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When the ground state of a localized ion is a non-Kramers doublet, such localized ions may carry
multipolar moments. For example, Pr3þ ions in a cubic environment would possess quadrupolar and
octupolar, but no magnetic dipole, moments. When such multipolar moments are placed in a metallic host,
unusual interactions between these local moments and conduction electrons arise, in contrast to the familiar
magnetic dipole interactions in the classic Kondo problem. In this work, we consider the interaction
between a single quadrupolar-octupolar local moment and conduction electrons with p-orbital symmetry as
a concrete model for the multipolar Kondo problem. We show that this model can be written most naturally
in the spin-orbital entangled basis of conduction electrons. Using this basis, the perturbative renormaliza-
tion-group (RG) fixed points are readily identified. There are two kinds of fixed points, one for the two-
channel Kondo and the other for a novel fixed point. We investigate the nature of the novel fixed point
nonperturbatively using non-Abelian bosonization, current algebra, and conformal field theory approaches.
It is shown that the novel fixed point leads to a, previously unidentified, non-Fermi liquid state with
entangled spin and orbital degrees of freedom, which shows resistivity ρ ∼ TΔ and diverging specific heat
coefficient C=T ∼ T−1þ2Δ, with Δ ¼ 1=5. Our results open up the possibility of myriads of non-Fermi
liquid states, depending on the choices of multipolar moments and conduction electron orbitals, which
would be relevant for many rare-earth metallic systems.

DOI: 10.1103/PhysRevX.10.041021 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

Quantum theory of metals is often discussed in the
framework of Fermi liquid, where well-defined fermionic
quasiparticles dominate thermodynamic and transport prop-
erties. The discovery of metallic systems that demonstrated
anomalous behaviors [1,2], such as a diverging specific heat
coefficient and subquadratic temperature dependence of
resistivity, prompted many decades of research activities on
non-Fermi liquid states. However, the number of concrete
theoretical examples that arewell understood is not so large.
The classic Kondo problem [3–5], where the local magnetic
dipole moment of a single localized ion interacts with
conduction electrons’ spin, is one prominent examplewhere
the dichotomy between Fermi liquid and non-Fermi liquid
behaviors can be seen [6,7]. We call this the dipolar Kondo
problem to clearly distinguish it from the model that we
study in this work. If we considerm channels of conduction
electrons interacting with the local spin-1=2 moment, the

m ¼ 1 system is a Fermi liquid, where the local moment is
screened and becomes part of the Fermi sea [8–12],while the
m > 1 systems lead to non-Fermi liquid states with anoma-
lous properties [13–24]. This is an example where a single
impurity can fundamentally change the nature of the many-
body ground state.
In this work, we demonstrate the existence of a novel

non-Fermi liquid state in the multipolar Kondo problem,
where the local moment is characterized by a non-Kramers
crystal-field doublet that carries multipolar moments such
as quadrupolar or octupolar moments. While such multi-
polar moments are abundant in quantum materials with
f-electron moments [25–29], the corresponding Kondo
problem [30–32] has not been fully understood. Taking the
example of Pr3þ ions in a cubic environment, these ions
support only quadrupolar and octupolar moments and do
not carry any magnetic dipole moment. If we introduce
pseudospin-1=2 operators, S ¼ ðSx; Sy; SzÞ for the doublet,
Sx and Sy (Sz) represent quadrupolar (octupolar) moments.
While they satisfy the canonical SU(2) algebra, the physical
contents of these operators are very different from the spin-
1=2 moment. In particular, these multipolar moments do
not couple solely to conduction electron spins but rather to
conduction electron bilinears that transform in the same
way that the quadrupolar or octupolar moments transform.
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In order to consider a concrete model, we take p-orbital
bands of conduction electrons, which belong to the T2

irreducible representation of the Td point group in cubic
systems.
We show that this model can be written most naturally

if the spin-orbital entangled basis, or the total angular-
momentum basis, is used for conduction electrons. This
method is interesting because the conduction electrons
themselves do not have any spin-orbit coupling in this
model. It is the coupling to the multipolar moments that
forces the conduction electrons to have strong spin-orbital
entanglement. In this basis, it is shown that the perturbative
RG fixed points can be easily identified. As shown earlier in
the nonentangled basis [33], there exist two kinds of fixed
points: one that has the behavior of the two-channel Kondo
fixed point and the other being a novel fixed point. In the
perturbative RG analysis [33–35], the scaling dimension of
the leading irrelevant operator at the novel fixed point is
1þ Δ, with Δ ¼ 1=4 [33], which leads to the resistivity
ρ ∼ T1=4 and specific heatC ∼ T1=2 behaviors. However, the
nature of this novel fixed point was not clearly understood.
In addition, the stability of this fixed point beyond the
perturbative analysis was not addressed. Since the novel
fixed point may represent a previously unidentified non-
Fermi liquid state, it is important to develop a deeper
understanding of the nature of this fixed point.
Focusing on the novel fixed point, we first analyze the

strong-coupling limit of the RG flow, where the coupling
constants are taken to bemuch larger thanOð1Þ, andwe show
that this strong-coupling limit is unstable. This strongly
suggests that the intermediate coupling fixed point found in
the perturbative RG analysis is stable. In order to obtain
nonperturbative results, we employ non-Abelian bosoniza-
tion, current algebra, and conformal field theory approaches
to examine the critical theory of the novel fixed point. Using
the conformal embedding [17,36], the free theory of con-
duction electrons can be written as a Uð1Þ × SUð3Þ2 ×
SUð2Þ3 Kac-Moody invariant conformal field theory. The
multipolar localmoment or the pseudospin-1=2 only couples
to a subsector (three of eight generators) of SUð3Þ2. These
three generators form a closed algebra.We highlight that this
is not the two-channel SU(3) Kondo model, as only three
generators are coupled to the multipolar local moment. It is
more useful to consider the coset construction SUð3Þ2 ¼
½three-state Potts model� × fSUð2Þ8, where the multipolar
local moment then couples to the fSUð2Þ8 sector. Here,fSUð2Þ8 refers to SUð2Þ8 with a convenient normalization
of its generators. Considering the boundary conformal field
theory [37,38], we find that the leading irrelevant operator at
the novel fixed point is present in the fSUð2Þ8 sector. If we
consider a generalized model, Uð1Þ×SUð3Þk×SUðkÞ3,
this would correspond to an operator belonging to
SUð2Þ4k. The scaling dimension of this operator is 1þ Δ,
with Δ ¼ 2=ð4kþ 2Þ. The perturbative fixed point

corresponds to the large k limit, and hence Δ ¼ 1=ð2kÞ.
With k ¼ 2 (as in our case), this reproduces 1=4 in the
perturbative RG analysis. The corresponding exact scaling
dimension is Δ ¼ 1=5 for k ¼ 2. This leads to singular
behavior for experimentally relevant quantities, such as the
specific heat coefficient C=T ∼ T−1þ2Δ ¼ T−3=5 and the
resistivity ρ ∼ TΔ ¼ T1=5. This represents a rare example
of solvable non-Fermi liquid fixed points. In the broader
context, our work provides a concrete example of the
possibility of a wide variety of Kondo effects, as well as a
myriad of non-Fermi liquids, which may arise in rare-earth
metallic compounds.

