14), as we already
conclude from geometric arguments in Sec. V D
above.

(iii) In a finite-sized but still large system, the last two
terms of F3 are negligible sufficiently close to
the nullcline inflection point where f̃mm vanishes.
Hence, finite-sized systems are supercritical in the
vicinity of the nullcline inflection point, because
f̃mmm must be negative as we argue above in point
(i) (cf. Fig. 14). Solving the condition F3 ¼ 0 to
leading order in L−1 yields the estimate

jf̃mmj < L−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
3π2

2
Dmf̃mmm

r
ð50Þ

for the range of supercriticality.

(iv) In small systems, the transition from supercriticality
to subcriticality depends also on the last term in F3.
It can contribute either positively or negatively toF3,
depending on the details of the reaction kinetics.

Importantly, statements (i)–(iii), regarding large systems,
follow from purely geometric arguments, as they are deter-
mined by the first two terms in F3. The reason for this is that,
at a largewavelength, chemical relaxation is fast compared to
diffusion, so the pattern is slaved to the scaffold, i.e., the
reactive nullcline. For the same reason, the long-wavelength
onset of lateral instability is determined by a geometric
criterion (slope of the nullcline) as we show in Sec. IV.
In conclusion, we comprehensively characterize the

Turing bifurcation (sub- versus supercritical) and the
bifurcations of stationary patterns, using the ðm; cÞ-
phase-space geometry. Because of the inherent link
between geometry and the physical concepts of mass
redistribution and shifting equilibria, we are able under-
stand the physics underlying the patterns and their bifur-
cations. The bifurcations in the large system size limit
(L → ∞)—determined by geometry—provide a good start-
ing point to study the bifurcations in a finite-sized system,
e.g., by numerical continuation (see Appendix F).

VIII. CONCLUSIONS AND DISCUSSION

We have introduced a local equilibria theory that allows
one to analyze and characterize both the initial growth and
the eventual stabilization (saturation) of patterns on the
basis of geometric objects in phase space: the shape of the
reactive nullcline and its intersections with the flux-balance
subspace. Within this framework, many properties of the
nonlinear dynamics of mass-conserving reaction-diffusion
systems can now be directly addressed in terms of phase-
space geometry, which would otherwise be accessible only
by numerical analysis. In the following, we will summarize
the key concepts of local equilibria theory and important
findings for 2C-MCRD obtained from this theory.
Subsequently, we address new perspectives for the inves-
tigation of reaction-diffusion systems with conserved
masses. Protein-pattern-forming systems in vivo (intra-
cellular) and in vitro (reconstituted systems) will serve
as the specific context for this part of the discussion.
Finally, we will give a brief outlook on upcoming work, on
questions that are currently under investigation, and on
future research directions. In particular, we outline how
local equilibria theory might provide a unifying geometric
perspective on pattern formation in mass-conserving non-
equilibrium systems and how it can be generalized to
systems that are not strictly mass conserving but contain a
mass-conserving core.

A. Summary of key concepts and results

Phase-space analysis of (two-component) MCRD sys-
tems has shown that spatial variations in protein density
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give rise to spatially heterogeneous local equilibria. The
relationship between mass and reactive equilibria is rep-
resented geometrically as a line of reactive equilibria
(reactive nullcline) in phase space. Along the reactive
nullcline, the reaction kinetics are balanced. We have
shown that this nullcline is a central geometric object in
phase space that organizes the spatiotemporal dynamics.
Furthermore, we have identified a one-parameter family
of (one-dimensional) manifolds in phase space on which
diffusive fluxes balance. Any stationary pattern is
embedded in one of these so-called flux-balance subspaces.
The variable that parameterizes the family of flux-balance
subspaces acts as a mass-redistribution potential: Its
spatial gradients represent a local imbalance of diffusive
fluxes that drives mass redistribution. Thus, the mass-
redistribution potential encapsulates the interplay between
reactions and diffusion processes.
In this way, the spatiotemporal dynamics of the reaction-

diffusion system is fully determined by geometric struc-
tures in phase space: (i) We introduced a flux-balance
construction, based on intersection points between flux-
balance subspace and reactive nullcline, that enabled us to
graphically construct stationary patterns and their complete
bifurcation structure in the limit of large system size.
Underlying this construction is the general insight that
patterns are scaffolded by local equilibria which are, in
turn, encoded by the reactive nullcline. This principle can
be generalized to dynamics: (ii) The interplay between
diffusive redistribution of mass and shifting local equilibria
drives the pattern-forming instability that we termed mass-
redistribution instability. Our analysis has shown that the
slope of the nullcline provides a simple criterion for the
occurrence of this instability. Importantly, we find that
the onset of instability is generically subcritical in
2C-MCRD systems on a large domain. (iii) Generalizing
the local equilibria concept, we have introduced a decom-
position of the spatial domain into regions, such as plateaus
and interfaces, which are characterized in terms of regional
dispersion relations. This decomposition has enabled us to
find simple heuristics for many properties of the pattern
formation dynamics and stationary patterns. For instance,
the width of the interface region can be approximated
by the marginal mode of the regional dispersion relation
at the interface. Building on this regional decomposition,
one can characterize different pattern types and the tran-
sitions between them as control parameters are changed
(Sec. V C). Furthermore, based on the concept of regional
(in)stability, we found an inherent connection between
lateral (Turing) instability and stimulus-induced pattern
formation (“nucleation and growth”), which enabled us to
estimate the basin of attraction (“nucleation threshold”) for
stationary patterns by a simple heuristic using the reactive
nullcline. As an additional advantage of such a characteri-
zation, we note that the reactive nullcline could, in
principle, be determined experimentally for any given

system in which the average total density can be controlled
in a well-mixed “reactor.”
Importantly, the concepts of scaffolding by local equi-

libria (i), mass-redistribution instability (ii), and regional
dispersion relations (iii) are directly generalizable to
systems with more components and more conserved
quantities. We extensively discuss these future directions
in the outlook below.

B. Reaction-diffusion systems

For the sake of specificity, we will discuss the implica-
tions and application of our findings on mass-conserving
reaction-diffusion systems with respect to protein pattern
formation, which operates far from thermal equilibrium and
has received growing interest over the past two decades.
Intracellular, i.e., in vivo, protein-pattern formation and
self-organization have been subject to a large body of
research, both experimentally (see Refs. [80,81] for recent
reviews) and theoretically (see Ref. [14] and references
therein). Furthermore, the in vitro reconstitution of the
MinDE system [82] has made it possible to study protein-
pattern formation experimentally under a wide range of
externally controllable conditions; see Refs. [19,83–92]
and Ref. [93] for a recent review.
Taken together, these studies of both in vivo and in vitro

systems have led to many important insights. However,
many intriguing questions that are relevant to all reaction-
diffusion systems far from equilibrium, remain open: What
is the role of the (biomolecular) interaction network, and
how can complex models be reduced to their essential
components? What are the physical mechanisms under-
lying the pattern-forming instabilities and under which
conditions do these instabilities arise? How can the
dynamics of patterns far from the homogeneous steady
state be studied systematically; i.e., how can we bridge the
gap between the linear and the highly nonlinear regime?
A particular question in this context is how different
patterns and their characteristic length scales (interface
width and wavelength) are selected in the highly nonlinear
regime. In what follows, we discuss the implications of our
work to these questions.

1. Model classification, network motifs,
and experimental accessibility

In recent years, several studies have employed high-
throughput computational analyses of reaction-diffusion
systems and graph theoretical analysis with the goal to infer
the pattern-forming capabilities from the topology of the
underlying reaction networks [94–97]. Our results offer an
entirely new and distinct perspective on model classifica-
tion and the role of the interaction-network topology for
mass-conserving systems. We found a simple condition
for the pattern-forming (mass-redistribution) instability in
2C-MCRD systems: The slope of the line of reactive
equilibria (reactive nullcline) must be (sufficiently)

PHASE-SPACE GEOMETRY OF MASS-CONSERVING REACTION- … PHYS. REV. X 10, 041036 (2020)

041036-25



negative. Broadly speaking, the reactive equilibrium of the
faster diffusing (i.e., cytosolic) component has to decrease
with increasing total density (cf. Sec. IV). Importantly, our
approach goes beyond the classification based on linear (in)
stability. It shows that the effect of nonlinearities on the
dynamics is encoded in the curved shape of the nullcline. In
particular, there is a direct connection between the nullcline
shape and the characteristic spatial density profile of the
pattern (cf. Sec. V C). The reactive equilibria, as repre-
sented by the reactive nullcline, might, therefore, provide
an alternative approach to model classification. Hence, a
key challenge for future research will be to study how
specific reaction kinetics and model parameters affect the
shape of the reactive nullcline.
Moreover, a major advantage of reactive equilibria as the

essential criteria for model classification is their experi-
mental accessibility. In principle, any line of reactive
equilibria can be measured directly in experiments by
using a single, isolated, and well-mixed reactor and
externally controlling the available conserved quantity
(e.g., particle number). Such experiments would allow
one to probe and classify the core mechanism quantitatively
without any knowledge of the molecular details (which are
irrelevant for such a classification).
The concepts that underlie local equilibria theory—mass

redistribution and moving local equilibria—are not
restricted to two-component systems with a single con-
servation law. They have previously been applied to the
model of the (in vitro) MinDE system, which has two
conserved protein species, MinD and MinE, and five
components [16,22]. We believe that the results presented
here are foundational for the development of a more general
theory. Our analysis constitutes the first step in a long-term
project to find a geometric representation of the nonlinear
dynamics of spatially extended systems. In the outlook
(Sec. VIII D), we briefly describe various forthcoming
works and future projects that build upon the present study
and generalize its results.

2. Polarity patterns, bistability, and the necessary
condition for a Turing instability

Bistability is a generic feature of nonlinear systems, and
its putative relation to polarity patterns has been contro-
versially discussed in the literature [28,32,76,98,99]. In
systems without mass conservation, bistable reaction
kinetics facilitate traveling fronts that connect the two
stable reactive equilibria (homogeneous steady states).
(This scenario appears in mass-conserving systems as
the special case of equal diffusion constants, which entails
the lack of lateral mass redistribution; see Sec. VII B.) The
stable equilibria of such a bistable medium can be pictured
as a scaffold for the traveling front. Because this scaffold is
static in systems without mass redistribution, fine-tuning
is required to achieve a stationary front (cf. Sec. VII B 1).
Our results show that, in mass-redistributing systems

(i.e., systems with unequal diffusion constants), the scaf-
fold becomes dynamic and thereby supports stable, sta-
tionary polarity patterns in an extended parameter regime
(cf. Sec. VII B). Most importantly, we found that, even in a
monostable system, mass redistribution can facilitate the
formation of a scaffold for stationary polarity patterns.
Hence, bistability of the reaction kinetics is neither required
nor sufficient for the formation of such patterns.
A central finding of our work is the physical mechanism

by which the scaffold of a pattern emerges dynamically
from a homogeneous steady state: the mass-redistribution
instability (Sec. IV). Diffusive mass redistribution requires
that the diffusivities of the two components are different
(“differential diffusion”); already a ratio Dm=Dc slightly
different than unity is sufficient. This mass redistribution
drives an instability under the condition that the reactive
nullcline in the phase space of the reaction kinetics includes
a segment of negative slope. More precisely, the negative
slope must be steeper than the flux-balance subspace,
whose slope is determined by the negative ratio of the
diffusivities −Dm=Dc. As membrane-bound proteins are
significantly less mobile than cytosolic proteins, i.e.,
Dm ≪ Dc, a small negative slope of the reactive nullcline
is already sufficient for a Turing instability in the intra-
cellular context. Recall also that the criterion for bistability
is a NC slope more negative (“steeper”) than −1
(cf. Sec. III A), which is obviously a more restrictive
condition than that for lateral instability. Hence, a bistable
region is generally surrounded by a larger region of lateral
instability in parameter space (cf. Fig. 12).
One might wonder how generic nullclines with a seg-

ment of negative slope are. In fact, they are frequently
encountered as N-shaped nullclines in a broad range of
classical nonlinear systems [1,2,4,100]. Typically, these
nullclines encode some nonlinear feedback mechanisms
that give rise to widespread phenomena such as relaxation
oscillations, excitability and bistability. Feedback loops in
intracellular signaling networks (e.g., GTPase and phos-
phorylation cycles) generically lead to these phenomena
[101]. From this perspective, it appears that N-shaped
nullclines should be rather common in biological systems.
Finally, the condition for mass-redistribution instability

shows that, contrary to popular belief, Turing instability in
a mass-conserving system can already arise for a ratio
Dm=Dc only slightly below unity when the reactive
nullcline has a sufficiently steep segment (i.e., in the
vicinity of saddle-node bifurcations of the reactive equi-
libria; cf. Fig. 12).

3. Mass-redistribution instability is mechanistically
distinct from the activator-inhibitor paradigm

A key finding of our work is the physical mechanism
of mass-redistribution instability: Shifting local equilibria
induce gradients and, hence, (diffusive) mass redistribution
which, in turn, leads to further shifting of the local
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equilibria. Notably, mass-redistribution instability is a
Turing instability in the original sense: a lateral instability
due to diffusive coupling of a system that is locally stable in
the absence of this coupling.
Importantly, the mechanism underpinning the mass-

redistribution instability is distinct from the paradigm
of short-range activation and long-range inhibition
[102,103]. The latter, termed “activator-inhibitor” mecha-
nism, innately relies on some form of “production” and
“degradation” processes, either of “morphogens” via gene-
regulatory networks (e.g., in cell-cell signaling [104] and
tissue patterning [105–107]) or of electric signals coupling
excitory and inhibitory neurons (e.g., in the visual cortex
where lateral instability may underlie hallucinations due to
long-range coupling of inhibitory neurons [108]). In con-
trast, intracellular pattern formation is often driven by
(nearly) mass-conserving dynamics [14] and, hence, is
necessarily based on a mass-redistribution instability.
Because, as we emphasized above, mass-redistribution
instability is a Turing instability, self-organized intracel-
lular protein patterns (see Ref. [14] for a review) are
examples of Turing patterns (in the sense of patterns that
arise from a Turing instability [57]) in biological systems.
In general, it might not always be obvious whether the

instability underlying pattern formation in a given system is
either a mass-redistribution instability or one that essen-
tially requires production and degradation. In the outlook
(Sec. VIII D 3), we propose a general definition to answer
this question.

4. Subcriticality and stimulus-induced
pattern formation

An important results of our analysis is that the onset
of pattern formation in 2C-MCRD systems is generically
subcritical (cf. Secs. V D and VII D). Subcriticality may be
beneficial in a biological context, as it confers robustness:
Once a pattern is established, it is robust toward parameter
variations due to hysteresis [32,68,109].
Moreover, subcriticality implies the existence of param-

eter regimes where pattern formation can be triggered by
sufficiently large perturbations (akin to nucleation and
growth in the binodal regime of phase-separating systems).
Such stimulus-induced pattern formation has been sug-
gested as a new mechanism for pattern formation (under
the term “wave pinning”), which—it was argued—is
fundamentally distinct from a lateral (Turing) instability
[28,29,31]. This claim has been disputed in recent works
[76,110]. Indeed, our results show that linear instability and
stimulus-induced pattern formation are inherently con-
nected: The latter is possible only where there is an adjacent
regime of linear lateral instability and the underlying
mechanism is a regional (linear) lateral instability; see
Sec. VI. Concretely, our results show that an interface—the
elementary building block of a pattern—must necessarily
be a laterally unstable region (cf. Sec. VA). Hence, the

creation of a laterally unstable region is a necessary
condition for the formation of a stationary pattern. This
condition implies that any two-component system that has
a regime of stimulus-induced pattern formation must also
exhibit a regime where the homogenous steady state is
laterally unstable, and this regime can always be reached by
simply changing the average total density. Conversely, this
condition suggests that subcriticality may be a generic
feature of mass-conserving systems, since regional insta-
bility will facilitate stimulus-induced pattern formation
adjacent to regimes where the homogeneous steady state
is laterally unstable.
Finally, building on the concept of regional instability

insights, we provided a simple geometric argument for the
perturbation threshold for stimulus-induced pattern forma-
tion (nucleation threshold) based on the reactive nullcline.

