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We introduce a dynamical picture, referred to as correlation picture, which connects a correlated bipartite
state to its uncorrelated counterpart. This picture allows us to derive an exact dynamical equation for a
general open-system dynamics with system-environment correlations included. This exact dynamics is in
the form of a Lindblad-like equation even in the presence of initial system-environment correlations. For
explicit calculations, we also develop a weak-correlation expansion that allows us to introduce systematic
perturbative approximations. This expansion provides approximate master equations that can feature
advantages over existing weak-coupling techniques. As a special case, we derive a Markovian master
equation, which is different from existing approaches. We compare our equations with corresponding
standard weak-coupling equations using two examples, for which our correlation-picture formalism is
more accurate, or at least as accurate as the weak-coupling equations.
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I. INTRODUCTION

The recent rise in high-fidelity quantum technological
devices has necessitated detailed understanding of open
quantum systems and how their environment influences
their performance. The theory of open quantum systems
has spurred numerous possibilities to harness the power of
the environments in various physical tasks [1,2]. Although
in this framework quantum correlations play a key role, it
has remained unresolved how to explicitly keep track of
correlations between a system and its environment in the
dynamical equation.
The description of the joint evolution of a quantum

system and its environment, or bath, through the unitary
dynamics given by the Schrödinger equation is hampered
by the large dimensionality of the Hilbert space of the bath.
Although there already exist a plethora of approximate

methods [3–10] for obtaining dynamics of an open
quantum system by a closed set of equations, these
approaches, in general, do not incorporate correlations
between the system and its environment (see, e.g.,
Refs. [11–14] for attempts to take correlations into
account). Furthermore, despite previous attempts to prove
the existence of universally valid time-local Lindblad-like
master equations for general dynamics [15–19], a micro-
scopic derivation that incorporates correlations, whether
initial or instantaneous, within the dynamics has been
elusive.
Here, we address these issues by introducing the corre-

lation picture, a new technique through which we relate any
correlated state of a composite system in the Schrödinger
picture to an uncorrelated description of that system. The
dynamical picture allows us to assign a correlation parent
operator to the instantaneous system-bath correlation. This
correlation parent operator is used as a key element in a
microscopic derivation of the dynamical equation of the
system.
This introduced framework for studying open quantum

dynamics enables us to derive a universal Lindblad-like
(ULL) equation that is time local and valid for any quantum
dynamics. The ULL form is derived without approxima-
tions, and it is also valid when the system is initially
correlated with the bath. A Lindblad-like form for general
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dynamical equations has also been noted in recent attempts
to generalize quantum mechanics [20–22].
We study the behavior of the ULL equation under chosen

approximations and are able to derive conveniently solv-
able master equations, which, to a satisfactory degree of
accuracy, reproduce the exact dynamics in the correspond-
ing parameter regimes. In particular, in the vicinity of time
instants where the correlations become negligible, the
approximative ULL equation reduces to a Markovian
Lindblad-like (MLL) master equation, in which the jump
rates are positive. We prove that this equation correctly
characterizes the universal quadratic short-time behavior of
the system dynamics [23], in contrast to the standard
Lindblad equation, which gives a purely linear behavior
for short times [24,25]. In addition, we demonstrate that our
MLL equation, which does not utilize the secular approxi-
mation, may in some cases faithfully describe the long-time
behavior of the system. This MLL equation thus constitutes
a useful framework for studying open-quantum-system
dynamics beyond the weak-coupling regime.
We also develop a systematic perturbative weak-corre-

lation expansion, which includes non-Markovian effects.
Interestingly, we show that even the lowest order of the
constructed ULL equation (ULL2) can outperform corre-
sponding weak-coupling master equations, which shows
that giving the principal role to correlations rather than
coupling offers a strong alternative to existing weak-
coupling techniques.

II. CORRELATING TRANSFORMATION

Any given system-bath state at an arbitrary instant of
time ϱSBðτÞ can be decomposed in terms of an uncorrelated
part, given by the tensor product of the instantaneous
reduced states of the subsystems ϱSðτÞ ¼ TrB½ϱSBðτÞ� and
ϱBðτÞ ¼ TrS½ϱSBðτÞ�, and the remainder χðτÞ, which carries
all correlations within the total state,

ϱSBðτÞ ¼ ϱSðτÞ ⊗ ϱBðτÞ þ χðτÞ; ð1Þ

where TrS½χ� and TrB½χ� are null operators on the bath and
system Hilbert spaces, respectively. Below, we refer to χðτÞ
as the correlation operator or simply the correlation. It
includes all kinds of correlations, whether classical or
quantum mechanical. The latter, in the form of entangle-
ment, discord, or other more complex types, have a rich and
resourceful nature in physics, e.g., in energy fluctuations of
thermodynamical systems [26,27] and in quantum infor-
mation tasks [28–30].
To define our correlation picture, we introduce an

operation Eχ , which transforms the uncorrelated state
ϱSðτÞ ⊗ ϱBðτÞ to the correlated state ϱSBðτÞ. We refer to
the opposite operation relating the correlated state to the
uncorrelated one as decorrelating. These interesting oper-
ations also appear in the context of quantum statistical
physics, where they are dubbed the quantum Boltzmann

map and relate to the stosszahlansatz [31]. Decorrelating
transformations have already been investigated in the
literature [32], and it is known that a universal decorrelating
machine would violate linearity of quantum mechanics
[33]. Our correlating transformation, indeed, is not univer-
sal; i.e.,Eχ depends on the states. To gain insight on how to
find Eχ , it is helpful to start with the case of creating a
weakly correlated state. We emphasize that this case study
will serve merely to set the scene, whereas later we do not
assume any weak correlation in our general analysis.
Correlating transformation for a weakly correlated

state.—Let us aim to transform an uncorrelated state ϱSB ¼
ϱS ⊗ ϱB to a weakly correlated state ϱSB ¼ ϱS ⊗ ϱB þ χ
with kχk ≪ 1 (k·k being the operator norm). A natural way
to do so is to apply an entangling gate on the uncorrelated
state. Consider, e.g., an entangling gate [34] described by a
unitary transformationUχ ¼ e−iHχ , with kHχk ≪ 1 [35]. In
other words, here the transformation (Uχ) is assumed to be
given, and we look for the corresponding generated
correlation operator χ. This gate results in a weakly
correlated state UχϱS ⊗ ϱBU

†
χ ≈ ϱS ⊗ ϱB − i½Hχ ;ϱS ⊗ ϱB�.