II. MICROSCOPIC MODEL

The combination of spin-orbit (SO) coupling and crys-
talline electric fields (CEFs) in rare-earth compounds
allows for the development of exotic higher-rank multipolar
moments. Taking a localized Pr3þ ion in a cubic environ-
ment as a concrete example, the SO-coupled J ¼ 4multiplet
of f2 electrons is split by the CEF to give rise to a low-lying
non-Kramers Γ3g doublet [39]. This Γ3g doublet can support
time-reversal even quadrupolar momentsO20¼ 1

2
ð3J2z−J2Þ,

O22 ¼
ffiffi
3

p
2
ðJ2x − J2yÞ, as well as a time-reversal odd octupolar

moment T xyz ¼
ffiffiffiffi
15

p
6
JxJyJz, where the overline represents a

fully symmetrized product. These multipolar moments can
be efficiently described by the pseudospin-1=2 operator
S ¼ ðSx; Sy; SzÞ,

Sx ¼ −
1

4
O22; Sy ¼ −

1

4
O20; Sz ¼ 1

3
ffiffiffi
5

p T xyz: ð1Þ

Embedding such multipolar moments in a metallic system,
the localized electronic configuration can fluctuate from its
f2 ground-state configuration (Γ3g) to excited f1 states (Γ7)
via hybridization with the sea of conduction electrons.
Group theoretically, this hybridization process occurs only
if the conduction electrons possess the appropriate sym-
metry, i.e., Γc ¼ Γ3g ⊗ Γ7 ¼ Γ8, where Γc denotes the irrep
of the conduction electron states [31]. As described in a
recent work [33], one way to form this Γ8 irrep is from the
combination of cubicp-like orbitals equippedwith a spinor-
1=2 degree of freedom, Γc ¼ p ⊗ 1

2
¼ Γ8 ⊕ Γ6.

The natural physical setting for such a construction is in
the family of cubic rare-earth compounds, PrðTi;VÞ2Al20
(PrIr2Zn20), where the Pr3þ ions are subjected to a local Td
symmetry by a surrounding cage of Al (Zn) atoms [40–46].
Focusing on the choice of conductionp electron orbitals, the
Td symmetry-permitting couplings of the conduction elec-
trons to a local moment (located at impurity site x ¼ 0) are

H1 ¼ K1

h
Sxðc†x;αcx;β − c†y;αcy;βÞ

þ Syffiffiffi
3

p ð2c†z;αcz;β − c†x;αcx;β − c†y;αcy;βÞ
i
δαβ; ð2Þ
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H2 ¼ −
ffiffiffi
3

p
K2

h
Sxðiσxαβc†y;αcz;β − iσyαβc

†
z;αcx;βÞ

þ Syffiffiffi
3

p ð2iσzαβc†x;αcy;β − iσxαβc
†
y;αcz;β − iσyαβc

†
z;αcx;βÞ

þ H:c:
i
; ð3Þ

H3 ¼ K3Sz½σxαβðc†y;αcz;β þ H:c:Þ þ cyclic�; ð4Þ

where cP;α denotes the conduction electron annihilation
operator at site 0, orbital P, and spin α, and an implicit
summation over conduction spin indices α; β ¼ f↑;↓g. We
note that this construction is based on symmetries and
hence is broadly applicable to cubic (Td) systems. We note
that in terms of cubic harmonics, these terms can easily be
seen as satisfying the Td symmetry. In particular, we note
that since Sx has an x2 − y2 symmetry, it respectively
couples to x2 − y2 charge densities in Eq. (2) and currents
in Eq. (3). We stress that in the Td point group, x and yz
transform identically, and correspondingly for the cyclic
permutations. Thus, Eqs. (2) and (3) have the same
symmetry structure.
As studied in Ref. [33], performing third-order pertur-

bative renormalization-group calculations leads to two
nontrivial fixed points (each of these comes as a pair,
which are related by a canonical transformation of the
pseudospin): (i) Fixed point I: K1 ¼ −

ffiffiffi
3

p
K2 ¼ K3 ¼ 1

2
ffiffi
3

p ;

(ii) fixed point II: K1 ¼
ffiffiffiffiffi
12

p
K2 ¼ − 1

2
ffiffi
6

p ; K3 ¼ − 1

4
ffiffi
3

p .

Fixed point I has the same exponents for physical proper-
ties from perturbative RG as the two-channel Kondo model,
while fixed point II possesses highly singular scaling
characterized by a leading irrelevant operator of dimension

1þ Δ, where Δ ¼ 1=4 is the slope of the β function at the
fixed point. We call this the novel fixed point. The
perturbative scaling can be easily understood by rewriting
the β function from Ref. [33] in terms of a single coupling
constant gk by fixing the ratios of the original K1;2;3

couplings to that at the fixed point of interest. For fixed
point II, we can define K1 ¼ − 1

2
ffiffi
6

p gk, K2 ¼ − 1

12
ffiffi
2

p gk,

K3 ¼ − 1

4
ffiffi
3

p gk, such that when gk → 1, we arrive at the

fixed point II. This process leads to the β function

dgk
d lnD

¼ −
g2k
4
þ g3k

4
; ð5Þ

where D is the UV cutoff. The fixed point is located at
g�k ¼ 1, and the slope of the β function at the fixed point is
Δ ¼ 1=4. Indeed, thisΔ appears in the leading specific heat
and resistivity scaling exponents found in the original RG
calculation in Ref. [33].

III. SPIN-ORBIT COUPLED BASIS FOR
CONDUCTION ELECTRONS

Though the cubic harmonics enables the symmetry
nature of the coupling to be easily verified, it does not
give an immediate indication as to the underlying nature of
the fixed points. In order to shed light on this nature, we
consider a double change of basis: (i) from cubic harmonics
to spherical harmonics and (ii) to a spin-orbit coupled
basis by implementation of a Clebsch-Gordon angular-
momentum addition. The change of bases is delineated in
Appendix A. The above Kondo couplings can be recap-
tured into the form

Htot ¼
�
−
K1ffiffiffi
3

p þ 2K2

��
Sx
����� 32 ; 12

��
3

2
;
−3
2

����þ���� 32 ; 32
��

3

2
;
−1
2

����þ H:c:

�
þ Sy

����� 32 ;−32
��

3

2
;
−3
2

����þ���� 32 ; 32
��

3

2
;
3

2

����−���� 32 ; 12
��

3

2
;
1

2

����−���� 32 ;−12
��

3

2
;
−1
2

�����	
þ
� ffiffiffi

2
p

K1ffiffiffi
3

p þ
ffiffiffi
2

p
K2

��
Sx
����� 32 ; 32

��
1

2
;
−1
2

����−���� 32 ;−32
��

1

2
;
1

2

�����þ Sy
����� 32 ;−12

��
1

2
;
−1
2

����−���� 32 ; 12
��

1

2
;
1

2

�����þ H:c:

	
þ ð

ffiffiffi
3

p
K3ÞSz

�
i

���� 32 ;−32
��

3

2
;
1

2

����þ i

���� 32 ; 32
��

3

2
;
−1
2

����þ H:c:

	
; ð6Þ

where we use the ket (bra) notation of jj; mji (hj0; mj0 j) to
denote conduction electron creation c†j;mj

(annihilation
cj0;mj0 ) operators of total angular momentum j (j0) and z
projection mj (mj0 ); the impurity site location (x ¼ 0) is
dropped for brevity. Equation (6) sheds remarkable insight
into the nature of the perturbative fixed points.

A. Two-channel Kondo fixed point

First, we consider tuning of the coupling constants
to fixed point I. The second term in Eq. (6) vanishes,
and the remaining collection of coupling constants
becomes ½−ðK1=

ffiffiffi
3

p Þ þ 2K2� → 1=2 and ð ffiffiffi
3

p
K3Þ → 1=2.

The remaining terms only involve the four j ¼ 3=2 states,
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which decouple into two independent (time-reversal related)
doublets. Defining pseudospin-1=2 operators τx;y;zA and τx;y;zB
for each of the decoupled doublets [Fig. 1(a): blue and purple
levels, respectively], Eq. (6) can be rewritten as

Htot ¼ SxðτxA þ τxBÞ − SyðτzA þ τzBÞ þ SzðτyA þ τyBÞ; ð7Þ

where we present the form of the τ⃗A;B operators in
Appendix B. This form is precisely that of the conventional
two-channel Kondo model at its fixed point and thus
confirms our perturbative determination that fixed point I
has two-channel non-Fermi liquid behavior.