5. Length scale selection

An important consequence of subcriticality is that well-
known mathematical results for systems near a supercriti-
cal instability may not apply anymore. Potentially, the most
prominent of such results is the existence of a characteristic
wavelength, determined by the fastest growing mode in
the dispersion relation. This result is often considered as a
defining property of “Turing patterns.” However, for
subcritical systems, the wavelength of the pattern cannot
be inferred from a linear stability analysis of the uniform
steady state, in general—not even at the onset. Indeed,
2C-MCRD systems always exhibit uninterrupted coarsen-
ing [15]; i.e., the wavelength selected by the fastest growing
mode at onset is observed only transiently and the final
steady state is fully “phase separated.”
Note, however, that coarsening is not a generic feature

of all mass-conserving systems. Multicomponent MCRD
models show (multi)stable patterns with finite wavelengths
[16,63,111]. We believe that identifying and understanding
mechanisms of nonlinear wavelength selection that bring
the coarsening processes to a halt and stabilize patterns
with a finite wavelength are among the most important
tasks for future research on multicomponent models.
While some rather general criteria have been found for
one-component systems [112,113], a comprehensive
understanding of multicomponent systems remains out
of reach for now.
In addition to the wavelength, patterns have a second

characteristic length scale—the width of interfaces. While
the wavelength of patterns far from the homogeneous steady
state is not determined by the dispersion relation, we have
shown in Sec. VA that the interface width is determined
by the marginal mode (qmax) of the interface’s regional
dispersion relation. The more general insight underlying this
finding is that highly nonlinear patterns can be decomposed
into spatial regions and studied in terms of regional phase
spaces and regional attractors (cf. Sec. V B). In a follow-up
work [22], we use this region decomposition to classify the
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different types of instabilities that govern Min-protein-
pattern formation in vivo and in vitro. In particular, we
find that the interface width of standing wave patterns is
also determined by the marginal mode of the regional
dispersion relation.

6. Pattern types are determined by the nullcline shape

Two-component MCRD systems are found to exhibit
two generic pattern types, referred to as mesas and peaks.
In a recent numerical study of 2C-MCRD models [34], a
phenomenological “saturation point” was found to mark
the peak- to mesa-pattern transition. Our geometric analysis
has now revealed the phase-space structure that underlies
this “saturation point”: It corresponds to an intersection
point between reactive nullcline and diffusive flux-balance
subspace; hence, its position is dictated by the nullcline
shape and the ratio of the diffusion constants. Based on this
insight, we have shown that the nullcline shape serves as a
simple criterion that predicts the type of patterns formed by
a given 2C-MCRD system; see Fig. 5.
Put briefly, we distinguish Λ- and N-shaped nullclines,

based on their tail behavior for large densities. In the case of
a Λ-shaped nullcline [e.g., nullclines that asymptotically
approach the m axis for large m; see Figs. 5(b) and 17] and
a shallow flux-balance subspace (Dm=Dc ≪ 1), a mesa
pattern forms only when the average mass is sufficiently
large. For lower densities, the system exhibits peak patterns
instead. Their amplitude depends sensitively on the total
mass and the membrane diffusion constant. The approxi-
mation of the peak pattern amplitude provided in Sec. V C
(details in Appendix G) provides a simple estimate of the
total (protein) mass at which peak patterns transition to
mesa patterns. Notably, the amplitude of peak patterns and
the transition to mesa patterns depends sensitively on the
ratio of the diffusion constants. In the case of an N-shaped
nullcline [see Figs. 2 and 5(a)], mesa patterns are generic,
because the high-density plateau is already formed at
low average mass (even if Dm=Dc ≪ 1). [Peak patterns
are also possible for such nullclines but require fine-tuning
of the average mass to the vicinity of bifurcation points
(see Fig. 6).]
These findings have important biological consequences,

because the characteristic features of a pattern dictate the
positional information it can convey and, therefore, the
biological function it can facilitate [14,114–117]. For
example, cell division in budding yeast (Saccharomyces
cerevisiae) requires the formation of a single, narrow
polarity site marked by a high density of the protein
Cdc42, to uniquely determine the future bud site
[118,119]. This requirement is met by peak patterns.
Mesalike patterns, in contrast, sharply separate two spatial
domains. This separation is, for instance, a feature of PAR-
protein patterns in Caenorhabditis elegans [68,120–122].
Interestingly, the stem cells that polarize via PAR-protein-
pattern formation become smaller after each cell division

during morphogenesis of the C. elegans embryo [36]. As
the cell size approaches the interface width, the patterns
transition from the mesa to the weakly nonlinear type
(cf. Sec. VII D). Finally, the system size becomes so small
that the Turing instability is suppressed (see discussion of
the marginal mode qmax in Sec. IV). This size-dependent
loss of cell polarization has been shown to be important for
stem-cell fate decision [36].
An important difference between peak and mesa patterns

is how they respond to changes in average total protein
density, e.g., owing to up- or down-regulation of gene
expression or system size, e.g., due to growth. An increase
in average mass makes peak patterns grow in amplitude,
while for mesa patterns it leads to a shift in the interface
position. Upon an increase in system size, peak patterns
grow in amplitude, because the total number of proteins
in the system increases. In contrast, the amplitude and
the relative interface position of mesa patterns remain
unchanged. Hence, mesa patterns inherently scale with
the system size—a property that is desirable in develop-
mental systems. Note, however, that the interface width of
mesa patterns does not scale with the system size and is
independent of the average total density (Sec. V C).
Another difference between patterns composed of peaks

versus patterns composed of mesas is their rate of coars-
ening by competition for mass. Peak patterns coarsen
significantly faster than mesa patterns [15,34]. Fast coars-
ening is important if the biological function requires
selection of a single polarity site, as, for instance, cell
division of budding yeast [118,119].

C. Nonequilibrium phase separation

On the phenomenological level, the dynamics of
2C-MCRD systems closely resembles a phase-separation
process, as exhibited by binary mixtures that undergo
liquid-liquid phase separation near thermal equilibrium.
We showed that the bifurcation diagram of 2C-MCRD
systems (Fig. 8), obtained by the flux-balance construction
on the reactive nullcline, resembles the phase diagram
of phase separation with spinodal and binodal lines that
meet in a critical point. The analogous process to spinodal
decomposition is the mass-redistribution instability
(Sec. IV). In both cases, the condition for instability is
that a potential decreases as a function of the total density.
In the former case, it is the chemical potential, derived from
a free-energy functional, while in the latter case it is the
mass-redistribution potential η�ðnÞ derived from the
reactive nullcline. Moreover, nucleation in the binodal
regime of binary-mixture phase separation corresponds to
stimulus-induced pattern formation in 2C-MCRD systems
(Sec. VI). In addition to their equivalent phase diagrams,
binary-mixture phase separation and 2C-MCRD systems
both exhibit uninterrupted coarsening [15].
This phenomenological equivalence between binary-

mixture phase separation and 2C-MCRD dynamics is quite
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remarkable, since the former describes systems close to
thermal equilibrium, while the latter is inherently far
from thermal equilibrium (driven by a chemical fuel like
ATP/GTP in the case of proteins). In fact, segregation into
domains of high and low density is observed in many other
nonequilibrium systems, most prominently self-propelled
particles that exhibit formation of polar waves and nematic
lanes [123,124] and motility-induced phase separation
(MIPS) [125]. Further examples include active contractility
[126], motile bacteria [127], and shear banding [128].
Some authors have used the term “active phase separation”
[71,129,130] for such phenomena.
One interesting feature shared by many phase-separating

systems is that they exhibit interrupted coarsening (“micro-
phase separation”) once the mass conservation is weakly
broken by additional production and degradation terms. The
strength of these terms determines the length scale where
coarsening arrests. This result holds true both near thermal
equilibrium [131,132] and for MIPS of self-propelled
particles subject to a birth-death process [133,134]. In a
follow-up work to the present manuscript, we show that
the same holds true for two-component reaction-diffusion
systems with weakly broken mass conservation [15].
Interestingly, interrupted coarsening can also occur as a
consequence of nonreciprocal coupling that destroys the
variational nature of the Cahn-Hilliard model [135].
Given the phenomenological equivalence to phase sep-

aration near thermal equilibrium, one might be tempted
to search for a mapping to an effective thermodynamic
language or develop an entirely phenomenological thermo-
dynamic description. In fact, for 2C-MCRD systems with a
specific form of reaction kinetics, f ¼ c − gðmÞ, an effec-
tive free-energy functional can be constructed [44,46,47],
giving a gradient-flow structure to the 2C-MCRD dynamics
with such a reaction term. In this specific case, some of the
results presented here, like the phase diagram with binodals
and spinodals, can be inferred directly from the mapping
to equilibrium phase separation (see, e.g., Ref. [46]).
Moreover, the mapping implies uninterrupted coarsening
for this specific form of reaction kinetics.
However, such an approach disregards the actual under-

lying nonequilibrium physics. Our analysis of 2C-MCRD
systems shows how a framework can be developed that
is rooted in the underlying physics (here, chemical reac-
tions and diffusion) and not subject to the restrictions
of a mapping to an effective thermodynamic description.
Concretely, we show in a follow-up work that uninterrupted
coarsening is generic in 2C-MCRD systems indepen-
dently of the specific reaction kinetics [15]. Moreover, a
thermodynamic description cannot account for the rich
phenomenology, including oscillatory patterns and waves
[16,22,51,52,136–138], that arises once coupling to addi-
tional components or source terms breaking mass con-
servation are included. In contrast, local equilibria theory

has proven useful also in these more complex scenarios
[15,16,22]. We further discuss this perspective in the final
two subsections of the outlook.
Instead of describing attachment and detachment of

proteins at a membrane, Eq. (1) can be interpreted as the
mean field equation for particles undergoing Brownian
motion and switching between two states with different
velocities or tumbling rates. Then, the reaction term
f ¼ fðnÞ describes the switching dynamics that depends
on the local density of particles (e.g., by some quorum
sensing mechanism), and m and c are the concentrations of
slow and fast diffusing particles, respectively. This system
constitutes a minimal example for MIPS and shows that
MIPS and Turing instability are analogous on the mean
field level. MIPS is typically studied for particles with
continually varying velocity that depends on the local
particle density. For particles switching between two states
with different velocities, the mean velocity varies contin-
uously as a function of the total density.
Hence, we define the average diffusion constant

D̄ ¼ DmmþDcc
mþ c

; ð51Þ

which is directly connected to the mass-redistribution
potential via the identity η ¼ nD̄=Dc. With this definition,
the nullcline-slope condition for lateral instability,
∂nη

� < 0, can be recast as

∂nD̄�

D̄� < −
1

n
: ð52Þ

[As always, the star denotes evaluation at the reactive
equilibrium; the function D̄�ðnÞ can be obtained from
the reactive nullcline η�ðnÞ via the relation D̄�ðnÞ ¼
Dcη

�ðnÞ=n.] Notably, the condition for MIPS has exactly
the same form as Eq. (52), where the density-dependent
particle velocity vðnÞ takes the place of the average
diffusivity D̄�ðnÞ.
This result reveals the common underlying principle of

Turing instability in MCRD systems and the instability
driving MIPS of self-propelled particles: slowing down of
particles in regions of high density. For an instability to
occur, particles have to slow down enough in response to an
increase in density; cf. Eq. (52).
Another phenomenon that can be pictured as a phase-

separation process is shear banding in complex fluids. In
Appendix L, we show how one can establish an analogy
between our flux-balance construction on the reactive
nullcline for 2C-MCRD systems and the “common total
stress” construction on the constitutive relation employed to
analyze shear banding [128,139]. This analogy shows that
these physically distinct systems are topologically equiv-
alent, i.e., share the same phase-space geometry.
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D. Outlook

Based on the theoretical concepts presented in this
work for 2C-MCRD systems, there are several promising
directions for future research. First of all, for 2C-MCRD
systems, several follow-up works elucidate the principles at
work during wavelength selection [15] and address how
self-organization may be controlled by spatiotemporal
“templates” [20] and by advective flows [21]. Going
forward, it will be interesting to explore various avenues
toward generalization to MCRD systems with more com-
ponents and conserved species, including applications to
various specific physical and biological systems as outlined
shortly below. The long-term perspective is a generalization
toward a geometric theory of MCRD systems. Below, we
discuss some possible routes toward such a generalization
in more detail.
In a broader context, reaction-diffusion systems are part

of a large class of nonequilibrium systems that are able to
form self-organized patterns. This class includes models for
living matter where molecular motors generate active flows
[126,140] and active visco- and poroelastic deformations
of the medium [137,141], as well as particle-based active
matter [123,125,142] and granular media [143]. Ultimately,
it may be fruitful to apply the concepts presented here to
such systems.

1. Generalization to more complex phenomena

The 2C-MCRD system studied here has a comparatively
simple phenomenology, exhibiting only steady states that
are stationary (no oscillations) and no wavelength selection
(uninterrupted coarsening). In a previous study [16], and
recently in Ref. [22], the concepts of mass redistribution
and local equilibria have already been successfully
employed to analyze a multicomponent multispecies
MCRD model (for MinDE in vitro pattern formation) that
exhibits much more complex phenomena, like spatiotem-
poral chaos (chemical turbulence) at onset and a transition
to order (standing and traveling waves). These phenomena,
observed in numerical simulations, can be understood in
terms of the changing local stability of local equilibria due
to mass redistribution.
In particular, this study revealed intriguing, highly non-

trivial, connections between the nonlinear pattern dynamics
far from the homogeneous steady state and the dispersion
relation that characterizes the linearized dynamics in the
vicinity of the homogeneous steady state. However, these
findings are model specific and rely on numerical simu-
lations. In contrast, the characterization of the 2C-MCRD
systems presented here is independent of the specific
model (reaction term) and enables us to predict the pattern
formation dynamics from a simple graphical analysis,
without the need to perform numerical simulations. The
obvious next step is to generalize this level of under-
standing to more complex phenomena by studying three-
component MCRD systems. Such models have recently

been employed to model various (bio)physical phenomena
in numerical studies [63,144]. Studying these models using
local equilibria theory might reveal the principles under-
lying their dynamics and provide a good starting point for a
generalization of the theory presented here.
For ODE dynamics, the seemingly small step from two

to three variables increases the diversity of phenomena
dramatically. We expect a similar situation for spatially
extended systems. Note, in particular, that, with three
components and one conserved quantity, the reactive
phase space will be two-dimensional which allows for
more complex local dynamics and attractors, such as
limit cycle oscillations. A fully general study of three-
component MCRD systems will, therefore, probably not be
possible from the outset. Instead, we propose to focus on
cases where a timescale separation enables one to build on
the results for two-component systems. A good starting
point is to study cases where the coupling to the additional
third component is slow (the model investigated in
Ref. [63] is of that form) using, for instance, a singular
perturbation analysis. Closely related to such three-
component MCRD systems are nearly mass-conserving
two-component systems that contain production and deg-
radation terms on a slow timescale (see the next subsec-
tion). Making use of such timescale separations has proven
to be a powerful strategy to study complex phenomena in
dynamical systems; see, for instance, Ref. [145] for a
comprehensive overview of three-variable ODE systems in
the context of neural excitability.
The benefit of such an approach is that the effects of

strong nonlinearities may be captured by a geometric
phase-portrait analysis of the fast two-variable subsystem.
More complex behavior arises as the slow dynamics
modifies the fast subsystem, driving it through bifurcations.
Analogously, in reaction-diffusion systems, the effects of
the strong nonlinearities are encoded in the shape of the
nullcline, which enables one to construct the elementary
patterns (mesas and peaks). Much richer phenomenology
can arise by the modification of these elementary patterns
due to additional linear (or weakly nonlinear) terms, whose
effects could be studied using the method of regional phase
spaces (Sec. V B). This method can be viewed as a dual
(“strong coupling”) approach to the amplitude equation
formalism (weakly nonlinear analysis), where the elemen-
tary pattern originates in the narrow band of unstable
modes and the modification of the pattern due nonlinear-
ities that couple these modes perturbatively.
Another promising direction of study is the role of

noise in stochastic MCRD systems. Noise-induced phe-
nomena in reaction-diffusion systems have previously
been studied for models with (e.g., Refs. [27,30]) and
without conserved quantities (e.g., Refs. [104,146–149]).
Importantly, noise in reaction-diffusion systems is not
constrained by the fluctuation-dissipation theorem but
must be inferred from the stochasticity of the chemical
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processes by explicit coarse graining, using, for instance,
path integral approaches [138].