Comparing this state with ϱSB ¼ ϱS ⊗ ϱB þ χ, we observe
that up to OðkHχk2Þ, the correlation χ obeys the following
equation:

χ ¼ −i½Hχ ; ϱS ⊗ ϱB�: ð2Þ

We refer to the dimensionless operatorHχ as the correlation
parent operator. The equivalent correlating transformation
in this regime is obtained by inserting Eq. (2) into Eq. (1)
as ϱSB ¼ Eχ ½ϱS ⊗ ϱB� ≔ ϱS ⊗ ϱB − i½Hχ ; ϱS ⊗ ϱB�.
Correlating transformation for a general state.—In the

above scenario, we applied a known unitary transformation
to create a correlated state and obtained the correlation χ in
terms of the input uncorrelated state ϱS ⊗ ϱB. Now, we
return to our question of interest: to find the operation that
transforms a given ϱS ⊗ ϱB to its associated ϱSB with a
definite correlation operator χ that is not necessarily small.
Although for any given pair of quantum states ϱ1 and ϱ2,

it is possible to find a quantum map or channel E such that
E½ϱ1� ¼ ϱ2 [36], such a map does not necessarily have a
unitary representation. Hence, if we postulate the form
given in Eq. (2) as the equation connecting ϱS ⊗ ϱB and χ,
for some Hχ , it generally does not have a Hermitian
solution for Hχ. However, with the insight gained from
the weakly correlated case, we still choose χ as in Eq. (2)
but relax the Hermiticity constraint on Hχ . Since the left
side of Eq. (2) is Hermitian, to ensure the Hermiticity of the
right side, with a non-Hermitian Hχ , we introduce a
generalized commutator ⟦A;B⟧ ¼ AB − B†A† [37] and
replace Eq. (2) with

χ ¼ −i⟦Hχ ; ϱS ⊗ ϱB⟧: ð3Þ
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We consider this relation as the general definition of Hχ ,
valid for any χ. Fortunately, this equation always has a
solution for Hχ, provided that P0ðτÞχðτÞP0ðτÞ ¼ 0, where
P0ðτÞ is the projector onto the null space of ϱSðτÞ ⊗ ϱBðτÞ
[38]. We prove that this condition is always satisfied [39]—
and we also provide the solution for Hχ. Using Eq. (3), we
define our correlating transformation Eχ as

ϱSB ¼ Eχ ½ϱS ⊗ ϱB� ≔ ϱS ⊗ ϱB − i⟦Hχ ; ϱS ⊗ ϱB⟧: ð4Þ

We note that neither the solution of Eq. (3) forHχ nor the
formal connection of χ to ϱS ⊗ ϱB is unique (one may
suggest other forms), which means that there is a kind of
gauge freedom in choosing the correlating transformation.
However, this nonuniqueness does not affect our formalism
because any solution of Eq. (3) and any properly chosen
form for Eχ must generate the same given χ—which is the
physical quantity that should remain unchanged under
these gauge transformations.
Note that the uncorrelated state ϱS ⊗ ϱB is not the state

of the total system (because, in general, χ ≠ 0); rather, we
take this state as the description of the total system in a
pertinent correlation picture. In order to keep the dynamics
of the state in this picture faithful to the Schrödinger
equation, we need to devise an appropriate formulation.
Figure 1 depicts the correlating transformation and the
associated correlation picture—which is explained in
detail below.

III. CORRELATION-PICTURE DYNAMICS

We aim to apply our correlation-picture transformation
between the correlated and uncorrelated states, ϱSB and
ϱS ⊗ ϱB, respectively, to obtain a dynamical equation for
ϱS. Our approach can be considered in the spirit of the
derivation of the Nakajima–Zwanzig (NZ) equation [5,6].
However, rather than applying a decorrelating projector
to omit system-bath correlations (while implicitly
carrying correlations into another complementary equa-
tion), we employ our correlating transformation within the
Schrödinger equation of the total system. Hence, we
explicitly retain contributions to the system dynamics from
the correlations in the total system.
Let us assume that the total Hamiltonian of the system

and the bath is given by HSB ¼ HS þHB þHI, where the
last term denotes the system-bath interaction. We employ
the correlating transformation (4) to obtain a counterpart
for the Schrödinger picture generator Ds½∘� ¼ −i½HSB; ∘�
(throughout this paper, we assume the dimensionless units
ℏ≡ kB ≡ 1). More precisely, we define this operator Dc
such that

Ds½ϱSBðτÞ� ¼ Dc½ϱSðτÞ ⊗ ϱBðτÞ�: ð5Þ

By inserting the correlating transformation (4) in the
Schrödinger equation as Ds½ϱSBðτÞ� ¼ DsfEχ ½ϱSðτÞ ⊗
ϱBðτÞ�g, we obtain the correlation-picture generator as

Dc½∘� ¼ −i½HSB; ∘� − ½HSB; ⟦Hχ ; ∘⟧�: ð6Þ

Although the dynamics described byDc is fully equivalent
to the Schrödinger picture dynamics governed by Ds,
working in the correlation picture offers clear advantages.

IV. UNIVERSALITY OF THE LINDBLAD-LIKE
FORM FOR OPEN-SYSTEM DYNAMICS

We show in the following that working in the correlation
picture leads to a ULL equation. In the next sections, we
discuss applications and further properties of the ULL
formalism.

A. General theory

From Eq. (6), we can readily obtain the dynamics of the
subsystem by tracing over the bath degrees of freedom in
_ϱSBðτÞ ¼ Dc½ϱSðτÞ ⊗ ϱBðτÞ�. To show that the sub-
system dynamics has a Lindblad-like form, we use the

expansions of HI ¼
Pd2S−1

i¼1 Si ⊗ Bi and HχðτÞ ¼Pd2S−1
j¼0 Sj ⊗ Bχ

jðτÞ, where fSigd
2
S−1

i¼1 is the basis of
Hermitian operators defined on the system Hilbert space.
Here, dS is the dimension of the Hilbert space of the system,
and S0 ¼ I. We emphasize the difference between the
operators Bi and Bχ

i ðτÞ, which are related to HI and Hχ ,

FIG. 1. Description of the correlation picture. At any time τ (or
τ0), a correlating transformationEχ transforms anuncorrelated state
ϱS ⊗ ϱB to a correlated state ϱSB ¼ ϱS ⊗ ϱB þ χ, at the same
instant of time, due to an abstract correlation-dependent parent
operator given by Hχ. Using this transformation, we obtain the
temporal evolution of the uncorrelated system with a universal
Lindblad-like generatorLχ [see Eq. (9)] constructed fromHSB, the
generator of the total system dynamics in the Schrödinger picture.
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respectively. Inserting these expansions into _ϱS¼
TrB½−i½HSB;ϱS⊗ϱB�−½HSB;⟦Hχ ;ϱS⊗ϱB⟧�� yields

_ϱS ¼ −i½HS þ TrB½HIϱB�; ϱS�
−
X
i≠0;j

½Si; cijSjϱS − c�ijϱSSj�; ð7Þ

where

cijðτÞ ¼ hBiB
χ
jðτÞiB ð8Þ

are the elements of the covariance matrix CðτÞ of the
bath operators (with h∘iB ¼ TrB½ϱBðτÞ∘�). Here, unlike
the standard Lindblad equation, these bath operators are
obtained not only from the interaction Hamiltonian but
also from the correlation parent operator Hχ defined in
Eq. (3). We rewrite CðτÞ in Eq. (7) in terms of its Hermitian
and anti-Hermitian parts as CðτÞ ¼ AðτÞ þ iBðτÞ, with
Hermitian matrices AðτÞ ¼ ½aijðτÞ� defined by aijðτÞ ¼
ð1=2Þ½CðτÞ þ C†ðτÞ�ij and BðτÞ ¼ ½bijðτÞ� defined by
bijðτÞ ¼ ð−i=2Þ½CðτÞ − C†ðτÞ�ij, for i, j ≥ 1. This process
leads to an exact Lindblad-like master equation for the
system,