B. Novel fixed point

Tuning the coupling constants to the novel fixed point II,
the first term inEq. (6) vanishes, and the remaining collection
of coupling constants becomes ½ð ffiffiffi

2
p

K1=
ffiffiffi
3

p Þ þ ffiffiffi
2

p
K2� →

−1=4 and ð ffiffiffi
3

p
K3Þ → −1=4. Interestingly, the remaining

terms do not belong to a single jmanifold but involve terms
from both j ¼ 3=2 and j ¼ 1=2. This model is unlike the
above two-channel model, which only involved conduction
j ¼ 3=2 states. The terms can be organized into two
decoupled triplets of states: (i) fj 3

2
; 3
2
i; j 3

2
; −1
2
i; j 1

2
; −1
2
ig and

(ii) fj 3
2
; 1
2
i; j 3

2
; −3
2
i; j 1

2
; 1
2
ig, where we again use the notation

of jj; mji. Performing another unitary rotation about the
j 1
2
; −1
2
i axis in the (ii) space reduces theKondocoupling to the

following elegant form,

Hk ¼
X
m¼1;2

ψ⃗†
mð0Þ

�
Sx

2

λ4

2
þ Sy

2

λ6

2
þ Sz

2

λ2

2

	
ψ⃗mð0Þ; ð8Þ

where λa are the SU(3) Gell-Mann matrices andm labels the
twodecoupledbases, i.e., (i) ψ⃗†

m¼1 ¼ ð−c†3
2
;3
2

;−c†3
2
;−1
2

; c†1
2
;−1
2

Þ and
(ii) ψ⃗†

m¼2 ¼ ðc†3
2
;−3

2

; c†3
2
;1
2

; c†1
2
;1
2

Þ, where the negative signs indi-

cate the aforementioned final unitary transformation.
Equation (8) can be schematically visualized in Fig. 1(b).
Before examining the nature of this fixed point in detail, we
first consider the justification of its existence from a strong-
coupling limit analysis.

IV. INSTABILITY OF STRONG-COUPLING LIMIT

The strong-coupling limit provides a consistency ration-
ale for the existence of the perturbatively obtained fixed
point. In the strong-coupling limit, the kinetic term can be
ignored, and the problem reduces to determining the
degeneracy of the ground state at the impurity site. If
the ground state is nondegenerate, this indicates that the
local moment has been quenched, and no further Kondo
effects can occur. In the original Kondo model, this is the
outcome, which is in agreement with the picture of a
formation of a Kondo singlet. If, on the other hand, the
ground state is degenerate, this indicates that, even at strong
coupling, there is still enough “freedom” at the impurity
site to participate in further Kondo scattering events with
conduction electrons. This degeneracy thus indicates the
instability of the strongly coupled fixed point, and it
indicates a renormalization-group flow away from it and
towards an intermediate fixed point [47].
Focusing on the novel fixed point II, the strong-

coupling limit results in a fourfold degenerate ground state
(Appendix C). This fourfold ground-state degeneracy is
larger than the twofold degeneracy one obtains from the
two-channel Kondo model, which underlines the increased
quantum nature of the novel fixed point. Indeed, even with
the introduction of perturbations to the strongly coupled
Hamiltonian (such as conduction tunneling processes
to/from the impurity), the ground state retains (at least
partially) its degeneracy. Thus, even with perturbations, the
strongly coupled fixed point retains sufficient degrees of
freedom to scatter with conduction electrons and drive the
system away from the strongly coupled fixed point, and
towards an intermediate fixed point.

V. CURRENT ALGEBRA APPROACH
TO NOVEL FIXED POINT

In the same spirit as the original Kondo problem (and
even rare-earth impurity systems [31]), we consider
radial (s-wave) scattering events, which allow the three-
dimensional free-fermion model to be mapped to a chiral
one-dimensional problem [16],

H0 ¼
Z

∞

−∞
dx

X
β¼1;2;3;t¼1;2

ψ†
L;β;tðxÞði∂xÞψL;β;tðxÞ; ð9Þ

(a) Two-channel Kondo Fixed Point (b) Novel Fixed Point

FIG. 1. Schematic picture of Kondo Hamiltonians tuned to each
of the fixed points, with conduction electron transitions amongst
different jj; mji states via coupling to the multipolar moments.
(a) Two-channel Kondo fixed point, involving two decoupled
pairs of conduction electrons from the j ¼ 3=2 sector (blue and
purple). (b) Novel fixed point, involving two decoupled triplets of
states from j ¼ 1=2 and j ¼ 3=2 conduction electron levels
(orange and green).
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where x is the radial coordinate, ψL;β;j denotes a left-
moving fermionic field with SU(3) triplet-space label β, t is
the channel index, β sums over the respective triplet
subspaces (i) and (ii) described in Sec. III B, and vF is
the Fermi velocity, which is set to 1. The identical Fermi
velocity in Eq. (9) for all six flavors of fermions indicates
an SUð3 × 2Þ symmetry, which arises from the exact
microscopic symmetries of the lattice. One can understand
this symmetry by considering the conduction electron
kinetic term in the original cubic harmonic (p orbitals)
basis of Eqs. (2)–(4) and focusing on the Fermi surface that
is well localized about the zone center [48,49]. In particular,
a three-fold degeneracy of the px, py, pz orbitals satisfies
the underlying cubic (Oh) symmetry about this high-
symmetry point, and a twofold spinful (up or down)
degeneracy arises as a natural consequence of the lack
of spin-orbit coupling for the (time-reversal invariant)
bare conduction electrons. Translating to the spin-orbit
coupled basis of Sec. III yields Eq. (9) with the SU(6)
symmetry.
For definiteness, we consider the left-moving electrons

as living on a circle of length 2l. Employing standard
quantum mechanics, with the antiperiodic boundary
conditions ψLð−lÞ ¼ −ψLðlÞ, this case leads to (in momen-
tum space) the allowed fermionic wave vectors k ¼
ðπ=lÞðnþ 1=2Þ, where n ∈ Z ≥ 0. Alternatively, a
(1þ 1)-dimensional free-fermion system can be described
in terms of a conformal field theory. In addition, the
(spatial) one dimensionality of the problem encourages
one to bosonize the fermionic theory in terms of mutually
commuting bosonic current operators. There are a number
of different ways by which the different degrees of freedom
of the fermions can be partitioned, while preserving the
conformal invariance, in a procedure known as conformal
embedding. The choice of the partitioning, as will become
clear, depends on the problem one is considering. In any of
the embeddings, only certain combinations of the states
associated with the decoupled bosonic current operators
can be combined so as to recover the original fermionic
excitation spectrum; these combinations are called “gluing”
conditions [17]. One way to decompose the above free-
fermion theory of 2 × 3 ¼ 6 different flavors of fermions is
in terms of its U(1) charge and SU(6) flavor degree of
freedom. Here, each fermion flavor carries its own U(1)
charge, Qi, such that the total charge Q ¼ P

6
i¼1 Qi. The

conformal embedding of rewriting Eq. (9) in terms of U(1)
and SUð6Þ1 bosonic currents has the “gluing” condition of
Q ¼ p (mod 6), where p is the highest state of SUð6Þ1 [17].
We note that the subscript denotes the level of the
Kac-Moody (KM) algebra. However, the kinetic term
and Kondo coupling suggest another conformal embed-
ding: in terms of independent U(1) charge, SU(3) flavor,
and SU(2) spin degrees of freedom. We define the follow-
ing left-moving non-Abelian currents in terms of the
complex space-time variable z≡ τ þ ix,