2. Model reduction and classification

While multicomponent, multispecies models can
exhibit complex phenomenology, as discussed above, this
is not necessarily the case. For instance, cell polarization
of eukaryotic cells is often brought about by a large
number of interacting protein species. Well-studied
examples are the Cdc42 system of S. cerevisiae
[26,34,150,151] and the PAR system of C. elegans
[32,68,121,122]. Despite the complexity of these systems,
their phenomenology—cell polarization—is simple and
can already be captured by two-component systems as
studied here. This result raises the question whether
complex models can be reduced to an underlying minimal
core that captures their essential phenomenology. The
finding that redistribution of conserved quantities is the
essential driver of pattern formation in MCRD systems
suggests that such a reduction might be possible in the
phase space of conserved quantities—the control space.
Note that such reduced core systems may comprise more
than two components and more than a single conserved
mass. As we detail in the next subsection, even noncon-
servative models can have a mass-conserving core.
The central theme of local equilibria theory is that

conserved quantities are control parameters for reactive
equilibria. Hence, the bifurcation scenario of reactive
equilibria in the control space may serve as a criterion
for classifying models. One example of such a class is the
cusp bifurcation scenario, found by numerical analysis of
various cell-polarization models in Ref. [32] and identified
here as the general bifurcation scenario underlying pattern
formation in 2C-MCRD systems. In a forthcoming work,
we will use our theory to elucidate the control-space
geometry underlying the pole-to-pole oscillations of the
in vivo MinDE system [23]. As there are two conserved
quantities, the total densities of MinD and MinE, respec-
tively, the control space is two-dimensional and there are
surfaces (instead of lines) of reactive equilibria. Using the
local quasi-steady-state approximation, these nullcline
surfaces allow for a geometric analysis of the in vivo
MinDE dynamics. We propose this geometrically moti-
vated approach as an alternative to algebraically motivated
model reduction methods, such as the quasi-steady-state
approximation of slowly diffusing components [152] or
(extended) center-manifold reduction [153,154]. Such an
approach offers the advantage that it does not require
abstract mathematical calculations and, instead, enables
one to gain physical intuition from elementary geometric
objects and graphical constructions. Furthermore, as
pointed out earlier, reactive equilibria, in principle, allow
one to assess phase-space geometry experimentally. Such
an approach could ultimately make it possible to infer
theoretical models from experimental data at a mesoscopic

level, especially in situations where access to more
molecular information (at the protein level) is not available
yet.

3. Beyond strict mass conservation

What can we learn from local equilibria theory about
systems without strict mass conservation?
Nonequilibrium systems are dissipative; that is, they

consume some sort of chemical fuel [e.g., ATP in biological
systems and malonic acid in the Belousov-Zhabotinsky
(BZ) reaction [155]] that drives them far from thermal
equilibrium. The chemical fuel often drives cycling of
components between different states, as illustrated in
Fig. 15. Examples are cycling of NTPase proteins between
active and inactive states [156]; phosphorylation-
dephosphorylation [157,158] and membrane attach-
ment or detachment of proteins [14]; and cycling between
molecular bromine and bromide ions and cycling of a metal
catalyst (e.g., cerium) in the BZ reaction [155,159,160].
While such cycles consume a fuel (and produce a waste),
they conserve the total density of the cycling components
(C1 and C2 in Fig. 15). The chemical fuels are quite
generally assumed to be supplied from a large reservoir
and, hence, are not explicitly modeled. Several recent
works study explicitly the role of a finite fuel supply in
the framework of stochastic thermodynamics [161–163].
In particular, in Ref. [163], the bifurcations of bistable
and oscillatory well-mixed systems are studied as they
approach thermal equilibrium where detailed balances
holds (vanishing chemical potential difference between
fuel and waste).
In addition, there may be production and (irreversible)

degradation processes that break the (strict) conservation of
the cycling components. To dissect the roles of conserving
and nonconserving processes, any reaction kinetics can be
split up into the respective functional terms. For a general
two-component reaction-diffusion system, such a splitting
would take the form

FIG. 15. Basic elements of a (chemical) system with a mass-
conserving core. The cycling of the core between two states, C1

and C2, is driven out of thermal equilibrium by consumption of a
fuel F and production of a waste W. If the fuel is abundant and
replenished from the outside, it can be assumed to be present at
constant concentration. The cycling components are produced
from a precursor E and irreversibly degraded to a product P. When
production and degradation are slow compared to the rate of
cycling between C1 and C2, the system inside the dashed box may
be treated as mass conserving on the fast timescale of cycling.
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∂tmðx; tÞ ¼ Dm∂2
xmþ fðm; cÞ þ γs1ðm; cÞ; ð53aÞ

∂tcðx; tÞ ¼ Dc∂2
xc − fðm; cÞ þ γs2ðm; cÞ; ð53bÞ

where γ describes the ratio of the timescale of mass-
conserving reactions encoded in f and the timescale of
production or degradation processes encoded in the source
terms s1;2 [164]. If γ is small, one can study the mass-
conserving subsystem (limit γ → 0) using the theory
presented here. In particular, the capacity for pattern
formation of the mass-conserving subsystem can be
directly read off from the shape of the f nullcline. The
remaining effect of the source terms in this limit is to set the
total average mass n̄, which is no longer a control parameter
when γ ≠ 0 but is controlled by the parameters in s1;2
instead. Geometrically, this effect corresponds to setting the
center of mass of a pattern in the ðm; cÞ-phase plane.
A decomposition into mass-conserving and nonconserv-

ing terms of the form Eq. (53) can be carried out for
systems with any number of components. (Note that this
decomposition should be done before model reductions
like nondimensionalization and variable eliminations that
affect the mass-conserving terms.) Linear stability analysis
can then be used to determine whether the mass-conserving
subsystem is able to form patterns by setting γ ¼ 0. This
analysis defines two classes of systems: (i) those where
pattern-forming instability is preserved in the mass-
conserving case γ ¼ 0 and (ii) those that inherently depend
on production and degradation (i.e., do not exhibit lateral
instability for γ ¼ 0). Put differently, class (i) systems do
have a pattern-forming, mass-conserving core, while class
(ii) systems do not. Of course, the distinction between these
two classes will be limited if γ is too large such that
production-degradation dynamics dominate over the mass-
conserving core.
The mass-conserving core of systems (or regimes) in

class (i) can be analyzed using the local equilibria theory.
An immediate conclusion is that their lateral instability is
driven by a mass-redistribution cascade. This insight may
inform model reduction of many-component models as we
have discussed in the previous subsection. Furthermore,
one can then study how the core patterns are qualitatively
and quantitatively modified by 0 ≠ γ ≪ 1. Importantly,
γ ≠ 0 might be a singular perturbation; i.e., weakly broken
mass conservation might cause a qualitative change in the
dynamics, such as interrupted coarsening and oscillations;
see example (i) below. Importantly, for γ ≪ 1 these
qualitatively new phenomena will play out at large length
and timescales, whereas the behavior at short scales is
still determined by the mass-conserving core; see, e.g.,
Ref. [15]. In the language of bifurcation theory, the mass-
conserving core would take the role of an “organizing
center” from which the various dynamical regimes of the
system “unfold” (see, e.g., Sec. 30 in Ref. [78] and Chap. 3

in Ref. [79]). Let us provide examples for the two classes of
systems defined above.
Example for class (i): Brusselator model.—Let us

exemplify the reduction to a mass-conserving core for a
classical model, the Brusselator [50]. This early, qualitative
model for the BZ reaction can be written in the form
Eq. (53) where fðm; cÞ ¼ m2c −m, s1 ¼ kin − koutm, and
s2 ¼ 0. The nullcline of f has two segments, m ¼ 0 and
c�ðmÞ ¼ 1=m, which is a singular case of an N-shaped
nullcline. Thus, it is immediately clear that pattern for-
mation of the Brusselator is driven by a mass-conserving
core and that its elementary stationary patterns are mesa
patterns whenDc ≳Dm and peak patterns whenDc ≫ Dm.
Slow production and degradation lead to interrupted
coarsening and splitting of the mesa patterns at length
scales that depend on γ as has been studied using singular
perturbation methods in the limit γ ≪ 1 [64,165–167].
Local equilibria theory, in particular, the phase-portrait
analysis of spatially extended systems that it facilitates,
provides a new, intuitive approach that explains the physics
underlying interrupted coarsening and mesa splitting [15].
Moreover, in the oscillatory regime of the Brusselator, the
limit cycle oscillations can be constructed as relaxation
oscillations on the basis of the nullcline of the mass-
conserving core (f nullcline) in the limit γ ≪ 1 [52]. The
oscillation period depends on γ and diverges in the
limit γ → 0.
Example for class (ii): Gierer-Meinhardt model.—An

example for a two-component system without a mass-
conserving core [class (ii)] is the “Gierer-Meinhardt”model
[102]. This model describes an “activator” which enhances
its own production and the production of an “inhibitor”
which impedes the activator’s production. Both activator
and inhibitor are degraded at constant rates. Written in the
form Eq. (53), using fa; hg for the activator and inhibitor
concentrations instead of fm; cg, one has f ¼ 0,
s1 ¼ kþa þ kfba2=h − k−a a, and s2 ¼ kþh þ kfba2 − k−h h.
Clearly, this system does not possess a mass-conserving
core capable of pattern formation. Generally, systems in
class (ii) are those where production (from a reservoir
or substrate) and irreversible degradation are the dominant
processes, for instance, during tissue patterning (morpho-
genesis) [105–107] or cell-cell signaling in bacterial
colonies [104].
The role of (nearly) conserved quantities in classical

pattern-forming systems.—Many chemical systems contain
a mass-conserving core of components that rapidly cycle
between different states and are produced and degraded
only on a much slower timescale. An example is the cycling
of bromine between a molecular form and a bromide ion in
the BZ reaction. It is an interesting question whether this
core alone is able to produce some nontrivial behavior like
oscillations or patterns (assuming that the chemical fuel
driving the cycling of the core components is abundant,
such as, e.g., ATP in protein-based pattern formation).
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Systems where this is the case can then be analyzed using
local equilibria theory (potentially extended to account for
slow production and degradation; see, e.g., Ref. [15]).
Above, we showed that this is true for the Brusselator,
which is a conceptual model for the BZ reaction. We
hypothesize that a similar approach might or will also
work for more detailed models such as the so-called Field-
Koros-Noyes mechanism [160], whose mass-conserving
core presumably contains more than two components.
Such a program might eventually lead to a perspective

that unifies “classical” pattern-forming systems such as the
BZ reaction and the more recently discovered biological
systems, including the Min system [16,22,82], intracellular
actin waves [136,168], and Rho excitability [169–172].

4. Beyond reaction-diffusion systems

In the systems discussed so far (excluding Sec. VIII C),
energy is fed into the system via the reaction kinetics alone,
while the spatial transport process, diffusion, is passive.
Such systems are part of a broader class of so-called active
systems where energy is fed in on the microscopic scale.
This comprises systems where the transport processes are
active, driven, e.g., by molecular motors such as myosin.
Examples include systems with active flows generated
by cortical contractions [126,140], as well as actively
deforming visco- and poroelastic media [137,141]. On a
more conceptual level, several nonequilibrium generaliza-
tion of the Cahn-Hilliard equation have been studied
recently [135,173–175]. The phenomena exhibited by
the above systems include (micro)phase separation and
more complex phenomena like waves and turbulence.
Another broad subclass of active systems are self-propelled
particles that exhibit a huge variety of collective phenom-
ena, including MIPS [125] (see Sec. VIII C above) and
flocking [123,124,176].
What all these systems have in common with MCRD

systems is the presence of conserved quantities that serve
both as macroscopic variables and as local parameters of
the microscopic dynamics. We, therefore, expect that the
ideas on mass redistribution and local equilibria put
forward in this article can be broadly applied to understand
emergent behavior in these systems. As a concrete exam-
ple, the self-organized interplay between total density and
emergent orientational order (polar or nematic) was inves-
tigated recently for self-propelled particles with micro-
scopic alignment interactions that are continuously tunable
between polar and nematic symmetry [176]. Here, the local
particle density controls the emergent orientational order,
i.e., induces local symmetry breaking. In turn, the orienta-
tional order leads to particle currents that redistribute the
particle density. Strikingly, this interplay explains the
coexistence of different macroscopic structures, such as
polar flocks and nematic lanes, and the continual inter-
conversion between them as recently observed in experi-
ments and agent-based numerical simulations [124].
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APPENDIX A: MODELS USED FOR
ILLUSTRATION AND NUMERICAL STUDIES

To visualize the our findings on pattern formation in
2C-MCRD systems, we use two prototypical reaction
terms, fðm; cÞ, that exhibit two distinct nullcline shapes.
Both variants effectively model attachment-detachment
dynamics as used to describe cell-polarization systems.

(i) The reaction kinetics used in Ref. [28], to concep-
tually describe cell polarization based on autocata-
lytic recruitment (Michaelis-Menten kinetics with
Hill coefficient 2) and linear detachment:

fðm; cÞ ¼
�
kon þ kfb

m2

K2
d þm2

�
c − koffm: ðA1Þ

We can nondimensionalize by expressing time in
units of k−1off and densities in units of Kd. Further-
more, for specificity, we set the (nondimensional)
feedback rate kfb=koff ≕ k̂fb ¼ 1, leaving only k ≔
kon=koff as a free parameter in the nondimensional
reaction term:

fðm; cÞ ¼
�
kþ m2

1þm2

�
c −m: ðA2Þ

Figure 16 shows the nullcline in the ðm; cÞ-phase
plane of the reaction kinetics Eq. (A2) for k ¼ 0.07,
together with a numerically determined stationary
pattern [steady-state solution to Eq. (1)] and the local
equilibria (spatial profile on the right).

(ii) Dynamics due to attachment together with linear
self-recruitment and enzyme-driven detachment
(described by first-orderMichaelis-Menten kinetics):

fðm; cÞ ¼ ðkon þ kfbmÞc − koff
m

Kd þm
: ðA3Þ

We nondimensionalize by expressing time in units
of the attachment rate kon and densities in units of
the dissociation constant Kd of the detachment
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kinetics. The two remaining parameters are the
(nondimensional) feedback rate k̂fb ≔ Kdkfb=kon
and detachment rate k̂off ≔ koff=ðkonKdÞ:

fðm; cÞ ¼ ð1þ kfbmÞc − koff
m

1þm
; ðA4Þ

where we suppress the hats. Figure 17 shows a
typical reactive nullcline for the reaction term
Eq. (A4) together with a stationary peak pattern
and the local equilibria that scaffold it.

