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A method to calculate the one-body Green’s function for ground states of correlated electron materials is
formulated by extending the variational Monte Carlo method. We benchmark against the exact
diagonalization (ED) for the one- and two-dimensional Hubbard models of 16-site lattices, which proves
high accuracy of the method. The application of the method to a larger-sized Hubbard model on the square
lattice correctly reproduces the Mott insulating behavior at half-filling and gap structures of the d-wave
superconducting state of the hole-doped Hubbard model in the ground state optimized by enforcing the
charge uniformity, evidencing a wide applicability to strongly correlated electron systems. From the
obtained d-wave superconducting gap of the charge-uniform state, we find that the gap amplitude at
the antinodal point is several times larger than the experimental value when we employ a realistic parameter
as a model of the cuprate superconductors. The effective attractive interaction of carriers in the d-wave
superconducting state inferred for an optimized state of the Hubbard model is as large as the order of the
nearest-neighbor transfer, which is far beyond the former expectation in the cuprates. We discuss the nature
of the superconducting state of the Hubbard model in terms of the overestimate of the gap and the attractive
interaction in comparison to the cuprates.
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I. INTRODUCTION

Dynamical properties often provide us with crucial
insights into open issues of strongly correlated electron
systems. In particular, the momentum- and energy-resolved
single-particle spectral function Aðk;ωÞ, which is propor-
tional to the imaginary part of the Green’s functionGðk;ωÞ
with the momentum k and the frequency ω, helps us
understand how an electron moves in an environment of
other mutually interacting electrons and provides us with
properties of the excited states, which in turn reveal the
equilibrium properties as well.

The copper-oxide high-Tc superconductors’ spectral
function Aðk;ωÞ has been extensively studied by angle-
resolved photoemission spectroscopy (ARPES), which has
greatly contributed to elucidate the properties of super-
conducting as well as anomalous normal metallic proper-
ties, including the pseudogap, Fermi arc, and d-wave
superconducting gap structure itself [1,2].
Numerical methods to clarify the dynamics of the

strongly correlated electron systems have been hampered
by various difficulties such as the fermion sign problem
[3–6] in quantum Monte Carlo methods, and intrinsic
quantum entanglement of electrons at long distances.
Nevertheless, linear response quantities such as the spin
and charge dynamical structure factors—Sðk;ωÞ and
Nðk;ωÞ, respectively—defined below have been studied
by limited methods such as the exact diagonalization (ED)
[7,8] and time-dependent density matrix renormalization
group [9,10]. However, these methods have their own
limitations; namely, they are amenable only in small system
sizes and in one-dimensional lattice structures, respectively.
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In addition to the exact diagonalization,Gðk;ωÞ has been
studied by the cluster extension of the dynamical mean-field
theory (cDMFT) [11–13], but the allowed momentum res-
olution is severely limited by the cluster size, usually smaller
than 10 electronic sites. The cDMFT method is generally
combined with a periodization procedure in order to restore
translation invariance, and it provides the data at interpolated
momenta k [14–17]. However, we need to be cautious about
these periodizations, and the results should be regarded as
estimators because themomentum resolution is limited by the
cluster size. This case is true even for inhomogeneous
extension of cDMFT [18,19], where the large supercluster
still retains the self-energymodulation of the original smallest
cluster [20]. The need to study bigger clusters remains.
The recent formulation of the time-dependent variational

Monte Carlo method based on the variational principle
opened a way to study the long-time dynamics [21,22],
but it has not been extensively applied yet to interacting
fermion systems except for in a few examples [23].
Meanwhile, methods of calculating the spin and charge
dynamical structure factors utilizing the variational wave
functions for ground and excited states have been proposed
recently [24–28]. Some attempts have been made to
calculate the excitation spectrum on larger clusters of the
t-J model [29,30].
Here, we formulate a method of calculating the Green’s

function Gðk;ωÞ and the spectral function Aðk;ωÞ ¼
−ð1=πÞImGðk;ωÞ and show its accuracy by comparing
with the exact results. It reproduces the feature of the spin-
charge separation and excitation continuum in the one-
dimensional Hubbard model.
The method is applied to the Hubbard model on the

square lattice as well. In the optimized d-wave super-
conducting solution, though it is an excited state in the
competition with the stripe states [31–33], the d-wave
symmetry of the gap structure is correctly reproduced in the
spectral function in this charge-uniform lowest-energy
state. However, the gap amplitude is several times larger
than the size in the experimentally observed gap of the
cuprate superconductors, if we employ a widely accepted
parameter mapping. The effective attractive interaction of
carriers in this state is then estimated again to be extremely
large, on the order of or even larger than the nearest-
neighbor transfer energy t in the Hubbard model. We
discuss implications of the results.
Finally, in the Supplemental Material [34], the reader can

access the fully functional open-source code that was used
to generate the data. The code is an extension based on the
open-source code mVMC [35].

II. METHOD

A. Green’s function

Here, we present a very general scheme to estimate the
one-body Green’s function from the Lehman representation:

Gσðk;ωÞ ¼ Gh
σðk;ωÞ þ Ge

σðk;ωÞ; ð1Þ

Gh
σðk;ωÞ ¼ hΩjĉ†kσ

1

ωþ iη −Ωþ Ĥ
ĉkσjΩi; ð2Þ

Ge
σðk;ωÞ ¼ hΩjĉkσ

1

ωþ iηþΩ − Ĥ
ĉ†kσjΩi: ð3Þ

Note that ĉkσ (ĉ†kσ) annihilates (creates) an electron of
momentum k and spin σ. This approach requires knowledge
of the ground state jΩi of a Hamiltonian Ĥ with energy Ω.
The “hat” notation is used here to represent an operator as
opposed to any matrix representation. Note that η is a small
real number, a Lorentzian broadening factor.
The Lehman representation can be evaluated explicitly

with ED since we have a complete and exact representation
of the Hamiltonian eigenstates, but this technique is limited
to small clusters. To evaluate the Green’s function for the
cases not amenable to the exact diagonalization, we can use
a method similar to the approach used to calculate the spin
and charge dynamical structure factors by exhausting an
important subspace of the Hilbert space for the excitations
[24–28]. In this framework, the time evolutions by the
Hamiltonian in the N − 1 particle sector for Gh