JðzÞ ¼
X

β¼f1;2;3g
t¼f1;2g

∶ψ†
L;β;tψL;β;t∶ðzÞ; ð10Þ

JaðzÞ ¼
X

α;β¼f1;2;3g
t¼f1;2g

∶ψ†
L;α;t

�
λaαβ
2

�
ψL;β;t∶ðzÞ; ð11Þ

JAðzÞ ¼
X

β¼f1;2;3g
t;q¼f1;2g

∶ψ†
L;β;t

�
σAtq
2

�
ψL;β;q∶ðzÞ; ð12Þ

where the three currents in Eqs. (10)–(12) denote the U(1)
charge, SU(3) Gell-Mann, and SU(2) spin bosonic currents,
respectively; a ¼ f1; 2;…; 8g sums over the eight SU(3)
(Gell-Mann) generators; A ¼ fx; y; zg sums over the
three SU(2) (Pauli) generators; and “: … :” refers to
normal ordering by point splitting, i.e., ∶ψ†ψ∶ðzÞ≡
limδ→0 ½ψ†ðz − iδÞψðzÞ − hψ†ðz − iδÞψðzÞi�. In effect,
bosonizing the theory with these non-Abelian currents
amounts to the decomposition of the irreps of the
SUð6Þ1 in terms of irreps of SUð3Þ2 × SUð2Þ3. This
decomposition preserves the central charge (a sufficient
condition for preserving conformal invariance [17,36]) and,
importantly, allows a relationship to be established between
the U(1) charge (Q) and the irrep labels for SUð3Þ2 and
SUð2Þ3. We present the conformal branching rules of
SUð3Þ2 ⊕ SUð2Þ3 ⊂ SUð6Þ1 in Appendix F.
These bosonic currents satisfy the following respective

KM algebra, which can be obtained (Appendix D) from
the mode expansions of the operator product expansions
(OPEs),

½Jn; Jm� ¼ 6nδnþm; ð13Þ

½Jan; Jbm� ¼ ifabcJcnþm þ 2

2
nδabδnþm; ð14Þ

½JAn ; JBm� ¼ iϵABCJCnþm þ 3

2
nδABδnþm; ð15Þ

where we introduce the modes from the Laurent expansion
JaðzÞ ¼ P

n∈Z z−n−1Jan etc., and fabc and ϵABC are the
structure constants of the SU(3) and SU(2) Lie algebras,
respectively. We note that the normalization of the highest
root is set to 1 (the canonical convention) to compute the
above KM algebra. As seen, the SU(3) Gell-Mann and
SU(2) spin currents satisfy SUð3Þ2 and SUð2Þ3 KM
algebra, respectively. Using these bosonic currents, the
kinetic term can thus be recaptured in the following
Sugawara form,

H0 ¼
1

12
∶JJ∶ðzÞ þ 1

5
∶JaJa∶ðzÞ þ 1

5
∶JAJA∶ðzÞ: ð16Þ
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The free-fermion theory is a Uð1Þ × SUð3Þ2 × SUð2Þ3 KM
invariant conformal field theory. The Kondo coupling of
Eq. (8) can also be rewritten in terms of these bosonic
currents,

HK ¼ gk

�
J4ðzÞ S

x

2
þ J6ðzÞ S

y

2
þ J2ðzÞ S

z

2

�
; ð17Þ

where we tune the ratio of the couplings such that the
perturbative fixed point is reached at g�k ¼ 1.
The Sugawara form suggests that we may “complete the

square” and absorb the Kondo coupling into the free
Hamiltonian (with the addition of a trivial energy constant)
by redefining a “shifted” bosonic current. Of course, this
process can only be performed for certain special values of
the Kondo coupling constant gk to preserve the KM
algebra. In our case, when gck ¼ 2=5, Sx;y;z=2 can be
“absorbed” into their respective J4;6;2 currents to give
the Sugawara form,

H0 þHK ¼ 1

12
∶JJ∶ðzÞ þ 1

5
∶J aJ a∶ðzÞ

þ 1

5
∶JAJA∶ðzÞ; ð18Þ

where J 4 ≡ J4 þ ðSx=2Þ, J 6 ≡ J6 þ ðSy=2Þ, J 2 ≡
J2 þ ðSz=2Þ, and the remaining currents are unaffected,
i.e., J a ¼ Ja for a ≠ f2; 4; 6g, etc. Importantly, these
absorbed SU(3) Gell-Mann currents satisfy the same
SUð3Þ2 KM algebra. In the same spirit as Affleck and
Ludwig [23], we interpret Eq. (18) as the effective
Hamiltonian and gck ¼ 2=ðkþ 3Þ ¼ 2=5 as the coupling
constant at the infrared (IR) fixed point. In that sense, both
UV (gk ¼ 0) and IR (gck ¼ 2=5) have the same Uð1Þ ×
SUð3Þ2 × SUð2Þ3 symmetry. Finally, we notice that the IR
coupling constant gck reduces to the perturbative fixed point
g�k in the limit of large k and then set k → 2.
Indeed, the absorption of the multipolar impurity into the

free electron theory is a consequence of assuming that
the critical point corresponds to a conformally invariant
boundary condition on the bulk conformal theory. The
reasonableness of this assumption can be understood by
considering the correlation function between two points
far away from the impurity [23]. The impurity, we recall, is
located at the origin, so we can be visualize it as the
space-(imaginary) time boundary above which the free
fermions and Kondo interaction exist. Now, since the points
are far from the boundary,wenaturally expect the correlation
function to probe the bulk free-fermion (conformal) behav-
ior.However, if the twopoints are closer to theboundary than
to each other, it is now prudent to expect that the boundary
can influence the correlation function. As such, the impurity
acts as a termination of the bulk conformal theory behavior,
i.e., as a boundary condition to the bulk theory. Indeed, since

the impurity is fixed at x ¼ 0, under the conformal trans-
formation, we thus expect the impurity to act as a con-
formally invariant boundary condition to the bulk theory. In
the renormalization-group sense, the impurity is absorbed
into the continuum fermion theory for increasing length
scales, and its influence is retained as a modification of the
free-fermion boundary condition.
Interestingly, only select SU(3) generators have absorbed

the SU(2) impurity, and one may notice that the absorbed
impurity comes with a factor of 1=2. This 1=2 factor is the
crucial difference in this model, as it relates the f2 − 4 − 6g
subalgebra of SU(3) to the SU(2) algebra, which have
structure constants of f246 ¼ 1=2 and ϵxyz ¼ 1, respec-
tively. The inclusion of the 1=2 factor makes it possible to
reimagine both the f2 − 4 − 6g subalgebra and S=2 as
belonging to different irreducible representations of a
“1/4-quantized” SU(2) Lie algebra.

VI. 1=4-QUANTIZED SU(2) LIE ALGEBRA

To understand this algebra, we define the generators of
the algebra as T2;4;6 such that they satisfy ½T2; T4� ¼
ði=2ÞT6, in any representation. Drawing an analogy to
typical SU(2), T6 is analogous to σz=2, so we define the
highest T6 state jj̃i such that T6jj̃i ¼ j̃jj̃i. In addition,
we define raising or lowering operators T�, which raise
and lower the T6 eigenvalue by �1=2 (as shown in
Appendix E). In the same spirit as SU(2), the existence
of a “lowest” state constrains the allowed values of j̃ to be
j̃ ¼ l=4, where l ∈ R; we refer to j̃ as “physical-spin”
labels. In the more formal language of Lie algebras, the
physical-spin label is related to the Dynkin labels, j̃ ¼ λ̃1=4
(as shown in Appendix E). The j̃ ¼ 1=4 representation is a
two-dimensional representation with T2 ¼ ðσx=4Þ, T4 ¼
ðσy=4Þ, T6 ¼ ðσz=4Þ, which is precisely S=2. The j̃ ¼ 1=2
representation is a three-dimensional representation with
T2 ¼ ðλ2=2Þ, T4 ¼ ðλ4=2Þ, T6 ¼ ðλ6=2Þ (this representa-
tion is used, up to unitary transformation, in the Kondo
coupling). Finally, the quadratic Casimir for a given j̃
representation is Q ¼ j̃ðj̃þ 1=2ÞI.
To understand the relation of the subalgebra to the

typical SU(2) Lie algebra, we impose a generic normali-
zation condition by fixing the length of the longest root
jα21j ¼ η=4, where η ∈ R > 0 is a chosen normalization
convention. Since the roots are the weights of the adjoint
representation, the introduction of the η normalization
factor amounts to modification of the structure constants
and, subsequently, a redefinition of the generators. In
particular, the redefined generators of SU(3), T̄i ≡ ffiffiffi