Length scale.— For convenience, we do not specify a
unit of length in the domain size L and the diffusion

constants Dm;c. In an intracellular context, a typical size
would be L ∼ 10 μm, and typical diffusion constants Dm ∼
0.01–0.1 μm2 s−1 on the membrane and Dc ∼ 10 μm2 s−1

in the cytosol. Rescaling to different spatial dimensions is
straightforward.
Nullcline shape predicts the pattern type.— Important

for the distinction between peak-forming versus mesa-
forming systems is the behavior of the reactive nullcline
for large n. If it approaches the m axis monotonically for
large n, then peak patterns form in a large range of n̄ for
Dm=Dc ≪ 1 (see Fig. 23). Otherwise, mesa patterns are
typical, while peak-trough patterns form only in narrow
regimes at the edges of the range of pattern existence
½n∞− ; n∞þ �. For attachment-detachment kinetics, one can
study the nullcline behavior for large n by comparing
the largest powers in the denominator and numerator
of the functional form c�ðmÞ ¼ mdðmÞ=aðmÞ of the
nullcline. For the reaction term Eq. (A2), one obtains
c�ðm → ∞Þ → m, i.e., typically mesa patterns. For the
reaction kinetics Eq. (A4), one has c�ðm → ∞Þ → 0,
favoring peak patterns for Dc ≫ Dm.

APPENDIX B: NUMERICAL SIMULATIONS

The reaction-diffusion dynamics are simulated on a
domain with no-flux boundaries using the numerical
PDE-solver routine NDSolve[] provided by Mathematica
(see Supplemental Material [54] file PDE-solver_
minimal-setup.nb for an example setup). In the videos,
we show the density distribution in phase space and the real
space profile mðx; tÞ together with local equilibria.

APPENDIX C: LINEAR STABILITY ANALYSIS

This section provides the technical details of linear
stability analysis.

1. Canonical linear stability analysis

Linear stability analysis of a reaction-diffusion system is
performed by expanding a spatial perturbation in the
eigenbasis of the diffusion operator (Laplacian) in the
geometry of the system. In a line geometry with reflective
boundary conditions at x ¼ 0; L, the eigenfunctions of the
Laplacian are the discrete Fourier modes cosðkπx=LÞ with
k ∈ N. Linearization of the dynamics of a mass-conserving
two-component system around a homogeneous steady state
ðm�; c�Þ yields the linear dynamics

∂t

�
δmqðtÞ
δcqðtÞ

�
¼ JðqÞ

�
δmqðtÞ
δcqðtÞ

�
ðC1Þ

with the Jacobian

JðqÞ ¼
�−Dmq2k þ fm fc

−fm −Dcq2k − fc

�
; ðC2Þ

FIG. 16. Left: Numerically phase-space distribution (thick blue
line) of a computed stationary pattern embedded in the flux
balance subspace (dashed blue line). The thin gray line shows the
reactive phase space corresponding to the average total density n̄.
Right: Spatial profile (solid blue line) together with numerically
determined local equilibria (filled circles). Parameters: k ¼ 0.07,
n̄ ¼ 2.48, Dm ¼ 0.1, Dc ¼ 10, and L ¼ 10.

FIG. 17. Above: Numerically determined phase-space distribu-
tion and stationary pattern profile and for an MCRD system with
the reaction kinetics Eq. (A4). Below: Stationary pattern together
with local equilibria (filled circles). Parameters: kfb¼0.45,
koff ¼ 16, n̄ ¼ 6, Dm ¼ 1, Dc ¼ 200, and L ¼ 10.
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where we use the abbreviations qk ¼ kπ=L for the (dis-
crete) wave numbers and fm;c ¼ ∂m;cfjðm�;c�Þ for the
linearized kinetics at the homogeneous steady state. The

eigenvalues of the Jacobian yield the growth rates σðiÞq of
the respective eigenmodes such that a perturbation in the
spatial eigenfunction cosðqxÞ evolves in time as

�
δmqðtÞ
δcqðtÞ

�
¼

X
i¼1;2

AðiÞ
q eðiÞq expðσðiÞq tÞ cosðqxÞ; ðC3Þ

with the eigenvectors eðiÞq . For a given initial condition

(perturbation), the coefficients AðiÞ
q are determined by

projecting the initial condition onto the eigenbasis

eðiÞq cosðqxÞ.
To calculate the eigenvalues of the Jacobian, we use that

the eigenvalues of a 2 × 2-matrix can be expressed in terms
of its trace τ and determinant δ:

σð1;2Þ ¼ τ=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2=4 − δ

q
; ðC4Þ

where the indices f1; 2g correspond to f−;þg on the rhs.
The trace and determinant of the Jacobian JðqÞ can be

written as

τq ¼ fm − fc − ðDm þDcÞq2
¼ σloc − ðDm þDcÞq2; ðC5aÞ

δq ¼ q2DmDc

�
q2 þ fc

Dc
−

fm
Dm

�
¼ q2DmDcðq2 − q2maxÞ; ðC5bÞ

where we use the expression Eq. (28) for qmax.
From Eq. (C5a), it follows that for a locally stable

homogeneous steady state (σloc < 0) the trace τq is negative
for all q. Hence, the only way to get lateral instability is a
negative determinant δq < 0. This constraint implies that
eigenvalues with a positive real part must be purely real,
since the term under the square root in Eq. (C4) is positive.
This result means that there cannot be oscillatory lateral
instability for a locally stable homogeneous steady state.
Moreover, the instability condition δq < 0 immediately
yields the band of unstable modes ½0; qmax�.
Figure 18 shows the two branches of eigenvalues, σð1;2Þq ,

for a laterally unstable case. In the limit q → 0, the first
branch connects to the eigenvalue of a well-mixed system

σð1Þ0 ¼ σloc (cf. Sec. III A). The corresponding eigenvector
lies in the reactive phase space for q ¼ 0 and, hence, fulfills
mass conservation.

The second branch σð2Þq smoothly approaches zero in the

limit q → 0. The eigenvector eð2Þ0 corresponding to the

marginal eigenvalue σð2Þ0 ¼ 0 points along the reactive
nullcline. It represents a perturbation that changes the total
density and, thus, shifts the reactive equilibrium. For the
stability of a closed, well-mixed system (i.e., the stability
against homogeneous perturbations), such a perturbation
is not relevant, since it breaks mass conservation. For
q ≠ 0, the perturbation is spatially inhomogeneous and,
therefore, redistributes mass in the system. This mass
redistribution shifts the local equilibria. That the eigen-
vector points along the reactive nullcline reflects the fact
that the concentrations are slaved to the local equilibria in
the long-wavelength limit. As one goes toward shorter
wavelengths (i.e., larger q), the eigenvector begins to
deviate from being tangential to the nullcline (see
Supplemental Material of Ref. [16]). In particular, the
eigenvalue of the marginal mode qmax points along the

flux-balance subspace, eð2Þqmax ∝ ð1;−Dm=DcÞT .
We find that the band of unstable modes for the 2C-

MCRD system always extends down to a long
wavelength (q → 0), a situation called type II instability
in the Cross-Hohenberg classification scheme [58].
In systems with more components and/or multiple
conserved species, this result is no longer true in
general—the band of unstable modes can be bound
away from zero (type I in Cross-Hohenberg scheme);
see, e.g., Ref. [16].

2. Approximation close to the onset
of lateral instability

The eigenvalues of a 2 × 2 matrix [Eq. (C4)] to leading
order in δ=τ ≪ 1 are given by

FIG. 18. Generic dispersion relation of the 2C-MCRD system

in a laterally unstable regime. The two branches σð1;2Þq of the
eigenvalue problem for JðqÞ are shown in blue and yellow. At
q → 0, the branches connect to the eigenvalues σloc ¼ fm − fc
and 0 of the local stability problem. For Dc → ∞, the second

branch approaches σð2Þq → fm −Dmq2 for q > 0. Accordingly,
qmax approaches

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fm=Dm

p
. Parameters: fm ¼ 0.7, fc ¼ 1,

Dm ¼ 1, and Dc ¼ 10.
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σð1Þ ¼ τ − δ=τ þOðδ2=τ2Þ; ðC6aÞ

σð2Þ ¼ δ=τ þOðδ2=τ2Þ: ðC6bÞ

We now use this approximation for the 2C-MCRD dynam-
ics where the trace and determinant of the Jacobian for a
mode q are given by Eqs. C 1. A straightforward calcu-
lation shows that δq reaches its extremum at q� ¼
qmax=

ffiffiffi
2

p
, with a minimal value of δq� ¼−f̃2mDc=ð4DmÞ.

Furthermore, the trace τq ≈ σloc is approximated by the
local eigenvalue for f̃m ≪ σloc. Hence, the above approxi-
mation is valid in the vicinity of lateral instability onset
(f̃m ≈ 0), far away from the local instability onset (which
takes place at σloc ¼ 0). The dispersion relation then reads

σð1Þq ≈ σloc − ðDm þDcÞq2; ðC7aÞ

σð2Þq ≈
DmDc

−σloc
q2ðq2max − q2Þ; ðC7bÞ

for f̃2mDc=Dm ≪ jσlocj. The first branch σð1Þq simply rep-
resents relaxation to local equilibrium. The laterally unsta-

ble branch σð2Þq , shown in Fig. 19(a), is the identical to
the dispersion relation of the Cahn-Hilliard equation [177]
(and the more general class of model B dynamics). We can
rewrite Eq. (C7b) as

σð2Þq ≈ −Dcq2
�
∂nη

�jn̄ −
Dm

−σloc
q2
�
: ðC8Þ

The two terms of this expression reflect the shifting of
local equilibria (dominating at large wavelengths) driving
the instability for ∂nη

�jn̄ < 0 and the competition of
local reactive flow toward equilibrium and membrane
diffusion that restabilizes the system on short length scales.
[To recast Eq. (C7b) as (C8), one uses the relation
∂nc�ðnÞ ¼ ∂mc�ðmÞ=½1þ ∂mc�ðmÞ�.]
Figure 19 gives an overview of the various regimes

of mass-redistribution instability and their interrelation.
A typical dispersion relation (solid green line) deep in the
laterally unstable regime (i.e., far from onset) is shown in
Fig. 19(b), together with various limiting cases (see the
caption for details). One can distinguish diffusion- and
reaction-limited regimes. The former (i.e., long-wavelength
limit) is studied in detail in the main text. In the next
subsection, we briefly analyze the two limits of fast cytosol
diffusion and vanishing membrane diffusion.

3. Limits in the diffusion constants

Fast cytosol diffusion.— In the limit Dc → ∞, the
dispersion relation approaches the function fm −Dmq2

for wave numbers q ≫ jσloc=Dcj; see the dashed gray line
in Fig. 19(b). This shape of the dispersion relation reflects
the fact that the growth rate of instability is limited by the

(a) (b)

FIG. 19. Overview of the regimes of mass-redistribution instability and their interrelations. (a) Near onset (Dm=Dc ≈ −snc and,

therefore, qmax ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fm=Dm

p
), the laterally unstable branch (σð2Þq , green solid line) of the dispersion relation is approximated by a fourth-

order polynomial [purple, dash-dotted line; cf. Eq. C 2(b)] that corresponds to the dispersion relation of model B dynamics. For
q ≪ qmax, the instability is diffusion limited (blue dashed line) and effectively described by antidiffusion with the effective diffusion
constant Deff ¼ Dc∂nη

� (see Sec. IV). (b) Dispersion relation far from onset (Dm=Dc ≪ jsncj). The case without membrane diffusion
(Dm ¼ 0, purple dash-dotted line) clearly shows the diffusion-limited and the reaction-limited regimes for q2 ≪ jσloc=Dcj and
q2 ≫ jσloc=Dcj, respectively. Finite membrane diffusion suppresses the instability at a short wavelength in the reaction-limited regime
(q ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijσlocj=Dc

p
). There, the dispersion relation is approximated by fm −Dmq2 (yellow dotted line; note, in particular,

qmax ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fm=Dm

p
, the approximation becomes exact in the limit Dc → ∞). The diffusion-limited regime (q ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijσlocj=Dc

p
, blue

dashed line) has the same behavior as in the vicinity of onset (a) with the additional simplification that, far from onset, the effective
diffusion constant Deff ≈Dc∂nc�. Parameters: fm ¼ 0.5, fc ¼ 1 (i.e., snc ¼ −0.5, σloc ¼ −0.5), Dm ¼ 1, and Dc ¼ 2.1 for (a) and
Dc ¼ 50 for (b).
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rate of chemical relaxation to the shifting local equilibria
(∂nc� · σloc ¼ fm) and counteracted by membrane diffusion
on short scales (−Dmq2).
Somewhat deceptively, this shape of the dispersion

relation resembles that of a locally unstable system for
q > 0, even though the system is locally stable. In the strict
limit Dc → ∞, the dispersion relation becomes discontinu-
ous at q ¼ 0, because the zero eigenvalue at q ¼ 0
corresponding to the homogeneous perturbation breaking
mass conservation is always present. (Recall that, for the
stability of a closed system against homogeneous pertur-
bations, this mode is not relevant.)
It is important to keep in mind that the lateral instability

is always driven by cytosolic mass redistribution. From this
perspective, the strict asymptotic limit Dc → ∞ (and the
common approximation to treat the cytosol as well mixed)
is pathological, as it masks the core dynamics underlying
lateral instability in MCRD systems: the formation of
gradients in the fast diffusing component(s) and the ensuing
diffusive fluxes that redistribute total density. Furthermore,
in systems with more than two components, the subtle
interplay of multiple fast diffusing components might play
an important role for pattern formation [19]. Such aspects
would be missed if fast diffusing components are assumed
to be well mixed at all times (which corresponds to setting
their diffusion constants to infinity).
Vanishing membrane diffusion.— In the limit Dm → 0,

the band of unstable modes extends to arbitrarily small
wavelengths (i.e., qmax → ∞); see the purple, dash-dotted
line in Fig. 19. For short wavelengths, the growth rate is

reaction limited (σð2Þq ≈ fm) because cytosol diffusion is
fast. For long wavelengths, the growth rate is diffusion

limited, σð2Þq ≈Dcq2∂nc�.

APPENDIX D: REMARKS ON THE LOCAL
QUASI-STEADY-STATE APPROXIMATION

The local quasi-steady-state approximation (LQSSA),
i.e., slaving of the chemical concentrations to the local
(reactive) equilibria, becomes exact when the timescales
of diffusion and local reactions are separated. Specifically,
let us scale the reaction terms in the reaction-diffusion
dynamics Eq. (1) by ε−1:

∂tm ¼ Dm∂2
xmþ ε−1fðm; cÞ; ðD1aÞ

∂tc ¼ Dc∂2
xc − ε−1fðm; cÞ: ðD1bÞ

In the limit ε → 0, relaxation to local equilibria becomes
arbitrarily fast compared to diffusive redistribution—the
concentrations are at a local quasisteady state (a stable local
equilibrium). The characteristic spatial scale(s) of the
dynamics and of stationary patterns are given by a balance
of reaction and diffusion. In particular, in Sec. VA,
we learn that the interface width is determined by

πðDm=f̃mÞ1=2. Under the scaling of reaction rates by ε−1,
this length scale goes to zero as ∝ ε1=2. Hence, in the
LQSSA, there is no “microscopic” length scale. This
behavior is characteristic for a singular perturbation prob-
lem where some physics is lost when the small parameter ε
is set to zero [5,65]. A rigorous analysis of Eqs. (D1) could
be performed in terms of singular perturbation theory. To
lowest order in ε, any series of jumps (sharp interfaces)
between two plateaus n� that fulfill η�ðnþÞ ¼ η�ðn−Þ, such
that η�½ñðxÞ� ¼ η0 is constant in space, is a valid steady
state of Eq. (23). However, to be consistent with Eq. (D1) in
the limit ε → 0, the FBS position must be η0 ¼ η∞0 as
determined by total-turnover balance Eq. (35). In addition,
the given total density n̄ constrains the spatial average
hñðxÞi½0;L� ¼ Lþnþ þ L−n− ¼ n̄, where L� are the aggre-
gate lengths of the high- and low-density regions.
One may compare the LQSSA to the approach used to

analyze limit cycle attractors of relaxation oscillators. There
the N-shaped nullcline allows an analytic construction
of the limit cycle in the asymptotic timescale separation
limit. Moreover, even without the timescale separation, the
qualitative phase-space structure that underlies the oscil-
lations can be deduced from the nullcline shapes. Note that
treating such a timescale separation in a mathematically
rigorous way requires singular perturbation theory (see
Appendix D).
The LQSSA can also be understood as a closure relation.