σðk;ωÞ
[Eq. (2)] and N þ 1 particle sector for Ge

σðk;ωÞ
[Eq. (2)] are treated within such an important subspace.
Then, the idea of the present method is to restrict the

Hilbert space of the one-particle or hole-excited sector of
the Hamiltonian to a set of vectors:

jhkni ¼ ÂnĉkB̂njΩi for hole excitations; ð4Þ

jekni ¼ Â†
nĉ

†
kB̂

†
njΩi for electron excitations; ð5Þ

where Ân and B̂n are operators that together conserve the
number of electrons Ne and momentum k. Here, jΩi is an
approximate ground state of the N particle sector obtained
by our variational Monte Carlo method for the ground state,
and jhkni and jekni belong to the N − 1 and N þ 1 particle
sectors, respectively. Note that for the Krylov basis of
excitation, used in ED, B̂n ¼ Î and Ân ¼ Ĥn, where n is the
number of band Lanczos iterations. Usually in ED, at every
iteration of the band Lanczos method, the excited-state
basis is orthogonalized to every other excitation. But it is
possible, and sometimes more convenient, to work in the
nonorthogonal basis.

B. Nonorthogonal basis for excited states

Now, we construct the basis to represent the excited
states jhkni and jekni. The excited states employed in the
method introduced below are not necessarily orthogonal to
one another. Although these excitations are not orthogonal,
we can use tools to generate a spectrum with eigenstates
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that are orthogonal. For this purpose, we need to introduce
a number of overlap matrices:

Oh
k;mn ¼ hhkmjÎjhkni; Oe

k;mn ¼ hekmjÎjekni; ð6Þ

where Î is the identity operator and the matrix notation is
expressed with the indices m and n. It is important to
distinguish the operator notation (with a “hat” here) from
the matrix notation since they are different in a non-
orthogonal basis. Indeed, the matrices Ok;mn are represen-
tations of the identity operator in this nonorthogonal basis.
Using the same basis, we evaluate the effective

Hamiltonian matrices:

Hh
k;mn ¼ hhkmjĤjhkni; He

k;mn ¼ hekmjĤjekni: ð7Þ

In general, the basis set on the restricted Hilbert subspace
is nonorthogonal, and thus we need to solve the generalized
eigenvalue problem [36] within this subspace as

HkjEkli ¼ EklOkjEkli; ð8Þ

where Hk and Ok are matrices whose ðm; nÞ components
are given in Eqs. (7) and (6), respectively, in the basis of
jhkni or jekni. The solution of this generalized eigenvalue
problem is represented by the lth eigenvalue Ekl and the
corresponding eigenstate coefficients of its eigenvector
jEkli represented in the basis of jhkni or jekni, where
we express them as jEh

kli and jEe
kli, respectively, and

describe them as jEkli, inclusively. Now, we have an
orthogonal basis of eigenstates of the Hamiltonian. The
orthogonality of the eigenvector jEkli is represented by
hEkljOkjEkji ¼ δlj. The eigenvectors expand the basis of
the subspace defined by the restricted Hilbert space
determined by the choice of nonorthogonal excitations.
We can insert the complete set of this subspaceP

l jEklihEklj in both Eqs. (2) and (3) to obtain

Gh
σðk;ωÞ ¼

X

l

hΩjĉ†kσjEh
klihEh

kljĉkσjΩi
ωþ iη −Ωþ Eh

kl

; ð9Þ

Ge
σðk;ωÞ ¼

X

l

hΩjĉkσjEe
klihEe

kljĉ†kσjΩi
ωþ iηþ Ω − Ee

kl
: ð10Þ

Note that jEe
kli (jEh

kli) is the state in the N þ 1 (N − 1)
particle sector with momentum k. It is important to keep in
mind that this is an approximation to the Green’s function,
as we restricted the N þ 1 or N − 1 particle sector by a
variational form defined below, in addition to the approxi-
mation to the ground state. By increasing the dimension of
the excited subspace, we are able to systematically improve
the representation of the excited states toward the exact one
represented by the full Hilbert space. The accuracy can be

estimated by looking at the convergence of the solution as
we increase the number of variational states [37].
This formalism is general, but in this article, we want to

apply it to obtain the spectral function of the strongly
correlated fermion systems by combining with the varia-
tional Monte Carlo (VMC) method. An alternative deri-
vation of Eqs. (9) and (10) can be found in the Appendix A.
This derivation is the one implemented in the software
provided in the Supplemental Material [34].

C. VMC for the ground state

In the variational Monte Carlo method, we postulate
an ansatz, a variational state jψi that can be used to
calculate the physical quantities associated with that state.
To find a good approximation to the ground state, we
optimize the variational state in order to minimize the
energy measured [35,38].
The measurement of any operator Â can be done as

hÂi ¼ hψ jÂjψi
hψ jψi ¼

X

x

hψ jÂjxihxjψi
hψ jψi ð11Þ

¼
X

x

ρðxÞ hψ jÂjxihψ jxi ; where ρðxÞ ¼ jhxjψij2
hψ jψi : ð12Þ

In this equation, the sum
P

x jxihxj is a complete set of
every possible electronic configuration in the system. For
large systems, however, it becomes computationally unfea-
sible to sum every configuration. Nevertheless, we can still
estimate this sum using a Monte Carlo sampling. The real-
space configurations fxsg are generated with the proba-
bility ρðxsÞ. Then,

hÂi ∼ 1

NMC

X

xs

hψ jÂjxsi
hψ jxsi

; ð13Þ

where NMC is the number of Monte Carlo samplings for
the summation over xs, where s is the index to specify the
particle configuration in the real space.
For the ground-state wave function, we employ the

variational state:

jψi ¼ PGPJ jϕi; ð14Þ

jϕi ¼
�X

i;j

fijĉ
†
i↑ĉ

†
j↓

�
Ne=2j0i; ð15Þ

PG ¼ exp

�X

i

gin̂i↑n̂i↓

�
; ð16Þ

PJ ¼ exp

�X

i≠j
vijn̂in̂j

�
; ð17Þ

SINGLE-PARTICLE SPECTRAL FUNCTION FORMULATED AND … PHYS. REV. X 10, 041023 (2020)

041023-3



where the variational parameters are fij, gi, and vij. We
define the variational ground state jΩi as the state jψi that
minimizes the variational energy E ¼ hψ jĤjψi=hψ jψi. To
simultaneously optimize the variational parameters, the
natural gradient method is applied [39,40]. The resulting
ground state jΩi and ground-state energy Ω are both
deduced from traditional VMC.