η
p

Ti,
satisfy the Lie algebra ½T̄i; T̄j� ¼ ffiffiffi

η
p

fkijT̄k, where Ti and fkij
are the canonically normalized generators and structure
constants of SU(3) used in constructing the Sugawara form.
This redefinition of the generators results in a modification
of the OPE of SU(3) currents,
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J̄aðz1ÞJ̄bðz2Þ ∼
1

ðz12Þ2
k̃δab þ 1

z12
i

ffiffiffi
η

p
fabcJ̄c; ð19Þ

where k̃≡ðηk=2Þ and z12≡z1−z2, and the overline indi-
cates current operators redefined to obey the generalized
normalization. We note that k ¼ 2 always. We can now
notice that for different choices of the normalization, we
can map the subalgebra to “more familiar” (canonically
normalized) Lie algebras. In the original η ¼ 1 convention,
we have the canonically normalized f2 − 4 − 6g subalge-
bra of SU(3). For η ¼ 4, the subalgebra gets mapped to the
canonically normalized SU(2) Lie algebra. We can thus see
that for a particular choice of the normalization, we have a
one-to-one correspondence between the original f2−4−6g
subalgebra and SU(2).
With this generalized-normalization formulation, the

affine extension of the subalgebra can thus be easily
constructed in analogous methods to the conventional
SU(2) case. Because of the embedding of the f2 − 4 − 6g
subalgebra in the larger affine SUð3Þ2 algebra, the level of
the embedded subalgebra is given by ð8k̃=nÞ ¼ 4k. This
embedded level restricts the highest physical-spin state to
be j̃ ≤ k. As a consequence, the fusion coefficients can be
similarly constructed and are of the form

j̃1 ⊗ j̃2 ¼ ⨁
j̃3

N ð4kÞ
j̃1;j̃2

j̃3 ; ð20Þ

where

N ð4kÞ
j̃1;j̃2

j̃3 ¼
(
1 if jj̃1− j̃2j≤ j̃3≤min



j̃1þ j̃2;

2ð4kÞ
4

− j̃1− j̃2
�

0 otherwise;

ð21Þ

where we return back to the normalization of η ¼ 1. The
fusion coefficients become an important ingredient in
determining the modification of the free-fermion boundary
conditions due to the absorption of the multipolar impurity.

VII. MAVERICK COSET CONSTRUCTION:
THREE-STATE POTTS MODEL

The full Hilbert space of the free electron model involves
U(1) charge, SUð3Þ2 flavor, and SUð2Þ3 spin degrees of
freedom. The symmetry group of the flavor degree of
freedom is governed by G ¼ SUð3Þ2 and involves currents
JaG; the subscript G explicitly recalls that these currents
belong to the complete SUð3Þ2 group. However, as seen in
Eq. (17), only a select number of the SUð3Þ2 bosonic
currents couple to the local moment, suggesting that an
alternative conformal embedding would be helpful when
considering the Kondo interaction. To proceed, we denote
the subgroup H ∈ G, with currents JaH that belong to the
f2 − 4 − 6g sector, and construct stress-energy tensors
belonging to each of the groups,

TGðzÞ ¼
1=2

k̃þ CA;G=2

X8
a¼1

∶JaGðzÞJaGðzÞ∶; ð22Þ

THðzÞ ¼
1=2

k̃þ CA;H=2

X3
a¼1

∶JaHðzÞJaHðzÞ∶; ð23Þ

where k̃ ¼ ηk=2 just as before, and CA are the quadratic
Casimirs of the adjoint representation of the respective
groups, i.e., CA;G ¼ 3η and CA;H ¼ η=2. The conformal
weight (or dimension) of the primary states of a represen-
tation j̃ of H is given by

hj̃ ¼
Cj̃=2

k̃þ CA;H=2
¼

η
2
j̃ðj̃þ 1=2Þ

ηk
2
þ η

4

¼ j̃ðj̃þ 1=2Þ
kþ 1=2

; ð24Þ

where in the final quality, we notice that the normalization
dependencies of the quadratic Casimirs and k̃ drop out in the
conformal weight (or dimension). Though the conformal
weight is independent of the normalization, we notice that for
η ¼ 4 [the normalization condition to map the f2 − 4 − 6g
subalgebra to canonical SU(2)], the conformal weight
of the primary states is identical to that of SUð2Þ8, as
expected.
The procedure of breaking up the stress-energy tensors is

attractive. This is because, though the currents TGðzÞ and
THðzÞ have singular contributions in their OPE with JaH
individually, the OPE of TG=H ≡ TG − TH with JaH is non
singular and, subsequently, so is the OPE of TG=H with all
of TH [50]. As such, the Virasoro algebra generated by TG
can be decomposed into two mutually commuting Virasoro
algebras, ½TG=H; TH� ¼ 0. This formulation, known as a
coset construction, permits the efficient “breaking up” of a
larger group into smaller subgroups. To understand the
nature of the coset, G=H, we consider its central charge,

cG=H ¼ cG − cH ¼ k̃ dim jGj
k̃þ CA;G=2

−
k̃ dim jHj
k̃þ CA;H=2

¼ 4

5
; ð25Þ

where dim jGj ¼ 8 and dim jHj ¼ 3. The central charge is
independent of the normalization convention, as can be
easily seen by both k̃ and CA scaling linearly in η. The
central charge of 4=5 corresponds to the three-state Potts
model, in addition to the minimalMð6; 5Þ model. Inspired
by the normalization of η ¼ 4 resulting in mapping the
f2 − 4 − 6g subalgebra to the canonically normalized
SU(2) algebra of level 4k ¼ 8, we consider this coset
model to be described by the maverick coset formulation
SUð3Þ2=SUð2Þ8 [51,52].
Employing this coset formulation, the IR Hamiltonian in

Eq. (18) can be reimagined as a Uð1Þ × ðthree-state Potts
modelÞ × fSUð2Þ8 × SUð2Þ3 KM invariant conformal field
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theory; the ∼ denotes 1=4 quantization of the SUð2Þ8 KM
algebra. In order to make this association, we need the so-
called branching functions, which act as further conditions
to describe which irreps of the parent SUð3Þ2 are associated
with which primary field of the three-state Potts model and
which irrep of SUð2Þ8. We list the branching functions of
this maverick coset model and the field associations in
Appendix G. We highlight that only four of the (three-state
Potts model) primary fields enter into our identifications:
the “identity” field (I), the thermal operator field (ϵ), the
spin operator field (σ), and the Z field, with corresponding
conformal weight (or dimension) of 0, 2=5, 1=15, and 2=3,
respectively.