In that picture, nðx; tÞ corresponds to a “coarse-grained
order parameter” with the microscopically correct dynam-
ics given by Eq. (21). This equation is not closed, because
mðx; tÞ and cðx; tÞ are not known. Equation (22) is a closure
for Eq. (21) at the price of losing the microscopic length
scale. One could try construct higher-order closures that
also take into account deviations from the local equilibria
owing to diffusion on short length scales [178].
In a forthcoming publication, we choose a less technical

way to qualitatively illustrate the elementary pattern for-
mation dynamics: We consider the dynamics not on a
continuous domain but in two diffusively coupled compart-
ments. In this “coarse-grained” setting, the LQSSA is well
posed because a microscopic length scale is imposed
externally by the discretization into two compartments.

APPENDIX E: GEOMETRIC CONSTRUCTION
OF BIFURCATIONS

In Secs. V D and VII, we describe how the bifurcations
diagrams of stationary pattern can be constructed geomet-
rically using the reactive nullcline and the flux-balance
subspace. We implemented this procedure in Mathematica
(see Supplemental Material [54] file flux-balance-
construction. nb to find quantitative bifurcation structures.
As an illustrative example, we present the results for the
reaction kinetics Eq. (A2); see Figs. 20 and 22. Figure 20(a)
shows the shape of the reactive nullcline for a range of the
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kinetic rate parameter k (nondimensional attachment rate).
For k > ksaddle, the nullcline is monotonic, such that pattern
formation is impossible. (Recall that we set the nondimen-
sional feedback rate to 1, so k effectively describes the
relative strength of basal attachment versus feedback due to
recruitment.) At k ¼ ksaddle, a section of negative slope
emerges on the nullcline, giving rise to lateral instability for
Dc=Dm → ∞. Further lowering k increases the range of
negative nullcline slope and increases the maximal negative
nullcline slope [thus decreasing Dmin

c ; cf. Eq. (40)].
Figure 20(b) shows the regimes of lateral instability and
pattern existence forDc ¼ 10Dm. At k ¼ kcusp the maximal
negative nullcline slope becomes −1, indicating a cusp
bifurcation of the reactive equilibria. From this cusp point
[black dot on the red nullcline in Fig. 20(a)], a regime of
bistability emerges, the section of unstable equilibria shown
as a dashed line in Fig. 20(a). The locally bistable regime
[shaded in gray in Fig. 20(b)] is delimited by two SN
bifurcations which emerge from the cusp point, shown as
a black dot in Fig. 20(b). In the locally bistable regime,
there exist unstable stationary patterns for Dc < Dm. These
patterns can be constructed in the same way as stable
stationary patterns for Dc > Dm. Their range of existence
forDc ¼ 0.9Dm is shaded in red in Fig. 20(b), delimited by
a dashed red line.
Figure 20(c) shows the geometrically constructed

ðn̄; DcÞ-bifurcation diagram for k ¼ 0.045, i.e., for a
bistable nullcline (corresponding to the schematic bifurca-
tion diagram shown in Fig. 10 in the main text). The
ðn̄; DcÞ-bifurcation diagram for a monostable nullcline is

shown in Fig. 22 in Appendix F, where we also show the
bifurcation structure for finite domain size, L, obtained by
numerical continuation.

APPENDIX F: NUMERICAL CONTINUATION
OF STATIONARY PATTERNS

To calculate steady states and their bifurcation structures
for systems with finite size, we use a standard numerical
continuation scheme (pseudo-arclength continuation; see,
e.g., Chap. 4 in Ref. [179]). The stationarity condition
Eq. (14a) is discretized using finite differences, yielding a
set of equations for the concentrations at the grid points.
These equations, together with the flux-balance subspace
Eq. (10) and the constraint of average total density Eq. (1c),
are used to numerically determine the stationary patterns
and their bifurcations (in the Mathematica software). To
continue the fold bifurcations of stationary patterns, we use
a bordered matrix method [179].
To determine the stability of the stationary patterns, we

use a finite difference discretization of the reaction-
diffusion dynamics (1) linearized around the steady state.
The resulting eigenvalue problem is solved with
Mathematica. The eigenvalue with the largest real part
(“dominant eigenvalue”) determines the pattern stability
(see Fig. 25, which is discussed in Appendix I).

1. Bifurcation structure for n̄

Figure 6 in the main text shows the n̄-bifurcation
structure of stationary patterns determined by numerical

(a) (b) (c)

FIG. 20. Bifurcation diagrams obtained by the flux-balance construction [reaction term Eq. (A2) from Ref. [28]]. (a) Deformation of
the reactive nullcline under variation of the kinetic rate k from 0.03 to 0.015. Dashed sections indicate local instability in the regime of
bistability that emanates from the cusp bifurcation at kcusp (red nullcline, inflection point marked by a black dot). The nullcline
exhibiting a saddle point is shown in blue. (b) ðk; n̄Þ-bifurcation diagram [compare Fig. 12(b) in the main text] where the lateral
instability bifurcation lines (n�lat, dash-dotted in orange and green) and the regime of pattern existence (shaded in blue, delimited by n∞�
shown as a solid blue line) are shown for Dc ¼ 10Dm. Additionally, the region where unstable stationary patterns exist for Dc ¼ 0.9Dm
is shaded in red, delimited by a dashed red line. Note the region in the top-right corner, where the local reaction kinetics are bistable, but
no stationary patterns exist. (c) ðn̄; DcÞ-bifurcation diagram for k ¼ 0.045, where the reaction kinetics Eq. (A2) exhibit a region of
bistability; the inset shows an enlargement of the boxed region around n̄ ≈ nstat and Dc ≈Dm. The bifurcation diagrams (b) and (c) are
constructed based on following the geometric reasoning presented in Sec. VII with the help of a Mathematica script (see Supplemental
Material [54] file flux-balance-construction.nb).
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continuation for the reaction kinetics (A2). In Fig. 6, the
pattern amplitude is plotted against n̄. For the same
bifurcation structure, Fig. 21 shows additional plots of
the maximum and minimum concentrations in (a) and the
FBS position η0 in (b). For mesa patterns, m̃ð0Þ and m̃ðLÞ
are the plateau concentrations and, therefore, slaved to
m∞

� ¼ m�ðη∞0 Þ, while the FBS position η∞0 is almost
constant. At the boundaries of the range where patterns
exist (limited by ½n∞− ; n∞þ �, for L → ∞), the mesa patterns
undergo fold bifurcations where they meet the branches of
unstable peak-trough patterns (dashed lines) that emanate
from the homogeneous steady state (black line, dash-dotted
in the regime of lateral instability). In both plots, the

prediction from the analytic approximation of (unstable)
peak-trough patterns (see Appendix G) is shown as red
solid lines.

2. Two-parameter ðn̄;DcÞ-bifurcation diagram

Figure 22 shows the two-parameter ðn̄; DcÞ-bifurcation
diagram for a monostable reactive nullcline [corresponding
to the schematic diagram in Fig. 14(a); the fixed parameters
are the same as in Fig. 6]. The fold-bifurcation lines (solid
blue lines) of stationary patterns at finite domain size are
obtained by numerical continuation. The respective bifur-
cation lines in the infinite system size limit, n∞� (solid gray
lines), are geometrically constructed (cf. Appendix E).
The laterally unstable regime, bounded by the dash-dotted
green line, is determined by linear stability analysis. On the
right, an enlargement of the region around the critical
point ðn̄inf ; Dmin

c Þ.
The tip of the laterally unstable regime in a finite-sized

system is shifted upward by an amount of approximately
L−2 because of the stability condition f̃m ¼ π2Dm=L2.
Close to the critical point, the patterns emerge in a
supercritical pitchfork bifurcation (dashed green line).
The points where the onset becomes subcritical are
marked by red disks. At these points, the two lines of
fold bifurcations of stationary patterns originate. The
subcritical lateral instability bifurcation is shown as a
green dash-dotted line.

FIG. 21. Numerically determined bifurcation diagram for a
2C-MCRD system with the reaction kinetics Eq. (A2) for the
control parameter n̄ (average total density). The figure supple-
ments Fig. 6 in the main text, where the bifurcation structure is
shown for the pattern amplitude jm̃ðLÞ − m̃ð0Þj. The homo-
geneous steady state is shown as a black line, dash-dotted in the
regime of lateral instability [note that the slope criterion, Eq. (25),
can be written as ∂nη

� < 0]. For stationary patterns, concen-
trations at the domain boundaries m̃ð0Þ and m̃ðLÞ (yellow and teal
lines in the top panel) and the FBS position η0 (blue line in the
bottom panel) are shown. Thin gray lines indicate the plateau
densities m∞

� and the FBS position η∞0 in the large system size
limit L → ∞. Red lines show the heuristic approximation of
peak-trough patterns Eq. (G1), which are the unstable transition
states in the multistable regimes (cf. Fig. 6). Note the almost
perfect agreement of analytic approximation and numerical
solutions for the FBS position η0.

FIG. 22. Right: Numerically determined ðn̄; DcÞ-bifurcation
structure of stationary patterns in a finite-sized domain; left:
enlargement of the vicinity of the critical point. The continuous
blue line marks the fold bifurcation of stationary patterns where
stable and unstable stationary patterns meet [cf. Fig. 6(b)].
The geometrically constructed bifurcation lines for L → ∞ are
shown in gray. The fold bifurcation where stable and unstable
patterns merge terminates in the points where the Turing
bifurcation switches from sub- to supercritical [F3 ¼ 0;
cf. Eq. (46)]. Along the line of supercritical Turing bifurcation
(dashed green line), stable patterns emerge directly in a super-
critical pitchfork bifurcation. Reaction term: Eq. (A2); see Fig. 16
for the nullcline shape and a typical pattern profile. Parameters:
k ¼ 0.07, Dm ¼ 1, and L ¼ 100.
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APPENDIX G: APPROXIMATION OF
PEAK-TROUGH PATTERNS

In the following, we detail the construction of approxi-
mate peak-trough patterns that is briefly introduced in
Sec. V C. For specificity, we present the construction
for peak patterns—generalization to trough patterns is
straightforward.
In our analysis of pattern types (Sec. V C), we character-

ize peak patterns as composed of an interface region
at a system boundary connected to a plateau region [cf.
Fig. 5(b)]. We also characterize interfaces by linearization
around the inflection point in Sec. VA, which yields
a sinusoidal interface shape with a width lintðη0Þ
[cf. Eq. (31)]. We now construct a peak pattern by piecing
together such an (approximate) interface at the left domain
boundary and a plateau at m−ðη0Þ in the remainder of
the system:

m̃peakðxÞ ≈
�
m0 þ A sin πð x

lint
− 1

2
Þ x < lint;

m− x > lint:
ðG1Þ

Within this approximation, the pattern inflection point
is always at x0 ¼ lint=2. To match the interface to the
plateau continuously at x ¼ lint, the amplitude must be
A ¼ m− −m0. The plateau m−ðη0Þ and inflection point
m0ðη0Þ are geometrically determined. To close the approxi-
mation, one has to find the FBS position consistent with
the given average total density n̄ [to fulfill the constraint
Eq. (1c)]. From Eq. (G1), one obtains the approximate total
density average

n̄ðη0; LÞ ≈ η0 þ ð1 −Dm=DcÞ
�
m−ðη0Þ

þ lintðη0Þ
L

½m0ðη0Þ −m−ðη0Þ�
	
: ðG2Þ

This relation can be inverted to obtain a relation η0ðn̄; LÞ
for peak patterns with a density profile approximated
by Eq. (G1).
Peak-trough patterns are encountered in two contexts.

First, stable peak patterns are typical for reaction kinetics
that exhibit a strongly asymmetric nullcline shape, e.g.,
Eq. (A4), when Dm ≪ Dc (see Fig. 17 for a typical peak
pattern). Second, unstable peak-trough patterns form the
unstable branches that connect the subcritical Turing
bifurcation with the stable pattern branch (see Fig. 6).
These unstable peak-trough patterns play the role of
“transition” states, since they lie on the separatrix that
separates the basins of attraction of the homogeneous
steady state and the stationary pattern in the multistable
regimes.
For both scenarios, we compare the analytic approxi-

mation Eq. (G1), where η0 is determined via Eq. (G2), with
numerical continuation of the stationary patterns.

The approximation of unstable peak-trough patterns for
the reaction kinetics Eq. (A2) is shown in the bifurcation
structure Fig. 21.
Figure 23 shows the n̄-bifurcation diagram of stationary

patterns for the reaction kinetics Eq. (A4). There is a large

(a)

(b)

(c)

FIG. 23. Numerically determined n̄-bifurcation structure of sta-
tionary patterns for the reaction term Eq. (A4) [see Fig. 17(a) for the
nullcline shape]. (a) Amplitude jm̃ðLÞ − m̃ð0Þj and FBS position η0
(b) of stationary patterns from numerical continuation (blue line,
dashed for unstable patterns) and the analytic peak approximation
Eq. (G1) (dash-dotted red line). Peak-type patterns transition to
mesa patterns as total average density is increased. The transition
threshold can be estimated by the point where the peak approxi-
mation (red, dash-dotted line) for the pattern amplitude exceeds
the (geometrically determined) plateau amplitude jm∞þ −m∞

− j (thin
gray line). In the ðn̄; η0Þ plot (b), the homogeneous steady states
(equivalent to the reactive nullcline via η� ¼ c� þm�Dm=Dc) are
shown as a solid black line (dash-dotted where laterally unstable).
Inset: Enlargement of the η axis in the trough pattern region.
(c) Stationary pattern profiles from numerical continuation (solid
blue lines) and from the analytic approximation (dash-dotted red
lines) for various total averagedensities, corresponding to the dots in
(a). Left: n ¼ 10, 20, 40, 60, stable peak patterns; right: n̄ ¼ 120,
unstable trough pattern. Fixed parameters: kfb ¼ 0.3, koff ¼ 20,
L ¼ 20, Dm ¼ 1, and Dc ¼ 200.
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regime of peak patterns where the pattern amplitude keeps
increasing with average total density n̄. Peak patterns
transition to mesa patterns when peak saturates in the third
FBS-NC intersection point mþ. The amplitude of mesa
patterns is almost independent of n̄, because a change of
total density merely shifts the interface position of mesa
patterns (compare Fig. 6). Ultimately, mesa patterns tran-
sition to trough patterns which then undergo a fold
bifurcation where they meet with the unstable branch of
trough patterns that emerges from the homogeneous steady
state. The asymmetry of the reactive nullcline [Fig. 17(a)] is
reflected by the asymmetry of the bifurcation structure. The
dot-dashed red lines in Fig. 23 show the analytic approxi-
mation for pattern amplitude (a), the FBS-position (b),
and pattern profiles (c). The approximation of peak patterns
becomes less accurate as the average total density increases
and ultimately breaks down at the transition to mesa
patterns (around n̄ ≈ 60 in Fig. 23). The approximation
of trough patterns is less accurate because the trough
saturates more “abruptly” in m−: Recall that the approxi-
mation underlying Eq. (G2) is a linearization of the
interface region around the inflection point (cf. Sec. VA).
This approximation breaks down in regions of high
nullcline curvature, indicative of high nonlinearities.
Interestingly, even though the pattern profile is not well
approximated for troughs [see Fig. 23(c)], the estimate for
the FBS position η0 is close to the true value [see the inset in
Fig. 23(c)], indicating that the relevant physics (total
turnover balance) is still captured.