D. Dynamical VMC

Using our knowledge of the ground state calculated from
VMC, we can now proceed to calculate the excitation
spectrum using the Green’s function formalism developed
in Sec. II A. The VMC formalism presented in Sec. II C,
namely, Eq. (13), can be used not only to calculate the
ground state but also to sample the matrices in Eqs. (6)
and (7). From these matrices, it is possible to calculate the
Green’s function using Eqs. (8)–(10).
It is hard to generate excited states that reproduce the

Krylov basis since the calculation of Ĥn is very expensive
for n > 1, as every hopping of electron terms in the
Hamiltonian produces a new Pfaffian evaluation. Instead
of Ân ¼ Hn and B̂n ¼ Î, which would produce the Krylov
basis, we choose a basis where Ân ¼ Î and B̂n is a
combination of different charge excitations n̂iσ [28]. To
be more explicit, the excitation basis we choose in the
expressions of Eqs. (4) and (5) is jhiσni ¼ ĉiσjψ ini and
jeiσni ¼ ĉ†iσjψ ini, where we introduce

jψ ini ¼ fjΩi; n̂iσ̄jΩi; n̂iþδn;σ̄n̂iþδ0n;σjΩi; n̂iþδn;σ̄n̂iþδ0n;σ̄jΩig:
ð18Þ

Here, δn and δ0n are a combination of different neighbors to
site i for each n. This choice is based on the physical
intuition where the creation of an electron on site i is
influenced by the presence of electrons with both same and
opposite spins on sites iþ δ and iþ δ0, respectively. This
case is illustrated in Fig. 1 for the two geometries studied in
this article. Generally, we consider only excitations within a
certain range δ ¼ ðδx; δyÞ of a neighborhood of the con-
sidered site i, noted as maxðjδxj; jδyjÞ ≤ δmax, where δmax is
an integer that specifies the farthest neighbor considered in
any direction. It is implicitly applied to both δ and δ0. Under
that threshold, we consider every combination of δ and δ0
that generates a unique, new excitation. The excitations
have to be nonredundant (different). Otherwise, they will
lead to singular matrices for Hk and Ok. Note that jeiσni is
in the electron-number sector with one electron added to
the ground state, while jhiσni is in the one-electron-
removed sector.
Equation (18) is the simplest choice of basis to reason-

ably represent the essential part of the low-energy excita-
tion subspace of the Hamiltonian (as demonstrated in the
result section). One might be concerned with whether the
choice of Eq. (18) exhausts the important excited states that

show up in Aðk;ωÞ. The benchmark in the later section will
help us to see the relevance of the basis. However, it is also
helpful to examine physical intuition. The basis jeiσni, for
instance, contains c†i;σjΩi, which is indeed the bare exci-
tation from the ground state in the representation Eq. (3). Of
course, it is not the eigenstate of the Hamiltonian in the
N þ 1 particle sector. Therefore, the time evolution of the
eigenstate represented by the denominator of Eq. (3) must
contain other states by considering the correlation effects.
In the ground states, the correlation effects are largely taken
into account by the correlation factors (Gutzwiller and
Jastrow factors, etc.). In the present case, we include
c†i;σni;σ̄jΩi as well as c†i;σjΩi, which may also be rewritten

as the expansion by ni;σ̄c
†
i;σjΩi and ð1 − ni;σ̄Þc†i;σjΩi. The

former essentially generates the electrons in the upper
Hubbard band, and the latter generates those in the lower
Hubbard band. The basis we employ can then represent the
correlation factor (Gutzwiller factor) efficiently in the
N þ 1-electron sector, not only for the lower-energy weight
(lower Hubbard) but also the higher-energy side (upper
Hubbard). In addition, c†i;σnj;σ̄nl;σ0 jΩi may essentially
represent the Jastrow factor as well. Since jΩi contains
the spin fluctuations in the ground state, the present excited
states contain the same spin fluctuation. Missing in the
present excited state is the one-electron-added state gen-
erated simultaneously by multiple spin scattering from the
ground state. Although it can, in principle, be included in
the present formalism as we discuss in the end of this paper,
we focus on the choice (18) and leave the one-electron-
added state for future study. It is not intuitively clear that we
are able to describe the Mott insulating state with upper and

(a) (b)

FIG. 1. Geometries of the system studied in this paper. (a) One-
dimensional lattice. (b) Two-dimensional square lattice. The
excitation on site i is correlated with the presence of electrons
on neighboring sites. The charge of the excitation of type
ĉ†iσ n̂iσ̄ jΩi is represented by the red arrow. The charges of the
excitation of type ĉ†iσ n̂iþδn;σ̄ n̂iþδ0n;σ jΩi are represented by the two
blue arrows, and the charges of the excitation of type
ĉ†iσ n̂iþδn;σ̄ n̂iþδ0n;σ jΩi are represented by the two green arrows.
Here, δn and δ0n denote only the difference in position relative to
the site i, only for the excitation illustrated here. If we consider
the excitation nþ 1, for example, the values δn and δ0n would be
different, leading to another “arrow couple” (for green and blue
“arrow couples”). We only show one example of such excitation
per excitation type, for clarity.
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lower Hubbard bands. Since the Tomonaga-Luttinger liquid
is well described in the ground state [41], it can describe
states with a vanishing renormalization factor. Later, we
also see that the incoherent continuum can emerge from our
excitation basis.
Using this excitation basis, we calculate the average of

hψ imjĉiσ ĉ†jσjψ jni; hψ imjĉ†iσ ĉjσjψ jni; ð19Þ

hψ imjĉiσĤĉ†jσjψ jni; hψ imjĉ†iσĤĉjσjψ jni; ð20Þ

in the real space representation for every i, j combination
(N2 terms) using Markov chain Monte Carlo sampling of
Eq. (13) for different simple operators. The details of which
quantities to sample and how to sample them are presented
in Appendix B, along with some details to optimize the
computation speed of the calculation of these excitations.
Once we have these terms, we can Fourier transform