VIII. FINITE-SIZE SPECTRUM

The above-formulated theory is appropriately prepared
for the application of boundary conformal field theory
(B-CFT) of Cardy [37,38] and an extension of the approach
as applied by Affleck and Ludwig [16,23]. The essence of
Cardy’s B-CFT [37,38] is that it avoids handling of
complicated boundary conditions and instead focuses on
boundary states; Appendix I briefly describes this relation-
ship. These boundary states are related to the multiplicity
coefficients nαAB, which determine the spectrum of excita-
tions for particular boundary conditions. In our context,
α ¼ ðQ; jf; ½three-state Potts model field�; j̃Þ, where each
label denotes the highest state of the respective algebra, and
the nontrivial boundary condition (B) is due to having a
single multipolar impurity at the origin. The corresponding
nontrivial boundary states can be obtained from known
(free-fermion, A) boundary states by the elegant “fusion
rule” hypothesis of Affleck and Ludwig [16,23], whereby
the fusion coefficients of Eq. (20) relate the multiplicity
coefficients of different boundary conditions. Since the
impurity only couples to the fSUð2Þ8 irreps (j̃ quantum
number), the fusion is performed within the fSUð2Þ8 sector
only, leaving the other irrep labels unchanged, i.e., nj̃AB ¼P

j̃2 N
j̃
j̃2;j̃I

nj̃2AA, where we take j̃I ¼ 1=4, as the impurity

spin belongs to the j̃ ¼ 1=4 representation.
One of the key features of B-CFT is the existence of

boundary operators with nontrivial conformal dimensions.
These operators give rise to singular contributions to the
free energy and, subsequently, to the various response
functions of interest. Under the conformal mapping of a
semi-infinite plane (x − t half-plane) with a particular
choice of boundary conditions to a finite strip, the primary
boundary operators with boundary condition B on the plane
are in a one-to-one correspondence to the states of the finite
strip with boundary conditions BB (both ends of the strip)
[23]. Most importantly, the energies of the states in the
finite-strip conformal tower are the scaling dimensions of
the boundary operators. In our context, this amounts to
considering the free-fermion tower and performing a

double fusion so as to obtain the appropriate scaling
dimensions of the boundary operators. Indeed, it is the
lowest-lying state (after the double fusion) that gives rise to
the leading irrelevant boundary operator.
Employing the conformal embedding [which relates

the U(1) charge Q to the irreps of flavor, SUð3Þ2, and
spin, SUð2Þ3] and the coset branching rules [which relates
the irreps of SUð3Þ2 to the coset fields and fSUð2Þ8 irreps],
the energy of a primary state is given,

Etot ¼
π

l

�
Q2

12
þ jfðjf þ 1Þ

3þ 2
þ hcoset þ

j̃ðj̃þ 1=2Þ
2þ 1=2

	
; ð26Þ

where hcoset is the scaling dimension of the coset primary
field (Appendix G), jf labels the irrep of the SUð2Þ3 flavor
degree of freedom, and j̃ denotes the 1=4-quantized SUð2Þ8
degree of freedom. Table I lists the finite-size energy
spectrum for the free-fermion states, as given by Eq. (26).
The impact of the multipolar impurity is accounted for

by the double fusion (nj̃BB ¼ P
j̃2;j̃3 N

j̃
j̃2;j̃I

N j̃2
j̃3;j̃I

nj̃3AA) with

the free-fermion j̃ states to yield the conformal tower in
Table II. Under the double fusion, the “spin” j̃ label
changes to 0 → 0; 1

2
; 1

2
→ 0; 1

2
; 1; 1 → 1

2
; 1; 3

2
; etc. We

emphasize that only the “reshuffling” of the 1=4-quantized
SUð2Þ8 states takes place, with the irreps of the other
degrees of freedom remaining unaffected. The lowest
nonzero energy state corresponds to a primary state that
is chargeless (Q ¼ 0), flavorless (jf ¼ 0), coset-trivial (I),
and of 1=4-quantized “spin” j̃ ¼ 1=2. The scaling dimen-
sion of the corresponding boundary operator ϕ⃗ is Δ ¼ 1=5.
Any operator that enters into the fixed-point Hamiltonian

must preserve the symmetry of the Uð1Þ × ½three-state
Pottsmodel� × fSUð2Þ8 × SUð2Þ3 KM invariance of the
conformal field theory. On physical grounds, we also

TABLE I. Free-fermion tower with antiperiodic boundary
conditions at x ¼ l. The employed primary fields of the three-
state Potts model are I, ϵ, σ, and Z. We note that we only consider
the primary states here, and we present states with energies
Etot ≤ π=l; the remaining primary states are given in Appendix H.

Q, U(1) jf , SUð2Þ3
[Three-state
Potts model] j̃, fSUð2Þ8 ðl=πÞEtot

0 0 I 0 0
1 1

2
σ 1

2
1
2

0 1 I 1 1
0 1 ϵ 1

2
1

2 0 σ 1 1
2 0 Z 0 1
2 1 σ 1

2
1

..

. ..
. ..

. ..
. ..

.
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expect that the leading irrelevant operator will involve the
primary “spin” field ϕ⃗, as the Kondo coupling occurs
between the multipolar impurity and the conduction elec-
trons occur in the 1=4-quantized “spin” sector. In order to
meet the symmetry requirement, we can simply consider
the application of a KM current density operator J a

n<0
(where a ¼ f2; 4; 6g), which generates descendent states/
operators when acted on a primary state/operator. Thus, the
candidate for the leading irrelevant operator (that obeys the
KM symmetry) is the first-descendent operator J⃗ −1 · ϕ⃗,
which is explicitly a “spinless” object (as it is a scalar
product of two “spin” operators) and has a scaling
dimension of 1þ Δ.

IX. PHYSICAL PROPERTIES: SPECIFIC HEAT,
RESISTIVITY, AND ENTROPY

To characterize the novel fixed point, we first consider its
impact on the thermodynamic and transport response
functions such as specific heat and resistivity. As detailed
by Affleck and Ludwig [16], the leading irrelevant operator
plays a central role in determining the scaling behavior of
these response functions. In particular, the fixed-point
Hamiltonian, and subsequently free energy, is augmented
by the leading irrelevant operator at the boundary
(δgkJ⃗ −1 · ϕ⃗), from which the specific heat is computed
from second-order perturbation theory in δgk. This process
yields the specific heat coefficient scaling as C=T ∼
T−1þ2Δ ¼ T−3=5. Similarly, the leading-order corrections

to the scattering rate (due to the impurity) are computed by
perturbing the one-electron Green’s function linearly by the
leading irrelevant operator [19]. The subsequent correction
to the resistivity scales as ρ ∼ TΔ ¼ T1=5. The coefficient of
this correction is δgk, so the sign of the deviation is
determined by whether the intermediate fixed point is
approached from above (δgk > 0) or below (δgk < 0).
Finally, the residual entropy SimpðTÞ, which provides a

measure for the ground-state degeneracy of the novel fixed
point, can be computed via the modular S-matrix [19,20]
(as described in Appendix J). The entropy is found to be
SimpðT ¼ 0Þ ¼ lnf½sinðπ=5Þ�=½sinðπ=10Þ�g≈ 0.643, which
is just under twice the residual entropy of the two-channel
Kondo model fixed point.