APPENDIX H: STIMULUS-INDUCED
PATTERN FORMATION

In Sec. VI, we argue that, to trigger pattern formation
from a laterally stable homogenous steady state, a pertur-
bation (stimulus) must induce a (self-)sustained laterally
unstable region. Based on this intuition, we provide a
simple geometric heuristic for the perturbation threshold:
A perturbation of the membrane concentration profile must
be such that concentrations in a spatial region are pushed
beyond the laterally unstable part of the nullcline in phase
space. Hence, the intersection point of the line c ¼ c�ðn̄Þ
with the laterally unstable section of the nullcline
provides an estimate mthðn̄Þ for the threshold that the
membrane perturbation has to exceed in a spatial region
[see Fig. 24(b); cf. Fig. 7]. This criterion does not take into
account the spatial shape of a perturbation but only its
characteristics in phase space. We test how robust the
estimate is against different spatial profiles using numerical
simulations of the reaction-diffusion dynamics Eqs. (1)
with the reaction term Eq. (A2). We consider prototypical
perturbations with a “steplike” profile [see Fig. 24(a)]:

mpertðxÞ ¼
�
m�ðn̄Þ − a x < L − w;

m�ðn̄Þ þ b x > L − w:
ðH1Þ

For the perturbation to conserve the global average total
density, we must set b ¼ a½ðL − wÞ=w�. The steplike
profiles therefore form a two-parameter family of pertur-
bations with the shape parameters w (width of the region
where density is increased) and a (density removed

(a)

(c)

(b)

FIG. 24. Test of the geometric heuristic for the perturbation
threshold by numerical simulations. (a) We consider a proto-
typical type of perturbation of the homogenous steady state
m�ðn̄Þ: a step function profile moving membrane density from
the region x < L − w into the region x > L − w; cf. Eq. (H1).
Membrane density is lowered by an amount a on the left and
increased by an amount a½ðL − wÞ=w� so that total mass is
conserved. (b) In phase space, the threshold mthðn̄Þ for a
perturbation of membrane density is determined by the inter-
section point of the line c ¼ c�ðn̄Þ with the laterally unstable
section of the nullcline. Colored dashed lines show this
construction for various total densities n̄ ¼ 2.01, 2.1, 2.2,
2.29 in the range of multistability n∞− < n̄ < n−lat (shaded in
blue). The laterally unstable region is shaded in green. (c) The
geometrically determined threshold mthðn̄Þ predicts [red line,
athðw; n̄Þ] which “shapes” of perturbations, parametrized by
amplitude a and width w, trigger formation of a stationary
pattern. This prediction is in good agreement with the basins of
attraction of stationary pattern (shaded in blue) and homo-
geneous state (shaded in gray) in the parameter space of
perturbation shapes. [Reaction term: Eq. (A2); parameters:
k ¼ 0.067, Dm ¼ 0.1, Dc ¼ 10, and L ¼ 20.]

PHASE-SPACE GEOMETRY OF MASS-CONSERVING REACTION- … PHYS. REV. X 10, 041036 (2020)

041036-41



uniformly from the rest of the system). Because the
concentration may not drop below zero, only perturbations
with a < m�ðn̄Þ are physically sensible. The (heuristic)
threshold in phase spacemthðn̄Þ [see Fig. 24(b)] is exceeded
in the (high-density) region x > L − w when

a > athðw; n̄Þ ≔
w

L − w
½mthðn̄Þ −m�ðn̄Þ�: ðH2Þ

Note that the threshold mthðn̄Þ in phase space is a function
of the average total density. We test various total average
densities n̄ across the multistable regime n∞− < n̄ < n−lat
and vary the “shape parameters” of the perturbation—
amplitude a and width w—throughout their respective
maximal ranges: 0 < a < m�ðn̄Þ and 0 < w < L.
Figure 24 shows that there is good agreement between
the geometrically estimated threshold and the actual basins
of attraction determined by numerical simulation.

APPENDIX I: STABILITY OF STATIONARY
PATTERNS

In our analysis of stationary patterns, we touch the
question of stability of these patterns only peripherally in
Sec. VII B. Coarsening, i.e., the instability of multipeak and
multimesa patterns, in 2C-MCRD systems has been studied
before both numerically [25,34] and semianalytically [24]
for specific choices for the reaction kinetics fðm; cÞ. For
specific reaction terms fðm; cÞ that allow a mapping of
the reaction-diffusion dynamics to an effective gradient
dynamics, stability of patterns can be analyzed with the
help of the effective free energy that is minimized by the
stationary pattern [44,46]. In the broader class of two-
component systems without conserved total density, sta-
bility of stationary patterns has been subject to numerous
mathematical studies; see, e.g., Refs. [75,166,180].
Instead of the technical tools typically employed there,

we choose a more heuristic approach here, building on the
physical intuition we gain throughout this work. We restrict
our analysis to the case of mesa patterns with a small
interface width compared to the system size (lint ≪ L).
Our starting point is the insight that the stationary pattern

½m̃ðxÞ; c̃ðxÞ� is embedded in a flux-balance subspace
[Eq. (10)], whose position η∞0 is determined by total
turnover balance [Eq. (17)]. We hence write the stationary
pattern as a pair ½m̃ðxÞ; η∞0 �, where only m̃ðxÞ depends on x.
Next, recall that the pattern itself is scaffolded by local
equilibria. In particular, the plateaus are slaved to the
plateau scaffolds m�ðη∞0 Þ, and the pattern inflection point
is determined bym0ðη∞0 Þ. Following a perturbation δmðx; tÞ
of the stationary pattern profile, the plateaus quickly return
to their stable local equilibria, the plateau scaffoldsm�. On
the other hand, a perturbation of the mass-redistribution
potential (FBS position) δη, not only shifts the plateau
scaffolds, but also causes an imbalance of total reactive
turnover. This imbalance drives the dynamics of ηðx; tÞ and,

thus, determines the stability of the pattern, as we see
in the following.
The dynamics of ηðx; tÞ ¼ cðx; tÞ þmðx; tÞDm=Dc fol-

lows straightforwardly from the reaction-diffusion dynam-
ics Eq. (1) and read

∂tηðx; tÞ ¼ Dc∂2
xηþ ðDm=Dc − 1Þ∂tm

¼ Dc∂2
xηþDmðDm=Dc − 1Þ∂2

xm

þ ðDm=Dc − 1Þf̃ðm; ηÞ: ðI1Þ

In linearization around a stationary pattern ½m̃ðxÞ; η∞0 �,
we have

∂tδηðx; tÞ ¼ Dc∂2
xδηþDmðDm=Dc − 1Þ∂2

xδm

þ ðDm=Dc − 1Þ½f̃mδmþ f̃ηδη�ðm̃ðxÞ;η∞
0
Þ; ðI2Þ

where the membrane perturbation δm ¼ δmðx; tÞ is gov-
erned by the linearization of the reaction-diffusion dynam-
ics Eq. (1a). The intuition is that δmðx; tÞ quickly relaxes
to the scaffold of local equilibria. We therefore focus on
the dynamics of δηðx; tÞ, which affects the scaffold itself
by shifting local equilibria, in particular, the plateau
scaffolds m�ðηÞ.
Reactive turnover balance is primarily determined in the

interfacial region (cf. Fig. 2) around the pattern inflection
point x0. We therefore focus on the interface region to learn
how an imbalance of total reactive turnover affects the
perturbation of the mass-redistribution potential (FBS shift)
δηðx; tÞ. To that end, we use that the gradient of the
membrane profile, ∂xm̃ðxÞ, is negligible in the plateaus,
whereas it peaks at the inflection point x0. We hence
multiply Eq. (I2) by ∂xm̃ðxÞ and integrate over the whole
domain ½0; L� to obtain

∂tδηðx0; tÞ ≈ δηðx0; tÞ
Dm=Dc − 1

mþ −m−

Z
mþ

m−

dmf̃ηðm; η∞0 Þ

þDc∂2
xδηðx0; tÞ þO½δmðx; tÞ�: ðI3Þ

We neglect contributions O½δmðx; tÞ� that correspond to
perturbation along the direction of the FBS and quickly
relax to the scaffold on the timescale jσlocj−1, fast compared
to the contribution by the first term in Eq. (I3).
Furthermore, because mass redistribution ηðx; tÞ quickly
homogenizes in the (small) interface region, we can neglect
the second term ∂2

xδηðx0; tÞ.
Figure 25 shows a comparison of the heuristic estimates

of perturbation growth or decay rate based on Eq. (43) to
numerically determined dominant eigenvalues σmaxðDcÞ
(linear stability analysis of stationary patterns determined
by numerical continuation). The dominant eigenvalue
σmaxðDcÞ crosses over from the system-size-independent
growth rate of perturbations for Dc < Dm to system-
size-dependent decay of perturbations for Dc > Dm.

BRAUNS, HALATEK, and FREY PHYS. REV. X 10, 041036 (2020)

041036-42



The instability is well estimated by the turnover imbalance
term in Eq. (43) [dashed red line in the inset in Fig. 25(b)],
while the rate at which perturbations decay in the stable
regime (Dc > Dm) is limited by diffusive transport
σdiff ∼Dc=L2 between the far ends of the system.
Reactive timescales become limiting in the stable regime
only when σdiff ≈ σloc, that is, for fast enough cytosolic
diffusion or a small system.

APPENDIX J: WEAKLY NONLINEAR ANALYSIS

Our goal is to find the stationary pattern in the vicinity of
the onset of lateral instability (Turing bifurcation). To that
end, we expand the stationary state ½m̃ðxÞ; η0� in harmonic
functions (eigenmodes of the Laplace operator under no-
flux boundary conditions):

m̃ðxÞ ≈m� þ δm0 þ δm1 cosðπx=LÞ þ δm2 cosð2πx=LÞ;
ðJ1aÞ

η0 ≈ η� þ δη0; ðJ1bÞ

where η� ¼ m�Dm=Dc þ c� is the FBS position of the
homogenous steady state. Mass conservation necessitates
δm0 þ δη0 − δm0Dm=Dc ¼ 0; hence,

δη0 ¼ ðDm=Dc − 1Þδm0:

We plug the ansatz Eq. (J1a) into the stationarity condition
[Eq. (14a)], Taylor expand f̃, and project onto the zeroth
harmonic (these calculations is most conveniently done in
computer algebra software, e.g., Mathematica)

0 ¼ ½f̃m þ ð1 −Dm=DcÞf̃η�δm0 þ
1

4
f̃mmδm2

1

þOðδm2
0; δm

2
1δm2; δm0δm2

1; δm0δm2
2Þ; ðJ2Þ

and onto the second harmonic

0 ¼ ðf̃m − 4Dmπ
2=L2Þδm2 þ

1

4
f̃mmδm2

1

þOðδm2
2; δm0δm2

1; δm
2
0δm2; δm2

1δm2Þ: ðJ3Þ

Solving for δm0 and δm2, we get

δm0 ¼
1

4

f̃mm

f̃m þ ð1 −Dm=DcÞf̃η
δm2

1 þOðδm4
1Þ; ðJ4aÞ

δm2 ¼
1

4

f̃mm

f̃m − 4Dmπ
2=L2

δm2
1 þOðδm4

1Þ: ðJ4bÞ

These equations describe how asymmetry of the nullcline
shape (and, thereby, reactive turnover) influences the
pattern profile. For f̃mm ¼ 0, the turnovers on either side

(a)

(b)

(c)

FIG. 25. Stability of stationary patterns as a function of Dc.
(a) Pattern amplitude for Dc sweeps at constant n̄ ¼ nstat for two
system sizes L ¼ 50 (yellow) and L ¼ 100 (blue), obtained by
numerical continuation and geometric construction (correspond-
ing to L → ∞, dashed black line). The fixed parameters are the
same as in Fig. 6. Finite size affects the stationary pattern
amplitude only in the vicinity of the saddle-node bifurcation at
≈Dmin

c (see the inset: enlarged gray box). The purple line marks
Dc ¼ Dm. (b) Numerically determined dominant eigenvalues
(maximal real part shown as solid lines) indicating linear stability
of the patterns. Patterns are stable for Dc > Dm and unstable for
Dc < Dm, as predicted by the geometric arguments. The dom-
inant eigenvalue for the unstable patterns is almost independent
of the system size. The approximation based on this geometric
intuition of turnover imbalance [first term in Eq. (43)] is shown as
a red, dashed line in the inset. (c) Enlargement of the σ axis, for
negative values. For stable patterns (Dc > Dm), decay of pertur-
bations is mainly determined by the timescale ∼Dc=L2 of mass
transfer from one end of the system to the other. (The dot-dashed
lines show the relation −αDc=L2, where the prefactor α ≈ 3.1 that
depends on the system specifics is fitted by eye.)
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of the inflection point grow symmetrically (with opposite
sign) as the amplitude δm1 of the pattern increases. This
symmetry of the turnovers occurs only at the inflection
point of the nullcline where its shape is point symmetric.
Away from the inflection point of the nullcline, its shape is
no longer symmetric around the steady state ðm�; c�Þ, and,
respectively, the turnovers grow asymmetrically in the two
halves of the system. This asymmetry creates an imbalance
of the total turnover that is compensated by two effects:
(i) the flux-balance subspace shifts (i.e., η0 deviates from
η�), and (ii) the pattern itself becomes asymmetric as the
second harmonic has a nonzero amplitude δm2. Together,
these two effects compensate the asymmetry of the turn-
overs, such that total turnover balance is reached.
The amplitude δm1 of the stationary pattern is obtained

by projecting (14a) onto the first harmonic cosðπx=LÞ:

0 ¼ F1δm1 þ F3δm3
1 þOðδm5

1Þ; ðJ5Þ

where

F1 ¼ f̃m −Dmπ
2=L2 ðJ6Þ

and

F3 ¼
f̃mmm

8
−
f̃mm

8

f̃mm

f̃m − 4Dmπ
2=L2

−
f̃mm

4

f̃mm − ð1 −Dm=DcÞf̃mη

f̃m − ð1 −Dm=DcÞf̃η
: ðJ7Þ

Since there is no second-order term in Eq. (J5), patterns
always originate in a pitchfork bifurcation. At the bifurca-
tion point, the first-order coefficient vanishes (F1 ¼ 0). The
system is laterally unstable if F1 is positive [cf. Eq. (28)].
Hence, only if F3 < 0 can the third-order coefficient
saturate the pattern amplitude (supercritical bifurcation).
For F3 > 0, the bifurcation is subcritical.
The third-order coefficient can be simplified further:

A simple calculation shows that

f̃m − ð1 −Dm=DcÞf̃η ¼ fm − fc ¼ σloc; ðJ8Þ

and therefore

f̃mm − ð1 −Dm=DcÞf̃mη ¼ ∂mσlocðm; η −mDm=DcÞ
¼ ∂̃mσlocðm; ηÞ; ðJ9Þ

where ∂̃m ¼ ∂m − ðDm=DcÞ∂c is the derivative along the
flux-balance subspace. With that, the second summand in
the brackets in F3 [cf. Eq. (J7)] can be rewritten, and we
obtain

F3 ¼
f̃mmm

8
−
f̃mm

2

�
f̃mm=2

f̃m − 4Dmπ
2=L2

þ ∂̃mσloc
σloc

�
: ðJ10Þ

We further rewrite the denominator of the first summand in
the brackets as F1 − 3Dmπ

2=L2 and use that F1 vanishes
at the bifurcation point (i.e., is small in its vicinity). We
thus have

F3 ¼
f̃mmm

8
þ f̃2mm

24

L2

π2Dm
−
f̃mm

4

∂̃mσloc
σloc

þOðF1Þ: ðJ11Þ

Note that, in weakly nonlinear approximation Eq. (46) in
the main text, we pull the OðF1Þ out from F3 to simplify
notation. The role and physical interpretation of the three
terms in F3, as written in the form Eq. (J11), are discussed
in the main text in Sec. VII D.