(thanks to the translational symmetry):

Oe
k;mn ¼

1

Ns

X

ij

e−ikðri−rjÞhψ imjĉiσ ĉ†jσjψ jni; ð21Þ

He
k;mn ¼

1

Ns

X

ij

e−ikðri−rjÞhψ imjĉiσĤĉ†jσjψ jni; ð22Þ

Oh
k;mn ¼

1

Ns

X

ij

e−ikðri−rjÞhψ imjĉ†iσ ĉjσjψ jni; ð23Þ

Hh
k;mn ¼

1

Ns

X

ij

e−ikðri−rjÞhψ imjĉ†iσĤĉjσjψ jni: ð24Þ

These Fourier transforms produces a number of matrices
with as many as twice the number of momentum points.
With these matrices, we solve the generalized eigenvalue
problem [Eq. (8)] for both holes and electrons.
Together with Eqs. (1), (9), and (10), we estimate the

Green’s function from the VMC. We call the technique
presented in this section dynamical VMC (dVMC).

E. Summary of the technique

Since this new technique requires multiples steps, we
summarize our algorithm for convenience by listing the
sequential procedure here:
(1) The ground state jΩi and its energy Ω are calculated

using the definition (14) and minimizing Eq. (11)
through the variational Monte Carlo sampling
of Eq. (13).

(2) The terms (19) and (20) are calculated by using
variational Monte Carlo sampling (13) distinct from
the ground-state sampling because jψ ini defined in
Eq. (18) constitutes a Hilbert space extended from
the ground state jψi ¼ jΩi.

(3) The Fourier transform [Eqs. (21)–(24)] is used to
obtain the matrices in Eqs. (6) and (7).

(4) We solve the eigenvalue problem Eq. (8) for both
hole and electron excitations and obtain jEh

kli and
jEe

kli.
(5) We calculate the Green’s function in Eqs. (9) and

(10) by substituting jΩi obtained in step 1 and jEh
kli

and jEe
kli obtained in step 4 above, or through the

application of Eq. (A4), as implemented now in the
dVMC source code provided in the Supplemental
Material [34].

Both variational Monte Carlo steps (1 and 2) take the
most computational time. The computational cost of the
ground-state determination (step 1) scales as Ns ×OðN3

pÞ,
where Np is the number of variational parameters fij, gi,
and vij defined in Eq. (14) [35] and Ns is the number of
Monte Carlo samples. Some constraints can and must be
used at times to reduce the degrees of freedom (Np) of the
variational ground states and thus reduce the calculation
time. The computational cost of sampling the terms in
Eqs. (19) and (20) (step 2) scales as Ns × Nexc ×OðN3

pÞ×
O(N2ð1þ 2NtÞ), where N, Nt, and Nexc are the number of
lattice points, hoppings for each site, and excitations,
respectively. The excitation scheme [Eq. (18)] offers many
excitations with a relatively low computational cost in
step 2. In Appendix B, we discuss more details of the
optimization of the calculation.

III. RESULTS

A. Model

To examine the accuracy of the present dynamical VMC
method, we show the benchmark test of the standard
Hubbard model with the Hamiltonian

Ĥ ¼ −t
X

hi;ji;σ
ĉ†iσ ĉjσ þ U

X

i

n̂i↑n̂i↓ ð25Þ

on the 1D chain and 2D square lattice. The first term
proportional to the transfer t is the kinetic energy, and the
sum is restricted to the nearest-neighbor pair. The second
term represents the on-site Coulomb repulsion proportional
to U. We impose periodic boundary conditions throughout
this paper. In the presentation, the same color scale is used
to make the comparison between different methods and
sizes easier, except for Fig. 7. Unless otherwise specified,
we use parameters U ¼ 8 and the nearest-neighbor transfer
t ¼ 1 as the energy unit. We use the broadening factor
η ¼ 0.2. The chemical potential (Fermi level) is determined
so as to meet the occupied part of the integrated spectral
weight with the number of electrons (Ne ¼ integer) given
in our canonical ensemble simulation of VMC. Results
obtained by the present method on lattices of N ¼ 16 sites
are first compared to ED results in order to benchmark
the accuracy of the methods in one and two dimensions.
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The ED results were obtained using the open-source
software HΦ [42].
Symmetries are imposed via some constraints in the

variational parameters fij, gi, and vij of the trial wave
function. We do not impose any symmetry for the one-
dimensional case, but we impose a 2 × 2 sublattice struc-
ture to allow for a description of the antiferromagnetic
states for the two-dimensional case. Imposing this sub-
lattice structure will prevent the emergence of any stripe or
charge order, for example. Note, however, that it is possible
to study the charge order using VMC [32] and dVMC, but
this is beyond the scope of the present article. The
variational wave function [Eq. (14)] can represent the
Mott insulator due to the doublon-holon binding correla-
tions in the Jastrow factor [43].

