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The sampling problem lies at the heart of atomistic simulations and over the years many different
enhanced sampling methods have been suggested toward its solution. These methods are often grouped
into two broad families. On the one hand, are methods such as umbrella sampling and metadynamics that
build a bias potential based on few order parameters or collective variables. On the other hand, are
tempering methods such as replica exchange that combine different thermodynamic ensembles in one
single expanded ensemble. We instead adopt a unifying perspective, focusing on the target probability
distribution sampled by the different methods. This allows us to introduce a new class of collective-
variables-based bias potentials that can be used to sample any of the expanded ensembles normally sampled
via replica exchange. We also provide a practical implementation by properly adapting the iterative scheme
of the recently developed on-the-fly probability enhanced sampling method [M. Invernizzi and M.
Parrinello, J. Phys. Chem. Lett. 11, 2731 (2020)], which was originally introduced for metadynamicslike
sampling. The resulting method is very general and can be used to achieve different types of enhanced
sampling. It is also reliable and simple to use, since it presents only few and robust external parameters and
has a straightforward reweighting scheme. Furthermore, it can be used with any number of parallel replicas.
We show the versatility of our approach with applications to multicanonical and multithermal-multibaric
simulations, thermodynamic integration, umbrella sampling, and combinations thereof.
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Computational Physics

I. INTRODUCTION

Sampling is one of the main challenges in atomistic
simulations. In fact, even the most accurate models cannot
produce high-quality results if the phase space is not
properly sampled. The sampling issue is due to the large
gap between the physical macroscopic timescales and the
actual time that can be explored in standard atomistic
simulations. This results in an ergodicity problem that can
be encountered in fields as varied as materials science,
chemistry, and biology. One facet of this problem is the

existence of different metastable states separated by kinetic
bottlenecks that make the transition from one state to
another a rare event. Enhanced sampling methods are a
possible solution to this problem. Instead of extracting
configurations from the relevant physical ensemble, these
methods create an ad hoc modified ensemble in which the
probability of sampling rare events is greatly enhanced.
One kind of such target ensembles is obtained by combin-
ing multiple subensembles that differ only by the temper-
ature or some other quantity, a typical example being
parallel tempering [1]. We refer to these ensembles as
expanded ensembles [2].
In the present paper we formulate the problem of

generating such expanded ensembles in a way that allows
us to use collective-variables-based methods. We find that
the recently developed on-the-fly probability enhanced
sampling (OPES) [3] can be adapted to the scope and
provides an efficient implementation. This method was
introduced as an evolution of metadynamics [4], since it
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can provide the same type of enhanced sampling, but
presents in most cases a faster convergence and has only
few and robust adjustable parameters. These properties of
OPES are retained when it is applied to sample expanded
ensembles. This provides us with a general and reliable
method that can be easily applied to sample many different
ensembles.
We accompany this paper with a number of general

considerations (Secs. II and VII), but the reader mostly
interested in the method itself and its practical implemen-
tation can go directly to Sec. IV. Section III briefly recalls
OPES in its original formulation for metadynamicslike
sampling. We also present a variety of simulations to show
the versatility of the new scheme, in particular (Sec. V)
multicanonical, multithermal-multibaric, thermodynamic
integration, and also (Sec. VI) enhanced sampling based
on an order parameter, both alone and in combination with
the previous ensembles.

II. UNIFIED APPROACH

The most popular approaches to enhanced sampling
follow mainly two strategies. A first one was proposed in a
pioneering work by Torrie and Valleau and is referred to as
umbrella sampling [5,6]. This method starts by identifying
one or few order parameters, or collective variables (CVs),
s ¼ sðxÞ, that are a function of the microscopic configu-
ration and encode some of the slow modes of the system.
Then a bias potential that is function of the CVs is added to
the energy of the system, so that the sampling of the slow
modes encoded by the CVs is accelerated. Many have
followed this approach, and nowadays one of the most
popular methods in this class is metadynamics [4].
A different perspective to enhanced sampling is that of

parallel or simulated tempering [7,8]. In this case the idea is
to combine in the same generalized ensemble the configu-
rations explored by the system at different temperatures.
This can improve the sampling because at higher temper-
atures the exploration of the phase space is often more
efficient, and the system is less likely to remain stuck in
metastable states. Over the years this approach has been
extended and implemented in a variety of different meth-
ods, among which replica exchange [9] is probably the
most widely employed.
These two families of enhanced sampling methods often

have been seen as distinct and complementary. Although
there are some papers in which the two perspectives are
combined [10–13], typically they have been perceived as
hybrid approaches [14,15]. Here we want to take a closer
look at these two families and show that it is possible to
provide a unified perspective to the enhanced sampling
problem.
For a start we must specify that we are not interested

in looking at the specific computational technique the
various enhanced sampling methods use, since according
to this criterion there would be many more than two

families. There are methods that use a bias potential
and others that use specific Monte Carlo moves [9], and
also methods that introduce a fictitious dynamics [16], or
that focus on directly modifying the atomic forces [17], to
name just a few. This kind of classification is of course
perfectly legitimate, but we find it of limited relevance for
our purposes.
The distinction between the two families cannot be based

on the fact that one uses system-specific CVs, while the
other makes use of general thermodynamic properties. For
instance, it is known that Hamiltonian replica exchange can
be used to enhance the fluctuations of any chosen CV [18],
and on the other hand, that it is possible with metadynamics
to use the potential energy itself as CV and sample a
multithermal ensemble [19].
Thus we prefer to focus on the target distribution ptgðxÞ

that the different methods sample. In fact, each enhanced
sampling method explicitly or implicitly aims at sampling a
specific probability distribution in the configuration space
that is not the physical one, but assigns a higher probability
to some rare event. Designing such target distributions so
that they are effective is far from trivial, and we can relate
the two families of methods to the type of target distribution
they imply.
A first class of enhanced sampling methods defines

the target distribution by setting a constraint on its
marginal distribution along some chosen CVs, ptgðsÞ ¼R
δ(sðxÞ − s)ptgðxÞdx. The most common choice is to

impose a uniform marginal, ptgðsÞ ¼ const. Among the
methods that adopt this strategy are adaptive umbrella
sampling [20] and metadynamics in its original formulation
[4]. Also, the Wang-Landau algorithm [21] and various
multicanonical algorithms [22,23] chose to sample a flat
marginal distribution, using the potential energy as CV. An
interesting case is the one of well-tempered metadynamics
[24] that aims at sampling an s distribution that is a
smoothed version of the original one. Contrary to the
uniform case and in general to the fixed target case [25], the
well-tempered target explicitly depends on the unbiased
probability, and is thus not completely known beforehand.
Other kinds of targets are also used in the 1=k ensemble
[26] and in nested sampling [27].
Another class of methods will be the main focus of this

paper, and it is the one that aims at sampling the so-called
expanded ensembles [2]. These targets are not defined
explicitly as a function of some CVs, but rather consist in
the sum of overlapping probability distributions. A typical
enhanced sampling technique that targets expanded dis-
tributions is, for example, replica exchange [9]. Expanded
ensembles can be obtained by combining the same system
at different temperatures or, more in general, different
Hamiltonians [18,28,29]. They can be sampled also with
single replica approaches, such as simulated tempering [8]
and integrated tempering [30,31]. Broadly speaking, one
could consider as part of this expanded ensemble class also
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methods like multiple-windows umbrella sampling [32], or
thermodynamic integration [33], where multiple separated
ensembles are simulated and then combined into one via
some postprocessing procedure such as the weighted
histogram analysis method (WHAM) [34].
It is important to note that by classifying enhanced