X. DISCUSSIONS

In this work, we elucidated the nature of the novel non-
Fermi liquid fixed point in themultipolar Kondo problem by
employing non-Abelian bosonization, current algebra, and
boundary conformal field theory approaches. A crucial
finding of our work is that the most natural language to
express themultipolar Kondo couplings is in the spin-orbital
entangled jj; mji basis. This finding suggests that though
conduction electrons may have spin and orbital quantum
numbers to begin with, their interaction with a single
multipolar forces the two decoupled degrees of freedom
to become intertwined. This provides a route to controllably
introduce spin-orbital entangling in a metallic system with
the incorporation of multipolar impurities.
From the finite-size spectrum, the scaling behavior of

experimentally relevant quantities associated with the fixed
point is obtained nonperturbatively; in particular, the specific
heat coefficient C=T ∼ T−1þ2Δ ¼ T−3=5, and the resistivity
ρ ∼ TΔ ¼ T1=5. In addition, the residual entropy SimpðT ¼
0Þ ≈ 0.643 is almost twice that of the two-channel Kondo
model [20]. The highly singular nature of the response
functions concretely establishes the non-Fermi liquid nature
of the novel fixed point.We emphasize that though the scaling
behavior of the leading irrelevant operator looks the same as
in the eight-channel dipolar Kondo model, the nature of the
fixed point is different due to the other conformal sectors.
More specifically, the complete finite-size spectrum is distinct
in the novel fixed point, which can be tested by future
numerical renormalization-group computations.
An important requirement in realizing such an exotic

Kondo effect is to ensure that the symmetry-protected
degeneracies are preserved. Breaking the local Td symmetry
(leading to splitting of the non-Kramers doublet ground state)
or lifting the cubic symmetry of the underlying lattice
(breaking the degeneracy of the conduction electron bands)
by an external perturbation results in the demise of thisKondo
problem, as the Kondo interactions describe energy-preserv-
ing scattering events. In effect, symmetry-breaking perturba-
tions are relevant in the renormalization-group sense for the

TABLE II. Primary operator content after double fusion of the
free-fermion tower in Table I, with multipolar impurity at x ¼ 0
and x ¼ l. The employed primary fields of the three-state Potts
model are I, ϵ, σ, and Z. Only the primary states of energies
Etot ≤ π=l are listed here; the remaining states are given in
Appendix H.

Q, U(1) jf , SUð2Þ3
[Three-state
Potts model] j̃, fSUð2Þ8 ðl=πÞEtot

0 0 I 0 0
0 0 I 1

2
1
5

1 1
2

σ 0 3
10

1 1
2

σ 1
2

1
2

0 1 I 1
2

3
5

2 0 σ 1
2

3
5

0 1 ϵ 0 4
5

2 1 σ 0 4
5

1 1
2

σ 1 9
10

0 1 I 1 1
0 1 ϵ 1

2
1

2 0 Z 0 1
2 0 σ 1 1
2 1 σ 1

2
1

..

. ..
. ..

. ..
. ..

.
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nontrivial fixed point. This can be understood from more
general considerations where one examines the influence of a
field (hϕ) conjugate to a boundary operator (ϕ) with scaling
dimension Δϕ. The associated term added to the Lagrangian
is δLðhϕÞ ¼ hϕ

R
dτϕðτÞ, where the spatial integral is absent

as the boundary operator is confined to x ¼ 0. Under the
standard renormalization-group procedure (τ → τ0 ¼ τ=b,
where b > 1), the conjugate field scales as b1−Δϕ . The field
conjugate to the primary boundary operator is thus relevant in
the renormalization-group sense. Physically, this conjugate
field can be associated as lattice-stress fields that couple to the
multipolar impurity [31] and split the non-Kramers degen-
eracy.We note that a symmetry-preserving perturbation, such
as hydrostatic pressure or chemical pressure by substitutionof
the transition metal in the PrðTMÞ2Al20, acts as an irrelevant
perturbation to the nontrivial fixed point.
The solvable problem tackled in this work provides the

foundation for a diverse variety of Kondo effects and non-
Fermi liquids. In particular, though our work is motivated by
the PrðTi;VÞ2Al20 family and as such focuses on O20, O22

quadrupolar, and T xyz octupolar local moments, this is just
one out of a myriad of possibilities. Indeed, there are
examples of other 4f [53–56] and 5f [57–61,61] electrons
subjected to noncubic crystalline electric fields, which give
rise to different possible combinations of supported multi-
polarmoments. In addition, conduction electronsmay arrive
with their own diversity in their orbital degrees of freedom,
beyond the cubic p considered in this work [48,49]. The
combination of these two sources of diversity suggests that
manydifferentKondo effectsmayoccur,which could lead to
a multitude of non-Fermi liquid behaviors. This study thus
opens a new route and territory for achieving and studying
exotic Kondo effects and novel non-Fermi liquids.
In terms of future work, a thorough classification of the

possible non-Fermi liquids that may occur in multipolar-
based compounds would be an intriguing and impactful
study. In addition, the extension of the single-impurity
problem to the corresponding multipolar Kondo lattice
problem [62,63] and associated quantum critical phenom-
ena are outstanding questions for future research.
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APPENDIX A: CUBIC HARMONICS TO
SPIN-ORBITAL ENTANGLED BASIS

In order to rewrite the Kondo coupling in terms of the
spin-orbital entangled j; mj basis, we need to perform a
double change of basis. First, the cubic harmonics are
rewritten in terms of L ¼ 1 orbital angular-momentum
degrees of freedom,

jpxi ¼
1ffiffiffi
2

p ðj1;−1i − j1; 1iÞL; ðA1Þ

jpyi ¼
iffiffiffi
2

p ðj1;−1i þ j1; 1iÞL; ðA2Þ

jpzi ¼ j1; 0iL; ðA3Þ

where we use the basis jL;mLi for the angular-momentum
orbital degrees of freedom (the subscript L is a perpetual
remainder). Second, the spin and orbital degrees of freedom
are entangled by angular-momentum addition via Clebsch-
Gordon coefficients,

����1; 1; 12 ;↑
�

¼
���� 32 ; 32

�
J
;����1; 1; 12 ;↓

�
¼ 1ffiffiffi

3
p

����� 32 ; 12
�

J
þ

ffiffiffi
2

p ���� 12 ; 12
�

J

�
;����1; 0; 12 ;↑

�
¼ 1ffiffiffi

3
p

� ffiffiffi
2

p ���� 32 ; 12
�

J
−
���� 12 ; 12

�
J

�
;����1; 0; 12 ;↓

�
¼ 1ffiffiffi

3
p

� ffiffiffi
2

p ���� 32 ;−12
�

J
þ
���� 12 ;−12

�
J

�
;����1;−1; 12 ;↑

�
¼ 1ffiffiffi

3
p

����� 32 ;−12
�

J
−

ffiffiffi
2

p ���� 12 ;−12
�

J

�
;����1;−1; 12 ;↓

�
¼
���� 32 ;−32

�
J
; ðA4Þ

where, on the left-hand side of the equality, we use the
notation of jL;mL; s; szi, where s is the conduction electron
spin degree of freedom; on the right-hand side of the
equality, we use the notation for the spin-orbital entangled
basis jJ;mJiJ, where the subscript is a perpetual remainder
of the J basis. In the main text, we drop this subscript as the
additional clarification is not required.

APPENDIX B: BASIS FOR TWO-CHANNEL
KONDO FIXED POINT

Tuning the couplings to fixed point I, only the j ¼ 3=2
conduction electron states survive. The two decoupled
pseudospin-1=2 operators in the j 3

2
; mji space are

τxA ¼ 1

2

���� 32 ; 32
��

3

2
;−

1

2

����þ 1

2

����32 ;− 1

2

��
3

2
;
3

2

����;
τyA ¼ −i

2

����32 ;− 1

2

��
3

2
;
3

2

����þ i
2

���� 32 ; 32
��

3

2
;−

1

2

����;
τzA ¼ 1

2

����32 ;− 1

2

��
3

2
;−

1

2

���� − 1

2

���� 32 ; 32
��

3

2
;
3

2

����; ðB1Þ
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and its partner τx;y;zB ∶τx;y;zA jmj→−mj
,