B. One-dimensional lattice

In this section, we show the various results for the one-
dimensional Hubbard model. We first test both the Mott
insulator (N ¼ Ne) and the dopedMott insulator in the one-
dimensional Hubbard model by comparing with the exact
diagonalization results for the 16-site chain. The results at

half-filling are shown in Fig. 2(b), in comparison with exact
diagonalization results in Fig. 2(a). We see that the present
dVMC results show nearly perfect and quantitative agree-
ment with the Mott insulating nature between the results of
the present method and the ED in terms of the dispersion of
the lower (occupied) Hubbard band below EF and the upper
(unoccupied) Hubbard band above EF, in terms of their
broadness, relative weights, and the Mott gap sizes.
A direct superposition of the Aðk;ωÞ curves for selected
k points is shown in Appendix C in order to provide a more
quantitative comparison.
The results for the 64-site chain are shown in Fig. 2(c),

which gives much higher momentum resolution. Both in
the 16-site and 64-site results, the lower (upper) Hubbard
dispersion below (above) EF splits into two dispersions
around the Γ (k ¼ 0) and k ¼ π points. The upper, flat
dispersion branch in the lower Hubbard dispersion is
identified as the spinon branch, and the lower, steeper
dispersion branch is identified as coming from the holon
excitation in the analysis of the ARPES data for SrCuO2

[44,45]. The present dVMC calculation correctly captures
the spin-charge separation in the 1D Hubbard model.
We also note that the spin-charge separation at the heart
of the Tomonaga-Luttinger liquid was correctly captured
in Ref. [28].
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FIG. 2. Comparison of spectral weight for the 1D Hubbard
model at half-filling (L ¼ 16 and Ne ¼ 16) calculated by the ED
(a) and by the present method dVMC (b). For the 16-site dVMC
calculation, we considered combinations of every possible
neighbor for the choice of δ and δ0 in Eq. (18). Since the size
is small, Nexc ¼ 377 excitations are considered, in total, by
omitting redundant excitations. In panel (c), we show the result
for dVMC with 64 sites. We consider up to δmax ¼ 8, resulting in
a total of Nexc ¼ 426 excitations.
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The doped case is shown in Fig. 3. The comparison
between the dVMC result in panel (b) and the ED result in
panel (a) for the doping concentration δ ¼ 0.125 again
shows nearly perfect agreement. The same doping for the
64-site systems in Fig. 3(c) shows good agreement with the
result obtained by Kohno using the dynamical density-
matrix renormalization group (DDMRG) for a 60-site
system with the open boundary condition [46,47]. We still
see both the holon and spinon bands. We also note the
presence of the hole-pocket behavior appearing at the
Fermi level [46]. We show the dependence on the number
of excitations taken into account in Appendix D.
Finally, we show in Fig. 4 the Mott transition by varying

the interaction strengthU for the half-filled case. AtU ¼ 0,
we find exactly −2 cos k, which is to be expected for this
system without an interaction. Note that U ¼ 10 corre-
sponds to the result published with DDMRG [47]. The gap
opens gradually as the interactionU increases from 0 to 10.
It is to be noted that the Mott gap at U ¼ 2 is not visible
since the Lorentzian broadening factor η ¼ 0.2 smears the
fine structure expected around the Fermi level. This case
explicitly shows that the technique does not have a specific
interaction regime and can perform well in both U limits.
For the rest of the paper, we employ U ¼ 8.

C. Two-dimensional square lattice

In this section, we examine the square lattice, both for the
Mott insulator (N ¼ Ne) (see Fig. 5) and the doped Mott
insulator (Fig. 6). Comparison of the dVMC results in
Figs. 5(b) and 6(b) with the exact diagonalization results in
Figs. 5(a) and 6(a), respectively, proves good accuracy of
the dVMC method even for the 2D lattice. The comparison
of the 8 × 8 lattice results in Fig. 5(c) at half-filling and

Fig. 6(c) at 12.5% hole doping with the result of the cluster
perturbation theory [47,48] and quantum Monte Carlo [49]
shows a fair overall agreement. Note that the results of the
cluster perturbation [47,48] has lower momentum resolu-
tion and should not be taken as a sufficiently accurate
reference. Also, the quantum Monte Carlo results [49] at
half-filling are not at U ¼ 8 but have the same qualitative
features. The incoherent continuum is less clear in QMC
results than our dVMC results, but this is probably an effect
of the analytic continuation of QMC. Therefore, a small
discrepancy does not necessarily mean that the present
results are insufficient.
In both Figs. 5(c) and 6(c), we have employed a 2 × 2

sublattice to constrain the ground state to exclude stripe
orders as well as x-y anisotropies [32]. Figure 6(c) shows
results for a low-energy state, which has a superconducting
order with dx2−y2 symmetry. Note that the true ground state
may have the stripe order without any superconducting
order [31–33]. However, the superconducting state is very
close to the ground state and is obtained at least as a
well-optimized metastable state. Therefore, we could
expect to be able to see the intrinsic property of the
superconducting phase when it is stabilized in a realistic
Hamiltonian [50]. The superconducting correlation func-
tion for this state confirms the superconducting long-range
order (see Appendix E).
To have a better view of the superconducting physics, we

obtain results on a bigger cluster. In Fig. 7, we examine a
12 × 12 cluster with the same parameters as in Fig. 6(c).
We see similarities between Figs. 7(a) and 6(c) but with
much more details. To see the detailed structure of the gap,
we first plot, in Figs. 7(b)–7(d), the spectral weight in the
Brillouin zone for energies at and near the Fermi level,
namely, ω ¼ −0.3, 0.0, and 0.3, to estimate the position of
the gap opening (in other words, the locus of the minimum
gap, which should form the Fermi surface when the gap
closes). In principle, the locus of the gap opening can be
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FIG. 5. Comparisonof spectralweightAðk;ωÞ in themomentum-
energy plane for the square-lattice Hubbard model at half-filling
(N ¼ 4 × 4 and Ne ¼ 16) calculated by ED (a) and by dVMC (b).
For the 16-site dVMC calculation, we consider combinations of
everypossible neighbor for the choice ofδ and δ0 inEq. (18). In total,
Nexc ¼ 377 excitations are taken into account after omitting
redundant excitations. The result of the same quantity for the
8 × 8 lattice is shown in panel (c), which shows an essential
agreement with the result of cluster perturbation theory [47,48].
In panels (a)–(c), Aðk;ωÞ is plotted along the symmetric line of the
momentum in the Brillouin zone.
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inferred from the maximum intensity of Aðk;ω ¼ 0Þ. The
gap anisotropy can be seen along this trajectory. However,
because of the limited discrete points in the Brillouin zone
allowed for finite-size studies, a better estimate of the gap
opening position is obtained by an interpolation of Aðk;ωÞ
between neighboring momentum points using the data at
small but nonzero ω as well. In fact, the rough estimate of
the largest gap indicates that it appears at the antinode with
amplitude Δ ∼ 0.3t. At ω=t ¼ −0.3, 0.0, and 0.3, we also
show the obtained trajectory of the maximum Aðk;ωÞ
intensity with white dots and the corresponding interpo-
lated spectral weight for these dots on the right panels
[(e)–(g)]. It is important to interpolate between different ω
because the Fermi level determined from the consistency
between the electron number in the occupied part of
Aðk;ωÞ and the given nominal number itself has
uncertainty arising from the discrete k points and the
broadening factor. In addition, because of the gap, it
contains another uncertainty in precisely identifying the
gap-opening position in Fig. 7(c). Nevertheless, in Fig. 7(f),
we can see clearly that the gap anisotropy is essentially