sampling methods with respect toptgðxÞwe are not implying
that methods in the same class are equivalent. Different
methods in fact can use very different strategies to reach their
target, each having its own strengths and weaknesses.
However, this target-distribution perspective suggests that
there is not a fundamental difference between the two
traditional families, and that a unified approach is possible.
From this point of view, a special place is occupied by

variationally enhanced sampling (VES) [35], targeted
metadynamics [25], and on-the-fly probability enhanced
sampling [3], since in these methods one has to explicitly
choose a target distribution. This makes them particularly
suited for developing a unified approach, since they are in
principle capable of sampling the targets of both of the two
families of enhanced sampling, and also combine them in
new ways. In VES the usefulness of various target distri-
butions has already been explored [36–38]. In particular, a
target distribution has been proposed for sampling multi-
thermal-multibaric ensembles [39] and also for combining
them with a CV that drives a phase transition [40]. It is this
paper that inspired us to try a generalized unified approach.
Our goal here is to introduce explicitly the expanded

ensemble target distribution and show that it can be
sampled by using a CV-based bias potential method such
as VES or OPES. In doing so we will introduce the concept
of expansion CVs, that allows us to define both the target
expanded distribution and the bias needed to sample it. The
method we propose is thus capable of sampling both kinds
of target distributions, those typical of replica exchange, but
also the uniform and well-tempered distributions typical of
metadynamics. In this sense it provides a unified approach
to enhanced sampling.

III. ON-THE-FLY PROBABILITY
ENHANCED SAMPLING

The recently developed on-the-fly probability enhanced
sampling [3] is a collective-variables-based method.
Collective variables are a function of the microscopic
configuration, s ¼ sðxÞ, that provide a low-dimensional
description of the system. In OPES we aim at modifying the
physical probability distribution of s, PðsÞ, in order to
reach a given target probability distribution, ptgðsÞ. To
achieve this we must add the following bias potential,

VðsÞ ¼ −
1

β
log

ptgðsÞ
PðsÞ ; ð1Þ

where β is the inverse temperature. OPES has been
introduced as an evolution of metadynamics and in this

spirit we first have used the well-tempered target distribu-
tion, defined as pWTðsÞ ∝ ½PðsÞ�1=γ , where γ > 1 is known
as the bias factor. This target distribution aims at increasing
the transition rate between metastable states of the system,
by lowering of a factor γ the free-energy barriers along the
CVs. In the limit of γ ¼ ∞ it is equivalent to choosing a
uniform target.
Since PðsÞ is not known a priori, we resort to an iterative

scheme [20,41]. The core idea in OPES is to estimate the
probability distribution at each step n, PnðsÞ, by reweight-
ing on the fly a simulation that is biased with VnðsÞ, which
is itself constructed from such PnðsÞ estimate according to
Eq. (1). The PnðsÞ is obtained via a weighted kernel density
estimation, adding a new kernel at a fixed small interval,
similarly to metadynamics.
We refer the interested reader to Ref. [3], where the

OPES iterative equations for the case of a well-tempered
and a uniform target are presented in detail, and to
Refs. [42,43] for some initial applications. In the present
paper we introduce a class of target distributions that allows
sampling any expanded ensemble. We also present in detail
the OPES iterative scheme for this class of targets. While
the core ingredients of OPES remain the same, the resulting
method will look quite different from the one presented in
Ref. [3]. In particular, when targeting expanded ensembles
we will not need to use the kernel density estimation that
plays instead a crucial role in the well-tempered case.
In applying OPES to sample expanded ensembles, we

find a method that is similar in spirit to that of Ref. [2] and
to other more recent methods, such as integrated tempering
sampling [30], infinite switch simulated tempering [44],
and variationally derived intermediates [45].

IV. TARGETING EXPANDED ENSEMBLES

Let us call uðxÞ the adimensional reduced potential that
contains all the terms depending on the thermodynamic
constraints, such as temperature, pressure, or others. With x
we concisely indicate the atomic coordinates and any other
configurational variable that the reduced potential might
depend on, such as the volume or the box tensor. As an
example, in the case of the canonical ensemble one has
uðxÞ ¼ βUðxÞ, where β is the inverse temperature and
UðxÞ is the potential energy of the system. Let us consider a
system with a reduced potential uλðxÞ that is a function of
λ, where λ could be either a single parameter or a set of
parameters, and might indicate, e.g., a thermodynamic
property such as the temperature. At equilibrium its
probability distribution follows Boltzmann statistics:

PλðxÞ ¼
e−uλðxÞ

Zλ
; ð2Þ

where Zλ is the partition function, Zλ ¼
R
e−uλðxÞdx.

We are interested in sampling configurations in a range
Δλ of λ values. Instead of running multiple independent
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simulations at different values of λ, we can sample a
generalized ensemble which contains all the relevant
microscopic configurations, and then reweight them to
retrieve the correct statistics for any λ ∈ Δλ. Sampling such
an ensemble over Δλ instead of the separate single λ
ensembles is more efficient when different λ ensembles
overlap in the coordinate space, and it can also help in
solving ergodicity problems.
We must choose as target a distribution that covers all the

microscopic configurations relevant to the chosen Δλ
range. Similarly to what is done in replica exchange, we
choose a set fλg of Nfλg values λ ∈ Δλ such that there is a
good overlap between contiguous PλðxÞ. We then define
our target distribution as

pfλgðxÞ ¼
1

Nfλg

X
λ

PλðxÞ: ð3Þ

We refer to this class of target probability distributions as
expanded ensemble target distributions. In the present
paper we limit ourselves to considering nonweighted
expanded targets, that assign the same 1=Nfλg weight to
all the subensembles, but it is also possible to add some
λ-dependent weights and give different importance to
different PλðxÞ.
Without loss of generality, one can consider λ ¼ 0 to be

inside the desired interval Δλ. It is then possible to run a
simulation at λ ¼ 0 and use the OPES scheme to iteratively
optimize a bias that allows one to sample pfλgðxÞ. Before
proceeding to explicitly write the target distribution and the
bias potential, we express PλðxÞ as

PλðxÞ¼P0ðxÞe−uλðxÞþu0ðxÞZ0

Zλ
¼P0ðxÞe−ΔuλðxÞþΔFðλÞ; ð4Þ

where ΔuλðxÞ ¼ uλðxÞ − u0ðxÞ is the potential energy
difference and

ΔFðλÞ ¼ − log
Zλ

Z0

¼ − loghe−Δuλiu0 ð5Þ

is the dimensionless free-energy difference from the refer-
ence system u0, that can be expressed also as an ensemble
average, indicated with the notation h·iu0 . Our expanded
target thus becomes

pfλgðxÞ ¼ P0ðxÞ
1

Nfλg

X
λ

e−ΔuλðxÞþΔFðλÞ: ð6Þ

In order to define the target bias, we first rewrite
Eq. (1) as

vðxÞ ¼ − log
ptgðxÞ
P0ðxÞ

: ð7Þ

Finally, the adimensional bias needed to sample the
expanded target pfλgðxÞ is

vðxÞ ¼ − log

�
1

Nfλg

X
λ

e−ΔuλðxÞþΔFðλÞ
�
: ð8Þ

Note that in writing the bias in this way P0ðxÞ cancels
out. It follows that the bias potential vðxÞ depends on the
coordinates x only through the Nfλg quantities ΔuλðxÞ. We
refer to these Δuλ as expansion collective variables. The
expansion CVs completely characterize the expansion,
since not only the bias, but also ΔFðλÞ, Eq. (5), and the
expanded target distribution pfλgðxÞ, Eq. (6), are unam-
biguously defined through these quantities. We will see
how, by properly choosing the expansion CVs ΔuλðxÞ, it is
possible to sample different kinds of expanded ensembles.
For each of them we also highlight the connection between
these expansion CVs and more traditional CVs that have a
straightforward physical interpretation.
Our target bias, Eq. (8), depends on the free energy along

the λ parameter, ΔFðλÞ, that is in general unknown. In the
OPES spirit we will reach the target bias iteratively, by
estimating on the fly ΔFðλÞ via a reweighting procedure,
and using such an estimate to define the applied bias.