_ϱS ¼Lχ ½ϱS�
¼−i½HSþhχL;ϱS�þ

X
m

γχmð2Lχ
mϱSL

χ†
m −fLχ†

m Lχ
m;ϱSgÞ;

ð9Þ
where fX; Yg≡ XY þ YX denotes the anticommutator. In
this equation, the quasirates γχm are the eigenvalues of the
matrix AðτÞ. The jump operators are given by
Lχ
m ¼ P

j≠0 VmjSj, where fVmjgj are the elements of
the eigenvector corresponding to the eigenvalue γχm.
Furthermore, the Lamb-shift-like Hamiltonian hχLðτÞ¼
hHIiBþ2

P
i≠0 Im(ci0ðτÞ)Siþ

P
i≠0;j≠0bijðτÞSiSj, where

bij are the elements of the matrix BðτÞ. For more details on
the derivation, see Ref. [39].
Several remarks are in order here:
(i) Although by combining known results in the

literature one may infer time-local Lindblad-like
forms for the dynamics under the assumptions of
linearity or absence of initial system-environment
correlations [3,15,17], the ULL equation (9) is
completely general; we have made no assumptions
on the initial system-environment correlations or the
strength of the system-environment interaction. In
addition, the ULL equation is built explicitly on a
microscopic theory of correlations in the total
system.

(ii) Unlike the well-known Markovian embedding,
where a non-Lindblad (non-Markovian) evolution
is mapped to a Lindblad (Markovian) evolution
for a specific larger system employing an ancillary

system [40], we have proven here that the Lindblad-
like form is derived for the open-system dynamics
itself.

(iii) We note that the coefficients in the ULL master
equation (8) refer to the correlation functions
hBiB

χ
jðτÞiB, defined by the correlation parent oper-

ator and are thus different from the conventional
correlation functions of bath operators
hBiðτÞBjðτÞiB appearing in the standardMarkovian
Lindblad equation [3], where the average is taken on a
constant bath state, and BiðτÞ ¼ U†

BðτÞBiUBðτÞ
[with UBðτÞ ¼ e−iτHB ].

(iv) SinceLχ depends on the state of the system, Eq. (9)
is formally a nonlinear equation. Indeed, the linear-
ity constraint on the full dynamics of quantum
systems does not imply a similar restriction on
the dynamics of a subsystem, and this nonlinearity
is naturally expected for a general dynamical equa-
tion. Nevertheless, we show in Ref. [39] that our
ULL master equation (9) is linear in two important
cases: (a) if there is no initial correlation, i.e.,
χð0Þ ¼ 0, where we show that χðτÞ can be explicitly
expressed in terms of the system-bath product state,
and (b) if the domain of Lχ is restricted to a set of

states fϱðiÞS g forming a convex decomposition of the

state of the system, i.e., ϱS ¼ P
i piϱ

ðiÞ
S (but here,

the initial total state may be correlated).

B. Example I: Jaynes-Cummings model
with initial correlation

To illustrate universality of the dynamical equation (9),
even in the presence of initial system-bath correlations, we
begin with a proof-of-principle example, the well-known,
exactly solvable, Jaynes–Cummings model [41], and show
that the dynamics of the two-level system is described by
the ULL equation even when the system is correlated with a
bosonic mode.
Consider a two-level system interacting with a single

bosonic mode under the Jaynes-Cummings Hamiltonian.
The system Hamiltonian is HS ¼ ðω0=2Þσz, where σ� ¼
ðσx � iσyÞ=2 and σx, σy, and σz are the x, y, and z Pauli
operators, respectively; the bosonic bath Hamiltonian is
HB ¼ ωâ†â, where â† (â) is the creation (annihilation)
operator of the bosonic mode; andHI ¼ λðσþ ⊗ âþ σ− ⊗
â†Þ describes the system-bath interaction. For simplicity,
we assume that ω0 ¼ ω and that the initial state of the total
system is in a correlated state jψð0Þi ¼ r1je; 0i þ r2jg; 1i,
where both r1 and r2 are real numbers. Choosing
S0 ¼ I=

ffiffiffi
2

p
, S1 ¼ σx=

ffiffiffi
2

p
, S2 ¼ σy=

ffiffiffi
2

p
, and S3 ¼

σz=
ffiffiffi
2

p
as the basis operators, we can find fBχ

i gi (see
Ref. [39]). Thus, the bath covariances are obtained as
c10 ¼ c20 ¼ 0, c11 ¼ c22 ¼ λð−2ir1r2 þ α1α2Þ=ð2α21 − 2Þ,
and c12 ¼ −c21 ¼ λð2r1r2α1 þ iα2Þ=(2ð1 − α21Þ), where
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α1 ¼ ð1 − 2r21Þ cosð2λτÞ and α2 ¼ ð1 − 2r21Þ sinð2λτÞ.
Following the steps of the derivation of Eq. (9), we obtain

_ϱS ¼ −i½HS þ ω̃0σz; ϱS� þ γχ1ð2σ−ϱSσþ − fσþσ−; ϱSgÞ
− γχ2ð2σþϱSσ− − fσ−σþ; ϱSgÞ; ð10Þ

where ω̃0 ¼ 4λr1r2α1=(1þ 4r21 − 4r41 − ðα21 − α22Þ),
γχ1 ¼ −λα2=(2ð1 − α1Þ), and γχ2 ¼ λα2=(2ð1þ α1Þ) [39].
We emphasize that this equation is in the ULL form and is
valid even with initial system-bath correlations.

V. REDUCTION TO A MARKOVIAN EQUATION

Based on our general dynamical equation where system-
bath correlations are fully incorporated, we can obtain
simpler expressions for the case where the correlations are
small. This approach is valid, e.g., in the vicinity of time
instants at which the correlation vanishes or becomes
negligible. In other words, we introduce a weak-correlation
approximation. In such cases, we can simplify our ULL
master equation into a MLL master equation, in which
jump rates are positive—as expected from Markovian
dynamics [9]. Below, we show that this equation correctly
characterizes the universal quadratic short-time behavior of
the system dynamics where the standard Lindblad master
equation may fail [24,25].
We assume that at τ0 the correlationvanishes.Without loss

of generality, we take τ0 ¼ 0; thus, χð0Þ ¼ 0. We allow the
correlations to accumulate in the subsequent time stepsdue to
the dynamics. To first order in the time argument τ, we find
that the correlation satisfies Eq. (3) with HχðτÞ ¼ τH̃IðτÞ,
where H̃IðτÞ ¼