APPENDIX K: NULLCLINE CURVATURE
APPROXIMATION

In the following, we show that the nullcline curvature κ
can be approximated by

κ ≈ −
f2c

ðf2m þ f2cÞ3=2
f̃mm; ðK1Þ

in the vicinity of the Turing bifurcation [onset of lateral
instability; recall the slope criterion Eq. (25)]. Start by
rewriting the second derivative f̃mm in terms of derivatives
of f:

f̃mm ¼ ∂2
mf

�
m; η −

Dm

Dc
m
�

¼ fmm − 2
Dm

Dc
fmc þ

�
Dm

Dc

�
2

fcc: ðK2Þ

In the vicinity of the Turing bifurcation, we have
−Dm=Dc ≈ −fm=fc [from the slope criterion for lateral
instability, Eq. (25)], so we obtain

f̃mm ≈ f−2c ½f2cfmm − 2fmfcfmc þ f2mfcc�: ðK3Þ

Comparing to the formula for the curvature κ of an
implicitly determined curve fðm; cÞ ¼ 0

κ ¼ −
f2cfmm − 2fmfcfmc þ f2mfcc

ðf2m þ f2cÞ3=2
; ðK4Þ

one sees that the numerator of the curvature formula is
identical to the term in the square brackets in Eq. (K3).
Thus, by combining Eqs. (K3) and (K4), we obtain the
approximation Eq. (K1).
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APPENDIX L: TOPOLOGICAL EQUIVALENCE
OF 2C-MCRD SYSTEMS SHEAR BANDING

IN COMPLEX FLUIDS

Analogies between the shear banding in complex fluids,
phase separation near thermal equilibrium, and reaction-
diffusion systems have been drawn before on mathematical
grounds, i.e., using similarity of the equations used
describe these phenomena [181,182]. The phase-space
analysis of MCRD pattern formation presented in the
present work establishes a connection to shear banding
on the basis of phase-space geometry. More specifically,
these two phenomena can be regarded as topologically
equivalent; i.e., they can be understood in terms of
equivalent geometric objects in phase space. We briefly
outline this connection in the following.
Complex fluids can exhibit a nonmonotonic constitu-

tive relationship Σð_γÞ between the total stress Σ and the
(homogeneous) strain rate _γ [128,139]. When the total
stress decreases upon an increase in strain rate, ∂ _γΣ < 0, a
mechanical instability results, which leads to a separation
of a sheared fluid into “shear bands” with different
viscosities and strain rates, which coexist at a common
total stress. The “common total stress” construction on
the constitutive curve Σð_γÞ employed to analyze this
phenomenon (in a one-dimensional system) is analogous
to our flux-balance construction on the reactive nullcline
for 2C-MCRD systems (see Sec. III C), by means of a
mapping ðn; ηÞ ↔ ð_γ;ΣÞ between the phase-space varia-
bles. The average strain rate _̄γ ¼ L−1 R L

0 dx_γ is analogous
to the average total density n̄. The constitutive Σð_γÞ curve
is analogous to the reactive nullcline. The steady-state
conditions are spatially uniform total stress and flux
balance (spatially uniform mass-redistribution potential;
see Sec. III B), respectively. The selection of the common
total stress generally depends on the details of the model
[183], in particular, on stress diffusion [184]. For simple
models, it can be pictured similarly to a Maxwell
construction (cf. total turnover balance in a 2C-MCRD
system illustrated in Fig. 2). Furthermore, momentum
propagation due to stress gradients in complex fluids is
equivalent to mass redistribution due to concentration
gradients in MCRD systems. Accordingly, the low
Reynolds number limit is analogous to the Dc → ∞ limit
in the 2C-MCRD system.
Taking these analogies together, we conclude that

these physically distinct phenomena are topologically
equivalent and can be studied with similar phase-space
geometric tools. Such a connection might benefit both
fields as more involved scenarios are investigated, for
instance, coupling to additional degrees of freedom: For
models of complex fluids, additional spatial dimensions
[185], and coupling to internal structure of the fluid
[186,187], can lead to a variety of intricate spatiotem-
poral patterns; for mass-conserving reaction-diffusion
systems, additional components or additional conserved

species can equally lead to a broad range of phenomena
[16,63,144]. Studying such systems in terms of local
equilibria theory offers an exciting new perspective for
future research.
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Mosc. Univ. Bull. Math. 1, 1 (1937).

[13] D. Jones, M. Plank, and B. Sleeman, in Differential
Equations and Mathematical Biology, 2nd ed., Chapman
& Hall/CRC Mathematical and Computational Biology
Series (Taylor & Francis, London, 2009).

[14] J. Halatek, F. Brauns, and E. Frey, Self-Organization
Principles of Intracellular Pattern Formation, Phil. Trans.
R. Soc. B 373, 20170107 (2018).

[15] F. Brauns, H. Weyer, J. Halatek, J. Yoon, and E. Frey,
Wavelength Selection by Interrupted Coarsening in Re-
action-Diffusion Systems, arXiv:2005.01495.

[16] J. Halatek and E. Frey, Rethinking Pattern Formation in
Reaction-Diffusion Systems, Nat. Phys. 14, 507 (2018).

[17] The reactive equilibria are not thermal equilibria but
nonequilibrium steady states. Specifically, the concept
local reactive equilibria should not be confused with the

PHASE-SPACE GEOMETRY OF MASS-CONSERVING REACTION- … PHYS. REV. X 10, 041036 (2020)

041036-45

https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1098/rstb.2017.0107
https://doi.org/10.1098/rstb.2017.0107
https://arXiv.org/abs/2005.01495
https://doi.org/10.1038/s41567-017-0040-5


concept of local thermal equilibria in Onsager’s theory of
systems close to thermal equilibrium [18]. We use the term
“equilibrium” in the original, broad meaning of the term,
namely, the balance of opposing “forces.” The specifier
“reactive” emphasizes that the balance is between chemical
“reactions” or more general kinetic processes if the
equations are not interpreted in terms of chemical but a
broader class of agents.

[18] L. Onsager, Reciprocal Relations in Irreversible Proc-
esses. I, Phys. Rev. 37, 405 (1931).

[19] J. Denk, S. Kretschmer, J. Halatek, C. Hartl, P. Schwille,
and E. Frey, MinE Conformational Switching Confers
Robustness on Self-Organized Min Protein Patterns, Proc.
Natl. Acad. Sci. U.S.A. 115, 4553 (2018).

[20] M. C. Wigbers, F. Brauns, T. Hermann, and E. Frey,
Pattern Localization to a Domain Edge, Phys. Rev. E
101, 022414 (2020).

[21] M. C. Wigbers, F. Brauns, C. Y. Leung, and E. Frey, Flow
Induced Symmetry Breaking in a Conceptual Polarity
Model, Cells 9, 1524 (2020).

[22] F. Brauns, G. Pawlik, J. Halatek, J. Kerssemakers, E. Frey,
and C. Dekker, Bulk-Surface Coupling Reconciles Min-
Protein Pattern Formation in Vitro and in Vivo, preprint
on bioRxiv, https://doi.org/10.1101/2020.03.01.971952.

[23] F. Brauns, J. Halatek, and E. Frey (to be published).
[24] S. Ishihara, M. Otsuji, and A. Mochizuki, Transient and

Steady State of Mass-Conserved Reaction-Diffusion Sys-
tems, Phys. Rev. E 75, 015203(R) (2007).

[25] M. Otsuji, S. Ishihara, C. Co, K. Kaibuchi, A. Mochizuki,
and S. Kuroda, A Mass Conserved Reaction-Diffusion
System Captures Properties of Cell Polarity, PLoS Com-
put. Biol. 3, e108 (2007).

[26] A. B. Goryachev and A. V. Pokhilko, Dynamics of Cdc42
Network Embodies a Turing-Type Mechanism of Yeast
Cell Polarity, FEBS Lett. 582, 1437 (2008).

[27] S. J. Altschuler, S. B. Angenent, Y. Wang, and L. F. Wu,
On the Spontaneous Emergence of Cell Polarity, Nature
(London) 454, 886 (2008).

[28] Y. Mori, A. Jilkine, and L. Edelstein-Keshet, Wave-
Pinning and Cell Polarity from a Bistable Reaction-
Diffusion System, Biophys. J. 94, 3684 (2008).

[29] A. Jilkine and L. Edelstein-Keshet, A Comparison of
Mathematical Models for Polarization of Single Eukary-
otic Cells in Response to Guided Cues, PLoS Comput.
Biol. 7, e1001121 (2011).

[30] A. Jilkine, S. B. Angenent, L. F. Wu, and S. J. Altschuler, A
Density-Dependent Switch Drives Stochastic Clustering
and Polarization of Signaling Molecules, PLoS Comput.
Biol. 7, e1002271 (2011).

[31] L. Edelstein-Keshet, W. R. Holmes, M. Zajac, and M.
Dutot, From Simple to Detailed Models for Cell Polari-
zation, Phil. Trans. R. Soc. B 368, 20130003 (2013).

[32] P. K. Trong, E. M. Nicola, N. W. Goehring, K. V. Kumar,
and S.W. Grill, Parameter-Space Topology of Models for
Cell Polarity, New J. Phys. 16, 065009 (2014).

[33] S. Seirin Lee and T. Shibata, Self-Organization and
Advective Transport in the Cell Polarity Formation for
Asymmetric Cell Division, J. Theor. Biol. 382, 1 (2015).

[34] J.-G. Chiou, S. A. Ramirez, T. C. Elston, T. P. Witelski,
D. G. Schaeffer, and D. J. Lew, Principles That Govern

Competition or Co-existence in Rho-GTPase Driven
Polarization, PLoS Comput. Biol. 14, e1006095 (2018).

[35] R. Diegmiller, H. Montanelli, C. B. Muratov, and S. Y.
Shvartsman, Spherical Caps in Cell Polarization, Biophys.
J. 115, 26 (2018).

[36] L. Hubatsch, F. Peglion, J. D. Reich, N. T. L. Rodrigues, N.
Hirani, R. Illukkumbura, and N.W. Goehring, A Cell-Size
Threshold Limits Cell Polarity and Asymmetric Division
Potential, Nat. Phys. 15, 1078 (2019).

[37] E. F. Keller and L. A. Segel, Initiation of Slime Mold
Aggregation Viewed as an Instability, J. Theor. Biol. 26,
399 (1970).

[38] K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H. M.
Byrne, V. Cristini, and J. Lowengrub, Density-Dependent
Quiescence in Glioma Invasion: Instability in a Simple
Reaction-Diffusion Model for the Migration/Proliferation
Dichotomy, J. Biol. Dyn. 6, 54 (2012).

[39] A. Scheel, Robustness of Liesegang Patterns, Nonlinearity
22, 457 (2009).

[40] D. Hilhorst, R. van der Hout, M. Mimura, and I.
Ohnishi, Fast Reaction Limits and Liesegang Bands, in
Free Boundary Problems (Springer, New York, 2006),
pp. 241–250.

[41] F. van Wijland, K. Oerding, and H. Hilhorst, Wilson
Renormalization of a Reaction-Diffusion Process, Physica
(Amsterdam) 251A, 179 (1998).

[42] D. A. Kessler and H. Levine, Fluctuation-Induced Diffu-
sive Instabilities, Nature (London) 394, 556 (1998).

[43] G. Caginalp, An Analysis of a Phase Field Model of a Free
Boundary, Arch. Ration. Mech. Anal. 92, 205 (1986).

[44] Y. Morita and T. Ogawa, Stability and Bifurcation of
Nonconstant Solutions to a Reaction-Diffusion System
with Conservation of Mass, Nonlinearity 23, 1387 (2010).

[45] A. Pogan and A. Scheel, Layers in the Presence of
Conservation Laws, J. Dyn. Differ. Equ. 24, 249 (2012).

[46] R. N. Goh, S. Mesuro, and A. Scheel, Spatial Wavenumber
Selection in Recurrent Precipitation, SIAM J. Appl. Dyn.
Syst. 10, 360 (2011).

[47] S. Jimbo and Y. Morita, Lyapunov Function and Spectrum
Comparison for a Reaction-Diffusion System with Mass
Conservation, J. Differ. Equ. 255, 1657 (2013).

[48] E. Latos, Y. Morita, and T. Suzuki, Stability and Spectral
Comparison of a Reaction-Diffusion System with Mass
Conservation, J. Dyn. Differ. Equ. 30, 823 (2018).

[49] L. Pismen, Patterns and Interfaces in Dissipative Dynam-
ics, Springer Series in Synergetics (Springer-Verlag,
Berlin, 2006).

[50] I. Prigogine and R. Lefever, Symmetry Breaking Instabil-
ities in Dissipative Systems. II, J. Chem. Phys. 48, 1695
(1968).

[51] M. Kuwamura and Y. Morita, Perturbations and Dynamics
of Reaction-Diffusion Systems with Mass Conservation,
Phys. Rev. E 92, 012908 (2015).

[52] M. Kuwamura and H. Izuhara, Diffusion-Driven Destabi-
lization of Spatially Homogeneous Limit Cycles in
Reaction-Diffusion Systems, Chaos 27, 033112 (2017).

[53] Y. Mori, A. Jilkine, and L. Edelstein-Keshet, Asymptotic
and Bifurcation Analysis of Wave-Pinning in a Reaction-
Diffusion Model for Cell Polarization, SIAM J. Appl.
Math. 71, 1401 (2011).

BRAUNS, HALATEK, and FREY PHYS. REV. X 10, 041036 (2020)

041036-46

https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1073/pnas.1719801115
https://doi.org/10.1073/pnas.1719801115
https://doi.org/10.1103/PhysRevE.101.022414
https://doi.org/10.1103/PhysRevE.101.022414
https://doi.org/10.3390/cells9061524
https://doi.org/10.1101/2020.03.01.971952
https://doi.org/10.1103/PhysRevE.75.015203
https://doi.org/10.1371/journal.pcbi.0030108
https://doi.org/10.1371/journal.pcbi.0030108
https://doi.org/10.1016/j.febslet.2008.03.029
https://doi.org/10.1038/nature07119
https://doi.org/10.1038/nature07119
https://doi.org/10.1529/biophysj.107.120824
https://doi.org/10.1371/journal.pcbi.1001121
https://doi.org/10.1371/journal.pcbi.1001121
https://doi.org/10.1371/journal.pcbi.1002271
https://doi.org/10.1371/journal.pcbi.1002271
https://doi.org/10.1098/rstb.2013.0003
https://doi.org/10.1088/1367-2630/16/6/065009
https://doi.org/10.1016/j.jtbi.2015.06.032
https://doi.org/10.1371/journal.pcbi.1006095
https://doi.org/10.1016/j.bpj.2018.05.033
https://doi.org/10.1016/j.bpj.2018.05.033
https://doi.org/10.1038/s41567-019-0601-x
https://doi.org/10.1016/0022-5193(70)90092-5
https://doi.org/10.1016/0022-5193(70)90092-5
https://doi.org/10.1080/17513758.2011.590610
https://doi.org/10.1088/0951-7715/22/2/012
https://doi.org/10.1088/0951-7715/22/2/012
https://doi.org/10.1016/S0378-4371(97)00603-1
https://doi.org/10.1016/S0378-4371(97)00603-1
https://doi.org/10.1038/29020
https://doi.org/10.1007/BF00254827
https://doi.org/10.1088/0951-7715/23/6/007
https://doi.org/10.1007/s10884-012-9248-3
https://doi.org/10.1137/100793086
https://doi.org/10.1137/100793086
https://doi.org/10.1016/j.jde.2013.05.021
https://doi.org/10.1007/s10884-018-9650-6
https://doi.org/10.1063/1.1668896
https://doi.org/10.1063/1.1668896
https://doi.org/10.1103/PhysRevE.92.012908
https://doi.org/10.1063/1.4978924
https://doi.org/10.1137/10079118X
https://doi.org/10.1137/10079118X


[54] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.10.041036 for Movie 1
and Mathematica notebooks.