A. Iterative OPES scheme

The free-energy difference ΔFðλÞ defined in Eq. (5) can
be written using an ensemble average over the reference
unbiased system u0 [46]. However, estimating he−Δuλiu0
from an unbiased trajectory is practically impossible due to
the fact that e−Δuλ can be significantly large in regions
where P0 is extremely small, and that are thus not properly
sampled. For this reason we use reweighting to write it as
an average over the biased ensemble,

e−ΔFðλÞ ¼ he−Δuλiu0 ¼
he−Δuλþviu0þv

heviu0þv
; ð9Þ

where the ensemble average h·iu0þv is computed as a time
average over a biased trajectory. In this way, one can obtain
a much more accurate estimate of ΔFðλÞ.
The problem with this procedure is that the target bias v,

Eq. (8), is itself a function of ΔFðλÞ. Therefore, we set up
an iterative scheme that consists in running a biased
simulation whose bias is based on the estimate of the
free-energy difference that we obtain via on-the-fly
reweighting. At step n the simulation runs with potential
u0ðxÞ þ vnðxÞ, where

vnðxÞ ¼ − log

�
1

Nfλg

X
λ

e−ΔuλðxÞþΔFnðλÞ
�
: ð10Þ

The reweighted estimate ΔFnðλÞ is updated at every
iteration step n. In between the iteration steps there is a
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fixed short stride where the simulation proceeds and both
ΔFnðλÞ and the bias vnðxÞ are kept constant. The free-
energy estimate at the nth step can be explicitly written as

ΔFnðλÞ ¼ − log

0
@P

n
k¼1 e

−ΔuðkÞλ þvðkÞk−1P
n
k¼1 e

vðkÞk−1

1
A; ð11Þ

where we use the notation ΔuðkÞλ ≡ ΔuλðxkÞ and

vðkÞn ≡ vnðxkÞ, with xk the configuration at the kth iteration
step.
As the bias approaches convergence, the ensemble

sampled approaches the target one, and the ΔFnðλÞ
estimates become more and more accurate. Thus not only
do we obtain the target bias, but we also have an estimate of
the free energy as a function of the λ parameter, i.e., ΔFðλÞ.
Our iterative scheme is similar in spirit to the one used in
integrated tempering sampling [30], but the two differ both
in their implementation and in their applications.
Equations (10) and (11) are the explicit OPES iterative

equations used for sampling the expanded ensemble
defined by the target distribution pfλgðxÞ, Eq. (3), and
are at the heart of our method. In the following sections we
show how these equations can be used to sample different
expanded ensembles, simply by specifying different expan-
sion CVs ΔuλðxÞ. Once these are chosen, the only free
parameter of the method is the stride between the iterations.
This should be set so that consecutive steps are not too
correlated, as it is the case for the on-the-fly Gaussians’
deposition in metadynamics.
It is possible to parallelize the procedure using multiple

replicas of the system, as is done in multiple walkers
metadynamics [47], where each replica shares the same
bias and all contribute to the ensemble average in Eq. (11).
At variance with replica exchange, the number of parallel
simulations does not have to be equal to the numberNfλg of
λ points that define the target.
Finally, we note that one could consider expressing

the free energy ΔFðλÞ via a cumulant expansion [48,49].
This generally provides a very good estimate close to the
reference λ ¼ 0, but can be very inaccurate when the
range is broad, requiring a great number of terms in
the expansion. Furthermore, we found it can introduce
artificial barriers that might stop the system from visiting all
the relevant configurations, thus making the OPES self-
consistent procedure much less efficient.

B. Reweighting

Until now we have seen how to sample expanded
ensembles by applying a bias potential. We now need a
reweighting procedure in order to retrieve statistics at any
desired value of λ. To this effect one can use standard
umbrella sampling reweighting [6]. Given any observable
O ¼ OðxÞ that is a function of the atomic coordinates, we

can calculate its average in the ensemble λ via the following
reweighting equation:

hOiuλ ¼
hOe−Δuλþviu0þv

he−Δuλþviu0þv
≈
P

n
k OkwkðλÞP
n
k wkðλÞ

; ð12Þ

where Ok ≡OðxkÞ and the weight wkðλÞ is defined

as wkðλÞ≡ e−Δu
ðkÞ
λ þvðkÞk−1 .

This equation assumes that the applied bias is static or
quasistatic, meaning that it is updated in an adiabatic
fashion. It is thus good practice to discard an initial
transient of the simulation, where the bias changes quickly,
and not use it for reweighting. Determining the exact length
to be discarded might not be intuitive; however, OPES
generally assigns a very low weight to this initial transient,
and thus the result will not be significantly affected by this
choice [3].
A useful diagnostic tool when performing reweighting is

the so-called effective sample size, defined as the number
of sampled points n times the ratio between the variance of
an observable in the unbiased ensemble and its variance in
the reweighted ensemble [50]. We use a popular estimator
for the effective sample size, defined as [50,51]

neffðλÞ ¼
½PkwkðλÞ�2P

kw
2
kðλÞ

; ð13Þ

where wkðλÞ are the importance sampling weights.
Intuitively, the effective sample size for a given λ will be
smaller than the total number of samples, neffðλÞ < n. One
should expect the efficiency to be roughly neffðλÞ=n ∝
1=Nfλg, given a minimal choice of λ points that properly
covers the target range. Plotting neff=n as a function of λ
can be a good diagnostic tool to monitor the consistency of
the iterative procedure.
Finally, we note that the estimate of uncertainties

requires some extra care in the case of weighted samples
[52]. In the Appendix B we describe in detail the weighted
block averaging procedure we adopt, and show how the
effective sample size plays a role.

V. LINEARLY EXPANDED ENSEMBLES

An important type of expanded ensemble is the one
obtained by linearly perturbing the reduced potential of the
system, uλðxÞ ¼ u0ðxÞ þ λΔuðxÞ. It is defined by the
following expansion CVs:

ΔuλðxÞ ¼ λΔuðxÞ: ð14Þ

Various different ensembles can be obtained in this way,
such as the multicanonical ensemble and the multibaric
ensemble, and also alchemical transformations, and others.
Recently an interesting “multiforce” ensemble that falls in
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this category has been proposed [53]. We present in detail
some of these ensembles in the following sections.
It can be useful to group together these linearly expanded

ensembles because they share some interesting properties.
In particular, for these ensembles we can propose a simple
automatic way to choose the λ points that define the target
pfλgðxÞ. The idea is to have the λ points uniformly
distributed in the Δλ interval with a spacing Δλ=Nfλg
estimated from the effective sample size as a function of λ,
neffðλÞ. In practice what we do is to run a short unbiased
simulation of n steps at λ ¼ 0 and use a root finding
algorithm to determine the points λþ > 0 and λ− < 0 such
that neffðλ�Þ=n ≈ 0.5. Then one can use a total of Nfλg ¼
Δλ=ðλþ þ λ−Þ equally spaced λ points to define the
target pfλgðxÞ.
This heuristic way of choosing the λ points is not

optimal, and more elaborate options have been explored
in the replica-exchange literature [54]. However, in our case
this choice is less critical, since within our scheme one can
increase Nfλg without the need to simulate additional
replicas of the system. Thus this procedure provides an
easy and automatic guess for linearly expanded ensembles
that can be practically useful in many scenarios (see
Sec. VII for further considerations on the choice of the
λ points).