expressed by the d-wave superconducting gap [ΔðkÞ ¼
ðΔ=2Þðcos kx − cos kyÞ], which has a maximum at the
antinodes [k ¼ ð0;�πÞ; ð�π; 0Þ] and closes at the nodes
(kx ¼ ky), though the precise functional form of the gap is
beyond the scope of the present paper.
Note that the number of excitations, for the case in

Figs. 6(c) and 7, have been limited to 118 excitations, by

keeping only the ranges 0 ≤ δð0Þx ≤ 2 and 0 ≤ δð0Þy ≤ 2 to
suppress the statistical error within our allowed computa-
tional cost.
The ratio Vd ¼ Δ=F, with F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pdðr → ∞Þp
being the

superconducting order parameter hΔdi, is the measure of
the effective attractive interaction to form the Cooper pair.
From Fig. 11 in Appendix E, hΔdi is estimated to be 0.055.
Then, the attractive interaction is roughly estimated as
Vd ∼ 1.7t, which is extremely large, implying that the
superconductivity in the Hubbard model is unrealistically
strong if we take it as a model of the cuprate super-
conductors with t ∼ 0.5 eV as employed in the literature. In
fact, the gap size itself is estimated to be about 0.3t at
U ¼ 8, which is a realistic value of the cuprates [50]. In this
range, the gap amplitude increases withU, in contrast to the
expectation from the exchange interaction J ¼ 4t2=U. The
value 0.3t is interpreted as about 150 meV for the cuprates,
which is three times larger than the gap amplitude of about
50 meV measured in the cuprates [1,2]. However, as we
mentioned above, the true ground state for this doping
should be the charge-inhomogeneous stripe state because
of such a strong attraction.
A possible origin of the effective attraction is the energy

gain by the recovery of the electron coherence (fading out
of Mottness), which grows nonlinearly with the doping.
This nonlinear reduction of the kinetic energy generates a
strong upward convex curve of the electronic energy as a
function of the carrier density. This negative curvature
signals the effective attractive interaction of charge car-
riers because the quadratic term obviously represents the
effective electron-electron interaction [51]. The attractive
interaction estimated from the negative curvature again
has the same order, consistent with the present value of
about t [52].
By using the present method, we have shown that the

d-wave gap of the Hubbard model has an energy scale of t
(more precisely, about 0.3t), which is much larger than the
value of the model of the cuprate superconductors. We note
that a more realistic understanding of the scale of the
attraction of the cuprates and other available superconduc-
tors has to be reached by using the ab initio effective
Hamiltonian that has realistic nonzero off-site Coulomb
repulsions [50].

D. Computational cost

In this section, we discuss the typical computational cost
for a few of the systems calculated. Let us stress that these

path

FIG. 7. Spectral function Aðk;ωÞ for a 12 × 12 cluster. (a) Same
view as in Fig. 6(c). (b)–(d) Spectral function for a constant
energy at and around the Fermi level (ω ¼ 0.0) plotted in the
Brillouin zone. Energies are, respectively, ω ¼ 0.3, 0.0, and
−0.3. (e)–(g) Spectral function in the momentum-energy plane,
with the momentum following the symmetric line along
ð0; πÞ − ðπ; 0Þ − ð0; πÞ. The labels of the k axis on the abscissa
in these panels show only the points on the trajectory of white
dots closest to the symmetric points because the white-dot
trajectory is not precisely along the symmetric line. We follow
the maximum intensity lines in the Brillouin zone of the
corresponding panel on the left. The choice of k points in the
path in panel (e) is shown with the white dots in the correspond-
ing panel on the left [panel (b)]. The same is true for panels (c)
and (f) and for panels (d) and (g), but in these cases, we use linear
interpolations to more precisely identify the paths away from the
discrete k points. The superconducting d-wave gap structure is
clearly seen in panel (f). Note that in this figure, panel (a) has the
same color scale as the rest of the paper, but panels (b)–(g) have
another color scale (shown in the top right), in order to see more
clearly the details in the superconducting gap and around the
Fermi level.
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values are highly dependent on the number of variational
parameters Np, sites N, samples Ns, and hopping terms
Nt, as discussed in Sec. II E. Computations of the smallest
systems (16 sites) can be performed on a desktop
computer in under a few hours. But for the sake of
comparison, we present the time required to perform the
calculations on the same supercomputer at the Institute
for Solid State Physics. All of the calculations have been
performed using multiple nodes (via MPI) of each 24
CPU (via OpenMP).
For the one-dimensional case with N ¼ 16 sites (Nt ¼ 2

and Np ¼ 392), using Ns ¼ 7.2 × 105 for the ground-state
calculation (step 1 of Sec. II E) required 8 minutes. Using
Ns ¼ 1.8 × 105 and Nexc ¼ 377 for the sampling of the
terms (19) and (20) (step 2 of Sec. II E) required 3 minutes.
In total, this calculation required 11 minutes on 240 CPU.
For the one-dimensional case with N ¼ 64 sites

(Nt ¼ 2 and Np ¼ 6176), using Ns ¼ 5.76 × 105 for step
1 required 4.5 hours, and using Ns ¼ 2.6 × 106 and
Nexc ¼ 426 for step 2 required 5.5 hours, for a total of
10 hours on 3456 CPU.
For the two-dimensional case with N ¼ 144 sites

(Nt ¼ 4 and Np ¼ 872), using Ns ¼ 5.76 × 105 for step
1 required 1.5 hours, and using Ns ¼ 8.64 × 105 and
Nexc ¼ 118 for step 2 required 11.5 hours, for a total of
13 hours on 3456 CPU.
These numbers are the ones used for the calculation of

Figs. 2(b), 2(c), and 7, respectively. The calculation time
increases with system size. For the 12 × 12 case, the time is
comparable to the one-dimensional chain of 64 sites due
to the use of many symmetries and the reduction of the
excitation number considered.