P
i≠0Si ⊗ ðBi − hBiiBÞ −

P
i≠0hSiiSBi

and h∘iS ¼ TrS½ϱSðτÞ∘�. Thus, from the knowledge
of Hχ , we can read Bχ

jðτÞ ¼ τðBj − hBjiBÞ, where
j ≥ 1. Substituting these expressions into Eq. (8), the bath
covariance matrix becomes

cijðτÞ ¼ τCovBðBi;BjÞ; i; j ≥ 1; ð11Þ

where CovBðO1; O2Þ ¼ hO1O2iB − hO1iBhO2iB. Since the
covariance matrix CðτÞ is positive-semidefinite, aijðτÞ ¼
cijðτÞ and bijðτÞ ¼ 0. The positivity of A implies positivity
of the rates γχm ≥ 0, which is a necessary feature of
Markovian dynamical evolution. To obtain an equation with
no dependence on the state of the bath [recall that hχLðτÞ and
cijðτÞ depend on ϱBðτÞ], we also expand ϱBðτÞ around
τ0 ¼ 0 and keep relevant terms up to the first order in τ. Thus,
we obtain

aijðτÞ ≈ τCovB0
ðBi;BjÞ; bijðτÞ ¼ 0;

hχLðτÞ ≈ hHIiB0
− iτh½HI; H̃B�iB0

− 2τ
X

ði;jÞ≠ð0;0Þ
hSjiS0

ImhBiBjiB0
Si; ð12Þ

where subscripts B0 and S0 indicate that the averages or
covariances are taken with respect to ϱBð0Þ and ϱSð0Þ rather
than ϱBðτÞ and ϱSðτÞ. In Eq. (12), we have defined H̃B ¼
HB þ hHIiS0

(see Ref. [39] for more details). Equation (9)—
bearing in mind Eq. (12)—describes the short-time
Markoviandynamics arounda point of vanishing correlation.
We emphasize that our weak-correlation assumption is

exact up to the first order in τ. If we extend this Markovian
dynamical equation to longer times, it may still work as an
approximation for the exact dynamics, e.g., when the
correlation repeatedly becomes zero [18,39]. Although,
at first sight, expanding around a point of vanishing
correlation may seem equivalent to the standard Born
approximation, we illustrate in the next example that the
MLL equation can be different from the Redfield equation.
In addition, unlike the Redfield equation [3,4], the MLL
equation always keeps the state positive, hence avoiding the
so-called slippage issue that afflicts the Redfield equa-
tion [42,43].
A final remark regarding the applicability of the MLL

approximation in other regimes is in order. If the system has
an asymptotic state, a candidate for such a state can be
ϱ⋆ ¼ P

nhEnjϱSBð0ÞjEnijEnihEnj, where fjEnig are the
eigenvectors ofHSB [39]. Now assume that (i) the system is
strongly interacting with the bath (i.e., HI is the dominant
term in the total Hamiltonian such that HSB ≈HI),
(ii) the interaction Hamiltonian contains only one term,
HI ¼ S ⊗ B, and (iii) the initial state of the system and the
bath is uncorrelated, χð0Þ ¼ 0. It is straightforward to show
that under these conditions, ϱ⋆ is an uncorrelated state, and
thus, also in this case, a MLL equation describes the
asymptotic dynamics [39]. In the next section, we provide
another case where the MLL approximation also holds, and
later we illustrate these behaviors with two examples.

VI. DYNAMICS OF THE CORRELATION:
SYSTEMATIC WEAK-CORRELATION

EXPANSION

The above MLL approximation shows that the correla-
tion picture and the ULL equation can offer far-reaching
practical implications beyond their fundamental appeal. We
identify that the weak-correlation approximation is the
basic ingredient of the MLL equation. Expanding upon
this is desirable as it can make the ULL methodology more
amenable to practical investigations of a diverse set of
systems.

A. General theory

To go further and demonstrate that the ULL equation
systematically enables such a rich approximative structure,
in the following, we develop a perturbative weak-correla-
tion expansion for the ULL equation. In particular, by using
the MLL toolbox as a starting point for a perturbative
expansion of the correlation matrix in the interaction
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picture, we find an exact dynamical equation for the
correlation χ (boldface denotes the interaction picture)
and expand it in terms of the interaction Hamiltonian HI as

χ ðτÞ ¼
X∞
l¼0

f lðτÞ; ð13Þ

where f 0ðτÞ≡ χ ð0Þ and f lðτÞ is of the order of Hl
I , for

l ≥ 1. We incorporate the first lþ 1 terms within this
expansion in the ULL dynamical equations for the system
and the bath and derive the associated lth-order approxi-
mate ULL equations, referred to as the “ULLl” equations.
Let us provide an outline of the weak-correlation

expansion—for details, see Ref. [39]. We start by the
decomposition of the state of the total system as in Eq. (1).
The total system at a later time τ þ ξ is given by

ϱSBðτ þ ξÞ ¼ UξϱSðτÞ ⊗ ϱBðτÞU†
ξ þUξχðτÞU†

ξ ; ð14Þ

where Uξ ¼ e−iHSBξ. The first term of the above equation
represents the evolution of an uncorrelated state
ϱSðτÞ ⊗ ϱBðτÞ, which up to the first order in ξ, is given
by the MLL dynamical equation. Using Eq. (14) and the
definition of the correlation operator (1) at time τ þ ξ, one
obtains, after some algebra [39],

_χ ðτÞ ¼ −i½H̃IðτÞ; ϱSðτÞ ⊗ ϱBðτÞ� þYτ½χ ðτÞ�; ð15Þ

where we have defined

Yτ½∘� ≔ −i½HIðτÞ; ∘� þ iTrB½HIðτÞ; ∘� ⊗ ϱBðτÞ
þ iϱSðτÞ ⊗ TrS½HIðτÞ; ∘�: ð16Þ

Using integration and iterations, a solution to Eq. (15) is
obtained as

χ ðτÞ ¼
X∞
k¼0

Z
τ

0

ds1

Z
s1

0

ds2 � � �
Z

sk−1

0

dskYs1 ½Ys2 � � � ½Ysk ½χ ð0Þ��…�

þ
X∞
k¼0

Z
τ

0

ds1

Z
s1

0

ds2 � � �
Z

sk−1

0

dskYs1 ½Ys2 � � � ½Ysk ½−i
Z

sk

0

ds½H̃IðsÞ; ϱSðsÞ ⊗ ϱBðsÞ���…�; ð17Þ

which is symbolically in the form of Eq. (13). Starting from
Eq. (17), we can systematically approximate the correlation
and hence the ULL dynamical equation. If the initial
system-bath correlation vanishes, the first-order approxi-
mation (with respect to H̃I) gives

χ ð1ÞðτÞ ¼ −i
Z

τ

0

ds½H̃IðsÞ; ϱSðsÞ ⊗ ϱBðsÞ�: ð18Þ

Using this relation to derive the correlation parent operator
[39], one can obtain a weak-correlation approximation
for the ULL dynamical equations for the system and
the bath,

_ϱSðτÞ¼−i½TrB½HIðτÞϱBðτÞ�;ϱSðτÞ�

−TrB½HIðτÞ;
Z

τ

0

ds½H̃IðsÞ;ϱSðsÞ⊗ ϱBðsÞ��; ð19Þ

_ϱBðτÞ¼−i½TrS½HIðτÞϱSðτÞ�;ϱBðτÞ�

−TrS½HIðτÞ;
Z

τ

0

ds½H̃IðsÞ;ϱSðsÞ⊗ ϱBðsÞ��; ð20Þ

which are of second order with respect to H̃I—hence,
we refer to them as the ULL2 equations. Returning
to the Schrödinger picture, we need to solve these
coupled differential equations for ϱSðτÞ and ϱBðτÞ in

a self-consistent fashion, to obtain approximate states of
the system and the bath—see Ref. [39] for details and a
discussion on the numerical integration of the ULL2
equations.
It is instructive to compare the system ULL2

equation (19) with the system second-order NZ (NZ2)
equation [3,4],

_ϱSðτÞ¼−i½TrB½HIðτÞϱBð0Þ�;ϱSðτÞ�

−TrB½HIðτÞ;
Z

τ

0

ds½HIðsÞ;ϱSðsÞ⊗ ϱBð0Þ��: ð21Þ

These equations appear rather similar, but there are two key
differences: (i) The state of the bath is time dependent in the
ULL2 equation, whereas in the NZ2 equation, it is a
constant state, which is usually assumed to be the initial or
equilibrium state of the bath, and (ii) in the integral of the
ULL2 equation rather than HIðsÞ, we have its effective
form H̃IðsÞ. These points suggest that the performance of
the ULL2 equation is generally different from that of the
NZ2 equation, and thereby one may expect that the ULL2
equation either performs similarly to the NZ2 equation or
outperforms it. We illustrate the validity of this observation
later in Sec. VI C. For comparison with several other
methods, see Ref. [39].
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For sufficiently short times, Eq. (18) reduces to