A. Multicanonical ensemble

We start by considering as an example of linearly
expanded ensemble the case of the multicanonical ensem-
ble, which is probably the one with the longest history.
The goal is to sample all the configurations relevant
for canonical simulations in a given range of temperatures.
In a canonical simulation the reduced potential is
uðxÞ ¼ βUðxÞ, where UðxÞ is the potential energy, β ¼
1=ðkBTÞ is the inverse thermodynamic temperature, and kB
is Boltzmann constant. It is possible to define a multi-
canonical linearly expanded ensemble, by puttingΔuðxÞ ¼
u0ðxÞ ¼ β0UðxÞ and λ ¼ ðβ − β0Þ=β0, where β0 is the
inverse temperature set by the thermostat of the simulation
and β spans the target range βmin < β < βmax.
The expansion CVs that define such a target are

ΔuλðxÞ ¼ λβ0UðxÞ ¼ ðβ − β0ÞUðxÞ; ð15Þ

and by using them in the OPES iterative equations,
Eqs. (10) and (11), we obtain our multicanonical simu-
lation. Given the physical significance of the inverse
temperature β, it is more natural to directly consider β
as parameter instead of the dimensionless λ. We thus write
Δuβ and ΔF ¼ ΔFðβÞ, where we have set ΔFðβ0Þ ¼ 0.
Similarly, it is natural to consider the potential energyUðxÞ
as a collective variable, and thus write the bias as

vðUÞ ¼ − log

�
1

Nfβg

X
β

e−ðβ−β0ÞUþΔFðβÞ
�
: ð16Þ

It is important to notice that we did not require the bias to
be a function of a single CV, but rather we find it to be the
case when we set as target the temperature-expanded
ensemble. This is in fact a general property of linearly
expanded ensembles. When expanding according to a
given λ, the resulting bias will be a function only of the
thermodynamic conjugate variable Δu. To define the
bias v ¼ vðΔuÞ we then need to estimate the free energy
along λ, ΔFðλÞ.
Other multicanonical methods aim instead at sampling a

flat energy distribution [22,23,39]. In order to do so, they
need to estimate the free energy as a function of U (or
equivalently the density of states along U), while in our
method, as in other tempering approaches [44], we instead
need to estimate the free energy as a function of temper-
ature, ΔFðβÞ.
Example: Alanine dipeptide As an example of multi-

canonical sampling, we consider alanine dipeptide in a
vacuum, at temperature T0 ¼ 300 K. This is a typical toy
model for testing enhanced sampling methods, since at
room temperature it presents two metastable states with an
extremely low transition probability. A possible way of
enhancing the sampling is to bias the ϕ and ψ dihedral
angles, using as target a flat uniform distribution or the
well-tempered distribution [3]. Here instead we bias the
potential energy U, and use as a target the multicanonical
ensemble over a temperature range from 300 up to 1000 K.
Simulations are performed with the molecular dynamics

software GROMACS [55], patched with the enhanced sam-
pling library PLUMED [56] (see Supplemental Material for
computational details [57]). The only input needed for
OPES, besides the temperature range we are interested in
sampling, is the bias update pace, that is taken to be 500
simulation steps (1 ps).
Figure 1(a) shows on the ϕ;ψ plane the configurations

sampled during the 100 ns multicanonical run. It is
interesting to notice that the potential energy U would
be considered a bad CV in enhanced sampling methods
such as metadynamics, since it cannot distinguish between
the two basins that have roughly the same energy. However,
when using the multicanonical ensemble as target, by
biasing U we can enhance the probability of visiting the
transition state (roughly the region where ϕ ¼ 0), and thus
observe multiple transitions between the basins and con-
verge the free-energy difference between them, ΔFAB
[Fig. 1(b)]. We can use the angle ϕ to define this free-
energy difference between the two basins:

ΔFAB ¼ − log

� hχϕ∈½0;π�i
hχϕ∈½−π;0�i

�
; ð17Þ

INVERNIZZI, PIAGGI, and PARRINELLO PHYS. REV. X 10, 041034 (2020)

041034-6



where χ is a characteristic function, equal to 1 if the variable
is in the proper range and 0 otherwise.
In the Supplemental Material we discuss the differences

with biasing the energy with metadynamics [12,19] and
show a comparison between this multicanonical run and a
well-tempered run biasing the two dihedral angles [57]. As
expected, the latter is much more efficient (roughly 10
times) in converging the free-energy difference at 300 K,
due to the fact that it focuses on the relevant degrees of
freedom and on a single temperature.

B. Multithermal-multibaric ensemble

Within our scheme, combining different linearly
expanded ensembles is straightforward. One simply
has a two-dimensional parameter λ ¼ fλ1; λ2g and con-
siders uλðxÞ ¼ u0 þ λ1Δu1ðxÞ þ λ2Δu2ðxÞ. This can be
useful, for example, to sample multiple temperatures and
multiple pressures in a single multithermal-multibaric
simulation.
In this case we consider NPT simulations with a

reference reduced potential u0ðxÞ¼ β0UðxÞþβ0p0VðxÞ,
where p is the pressure and VðxÞ the volume. Similarly to
what was done before, it is more natural to use as λ
parameters directly the temperature β and the pressure p,
and write the expansion CVs ΔuλðxÞ as

Δuβ;pðxÞ ¼ ðβ − β0ÞUðxÞ þ ðβp − β0p0ÞVðxÞ: ð18Þ

The target distribution is defined by a set of Nfβg temper-
atures β ∈ ½βmin; βmax� and Nfpg pressures p ∈ ½pmin; pmax�,

for a total ofNfβ;pg ¼ Nfβg × Nfpg differentΔFðβ; pÞ to be
estimated. We will also express the bias, Eq. (8), as a
function of the potential energy and the volume
v ¼ vðU;VÞ, which come as a natural CVs choice. As
already discussed, the intermediate temperatures β and
pressures p that define the target can be chosen automati-
cally from a short unbiased simulation. We do this inde-
pendently for the two parameters, despite the fact that the
pressure term p is multiplied by β in Eq. (18).
Finally, we notice how the choice of β0 and p0 is

completely free. As long as they lie inside the range of
temperatures and pressures that we aim at sampling, no
matter what thermodynamic conditions we start from at
convergence we will sample the same configurational
space. However, when the target range is very broad,
choosing β0 and p0 roughly at the center can help to speed
up convergence.
Example: Chignolin As an example of a multithermal-

multibaric simulation we consider the miniprotein chigno-
lin (CLN025) with CHARMM22* force field [58] and the
three-site transferable intermolecular potential water model
(about 2800 molecules), over a temperature range from
Tmin ¼ 270 K to Tmax ¼ 800 K and a pressure range from
pmin ¼ 1 bar to pmax ¼ 4000 bar. The velocity-rescaling
thermostat [59] is set at T0 ¼ 500 K and the Parrinello-
Rahman barostat [60] at p0 ¼ 2000 bar. The ΔFnðβ; pÞ
estimates and the bias are updated every 500 simulation
steps (1 ps). The Nfβg temperature steps and Nfpg pressure
steps are chosen automatically based on a short 100 ps
unbiased run. This results in 92 steps in temperature and 26
in pressure, for a total of Nfβ;pg ¼ 2392 points. In order to