IV. SUMMARY AND OUTLOOK

In this paper, we examined a newly proposed dVMC
method to calculate the single-particle spectral function and
the Green’s function for strongly correlated electron sys-
tems. Although the proposed variational form of the excited
states is simple and contains only one bare electron or hole
added to the ground state—dressed by composite operators
diagonal in the particle-number representation—the
obtained spectral function rather accurately reproduces
the exact structure in the benchmark.
An application to the hole-doped square-lattice Hubbard

model revealed that a d-wave superconducting state is
induced by an effective carrier attraction, which is unex-
pectedly large (∼0.3t), resulting in a much larger super-
conducting gap than that observed in the corresponding
cuprates, if we study the charge-uniform lowest-energy
state as the ground state. It implies that the real cuprate
superconductors have to be understood by taking account
of more realistic factors such as the intersite Coulomb
repulsion, which suppresses both the charge inhomogeneity
and the superconducting order overestimated in the

Hubbard model in comparison to the real, existing super-
conductors [50].
Though it reached unprecedented and fruitful results, the

obtained spectral function is not perfect, with some
discrepancy from the exact results. We note that spectral
functions are very sensitive to the ground state jΩi used in
the calculation and strongly compete with other metastable
states. The sensitivity requires a high accuracy of the
ground-state wave function before calculating the dVMC
Green’s function. In addition, the form of the excited states
has to be flexible enough, particularly, to represent low-
energy excitations. Qualitatively different types of excita-
tions ignored in the present work but presumably important
are the dressing by the spin-flip excitation such as
ĉ†iþδ;σ ĉiþδ;σ̄ ĉ

†
i;σ̄jΩi and that by kinetic operators such as

ĉ†iþδ;σ ĉjþδ;σc
†
i;σjΩi, which are off diagonal in the particle-

number representation. The inclusion of these excitations
is an intriguing future issue, which might enhance the
accuracy. Of course, increasing the number of charge
operators as n̂i;σ̄n̂iþδ0n;σn̂iþδ00n;σ̄jΩi, n̂i;σ̄n̂iþδ0n;σn̂iþδ00n;σjΩi
may also improve the accuracy.
In fact, such an improvement in the present dVMC

method is expected to contribute to a better understanding
of the low-energy subtle structures such as the pseudogap
and the effect of severe competition among superconduct-
ing, charge, and spin correlations of the doped Mott
insulator.
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APPENDIX A: ALTERNATIVE PROOF

In this appendix, we show the Green’s function calcu-
lation as is implemented in the dVMC code, which is
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available in the Supplemental Material [34]. It is an
alternative form of Eqs. (9) and (10).
The Green’s function in a nonorthogonal basis is also

expressed as [53]

Ghðk;ωÞ ¼ Ohk(ðωþ iη −ΩÞOhk þHhk)
−1Ohk; ðA1Þ

Geðk;ωÞ ¼ Oek(ðωþ iηþ ΩÞOek −Hek)
−1Oek; ðA2Þ

which are related to the abstract Green’s operators
Ĝhðk;ωÞ and Ĝeðk;ωÞ defined as

Ghðk;ωÞjmn ¼ hhkmj(ðωþ iη −ΩÞÎ þ Ĥ)−1jhkni;
Geðk;ωÞjmn ¼ hekmj(ðωþ iηþ ΩÞÎ − Ĥ)−1jekni:

From these definitions, we see that if we choose the
first excitations such that B̂0 ¼ Î, we obtain the Green’s
function (1), with

GkσðωÞ ¼ (Geðk;ωÞ þGhðk;ωÞ)m¼n¼0: ðA3Þ

To speed up calculations,we can rearrange and diagonalize
the terms HhkO−1

hk and HekO−1
ek in Eqs. (A1) and (A2):

GkσðωÞ ¼
X

l

ðUhkÞ0lðU−1
hkOhkÞl0

ωþ iη − Ωþ Ehk;l
þ ðUekÞ0lðU−1

ekOekÞl0
ωþ iηþΩ − Eek;l

;

ðA4Þ

where the energies Ek;l are the eigenvalues and Uk are the
eigenvector matrices. Note that even if both matricesHk and
O−1

k are Hermitian, their product is not. Hence, Uk is not
unitary. This form is equivalent to Eqs. (9) and (10).

APPENDIX B: SAMPLED QUANTITIES

The bottleneck of the calculation of Ok;mn and Hk;mn for
both the hole and the electron is the Monte Carlo sampling
with a charge configuration jxsi of the quantities:

gij;σðxsÞ ¼ hΩjĉ†iσ ĉjσjxsi; ðB1Þ

gijkl;σσ0 ðxsÞ ¼ hΩjĉ†iσ ĉjσ ĉ†kσ ĉlσjxsi; ðB2Þ

for 0 ≤ i; j < N and k, l are the indices of every hopping on
the cluster. This calculation then requires 2N2ð1þ 2NtÞ
Pfaffian evaluations in total (where Nt is the number of
hoppings in the cluster) for the simple Hubbard model.
When we have all the values of Eqs. (B1) and (B2) in hand,
from these values alone, we can deduce