χ ð1ÞMLLðτÞ ≈ −iτ½H̃IðτÞ; ϱSðτÞ ⊗ ϱBðτÞ�; ð22Þ

which is identical to the correlation operator obtained in the
derivation of the MLL dynamical equation [39]. Hence,
although in both ULL2 and the MLL equations χ is of the
first order with respect to H̃I, the ULL2 equation can be
expected to lead to an improvement over the performance
of the MLL approximation [39].
Let us discuss another asymptotic-time case where the

MLL approximation holds. This case underlines that the
utility of the MLL approximation is not necessarily limited
to the short-time dynamics. If (i) the interaction is suffi-
ciently weak (weak-coupling or weak-correlation regime)
and (ii) the subsystem dynamics reaches a steady state in a
finite time, one can approximate ϱSðsÞ ⊗ ϱBðsÞ in Eq. (18)
with the tensor product of subsystem steady states ϱ⋆S ⊗ ϱ⋆B
and hence H̃IðsÞ ≈ H̃⋆

I at most times, which yields the

MLL approximation χ ð1Þ;⋆MLLðτÞ ≈ −iτ½H̃⋆
I ; ϱ

⋆
S ⊗ ϱ⋆B�. Since

Eq. (18) becomes exact in the weak-coupling limit and
typical quantum systems reach their steady state in finite
times [44–47], one can conclude that the MLL equation
modified by the subsystem steady states may hold at long
times for typical systems [39].
Applying additional approximations on χ ð1Þ by imposing

time locality and also assuming that the bath state
remains constant in time, i.e., approximating χ ð1Þ ≈
−i

R
τ
0 ds½H̃IðsÞ; ϱSðτÞ ⊗ ϱBð0Þ�, yields a time-local ULL2

equation.
Systematic derivation of higher-order correlation terms

up to χ ðl−1Þ yielding the ULLl approximations is straight-
forward but algebraically heavy, and so we leave this for
future work. For details, see Ref. [39]. However, similar to
other approximate techniques, it usually suffices to con-
sider the lowest-order ULL2 or, at most, a few lowest
orders. For a comparison with other techniques, see
also Ref. [39].
We emphasize that although the validity of the weak-

correlation expansion hinges on the strength of the inter-
action Hamiltonian, it shows clear differences with standard
weak-coupling approximations [3,4]. In particular, we note
that our expansion uses the correlation in a direct fashion as
the key ingredient.
In the following, we illustrate our weak-correlation

ULL method through two examples. In example II, we
show that the MLL equation captures the exact dynamics
with good accuracy and outperforms the standard
Markovian Lindblad equation. In addition, the time-local
ULL2 equation becomes tantamount to the second-order
time-convolutionless (TCL2) dynamical equation for the
system, which gives the exact dynamics for this example.
We also compare our solutions with a coarse-graining (CG)
method [4,18,25,48–51], which fails to exceed the

performance of the ULL2 solution. In example III, we
show that χ ð1Þ of Eq. (18) leads to a significant improve-
ment in predicting the dynamics of the system, whereas the
TCL2 and other approximating techniques such as the CG
method do not provide such accuracy.

B. Example II: Qubit in a bosonic bath

Let us consider a two-level system or qubit interacting
with a many-mode bosonic bath initially in the thermal

state ϱβB ¼ e−β
P

n
ωnâ

†
nân=Tr½e−β

P
n
ωnâ

†
nân � at temperature

T ¼ 1=β. Here, âl is the annihilation operator for mode l.
The total Hamiltonian reads

HSB ¼ ω0σþσ− þ
X
n

ωnâ
†
nân − σx ⊗ OB; ð23Þ

where OB ¼ P
n κnðân þ â†nÞ. Assuming that the qubit at

all times retains only a small correlation with the bath, we
conclude that Eq. (12) applies, and we obtain the following
master equation:

_ϱSðτÞ ¼ −i½HS; ϱSðτÞ� þ γðτÞ(σxϱSðτÞσx − ϱSðτÞ); ð24Þ

where γðτÞ ¼ 2τCovB0
ðOB;OBÞ, and CovB0

ðOB;OBÞ ¼R
∞
0 dωJðωÞð2nðβ;ωÞ þ 1Þ is given in terms of a spectral
density function JðωÞ and the bosonic occupation
number nðβ;ωÞ ¼ ðeβω − 1Þ−1. Equation (24) describes
pure dephasing in the eigenbasis of σx and gives the
population of the excited state of the qubit as

ϱeeðτÞ ¼ 1=2þ ðϱeeð0Þ − 1=2Þe−2τ2CovB0 ðOB;OBÞ: ð25Þ

The solution of the exact dynamics for this example has
been provided in Ref. [23] for ω0 ¼ 0 and under the
assumption of an initial thermal state for the bath and an
Ohmic spectral density for the couplings of the interaction
Hamiltonian, JðωÞ ¼ ηωð1þ ω2=ω2

cÞ−2, where ωc is the
cutoff frequency and η denotes the coupling strength
between the system and the bath. This solution provides
a convenient means of studying the accuracy of Eq. (25).
As we argued in Sec. V, under the mentioned conditions,
even in the highly strong-coupling regime, the MLL
equation is exact in asymptotic time. In this example, HI
only has one term, HS is set to zero by ω0 ¼ 0, and, for the
chosen spectral density and the uncorrelated initial state, all
the conditions are satisfied. Hence, the MLL equation gives
an exact prediction for the asymptotic state; see Fig. 2.
Figure 2 shows the evolution of the excited-state

population and compares our MLL and ULL2 methods
with the Redfield equation (an equation obtained by
applying only the weak-coupling and time-locality approx-
imations on the exact dynamics [4]), the TCL2 master
equation [3,4], and the exact solution. In addition, to make
a comparison with a CG dynamical equation, we used the
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results of Ref. [50]; see Fig. 2. For this particular example,
the time-local ULL2 dynamical equation is identical to the
TCL2 dynamical equation [39], and both coincide with the
exact dynamics. From this figure and the explicit form of
the Redfield equation [39], it is clear that the Redfield
equation is less accurate in the low-temperature limit. The
MLL equation follows the exact solution relatively well,
whereas the Redfield equation exhibits a relatively slower
decay. Note that when ω0 ¼ 0, the standard Lindblad
equation is equivalent to the Redfield equation. For details
of the derivation of the Redfield and the TCL2 equations
and for the analysis of the short-time dynamics using the
Lindblad-like model and the exact evolution, see Ref. [39].
In the following example, we illustrate that our

Markovian approximation works well to describe the
short-time dynamics in a system with non-Markovian
features. We then show that the ULL2 equation outper-
forms other methods for later times and captures the long-
time dynamics more accurately.