FIG. 1. Alanine dipeptide in the multicanonical ensemble (Tmin ¼ 300 K, Tmax ¼ 1000 K). (a) Explored configurations as a function

of the dihedral angles. Sampled points are colored according to their reweighting weight at T ¼ T0 ¼ 300 K, wkðβÞ ¼ e−ðβ−β0ÞUkþvðkÞk−1 .
Notice how all the points in the transition state, close to ϕ ¼ 0, have extremely low probability of being sampled in an isothermal
simulation at 300 K. (b) Free-energy difference between the two basins ΔFAB as a function of temperature. (c) Reweighted free-energy
surface at two different temperatures.
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avoid the region of low pressure and high temperature
where water could evaporate, we discard any ðβ; pÞ point
lying below the line from (500 K, 1 bar) and (800 K,
1000 bar). In this way, 91 ðβ; pÞ points are discarded.
The simulation is performed in parallel using 40 multiple

walkers, and runs for a total of 300 ns per walker, of which
roughly 10 ns are needed to converge the bias. Also in this
case we use GROMACS patched with PLUMED.
In Fig. 2(a) we show the distribution sampled in the

energy-volume space, while in Fig. 2(b) the corresponding
effective sample size neff is plotted, as a function of
temperature and pressure, and rescaled over the total
number of samples n. The neff=n is not perfectly uniform,
but it has the same order of magnitude over the whole target
region. On the right, Fig. 2(c), we show for one of the 40
replicas the energy and volume trajectory, together with the
trajectory of the Cα root-mean-square deviation (RMSD) to
the experimental NMR structure [61].
In Fig. 3 we show the chignolin folded fraction at the

different temperatures and pressures we targeted. The
folded fraction is defined as in Ref. [62], using a dual
cutoff on the Cα RMSD based on the CLN025 exper-
imental NMR structure. A configuration is considered
folded when the RMSD goes below 0.1 nm, and unfolded
when it goes above 0.4 nm. In the inset we compare our
results with those of Ref. [62] that considered a smaller
temperature range at standard pressure. The confidence
interval of our estimate is calculated with the block analysis
described in Appendix B.

The stability diagram of chignolin (Fig. 3) does not
present striking features, in qualitative agreement with
Ref. [63]. However, it has been recently shown [64] that
otherminiproteins can have a nontrivial phase diagram, with
unfolding both at low temperature and at high pressure.

FIG. 2. Multithermal-multibaric simulation of chignolin. (a) Sampled target distribution in the CV space of potential energy and
volume. (b) Relative effective sample size at different temperatures and pressures. The bottom corner of high temperatures and low
pressures is excluded from the target to avoid vaporization of the system. (c) Time evolution of the two biased CVs and of the Cα RMSD
for one of the 40 walkers. A RMSD threshold between folded and unfolded is highlighted with a dashed line.

FIG. 3. The fraction folded of chignolin estimated from the
multithermal-multibaric simulation. The inset shows the same
quantity over a smaller range of temperatures at 1 bar (highlighted
with a gray box), in order to compare it with the reference results
from Lindorff-Larsen et al. [62].
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C. Thermodynamic integration

Another interesting application of our method is its use
for performing thermodynamic integration [65]. Let us
consider a system with reduced potential energy u0ðxÞ and
free energy F0 ¼ − logZ0 and another similar system with
potential u1ðxÞ and free energy F1. We are interested in
calculating the free-energy difference ΔF0→1 ¼ F1 − F0,
for instance, because we know the free energy of one of the
two systems and in this way we can retrieve the other one.
The key idea of thermodynamic integration is to define a
ladder of intermediate systems with reduced potentials
uλðxÞ and 0 < λ < 1, to connect the two systems. The free-
energy difference ΔF0→1 to go from the u0 system to the u1
can be calculated via the following integral:

ΔF0→1 ¼
Z

1

0

�∂uλðxÞ
∂λ

�
uλ

dλ: ð19Þ

Typically individual simulations are run using uλðxÞ
for different values of λ and the ensemble average
h∂uλðxÞ=∂λiuλ is estimated for each of them. Then the
integration in Eq. (19) can be carried out numerically, e.g.,
using the trapezoid rule or a Gaussian quadrature.
The most common way to define the intermediate states

uλðxÞ is via a linear interpolation,

uλðxÞ ¼ u0ðxÞ þ λΔuðxÞ; ð20Þ

where ΔuðxÞ≡ u1ðxÞ − u0ðxÞ. In this case we have
∂uλ=∂λ ¼ Δu.
In the spirit of the present paper, we aim at performing a

single simulation that samples all values of λ simultane-
ously, similarly to other methods [2,66,67]. It is then
possible to reweight for any λ and calculate the integral
in Eq. (19). Thus we simulate the system at u0ðxÞ and build

a target pfλgðxÞ as in Eq. (3) using Nfλg λ points in
the interval 0 < λ < 1. The OPES iterative equations,
Eqs. (10) and (11), can be written using the expansion
CVs Δuλ ¼ λΔu as defined in Eq. (20).
Finally, we note that thermodynamic integration can be

performed using interpolation schemes different from the
linear one, and our method is general and can be applied
also in those scenarios, simply by properly defining the
expansion CVs ΔuλðxÞ.
Example: TIP4P water to Lennard-Jones fluid We now

use the thermodynamic integration formalism described
above to calculate the free energy of TIP4P water, relative
to a reference Lennard-Jones system. The TIP4P potential
energy (UTIP4P) is made of an electrostatic energy term and
a van der Waals-type interaction between the oxygens
described by a Lenard-Jones potential (ULJ). The free
energy of the Lennard-Jones fluid has been fit to an
equation of state and thus is a good reference [68]. For
the simulations we use the LAMMPS [69] molecular dynam-
ics software, patched with PLUMED. We perform an
NVT canonical simulation at 443 K using the TIP4P
water potential, thus u0ðxÞ ¼ βUTIP4PðxÞ, with N ¼ 384
molecules. The reference system is characterized by
u1ðxÞ ¼ βULJðxÞ.
With β a constant, we consider as collective variable

ΔUðxÞ≡ULJðxÞ − UTIP4PðxÞ, and write the bias accord-
ing to Eq. (8):

vðΔUÞ ¼ − log

�
1

Nfλg

X
λ

e−λβΔUþΔFðλÞ
�
: ð21Þ

From a short 20 ps unbiased run we obtain with the usual
automatic procedure (Sec. V) 30 equispaced points in the
interval 0 < λ < 1, that define our target distribution. The
evolution of ΔU as a function of simulation time is shown
in Fig. 4(a). There is an initial transient of about 3 ns

FIG. 4. Calculation of the free energy of liquid TIP4P water using a single-simulation thermodynamic integration. (a) Evolution of the
collective variable ΔU as a function of simulation time. (b) Integrand for the thermodynamic integration obtained through reweighting.
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until the bias potential is optimized and then the system
diffuses freely. This has to be compared with a simulation
for a given value of λ in which the fluctuations of ΔU
would be very small. From this simulation the integrand
h∂uλðxÞ=∂λiuλ ¼ βhΔUiλ can be calculated via reweight-
ing, Eq. (12),

hΔUiλ ¼
P

n
k ΔUkwkðλÞP

n
k wkðλÞ

; ð22Þ

where ΔUk ¼ ULJðxkÞ − UTIP4PðxkÞ and wkðλÞ ¼
e−λβΔUkþvðkÞk−1 . The values of hΔUiλ thus calculated are
shown in Fig. 4(b). Using these results and Eq. (19) we
find a free-energy difference ΔFTIP4P→LJ ¼ FLJ − FTIP4P ¼
7.00ð1Þ (NkBT units) in agreement with the result reported
in Ref. [33].