hψ imjĉiσ ĉ†jσjψ jni; hψ imjĉ†iσ ĉjσjψ jni; ðB3Þ

hψ imjĉiσĤĉ†jσjψ jni; hψ imjĉ†iσĤĉjσjψ jni ðB4Þ

straightforwardly by using (anti)commutation relations of
fermion operators for the simple Hubbard model. These
quantities are the same as Eqs. (19) and (20).
First, since the inserted state jxsi in the VMC sampling

method (11) is a real space configuration, the evaluation of
any n̂iσ is fast since n̂iσjxsi ¼ jxsiniσðxsÞ, where niσðxsÞ is
a scalar: 1 if the site i of spin σ is occupied, and 0 otherwise.
The set of charge diagonal operators on the left-hand side
can be moved to the right analytically until they reach jxsi.
For this purpose, we use the relation

n̂a

�Y

i

ĉ†i
Y

j

ĉj

�
¼
�Y

i

ĉ†i
Y

j

ĉj

��
n̂aþ

X

i

δia−
X

j

δja

�

ðB5Þ

to commute any charge operator from left to right (which
holds for any order of ĉ†i and ĉj). The terms in Eq. (B3) and
the interaction part (ĤU) of Eq. (B4) can thus all be
computed from the values

hΩjĉiσ ĉ†jσjxsi ¼ δij − gji;σðxsÞ; ðB6Þ

hΩjĉ†iσ ĉjσjxsi ¼ gij;σðxsÞ; ðB7Þ

and the hopping part (Ĥt) of Eq. (B4) can be computed
from

hΩjĉiσ ĉ†kσ0 ĉlσ0 ĉ†jσjxsi ¼ −gjikl;σσ0 ðxsÞ þ δijgkl;σ0 ðxsÞ
þ δjlδσσ0(δik − gki;σðxsÞ); ðB8Þ

hΩjĉ†iσ ĉ†kσ0 ĉlσ0 ĉjσjxsi ¼ gijkl;σσ0 ðxsÞ − δjkδσσ0gil;σðxsÞ: ðB9Þ

This case reduces the number of Pfaffian calculations. In
principle, it generates terms for every 0 ≤ i; j < N, but it is
convenient to impose the translational invariance at every
Monte Carlo sample, if it is satisfied, to reduce the memory
cost and Monte Carlo noise. In doing so, only the terms
i ¼ 0 and 0 ≤ j − i < N need to be computed. Finally,
it is important to impose hermiticity at every sampling, too,
so that

hψ imjĉiσ ĉ†jσjψ jni ¼ ðhψ imjĉiσ ĉ†jσjψ jni
þ hψ jnjĉjσ ĉ†iσjψ imi⋆Þ=2; ðB10Þ

hψ imjĉiσĤĉ†jσjψ jni ¼ ðhψ imjĉiσĤĉ†jσjψ jni
þ hψ jnjĉjσĤĉ†iσjψ imi⋆Þ=2; ðB11Þ

and so on. These two optimizations greatly reduce noise in
the resulting data.
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APPENDIX C: COMPARISON BETWEEN
ED AND dVMC

In Fig. 10, we show selected k points for Aðk;ωÞ of the
previous results of Figs. 2, 3, 5, and 6 for the same graphs
in order to facilitate the comparison between ED and
dVMC. As stated in the main text, the agreement is
very close.

APPENDIX D: DEPENDENCE OF ACCURACY
ON THE LEVEL AND NUMBER
OF INCLUDED EXCITATIONS

In this appendix, we show the effect of increasing the
range δmax in Eq. (18).
In Figs. 8 and 9, we show the dependence on the number

of excitations for the result presented in Figs. 2(c) and 3(c),
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FIG. 8. Comparison of spectral weight for the 64-site 1D Hubbard model in the Mott insulating state, as shown in Fig. 2(c), but
considering only a subset of excitations. Indeed, in Fig. 2(c), we consider up to a threshold δmax ¼ 8. Here, we show the result for
δmax ¼ 7 in panel (i), δmax ¼ 6 in panel (h), and so on. Panel (b) plots the case where the first two (local) excitations of Eq. (18) are taken
into account, and panel (a) is the case taking into account only the first one, i.e., the trivial excitation. Note that the labels in the k axis are
the same as in Fig. 2(c), so they have been omitted here.
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FIG. 9. Comparison of spectral weight for the 64-site 1D Hubbard model at 12.5% hole doping, as shown in Fig. 3(c), but considering
only a subset of excitations. Details are the same as in Fig. 8.
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FIG. 10. Comparison between Aðk;ωÞ obtained from ED (thin black line) and dVMC (thick red line) corresponding to (a) the first two
panels of Fig. 2(b) Fig. 3(c) Fig. 5, and (d) Fig. 6. We only show a selection of the most relevant k points, namely, k ¼ 0, π=2, π for
panels (a) and (b) and k ¼ ð0; 0Þ, ðπ=2; π=2Þ, ðπ; 0Þ for panels (c) and (d).
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respectively. We see that the first few neighbors are crucial
to get better results. Between δmax ¼ 6 and δmax ¼ 7, the
result does not change much even if we add 83 new
excitations, suggesting the overall convergence to the exact
results, aside from the detailed thin structures near the
Fermi level in Fig. 9.

APPENDIX E: SUPERCONDUCTING
GROUND STATE

The solution presented in Fig. 6(c) has a superconduct-
ing order, which can be seen from the gap in the spectral
weights plotted in both Figs. 6(c) and 7. This case can be
seen more directly by measuring the d-wave superconduct-
ing correlation function

PdðrÞ ¼
1

2Ns

X

i

hΔ†
dðriÞΔdðri þ rÞ þ ΔdðriÞΔ†

dðri þ rÞi;

ðE1Þ

with

ΔdðriÞ ¼
1ffiffiffi
2

p
X

r

gðrÞðcri↑criþr↓ − cri↓criþr↑Þ; ðE2Þ

with the d-wave form factor g defined as

gðrÞ ¼ δrx;0ðδry;1 þ δry;−1Þ − δry;0ðδrx;1 þ δrx;−1Þ ðE3Þ

in Ref. [32]. This function is shown in Fig. 11. The long-
range superconducting order is indicated by the saturation
to a nonzero value around 0.055 at long distances.
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