C. Example III: Damped harmonic oscillator
within a bath of oscillators

Consider a quantum harmonic oscillator interacting with
a bath of oscillators, with the total Hamiltonian given by

HSB ¼ ω0â†âþ
XM
k¼1

ωkb̂
†
kb̂k þ

XM
k¼1

gkðâ†b̂k þ âb̂†kÞ; ð26Þ

where M is the number of the bath oscillators—see Fig. 3.
For simplicity of the analysis, we assume the initial system-
bath state ðc0j0i þ c1j1iÞS ⊗ j0i⊗M

B , where jii denotes the
eigenstate of the corresponding number operator with
eigenvalue i.
To obtain the MLL equation, we choose S1 ¼ âþ â†

and S2 ¼ iðâ − â†Þ, and hence B1 ¼
P

k gkðb̂k þ b̂†kÞ=2
and B2 ¼

P
k igkðb̂k − b̂†kÞ=2. Inserting these into

Eq. (12) yields a11 ¼ a22 ¼ τG=4, a21 ¼ a�12 ¼ iτG=4,
ImhB1B1iB0

¼ImhB2B2iB0
¼0, and ImhB2B1iB0

¼
−ImhB1B2iB0

¼ G=4, where G ¼ P
k jgkj2; hence,

hχL ¼ 0. The MLL equation thus reads

_ϱSðτÞ ¼ −i½ω0â†â; ϱSðτÞ� þGτ(2âϱSðτÞâ† − â†âϱSðτÞ
− ϱSðτÞâ†â): ð27Þ

The standard Lindblad equation for this model has been
given in Ref. [52] (see also Refs. [53,54] for more general
Lindblad forms for this model and their solutions). For the
special case of the chosen initial state, the Lindblad
equation becomes

_ϱSðτÞ ¼ −i½ðω0 þ δÞâ†â; ϱSðτÞ�
þ γ(2âϱSðτÞâ† − â†âϱSðτÞ − ϱSðτÞâ†â); ð28Þ

where δ¼P½R∞
0 dωJðωÞðω0−ωÞ−1�, γ ¼ πJðω0Þ, JðωÞ ¼P

M
k¼1 g

2
kδðω − ωkÞ (the spectral density function), and P

denotes the Cauchy principal value.
To compare the MLL equation with the standard

Lindblad equation, the ULL2 equation, and the exact

FIG. 3. Schematic model of a damped harmonic oscillator. See
the text for details.

FIG. 2. A qubit in a bosonic bath. Left panel: Population of the excited state of the two-level system as a function of time for β ¼ 1,
η ¼ 0.5, ωc ¼ 100, and ω0 ¼ 0 (all in dimensionless units), where the two-level system is initially in the excited state. The labels TCL2
& Ex, MLL, ULL2, CG, and R denote, respectively, the data from the second-order time-convolutionless (¼ Exact), MLL, time-local
ULL2 (¼ Exact), coarse-graining, and the Redfield (¼ Markovian Lindblad) solutions. The inset is a magnified depiction of the
population vs time for short times. Right panel: The same as the left panel but for β ¼ 100.
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dynamics, we choose an Ohmic spectral density as JðωÞ ¼
ðω=πÞe−ω=ωc (similar to Ref. [52]). For numerical simu-
lation of this model, we take ωk ¼ 0.1k and M ¼ 255. In
order for the MLL equation and the simulations to be
comparable with the standard Lindblad equation, we
choose the coupling strength as gk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
JðωkÞ

p
. It is shown

in Fig. 4 (left panel) that the short-time dynamics is well
captured by the MLL equation, for all chosen cutoff values,
whereas the Lindblad equation fails to capture this and the
TCL2 equation seems to capture only the initial moments
of the dynamics. When ωc ¼ 10, the exact dynamics shows
nondecaying oscillations, which may be due to non-
Markovianity. It is interesting to note that even in this
non-Markovian case, the MLL equation—which is
Markovian—can capture the short-time dynamics well.
Considering the dynamics at long times, we observe in
Fig. 4 (right panel) that the ULL2 equation can capture the
exact dynamics with good accuracy, while the NZ2
equation [3] gives unphysical results. It is interesting that,
although the complete ULL and the NZ dynamical equa-
tions are exact, their second-order approximations, i.e.,
ULL2 and NZ2, estimate the dynamics differently. This
result is due to the different underlying approaches in
applying the second-order approximation.
In addition, by calculating the population of the first

excited state using the suggested asymptotic state ϱ⋆ [39],
we obtain that ϱ⋆11 ¼ 0.3963 equals the asymptotic value
in Fig. 4.

VII. SUMMARY AND CONCLUSIONS

We have introduced the correlation picture as a new
dynamical picture. By using the Schrödinger equation of
the total system, using a correlating transformation, and
tracing over the environment degrees of freedom, we have
found the dynamical equation of the subsystem without

invoking any approximations. We have shown that this
exact dynamical equation is in the Lindblad form, even if
the system is initially correlated or is in the strong-coupling
regime. Hence, the Lindblad form for the dynamical
equation is general, and the obtained master equation is
a ULL equation. We have provided a way to derive a MLL
from the ULL equation. In particular, we have shown that
Markovianity can emerge if we apply a weak-correlation
approximation, and the MLL equation becomes exact at
instants with vanishing correlations. We have demonstrated
that, not only at the initial time (if the system and the bath
are prepared in a product state) but also in the asymptotic
time, this weak-correlation approximation can be valid
under certain conditions.
The correlation picture has also enabled us to formulate a

systematic weak-correlation perturbative expansion, from
which we have introduced approximate second- and
higher-order tractable master equations. The MLL meth-
odology plays an important role in this construction of the
master equations, which can feature non-Markovian
effects. We have shown that existing and widely used
weak-coupling-based equations emerge as special cases of
our perturbative constructions, and thus our weak-correla-
tion master equations are expected to outperform or
perform as accurately as corresponding weak-coupling
solutions. In particular, we have illustrated through three
examples our results for the existence of the ULL equation
and the validity of the MLL equation around weak-
correlation points for initial and asymptotic times, and
we have compared the MLL and ULL2 equations as
approximate solutions with other Markovian and non-
Markovian equations. We have shown that, in these
examples, our equations describe the dynamics more
accurately. We expect that introducing the correlation
picture can pave the way for developing new techniques
for controlling and harnessing system-environment

FIG. 4. Damped harmonic oscillator. Left panel: Population of the first excited state of the system harmonic oscillator vs time for
ω0 ¼ 1 and ωc ¼ 5 (all in dimensionless units) when the system is initially in the state jψð0ÞiS ¼ j1iS and the bath has infinite
oscillators (M → ∞) at zero temperature. For the numerical solution of the exact dynamics, we have assumedM ¼ 255, gk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
JðωkÞ

p
,

and ωk ¼ 0.1k, where 1 ≤ k ≤ M. The labels CG, Ex, L, MLL, and TCL2 denote, respectively, data from the CG, exact, Lindblad,
MLL, and TCL2 solutions. The inset shows an identical case, except that ωc ¼ 10. Right panel: The same as the left panel, but only for
the ULL2, NZ2, CG, TCL2, and exact solutions.
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correlations. We also anticipate a wide range of applica-
tions of our theory from quantum thermodynamics to
quantum computation. In particular, our approach may
help one to understand whether and how quantum systems
thermalize, and it may shed light on the role of correlations
in quantum algorithms and the robustness of quantum error
correction against correlated noise mechanisms.