VI. BEYOND LINEARITY:
MULTIUMBRELLA ENSEMBLE

We consider now another important kind of expanded
ensemble, namely the one obtained by combining all the
different windows of a typical umbrella sampling simu-
lation [18]. We refer to such an ensemble as a multi-
umbrella ensemble.
Multiple-windows umbrella sampling [32] allows for the

free-energy surface (FES) reconstruction along some col-
lective variable s ¼ sðxÞ, that can be the reaction coor-
dinate or some slow mode of the system. Typically one
simulates multiple copies of the system, each one with a
parabolic bias potential centered at a different sλ point, in
such a way that the resulting probability distributions have
an overlap and cover the whole CV range. Postprocessing
via WHAM [34] or other methods is then needed to
estimate the relative free-energy differences and combine
the data in a single FES estimate. Here, instead, we aim at
sampling all the umbrella windows in the same simulation,
by estimating on the fly these free-energy differences and
building a single global potential. For this reason, the FES
can then be obtained with the simple reweighting scheme
described in Sec IV B. Both approaches have their own
strengths and weaknesses, as we discuss while presenting
the example below.
Given a system with reduced potential u0ðxÞ and

equilibrium Boltzmann distribution P0ðxÞ, we can write
the reduced potential of each umbrella window as
uλðxÞ ¼ u0ðxÞ þ ΔuλðxÞ, with expansion CVs:

ΔuλðxÞ ¼
(sðxÞ − sλ)2

2σ2
: ð23Þ

The associated probability distribution is PλðxÞ ∝
P0ðxÞGσ(sðxÞ; sλ), where Gσðs; sλÞ is a Gaussian of width
σ centered in sλ. The resulting expanded target pfλgðxÞ ¼
ð1=NfλgÞ

P
λ PλðxÞ is clearly not linear in λ, and in fact

requires an extra parameter σ to be defined. The width σ can
in principle vary with λ, but we consider here only the case
of uniform umbrellas.
Since the expansion CVs, Eq. (23), depend on x only

through s ¼ sðxÞ, it is natural to write the bias as a function
of the s CV:

vðsÞ ¼ − log

�
1

Nfλg

X
λ

e−ðs−sλÞ2=2σ2þΔFðsλÞ
�
: ð24Þ

Contrary to the linear case, in this multiumbrella case
both the bias vðsÞ and the free-energy differences ΔFðsÞ ¼
− loghGσ(sðxÞ; s)iu0 are expressed as functions of the
same CV.
The Nfλg sλ points can be chosen to be uniformly

distributed in the desired Δs ¼ smax − smin interval, in such
a way to be at most at a distance of σ, ensuring overlap
between contiguous Pλ. For a small enough σ, the estimate
ΔFnðsÞ converges precisely to the free-energy surface,
while if σ is too broad there will be small artifacts, similarly
to what happens when a too broad bandwidth is used in
kernel density estimation.
It is instructive to consider the marginal of the target

probability with respect to the CV, pfλgðsÞ. In the limit of
infinitely small σ and thus infinitely large Nfλg, the multi-
umbrella target pfλgðsÞ is a uniform flat distribution over
the Δs interval. In the opposite limit, of a very broad σ, the
target distribution will look like the original, hard-to-
sample P0. As a rule of thumb σ should be as small as
the smallest features of the FES we are interested in. We
note that this is the same criterion used to choose the σ
parameter in metadynamics [70], and it can typically be
guessed from a short unbiased run. For this reason we
prefer to use as parameter σ instead of the more commonly
used strength of the harmonic umbrella potential K ¼
1=σ2 [32].
In some cases it proved useful to introduce two small

modifications to make the multiumbrella iterative optimi-
zation scheme more robust. We leave the explanation of
them to Appendix C, since they have not been necessary for
the examples presented in the paper.
For simplifying the exposition we presented the pro-

cedure in the case of a 1D CV, but it is straightforward to
extend it to higher dimensions, by using multidimensional
Gaussians and placing the sλ points on an appropriate
multidimensional grid. When dealing with higher dimen-
sions it might be interesting to use some more elaborate
shapes for the umbrellas, e.g., a Gaussian mixture in a
similar but complementary way to Ref. [71], or to follow a
specific path, as in Ref. [72].
Example: Double-well model As an example for the

multiumbrella ensemble we consider a Langevin dynamics
on a 2D model potential [73] using as CV the x coordinate
only, Fig. 5(a). Such CV is suboptimal, in the sense that it
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correctly describes the metastable basins, but does not
include all the slow modes of the system [73]. One of the
positive features of multiple-windows umbrella sampling
is that it allows one to estimate the FES by running many
short simulations in parallel. However, in this case some of
the windows—for instance, the one centered at x ¼ 0—
cannot be efficiently sampled in a single short simulation
due to the barrier along y. This is a known problem that can
be diagnosed with dedicated consistency tests and is
typically solved by performing more sampling [74].
With our approach, instead, we have a single combined
simulation that in this example is long enough for the
ymode to diffuse, and thus the CV suboptimality does not
constitute a problem, and no extra care is required to
handle it.
Figure 5(b) shows how the target distribution changes

for different σ choices, expressed in units of the unbiased
standard deviation in the basins, σ0 ≈ 0.18. The FES
estimate could be directly obtained from the ΔFnðsÞ,
but in the case of large σ this would lead to an estimate in
which features are oversmoothed (see Supplemental
Material [57]). Also, due to the CV suboptimality this
estimate might not be very precise, but simply good
enough for having that the main bottleneck for the
transition is the unbiased slow mode y [73]. As a general
rule, it is better to estimate the FES via the reweighting
procedure.
In the Supplemental Material we provide all the simu-

lation details and show the convergence of the free energy,
comparing it to well-tempered OPES and metadynamics
[57]. While in metadynamics and well-tempered OPES
the bias is constructed in such a way to push the system

out of the visited areas, with multiumbrella OPES we
are forcing the system to stay in a chosen CV region.
Despite this difference in both cases we have similar target
distributions and the resulting sampling allows us to
reconstruct the FES.

A. Combining thermodynamic and order
parameter expansions

An important characteristic of the present scheme is that
it allows for a straightforward combination of different
expanded ensembles. In particular, it allows for a rigorous
and efficient combination of thermodynamic generalized
ensembles with enhanced sampling along a system-specific
order parameter.
To understand why this is important one can think about

a first-order phase transition, where there is a kinetic
bottleneck between the two phases that is responsible for
an ergodicity problem. Increasing the temperature typically
changes the relative stability of the two phases, but the
free-energy barrier separating them might remain high
along the whole coexistence line, thus making convergence
very slow. A possible solution is to identify a suitable order
parameter and biasing it to increase the transition proba-
bility. Combining the two approaches might actually out-
perform both [75,76]. This kind of combination can be
useful not only for phase transitions; for instance, also in
alchemical free-energy calculations an open problem is
how to properly handle barriers orthogonal to the trans-
formation [77].
We have already cited some hybrid methods that

combine a replica-exchange approach with metadynamics,
in order to enhance the sampling along both a

FIG. 5. Double-well model in the multiumbrella ensemble. (a) Potential energy of the double-well 2D model system, and its free
energy along the x coordinate. (b) Multiumbrella target distribution, for different values of umbrella width σ. The black dotted line is the
unbiased probability distribution P0ðxÞ.
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thermodynamic quantity and an order parameter [10–13,
75]. A nonhybrid approach has been first proposed with
multidimensional replica exchange [18], but it has the
drawback of requiring a sometimes impractical number
of parallel replicas, due to the multidimensionality of the
expansion. With OPES we can sample the same target
distribution of multidimensional replica exchange, but
using a bias potential and without requiring a minimum
number of parallel replicas. In developing our method
we followed the footsteps of another nonhybrid
approach that has been recently proposed by our group,
using the VES formalism and a custom target distribu-
tion [40,78]. Compared to the very flexible and custom-
izable VES approach, OPES has the advantage of having
much fewer free parameters and thus being simpler to set
up and use.
Example: Sodium We consider here as an example

the calculation of the liquid-bcc phase diagram of a
model of sodium [79], the same studied in Ref. [40]. We
sample the liquid and solid phase over a range of
temperatures and pressures, using a recently proposed
order parameter s, called environment similarity collec-
tive variable [40]. Such CV provides a measure of the
crystallinity of the system, by comparing the local
environment of the atoms to a reference one. For this
reason we refer to it as crystallinity CV, but it is actually
more general and can be used to describe a variety of
phase transitions[78,80].
Using LAMMPS patched with PLUMED, we perform NPT

simulations, u0ðxÞ ¼ β0UðxÞ þ β0p0VðxÞ. We can write
the OPES equations, Eqs. (10) and (11), via the following
expansion CVs:

Δuβ;p;sðxÞ¼ ðβ−β0ÞUðxÞþðβp−β0p0ÞVþ (sðxÞ− s)2

2σ2
:

ð25Þ
The free-energy estimates ΔFnðβ; p; sÞ are expressed as a
function of the inverse temperature β, the pressure p, and
the crystallinity CV s. The bias v ¼ vðU;V; sÞ is expressed
as a function of the potential energy U, the volume V, and
the crystallinity CV s.
The simulation is performed with 250 atoms at T0 ¼

400 K and p0 ¼ 0.5 GPa (5 kbar), using 4 multiple
walkers that share the same bias and contribute to the
same ensemble averages to update the ΔFnðβ; p; sÞ esti-
mate. The aim is to sample liquid and solid configurations
in the temperature range from 350 to 450 K and pressures
from 0 to 1 GPa (10 kbar). The uniform grid over β and p to
define the target distribution is automatically generated
from a short 100 ps unbiased run, and consists of 4
temperature steps and 8 pressure steps. We chose as σ
for the multiumbrella target a value of about 2.5 times the
unbiased standard deviation in the basins, and it determines
the presence of 26 umbrellas uniformly placed between
smin ¼ 0 (liquid) and smax ¼ 1 (solid). In total the
ΔFnðβ; p; sÞ to be estimated are 4 × 8 × 26 ¼ 832. After
less than 3 ns the bias has clearly reached the adiabatic
regime, and could be kept constant and used as static bias.
However, since there is no drawback in doing so, we keep
updating the bias and run 25 ns per walker, for a total
combined simulation of 100 ns.
In Fig. 6(a) we show the points sampled in the CV space

during the simulation, colored according to the value of the
bias potential vðU;V; sÞ. We can clearly distinguish the

FIG. 6. Configurations of sodium sampled during the multithermal-multibaric-multiumbrella simulation. (a) The points
are colored accordingly to the value of the bias vðU; V; sÞ. (b) The points are shown in the energy-volume space and colored
accordingly to the value of the crystallinity CV s. As reference we also show in gray the region sampled during an unbiased simulation in
the bcc phase.
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hourglass shape described in Ref. [40]. In Fig. 6(b) we see
the same trajectory plotted on the energy-volume plane. For
comparison we show the configuration sampled in an
unbiased simulation at a single temperature and pressure,
in which the system remains all the time in the bcc
crystal phase.
We can define the free-energy difference between the

two phases as in Ref. [40]:

ΔFliq→bccðT; pÞ ¼ − log

�hχs∈½0.5;1�iT;p
hχs∈½0;0.5�iT;p

�
; ð26Þ

where χ is a characteristic function, equal to 1 if the variable
is in the proper range and 0 otherwise, and h·iT;p is the
ensemble average at temperature T and pressure p.
In Fig. 7(a) we show ΔFliq→bccðT; pÞ obtained by

reweighting at different temperatures and pressures. The
coexistence line ΔFliq→bccðT; pÞ ¼ 0 is shown with a
dotted gray line. On the right-hand side, Fig. 7(b), we
provide the free-energy surface as a function of the CV,
FðsÞ, at different thermodynamic conditions. Error bars are
calculated with a weighted block average (Appendix B) and
all the results are in agreement with Ref. [40]; see
Supplemental Material [57].
It is important to notice that while the relative stability

between liquid and solid changes across the range consid-
ered here, the probability of being in the transition state
between the two is always extremely small, as can be seen
from the high FES values around s ¼ 0.5 in Fig. 7(b). By
actively biasing the CV s we allow the system to efficiently
sample the transition region as well, and this makes it
possible to quickly converge the multithermal-multibaric
simulation despite the presence of a first-order phase
transition.

VII. ABOUT THE OPTIMAL TARGET
DISTRIBUTION

Before reaching the conclusion of the paper we would
like to add a final remark. At the beginning of Sec. IV we
presented the nonweighted expanded ensemble target
distribution, pfλgðxÞ ¼ ð1=NfλgÞ

P
λ PλðxÞ. It is reason-

able to wonder if this is an optimal target and in which
sense. We argue here that the effective sample size can be
used to define an optimality criterion.
Let us say our goal is to sample from a generalized

ensemble that contains all the relevant microscopical
configurations for a give range of the parameter λ. While
the expanded target distribution pfλgðxÞ, Eq. (3), fulfills
such a goal, there are in principle other possible choices.
It is useful to look at the special case of multicanonical

ensembles, that has a long history (see also Sec. VA). In
this context various different target distributions have been
used, other than the nonweighted expanded ensembles one.
One option is to have a uniform sampling in the energy
[22,23,39], another one is to have a uniform sampling in the
entropy [26], and a third one is to define the target by
integrating the probability over the temperature, as in
Refs. [30,44]. In this last approach one often approximates
the integral with a sum, and effectively uses a target similar
to our, Eq. (3), which is also the one used in temperature
replica exchange. Another interesting perspective is pre-
sented in Ref. [81], where a Riemann metric is introduced
to define optimality.
We believe that if our goal is to reweight at different

temperatures, then the optimal target distribution is the one
that yields the highest possible uniform effective sample
size over the whole considered Δλ range. Here we will not
further explore such optimal target distribution nor dig

FIG. 7. Phase equilibrium of liquid and solid (bcc) sodium using a combination of thermodynamic and order parameter expansions.
(a) Free-energy difference between the phases, ΔFliq→bcc, at different thermodynamic conditions. The coexistence line is shown as a
gray dashed line. (b) Free-energy surfaces as a function of the crystallinity CV, for three representative thermodynamic conditions. Error
bars are smaller than the linewidth.
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deeper in the definition of effective sample size. However,
simply by defining this criterion we can notice that one
should not see the sum in Eq. (3) as an approximation to an
integral. As a matter of fact, using as few as possible
intermediate λ points brings us closer to this optimal target
than having more, at least in the systems we studied (see
Supplemental Material [57]).
It might also be the case that one is not interested in

obtaining statistic for the whole Δλ range, but only for a
subset of λ states. In this case the optimal target would be
the one that maximizes the effective sample size for those λ
states while ensuring ergodicity. According to this criterion
we argued in Ref. [3] that the well-tempered target is better
than a uniform one, since it allows for an ergodic sampling
while providing a higher neff=n ratio and avoids unim-
portant high free-energy regions.

VIII. CONCLUSION

In this paper we presented a general framework that
provides a unified approach to enhanced sampling. To
implement our method we leveraged the iterative scheme of
OPES, an enhanced sampling method based on the con-
struction of a bias potential along a set of collective
variables, that was originally introduced for metadynamics-
like sampling. We showed how this approach can be used to
sample the same expanded ensembles typically sampled by
a different family of enhanced sampling methods.
We also introduced the concept of expansion CVs,

ΔuλðxÞ, that can be used to fully characterize a non-
weighted expanded target distribution pfλgðxÞ, Eq. (3),
together with the free-energy differences to be iteratively
estimated, Eq. (5), and the target bias, Eq. (8).
We then presented various examples of the application of

the method to sample the most common expanded ensem-
bles. These ensembles are summarized in Table I. In
particular, we have shown how OPES can be used to
enhance at the same time temperature-related fluctuations
and a system-specific order parameter, Sec. VI A.
We notice that in defining the target distribution ptgðxÞ

we consider only the positional degrees of freedom, and not
the atomic velocities. Thus the ensembles sampled by our
method are not identical to the ones sampled, for instance,

by replica exchange, even though the target distribution is
the same. In fact, the two methods sample the same
configuration space, but a different velocity space. This
does not have an effect on any statistical average of
observables that are function of the coordinates only, but
might be an interesting point for further research.
In the future it would be interesting to combine expanded

target distributions with well-tempered-like distributions,
which can scale better with higher dimensionality. Also
weighted expanded targets might be of interest, where each
subensemble λ has a specific different normalized weight. It
might also be useful to implement the target distribution
implicitly used by bias-exchange and parallel-bias meta-
dynamics [11,82], that scales efficiently with the number of
CVs. More generally, we believe that our perspective of
focusing on the target distribution has further potential that
should be explored.