[55] P. C. Hohenberg and B. I. Halperin, Theory of Dynamic
Critical Phenomena, Rev. Mod. Phys. 49, 435 (1977).

[56] A. M. Turing, The Chemical Basis of Morphogenesis, Phil.
Trans. R. Soc. B 237, 37 (1952).

[57] We use the terms lateral instability and Turing instability
interchangeably, which means we take the term Turing
instability slightly more general than it is typically done in
the literature, where Turing instability became exclusively
associated with instabilities that have a characteristic
wavelength at onset, called type I in the Cross-Hohenberg
classification scheme [58].

[58] M. C. Cross and P. C. Hohenberg, Pattern Formation
outside of Equilibrium, Rev. Mod. Phys. 65, 851 (1993).

[59] K. Kang, T. Kolokolnikov, and M. J. Ward, The Stability
and Dynamics of a Spike in the 1D Keller-Segel Model,
IMA J. Appl. Math. 72, 140 (2007).

[60] In MCRD systems with more than two components, the
coupling to additional components can lead to destabiliza-
tion of the plateaus [15]; such processes are referred to
as “anticoarsening” [61], “peak splitting” [62,63], or “self-
replication” [64] in the literature.

[61] M. Ivanov, V. Popkov, and J. Krug, Anticoarsening
and Complex Dynamics of Step Bunches on Vicinal
Surfaces during Sublimation, Phys. Rev. E 82, 011606
(2010).

[62] E. J. Crampin, E. A. Gaffney, and P. K. Maini, Mode-
Doubling and Tripling in Reaction-Diffusion Patterns
on Growing Domains: A Piecewise Linear Model, J. Math.
Biol. 44, 107 (2002).

[63] S. M. Murray and V. Sourjik, Self-Organization and
Positioning of Bacterial Protein Clusters, Nat. Phys. 13,
1006 (2017).

[64] T. Kolokolnikov, M. Ward, and J. Wei, Self-Replication of
Mesa Patterns in Reaction-Diffusion Systems, Physica
(Amsterdam) 236D, 104 (2007).

[65] M. J. Ward, Asymptotic Methods for Reaction-Diffusion
Systems: Past and Present, Bull. Math. Biol. 68, 1151
(2006).

[66] The complement to a peak is a “trough” pattern, composed
of an interface connected to a high-density plateau.

[67] Given η0 and the boundary condition mðx → −∞Þ →
m−ðη0Þ, one can determine the entire peak profile using
the rolling-ball analogy: The profile corresponds to the
Newtonian trajectory mðxÞ of a mass point in a potential
VðmÞ ¼ −

R
dmf, where m is the “position” of the mass

point and x is “time.”
[68] N.W. Goehring, P. K. Trong, J. S. Bois, D. Chowdhury,

E. M. Nicola, A. A. Hyman, and S. W. Grill, Polarization
of PAR Proteins by Advective Triggering of a Pattern-
Forming System, Science 334, 1137 (2011).

[69] P. W. Bates and P. C. Fife, The Dynamics of Nucleation for
the Cahn-Hilliard Equation, SIAM J. Appl. Math. 53, 990
(1993).

[70] M. E. Cates and E. Tjhung, Theories of Binary Fluid
Mixtures: From Phase-Separation Kinetics to Active
Emulsions, J. Fluid Mech. 836, P1 (2018).

[71] F. Bergmann, L. Rapp, and W. Zimmermann, Active Phase
Separation: A Universal Approach, Phys. Rev. E 98,
020603(R) (2018).

[72] S. M. Allen and J. W. Cahn, Ground State Structures in
Ordered Binary Alloys with Second Neighbor Interactions,
Acta Metall. 20, 423 (1972).

[73] For a simple contact process with noise, the case Dc < Dm

(i.e., the self-recruiting component is the faster diffusing
one) shows interesting correlations, while a first-order
phase transition is conjectured for Dm < Dc [41]. Note,
however, that the simple contact process under consid-
eration in Ref. [41] does not exhibit bistability.

[74] The slope snc of a continuous reactive nullcline smoothly
approaches the slope −1 at the saddle-node bifurcations of
the reactive equilibria. Hence, as Dc is decreased, the
laterally unstable regions shrink but disappear fully only at
Dc ¼ Dm. In the vicinity of the saddle-node bifurcations
for sufficiently small Dc ≳Dm, no stationary patterns
exist, but there are still small regions of lateral instability.

[75] Y. Nishiura and H. Fujii, Stability of Singularly Perturbed
Solutions to Systems of Reaction-Diffusion Equations,
SIAM J. Math. Anal. 18, 1726 (1987).

[76] A. B. Goryachev and M. Leda, Many Roads to Symmetry
Breaking: Molecular Mechanisms and Theoretical Models
of Yeast Cell Polarity, Mol. Biol. Cell 28, 370 (2017).

[77] P. Manneville, in Dissipative Structures and Weak Turbu-
lence, edited by P. Manneville (Academic, Boston, 1990).

[78] V. I. Arnold, Geometrical Methods in the Theory of
Ordinary Differential Equations, 2nd ed., edited by M.
Levi (Springer, New York, 1988).

[79] J. Murdock, Normal Forms and Unfoldings for Local
Dynamical Systems, Springer Monographs in Mathematics
(Springer, New York, 2003).

[80] J. P. Campanale, T. Y. Sun, and D. J. Montell,Development
and Dynamics of Cell Polarity at a Glance, J. Cell Sci.
130, 1201 (2017).

[81] J.-g. Chiou, M. K. Balasubramanian, and D. J. Lew, Cell
Polarity in Yeast, Annu. Rev. Cell Dev. Biol. 33, 77
(2017).

[82] M. Loose, E. Fischer-Friedrich, J. Ries, K. Kruse, and P.
Schwille, Spatial Regulators for Bacterial Cell Division
Self-Organize into Surface Waves in Vitro, Science 320,
789 (2008).

[83] V. Ivanov and K. Mizuuchi, Multiple Modes of Intercon-
verting Dynamic Pattern Formation by Bacterial Cell
Division Proteins, Proc. Natl. Acad. Sci. U.S.A. 107,
8071 (2010).

[84] K. Zieske and P. Schwille, Reconstitution of Self-
Organizing Protein Gradients as Spatial Cues in Cell-
Free Systems, eLife 3, e03949 (2014).

[85] A. G. Vecchiarelli, M. Li, M. Mizuuchi, and K. Mizuuchi,
Differential Affinities of MinD and MinE to Anionic
Phospholipid Influence Min Patterning Dynamics in Vitro,
Mol. Microbiol. 93, 453 (2014).

[86] Y. Caspi and C. Dekker,Mapping out Min Protein Patterns
in Fully Confined Fluidic Chambers, eLife 5, e19271
(2016).

[87] S. Kretschmer, K. Zieske, and P. Schwille, Large-Scale
Modulation of Reconstituted Min Protein Patterns and

PHASE-SPACE GEOMETRY OF MASS-CONSERVING REACTION- … PHYS. REV. X 10, 041036 (2020)

041036-47

http://link.aps.org/supplemental/10.1103/PhysRevX.10.041036
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041036
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041036
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041036
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041036
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041036
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041036
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1093/imamat/hxl028
https://doi.org/10.1103/PhysRevE.82.011606
https://doi.org/10.1103/PhysRevE.82.011606
https://doi.org/10.1007/s002850100112
https://doi.org/10.1007/s002850100112
https://doi.org/10.1038/nphys4155
https://doi.org/10.1038/nphys4155
https://doi.org/10.1016/j.physd.2007.07.014
https://doi.org/10.1016/j.physd.2007.07.014
https://doi.org/10.1007/s11538-006-9091-y
https://doi.org/10.1007/s11538-006-9091-y
https://doi.org/10.1126/science.1208619
https://doi.org/10.1137/0153049
https://doi.org/10.1137/0153049
https://doi.org/10.1017/jfm.2017.832
https://doi.org/10.1103/PhysRevE.98.020603
https://doi.org/10.1103/PhysRevE.98.020603
https://doi.org/10.1016/0001-6160(72)90037-5
https://doi.org/10.1137/0518124
https://doi.org/10.1091/mbc.e16-10-0739
https://doi.org/10.1242/jcs.188599
https://doi.org/10.1242/jcs.188599
https://doi.org/10.1146/annurev-cellbio-100616-060856
https://doi.org/10.1146/annurev-cellbio-100616-060856
https://doi.org/10.1126/science.1154413
https://doi.org/10.1126/science.1154413
https://doi.org/10.1073/pnas.0911036107
https://doi.org/10.1073/pnas.0911036107
https://doi.org/10.7554/eLife.03949
https://doi.org/10.1111/mmi.12669
https://doi.org/10.7554/eLife.19271
https://doi.org/10.7554/eLife.19271


Gradients by Defined Mutations in MinE’s Membrane
Targeting Sequence, PLoS One 12, e0179582 (2017).

[88] P. Glock, J. Broichhagen, S. Kretschmer, P. Blumhardt, J.
Mücksch, D. Trauner, and P. Schwille,Optical Control of a
Biological Reaction-Diffusion System, Angew. Chem., Int.
Ed. 57, 2362 (2018).

[89] T. Litschel, B. Ramm, R. Maas, M. Heymann, and P.
Schwille, Beating Vesicles: Encapsulated Protein Oscil-
lations Cause Dynamic Membrane Deformations, Angew.
Chem., Int. Ed. 57, 16286 (2018).

[90] B. Ramm, P. Glock, J. Mücksch, P. Blumhardt, D. A.
García-Soriano, M. Heymann, and P. Schwille, The MinDE
System Is a Generic Spatial Cue for Membrane Protein
Distribution in Vitro, Nat. Commun. 9, 3942 (2018).

[91] S. Kohyama, N. Yoshinaga, M. Yanagisawa, K. Fujiwara,
and N. Doi, Cell-Sized Confinement Controls Generation
and Stability of a Protein Wave for Spatiotemporal
Regulation in Cells, eLife 8, e44591 (2019).

[92] P. Glock, F. Brauns, J. Halatek, E. Frey, and P. Schwille,
Design of Biochemical Pattern Forming Systems from
Minimal Motifs, eLife 8, e48646 (2019).

[93] K. J. A. Vendel, S. Tschirpke, F. Shamsi, M. Dogterom,
and L. Laan, Minimal in Vitro Systems Shed Light on Cell
Polarity, J. Cell Sci. 132, jcs217554 (2019).

[94] A. H. Chau, J. M. Walter, J. Gerardin, C. Tang, and W. A.
Lim,Designing Synthetic Regulatory Networks Capable of
Self-Organizing Cell Polarization, Cell 151, 320 (2012).

[95] L. Marcon, X. Diego, J. Sharpe, and P. Müller, High-
Throughput Mathematical Analysis Identifies Turing Net-
works for Patterning with Equally Diffusing Signals, eLife
5, e14022 (2016).

[96] S. S. Sugai, K. L. Ode, and H. R. Ueda, A Design Principle
for an Autonomous Post-translational Pattern Formation,
Cell Rep. 19, 863 (2017).

[97] X. Diego, L. Marcon, P. Müller, and J. Sharpe, Key
Features of Turing Systems Are Determined Purely by
Network Topology, Phys. Rev. X 8, 021071 (2018).

[98] D. Cusseddu, L. Edelstein-Keshet, J. Mackenzie, S. Portet,
and A. Madzvamuse, A Coupled Bulk-Surface Model for
Cell Polarisation, J. Theor. Biol. 481, 119 (2019).

[99] A. Gamba, I. Kolokolov, V. Lebedev, and G. Ortenzi,
Universal Features of Cell Polarization Processes, J. Stat.
Mech. (2009) P02019.

[100] B. Novák and J. J. Tyson, Design Principles of Biochemi-
cal Oscillators, Nat. Rev. Mol. Cell Biol. 9, 981 (2008).

[101] B. N. Kholodenko, Cell-Signalling Dynamics in Time and
Space, Nat. Rev. Mol. Cell Biol. 7, 165 (2006).

[102] A. Gierer and H. Meinhardt, A Theory of Biological
Pattern Formation, Kybernetik 12, 30 (1972).

[103] L. A. Segel and J. L. Jackson, Dissipative Structure: An
Explanation and an Ecological Example, J. Theor. Biol.
37, 545 (1972).

[104] D. Karig, K. M. Martini, T. Lu, N. A. DeLateur, N.
Goldenfeld, and R. Weiss, Stochastic Turing Patterns in
a Synthetic Bacterial Population, Proc. Natl. Acad. Sci.
U.S.A. 115, 6572 (2018).

[105] L. Manukyan, S. A. Montandon, A. Fofonjka, S. Smirnov,
and M. C. Milinkovitch, A Living Mesoscopic Cellular
Automaton Made of Skin Scales, Nature (London) 544, 173
(2017).

[106] M. Watanabe and S. Kondo, Is Pigment Patterning in Fish
Skin Determined by the Turing Mechanism?, Trends
Genet. 31, 88 (2015).

[107] S. Kondo and R. Asai, A Reaction-Diffusion Wave on
the Skin of the Marine Angelfish Pomacanthus, Nature
(London) 376, 765 (1995).

[108] G. B. Ermentrout and J. D. Cowan, A Mathematical
Theory of Visual Hallucination Patterns, Biol. Cybern.
34, 137 (1979).

[109] A. Eldar, B.-Z. Shilo, and N. Barkai, Elucidating Mech-
anisms Underlying Robustness of Morphogen Gradients,
Curr. Opin. Genet. Dev. 14, 435 (2004).

[110] N. Verschueren and A. Champneys, A Model for Cell
Polarization without Mass Conservation, SIAM J. Appl.
Dyn. Syst. 16, 1797 (2017).

[111] J. Halatek and E. Frey, Highly Canalized MinD Transfer
and Mine Sequestration Explain the Origin of Robust
MinCDE-Protein Dynamics, Cell Rep. 1, 741 (2012).

[112] P. Politi and C. Misbah, When Does Coarsening Occur in
the Dynamics of One-Dimensional Fronts?, Phys. Rev.
Lett. 92, 090601 (2004).

[113] P. Politi and C. Misbah, Nonlinear Dynamics in One
Dimension: A Criterion for Coarsening and Its Temporal
Law, Phys. Rev. E 73, 036133 (2006).

[114] L. Wolpert, Positional Information and the Spatial Pattern
of Cellular Differentiation, J. Theor. Biol. 25, 1 (1969).

[115] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and
P. Walter, Molecular Biology of the Cell, 5th ed. (Garland
Science, New York, 2007).

[116] J. Lutkenhaus, Assembly Dynamics of the Bacterial Min-
CDE System and Spatial Regulation of the Z Ring, Annu.
Rev. Biochem. 76, 539 (2007).

[117] F. O. Bendezu and S. G. Martin, Cdc42 Oscillations in
Yeasts, Sci. Signal. (Online) 5, pe53 (2012).

[118] H.-O. Park and E. Bi, Central Roles of Small GTPases in
the Development of Cell Polarity in Yeast and Beyond,
Microbiol. Mol. Biol. Rev. 71, 48 (2007).

[119] S. G. Martin and R. A. Arkowitz, Cell Polarization in
Budding and Fission Yeasts, FEMS Microbiol. Rev. 38,
228 (2014).

[120] C. Hoege and A. A. Hyman, Principles of PAR Polarity
in Caenorhabditis elegans Embryos, Nat. Rev. Mol. Cell
Biol. 14, 315 (2013).

[121] P. Gross, K. V. Kumar, N. W. Goehring, J. S. Bois, C.
Hoege, F. Jülicher, and S. W. Grill, Guiding Self-
Organized Pattern Formation in Cell Polarity Establish-
ment, Nat. Phys. 15, 293 (2019).

[122] R. Geßele, J. Halatek, L. Würthner, and E. Frey,Geometric
Cues Stabilise Long-Axis Polarisation of PAR Protein
Patterns in C. elegans, Nat. Commun. 11, 539 (2020).
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