ACKNOWLEDGMENTS

Discussions with J. Anders, E. Aurell, H.-P. Breuer,
L. A. Correa, S. F. Huelga, A. Isar, S. J. Kazemi, S.
Maniscalco, J. Piilo, Á. Rivas, R. Sampaio, J. Tuorila,
and S. Vinjanampathy are acknowledged. This work was
supported by the Academy of Finland’s Center of
Excellence program QTF Project 312057 and Sharif
University of Technology’s Office of Vice President for
Research and Technology.

[1] F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum Com-
putation and Quantum-State Engineering Driven by Dis-
sipation, Nat. Phys. 5, 633 (2009).

[2] J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M.
Motzkus, Quantum Control of Energy Flow in Light
Harvesting, Nature (London) 417, 533 (2002).

[3] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, New York,
2002).

[4] Á. Rivas and S. F. Huelga, Open Quantum Systems
(Springer, Berlin, 2012).

[5] S. Nakajima, On Quantum Theory of Transport Phenom-
ena: Steady Diffusion, Prog. Theor. Phys. 20, 948 (1958).

[6] R. Zwanzig, Ensemble Method in the Theory of Irrevers-
ibility, J. Chem. Phys. 33, 1338 (1960).

[7] I. de Vega and D. Alonso, Dynamics of Non-Markovian
Open Quantum Systems, Rev. Mod. Phys. 89, 015001
(2017).

[8] H.-P. Breuer, J. Gemmer, and M. Michel, Non-Markovian
Quantum Dynamics: Correlated Projection Superoperators
and Hilbert Space Averaging, Phys. Rev. E 73, 016139
(2006).

[9] P. Haikka and S. Maniscalco, Non-Markovian Dynamics of
a Damped Driven Two-State System, Phys. Rev. A 81,
052103 (2010).

[10] H.-P. Breuer, B. Kappler, and F. Petruccione, Stochastic
Wave-Function Method for Non-Markovian Quantum
Master Equations, Phys. Rev. A 59, 1633 (1999).

[11] J. Iles-Smith, A. G. Dijkstra, N. Lambert, and A. Nazir,
Energy Transfer in Structured and Unstructured Environ-
ments: Master Equations beyond the Born-Markov Approx-
imations, J. Chem. Phys. 144, 044110 (2016).

[12] F. A. Pollock and K. Modi, Tomographically Reconstructed
Master Equations for Any Open Quantum Dynamics,
Quantum 2, 76 (2018).

[13] G. A. Paz-Silva, M. J. W. Hall, and H. M. Wiseman, Dy-
namics of Initially Correlated Open Quantum Systems:
Theory and Applications, Phys. Rev. A 100, 042120 (2019).

[14] J. Tuorila, J. Stockburger, T. Ala-Nissila, J. Ankerhold, and
M. Möttönen, System-Environment Correlations in Qubit
Initialization and Control, Phys. Rev. Research 1, 013004
(2019).

[15] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson,
Canonical Form of Master Equations and Characterization
of Non-Markovianity, Phys. Rev. A 89, 042120 (2014).

[16] G. Lindblad, On the Generators of Quantum Dynamical
Semigroups, Commun. Math. Phys. 48, 119 (1976).

[17] V. Gorini, A. Kossakowsi, and E. C. G. Sudarshan, Com-
pletely Positive Dynamical Semigroups of N-Level Systems,
J. Math. Phys. (N.Y.) 17, 821 (1976).

[18] D. A. Lidar, Z. Bihary, and K. B. Whaley, From Completely
Positive Maps to the Quantum Markovian Semigroup
Master Equation, Chem. Phys. 268, 35 (2001).

[19] D. Chruściński and A. Kossakowski, Non-Markovian
Quantum Dynamics: Local versus Nonlocal, Phys. Rev.
Lett. 104, 070406 (2010).

[20] S. Weinberg,What Happens in a Measurement?, Phys. Rev.
A 93, 032124 (2016).

[21] A. Bassi, D. Dürr, and G. Hinrichs, Uniqueness of the
Equation for Quantum State Sector Collapse, Phys. Rev.
Lett. 111, 210401 (2013).

[22] H. M. Wiseman and L. Diósi, Complete Parameterization,
and Invariance, of Diffusive Quantum Trajectories for
Markovian Open Systems, Chem. Phys. 268, 91 (2001).

[23] D. Braun, F. Haake, and W. T. Strunz, Universality of
Decoherence, Phys. Rev. Lett. 86, 2913 (2001).

[24] M. Beau, J. Kiukas, I. L. Egusquiza, and A. del Campo,
Nonexponential Quantum Decay under Environmental
Decoherence, Phys. Rev. Lett. 119, 130401 (2017).

[25] Á. Rivas, Refined Weak-Coupling Limit: Coherence,
Entanglement, and Non-Markovianity, Phys. Rev. A 95,
042104 (2017).

[26] It has been shown in R. Sampaio, J. Anders, T. G. Philbin,
and T. Ala-Nissila, Contributions to Single-Shot Energy
Exchanges in Open Quantum Systems, Phys. Rev. E 99,
062131 (2019), that the concept of a conditional wave
function can be used to characterize the energy associated to
correlation between two coupled quantum systems but with
the dynamics complicated by a nonlinear Schrödinger
equation.

[27] S. Alipour, S. Tuohino, A. T. Rezakhani, and T. Ala-Nissila,
Unreliability of Mutual Information as a Measure in Total
Variations, Phys. Rev. A 101, 042311 (2020).

[28] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[29] L.Amico, R. Fazio, A.Osterloh, andV.Vedral,Entanglement
in Many-Body Systems, Rev. Mod. Phys. 80, 517 (2008).

[30] K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral,
The Classical-Quantum Boundary for Correlations: Discord
and Related Measures, Rev. Mod. Phys. 84, 1655 (2012).

[31] M.M. Wolf, Quantum Channels & Operations—Guided
Tour (Lecture Notes, 2012).

[32] G. M. D’Ariano, R. Demkowicz-Dobrzański, P. Perinotti,
and M. F. Sacchi, Erasable and Unerasable Correlations,
Phys. Rev. Lett. 99, 070501 (2007).

[33] D. R. Terno, Nonlinear Operations in Quantum-Information
Theory, Phys. Rev. A 59, 3320 (1999).