The method is implemented in the open source PLUMED

enhanced sampling library [56], and will be available as a
contributed module called OPES. All the input files and
postprocessing scripts used for this paper are openly
available on the PLUMED-NEST [83,84] and in the
Materials Cloud Archive [85], where the trajectories of
the simulations are also stored.
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APPENDIX A: ALGORITHMIC SCHEME

We schematically present the OPES algorithm used for
sampling expanded ensembles.

TABLE I. Some of the most common expanded ensembles, together with the expansion collective variables ΔuλðxÞ that define the
OPES target bias, Eq. (8), and the free-energy differencesΔFðλÞ, Eq. (5). Each of the considered target biases can in turn be expressed as
a function of one or two CVs. It is also possible to easily combine these ensembles to form new ones, as shown in Sec. VI A.

Target ensemble Expansion CVs Parameters CVs

Linearly expanded λΔuðxÞ fλg ΔuðxÞ
Multicanonical ðβ − β0ÞUðxÞ fβg UðxÞ
Multibaric β0ðp − p0ÞVðxÞ fpg VðxÞ
Multithermal-multibaric ðβ − β0ÞUðxÞ þ ðβp − β0p0ÞVðxÞ fβ; pg UðxÞ; VðxÞ
Multiumbrella (sðxÞ − sλ)2=ð2σ2Þ fsλg sðxÞ
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(i) INITIALIZATION: each set of expansion CVs can
be initialized independently, following one of two
strategies
manual Choose the expansion CVs ΔuλðxÞ and
initialize ΔF0ðλÞ ¼ Δuλðx0Þ
automatic (linear expansions only) Choose λmin and
λmax. Run ninit unbiased simulation steps, and use
neffðλÞ as described in Sec. V to define the fλg set.
Initialize ΔF0ðλÞ via Eq. (11), using the ninit points
and v ¼ 0.

(ii) SIMULATION: run the simulation for τ steps with
potential uðxÞ þ vnðxÞ. Add the point xnþ1 ¼ xðnτÞ
to the estimate ΔFnþ1ðλÞ and thus define vnþ1ðxÞ,
according to Eqs. (11) and (10). If multiple walkers
are present, use each different configuration xnþ1 to
update the same ΔFnþ1ðλÞ estimate.

(iii) REWEIGHTING: to reweight for an observable
OðxÞ store its value during the simulation, together
with the value of the potential v and use Eq. (12).

APPENDIX B: WEIGHTED BLOCK AVERAGE

When estimating the uncertainty related to an ensemble
average obtained from molecular dynamics, one must take
into account for the time correlation between the samples.
Methods such as block averaging [86] are commonly used
to properly handle this. The effect of such time correlation
is to make the sample size effectively smaller; thus simply
taking the square root of the variance divided by the
number of samples would underestimate the actual uncer-
tainty. When dealing with weighted samples, as it is the
case when a bias potential is used, the effective sample size
is further reduced by the presence of these weights. To
account also for this effect we should slightly modify the
block averaging procedure. We report here the protocol that
we follow to estimate uncertainties, which is the same as
the one presented in Ref [52], but here we highlight the role
played by the effective sample size.
We are interested in estimating the ensemble average of

an observable O ¼ OðxÞ from a biased ensemble,

hOi ≈ Ô ¼
P

n
k¼1OkwkP
n
k¼1 wk

; ðB1Þ

where wk are the weights due to the bias potential, as in
Eq. (12). In order to estimate the uncertainty we divide the
data into M subsets or blocks, each containing an equal
number of samples n=M. We then calculate the estimate Ôi
from each block, via a weighted average, and also the
weight of the ith block,

Wi ¼
Xiðn=MÞ

k¼ði−1Þðn=MÞ
wk: ðB2Þ

In this way the total estimate can be obtained as the
weighted average of the blocks:

Ô ¼
P

M
i¼1 WiÔiP
M
i¼1Wi

: ðB3Þ

Then according to the usual block average procedure we
estimate the unbiased variance between the blocks, that in
this case is a weighted variance:

σ2O ¼ Meff

Meff − 1

P
M
i¼1WiðÔi − ÔÞ2P

M
i¼1 Wi

; ðB4Þ

where instead of the total number of blocks M, we use the
effective block size Meff < M:

Meff ¼
ðPM

i¼1WiÞ2P
M
i¼1 W

2
i

; ðB5Þ

that is the same as Eq. (13). The statistical error on the Ô
estimate is then σO=

ffiffiffiffiffiffiffiffiffi
Meff

p
. When the number of blocks M

is small, or when the weight Wi are unbalanced, using M
instead of Meff can introduce a considerable underestimate
of the real uncertainty.
The usual block average procedure can then be carried

out, repeating the analysis using different number of blocks
M and looking for a plateau in the error estimate.

APPENDIX C: IMPROVING ROBUSTNESS FOR
THE MULTIUMBRELLA TARGET

In some cases, when targeting the multiumbrella ensem-
ble it can be important to introduce two small modifica-
tions, to make the iterative optimization scheme more
effective. We did not use these modifications in any of
the examples presented, but we found them useful for
dealing with more challenging systems and thus have been
implemented in the code.
When the iterative scheme starts, the first guess of the

ΔFnðsλÞ comes from just one single point, and is thus very
inaccurate for CV values far away from the visited one. In
particular, it tends to become extremely large, which causes
the bias to be very strong in pushing the system to the
farthest sλ value. This initial bias is stronger the smaller
the σ, and might even cause the simulation to fail during the
very first biased steps. To avoid this, we can limit the initial
value of the ΔFnðsλÞ estimates to always be smaller than a
given value; thus ΔF0ðsλÞ ≤ ΔE. This ΔE value can be set
to be equal to an estimate of the free-energy barrier that has
to be overcome. Thus, similarly to Ref. [3], we add an extra
optional parameter called “barrier” that sets the value of
ΔE. This barrier guess does not have to be perfect and a
very rough estimate typically suffices. Also, we did not
observe significant change in the convergence speed; thus
we suggest to use this extra parameter only in case of an
initial failure of the simulation, due to a too strong initial
bias. The barrier parameter can in principle be used also
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with types of expansion other than the multiumbrella one,
even though in those cases it might be less useful.
The second modification comes from the observation

that, contrary to the previously considered expanded
ensembles, the multiumbrella one is not guaranteed to
sample the full unbiased distribution P0ðxÞ. This can be a
problem for the iterative scheme, because all the ΔFnðsλÞ
use as reference the unbiased free energy F0 ¼ − logZ0,
whose estimate can vary substantially if P0 is not properly
sampled. Typically it should be easy to choose an interval
Δs that contains all the s values relevant for P0, but if this is
not the case then the problem can be fixed by simply adding
P0 itself to the target distribution. To add P0 to the target, it
is sufficient to add an extra expansion CV Δu0ðxÞ≡ 0 that
always returns zero.
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