S. ALIPOUR et al. PHYS. REV. X 10, 041024 (2020)

041024-10

https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/417533a
https://doi.org/10.1143/PTP.20.948
https://doi.org/10.1063/1.1731409
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/PhysRevE.73.016139
https://doi.org/10.1103/PhysRevE.73.016139
https://doi.org/10.1103/PhysRevA.81.052103
https://doi.org/10.1103/PhysRevA.81.052103
https://doi.org/10.1103/PhysRevA.59.1633
https://doi.org/10.1063/1.4940218
https://doi.org/10.22331/q-2018-07-11-76
https://doi.org/10.1103/PhysRevA.100.042120
https://doi.org/10.1103/PhysRevResearch.1.013004
https://doi.org/10.1103/PhysRevResearch.1.013004
https://doi.org/10.1103/PhysRevA.89.042120
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1016/S0301-0104(01)00330-5
https://doi.org/10.1103/PhysRevLett.104.070406
https://doi.org/10.1103/PhysRevLett.104.070406
https://doi.org/10.1103/PhysRevA.93.032124
https://doi.org/10.1103/PhysRevA.93.032124
https://doi.org/10.1103/PhysRevLett.111.210401
https://doi.org/10.1103/PhysRevLett.111.210401
https://doi.org/10.1016/S0301-0104(01)00296-8
https://doi.org/10.1103/PhysRevLett.86.2913
https://doi.org/10.1103/PhysRevLett.119.130401
https://doi.org/10.1103/PhysRevA.95.042104
https://doi.org/10.1103/PhysRevA.95.042104
https://doi.org/10.1103/PhysRevE.99.062131
https://doi.org/10.1103/PhysRevE.99.062131
https://doi.org/10.1103/PhysRevA.101.042311
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.84.1655
https://doi.org/10.1103/PhysRevLett.99.070501
https://doi.org/10.1103/PhysRevA.59.3320


[34] J.-L. Brylinski and R. Brylinski, in Mathematics of
Quantum Computation, edited by R. K. Brylinski and
G. Chen (Chapman & Hall/CRC, Boca Raton, 2002),
pp. 101–116.

[35] We also request that TrS½Hχ ; ϱS ⊗ ϱB� ¼ TrB½Hχ ; ϱS ⊗
ϱB� ¼ 0 to ensure TrS½χ� ¼ TrB½χ� ¼ 0.

[36] R. Wu, A. Pechen, C. Brif, and H. Rabitz, Controllability of
Open Quantum Systems with Kraus-Map Dynamics, J.
Phys. A 40, 5681 (2007).

[37] M. Mohseni and A. T. Rezakhani, Equation of Motion
for the Process Matrix: Hamiltonian Identification and
Dynamical Control of Open Quantum Systems, Phys.
Rev. A 80, 010101(R) (2009).

[38] D. S. Djordjević, Explicit Solution of the Operator
Equation A�X þ X�A ¼ B, J. Comput. Appl. Math. 200,
701 (2007).

[39] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.10.041024 for details
and proofs.

[40] M. R. Hush, I. Lesanovsky, and J. P. Garrahan, Generic Map
from Non-Lindblad to Lindblad Master Equations, Phys.
Rev. A 91, 032113 (2015).

[41] C. C. Gerry and P. L. Knight, Introductory Quantum Optics
(Cambridge University Press, Cambridge, England, 2005).

[42] P. Gaspard and M. Nagaoka, Slippage of Initial Conditions
for the Redfield Master Equation, J. Chem. Phys. 111, 5668
(1999).

[43] R. S. Whitney, Staying Positive: Going beyond Lindblad
with Perturbative Master Equations, J. Phys. A 41, 175304
(2008).

[44] A. S. L. Malabarba, L. P. García-Pintos, N. Linden, T. C.
Farrelly, and A. J. Short, Quantum Systems Equilibrate

Rapidly for Most Observables, Phys. Rev. E 90, 012121
(2014).

[45] A. J. Short and T. C. Farrelly, Quantum Equilibration in
Finite Time, New J. Phys. 14, 013063 (2012).

[46] S. Goldstein, T. Hara, and H. Tasaki, Extremely Quick
Thermalization in a Macroscopic Quantum System for a
Typical Nonequilibrium Subspace, New J. Phys. 17, 045002
(2015).

[47] L. P. García-Pintos, N. Linden, A. S. L. Malabarba, A. J.
Short, and A. Winter, Equilibration Time Scales of Physi-
cally Relevant Observables, Phys. Rev. X 7, 031027 (2017).

[48] G. Schaller, Open Quantum Systems Far from Equilibrium
(Springer International, Cham, Switzerland, 2014).

[49] G. Schaller and T. Brandes, Preservation of Positivity by
Dynamical Coarse Graining, Phys. Rev. A 78, 022106
(2008).

[50] G. Schaller, P. Zedler, and T. Brandes, Systematic Pertur-
bation Theory for Dynamical Coarse-Graining, Phys. Rev.
A 79, 032110 (2009).

[51] C. Majenz, T. Albash, H.-P. Breuer, and D. A. Lidar, Coarse
Graining Can Beat the Rotating-Wave Approximation in
Quantum Markovian Master Equations, Phys. Rev. A 88,
012103 (2013).

[52] Á. Rivas, A. D. K. Plato, S. F. Huelga, and M. B. Plenio,
Markovian Master Equations: A Critical Study, New J.
Phys. 12, 113032 (2010).

[53] A. Isar, A. Sandulescu, and W. Scheid, Density Matrix for
the Damped Harmonic Oscillator within the Lindblad
Theory, J. Math. Phys. (N.Y.) 34, 3887 (1993).

[54] R. Karrlein and H. Grabert, Exact Time Evolution and
Master Equations for the Damped Harmonic Oscillator,
Phys. Rev. E 55, 153 (1997).

CORRELATION-PICTURE APPROACH TO … PHYS. REV. X 10, 041024 (2020)

041024-11

https://doi.org/10.1088/1751-8113/40/21/015
https://doi.org/10.1088/1751-8113/40/21/015
https://doi.org/10.1103/PhysRevA.80.010101
https://doi.org/10.1103/PhysRevA.80.010101
https://doi.org/10.1016/j.cam.2006.01.023
https://doi.org/10.1016/j.cam.2006.01.023
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041024
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041024
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041024
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041024
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041024
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041024
http://link.aps.org/supplemental/10.1103/PhysRevX.10.041024
https://doi.org/10.1103/PhysRevA.91.032113
https://doi.org/10.1103/PhysRevA.91.032113
https://doi.org/10.1063/1.479867
https://doi.org/10.1063/1.479867
https://doi.org/10.1088/1751-8113/41/17/175304
https://doi.org/10.1088/1751-8113/41/17/175304
https://doi.org/10.1103/PhysRevE.90.012121
https://doi.org/10.1103/PhysRevE.90.012121
https://doi.org/10.1088/1367-2630/14/1/013063
https://doi.org/10.1088/1367-2630/17/4/045002
https://doi.org/10.1088/1367-2630/17/4/045002
https://doi.org/10.1103/PhysRevX.7.031027
https://doi.org/10.1103/PhysRevA.78.022106
https://doi.org/10.1103/PhysRevA.78.022106
https://doi.org/10.1103/PhysRevA.79.032110
https://doi.org/10.1103/PhysRevA.79.032110
https://doi.org/10.1103/PhysRevA.88.012103
https://doi.org/10.1103/PhysRevA.88.012103
https://doi.org/10.1088/1367-2630/12/11/113032
https://doi.org/10.1088/1367-2630/12/11/113032
https://doi.org/10.1063/1.530013
https://doi.org/10.1103/PhysRevE.55.153