τxB ¼ 1

2

����32 ;− 3

2

��
3

2
;
1

2

����þ 1

2

���� 32 ; 12
��

3

2
;−

3

2

����;
τyB ¼ −i

2

���� 32 ; 12
��

3

2
;−

3

2

����þ i
2

����32 ;− 3

2

��
3

2
;
1

2

����;
τzB ¼ 1

2

���� 32 ; 12
��

3

2
;
1

2

���� − 1

2

����32 ;− 3

2

��
3

2
;−

3

2

����: ðB2Þ

APPENDIX C: DEGENERACY OF STRONGLY
COUPLED FIXED POINT

The strong-coupling limit provides a means to verify the
consistency of the existence of the perturbatively obtained
fixed point. In the case of a single coupling constant of the
original isotropic Kondo problem, this limit is unique.
However, in the case of multiple couplings (as in our
model), there is an inherent ambiguity as each of the
coupling constants can be taken to infinity independently.
To circumvent this issue, we take the reasonable and elegant
approach of Nozieres and Blandin [47], where one takes
each of the couplings to infinity while fixing their ratio to be
that at the fixed point. This approach is the simplest
extension of the strong-coupling limit of the isotropic
Kondo model, while at the same time accounting for the
properties of the nontrivial fixed point by fixing the ratio.
The ground state of the strongly coupled novel fixed

point is fourfold degenerate,

jGS1i ¼
1ffiffiffi
3

p
�
j↑if

����12 ;−12
�
þj↓if

�����32 ;32
�
þ i

����32 ;−12
��	

;

jGS2i ¼
1ffiffiffi
3

p
�
j↑if

�����32 ;32
�
− i

����32 ;−12
��

þj↓if
����12 ;−12

�	
;

jGS3i ¼
1ffiffiffi
3

p
�
j↑if

�����32 ;−32
�
− i

����32 ;12
��

− j↓if
����12 ;12

�	
;

jGS4i ¼
1ffiffiffi
3

p
�
j↑if

����12 ;12
�
− j↓if

�����32 ;−32
�
þ i

����32 ;12
��	

;

ðC1Þ
where jGS1;2i and jGS3;4i, respectively, belong to the (i)
and (ii) decoupled SU(3) sectors defined in Sec. III B. Note
that jGS1i (jGS2i) is related to jGS3i (jGS4i) by time-
reversal symmetry. The instability of the strongly coupled
fixed point can be further highlighted by placing the
impurity on a one-dimensional line (parallel to the x̂
direction) and allowing tunneling of conduction electrons
to the nearest neighboring sites on either side of the
impurity. The tunneling acts as a perturbation to the
strongly coupled Kondo Hamiltonian. We find that a
twofold degenerate ground state remains at the impurity
site (with up to second nearest-neighbor hopping), where
one of the ground states is an equal superposition of
jGS1;2i, while the other is an equal superposition of jGS3;4i.

APPENDIX D: OPERATOR PRODUCT
EXPANSION OF NON-ABELIAN CURRENTS

The OPEs of the non-Abelian currents are crucial in
determining the KM algebra as well as for rewriting the
free-fermion Hamiltonian in terms of non-Abelian bosonic
currents (Sugawara form) [64]. The OPEs for the U(1)
charge, SU(3) current, and SU(2) currents are

Jðz1ÞJðz2Þ ¼
6

z212
þ ∶ψ†

L;α;pψL;α;pψ
†
L;β;qψL;β;q∶ðz2Þ

þ ½∶ð∂zψ
†
L;α;pÞψL;α;p∶

− ∶ψ†
L;α;pð∂zψL;α;pÞ∶�ðz2Þ; ðD1Þ

Jaðz1ÞJbðz2Þ ¼
2

2z212
δab þ ifabc

z12
Jcðz2Þ

þ 1

4
fabc∶∂zðψ†

L;α;pλ
c
αβψL;β;pÞ∶ðz2Þ

þ 1

4
∶ψ†

L;α;pψL;β;pψ
†
L;γ;qψL;δ;q∶ðz2Þλaαβλbγδ

þ 1

4

�
2

3
δabαβ þ dabcλcαβ

�
½∶ð∂zψ

†
L;α;pÞψL;β;p∶

− ∶ψ†
L;α;pð∂zψL;β;pÞ∶�ðz2Þ; ðD2Þ

JAðz1ÞJBðz2Þ ¼
3

2z212
δab þ iϵABC

z12
JCðz2Þ

þ 1

4
ϵABC∶∂zðψ†

L;α;pσ
C
pqψL;α;qÞ∶ðz2Þ

þ 1

4
∶ψ†

L;α;pψL;α;qψ
†
L;β;sψL;β;t∶ðz2ÞσApqσBst

þ 1

4
ðδabpqÞ½∶ð∂zψ

†
L;α;pÞψL;α;q∶

− ∶ψ†
L;α;pð∂zψL;α;qÞ∶�ðz2Þ; ðD3Þ

where we take z1 → z2 in the OPEs, z12 ≡ z1 − z2, repeated
indices fα;β;γ;δg¼f1;2;3g, c ¼ f1; 2; 3g, C ¼ fx; y; zg,
fp; q; s; tg ¼ f1; 2g are summed over. The level of each
KM algebra can thus be read off directly from the
numerator of the first term in each OPE. We note that
we use the canonical normalization of the structure con-
stants to compute the OPEs.

APPENDIX E: 1/4-QUANTIZED SU(2)
LIE ALGEBRA: DYNKIN LABELS
AND PHYSICAL-SPIN WEIGHT

The 1=4-quantized SU(2) Lie algebra is analogous to SU
(2), and as such,we focus on someof the key differences (and
draw analogies, when applicable) from SU(2). As described
in the main text, we define raising or lowering operators
T� ≡ ðT2 � iT4Þ=

ffiffiffi
2

p
, which satisfy
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½T6; T�� ¼ � 1

2
T�; ½Tþ; T−� ¼ 1

2
T6: ðE1Þ

The actions of these operators on the eigenstates of T6 are

T6jj̃; mi ¼ mjj̃; mi; ðE2Þ

T−jj̃; mi ¼ Nmjj̃; m − 1=2i; ðE3Þ

Tþjj̃; m − 1=2i ¼ Nmjj̃; mi; ðE4Þ

where Nm ¼ 1

2
ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j̃þ 2mÞð2j̃ − 2mþ 1Þ

p
. Thus, we can

notice that, similarly to SU(2), there is one label for the
highest state (j̃) and one ladder to ascend and descend
with T�.
To apply the machinery of (affine) Lie algebra, it is

helpful to recapture the above notation in a more formal
setting. In particular, a given representation is denoted by
the highest weight (or state) λ̃, which can written in the
basis of fundamental weights, ω1 ¼ α1=2, with integer
coefficients (λ̃1) known as Dynkin labels, λ̃ ¼ λ̃1ω1. The
Dynkin labels are the eigenvalues of the Chevalley basis,
and the relation between the Dynkin labels and the
physical-spin weight is given by j̃ ¼ λ̃1=4. This can be
seen by considering the typical Lie algebra bases. In the
Chevalley basis, the commutation relation is given by

½e; f� ¼ h; ½h; e� ¼ 2e; ½h; f� ¼ −2f; ðE5Þ

where the Cartan matrix is the same as that of the canonical
SU(2), A ¼ ð2Þ. The eigenvalues of the Chevalley gener-
ator h are the Dynkin labels,

hjλ̃i ¼ λ̃1jλ̃i: ðE6Þ
Taking a generic normalization factor (η just as in the main
text) for the highest root, we have the corresponding
generators in the Cartan-Weyl basis,

H ¼
ffiffiffi
η

p
4

h; Eþ ¼ e; E− ¼ f; ðE7Þ

which satisfy the commutation relations ½Eþ; E−� ¼
ð4= ffiffiffi

η
p ÞH and ½H;E�� ¼ �ð ffiffiffi

η
p

=2ÞE�. Finally, we have

the “physical” normalization-dependent generators, T̄� ¼ffiffiffiffiffiffiffiffiffiffiffiðη=8Þp
E� and T̄6 ¼ H, which satisfy the commutation

relations in Eq. (E1) with normalization dependency
ffiffiffi
η

p
on

the right-hand side. Thus, the eigenvalue of T̄6 is given by

T̄6jλ̃i ¼ Hjλ̃i ¼
ffiffiffi
n

p
h

4
jλ̃i ¼

ffiffiffi
n

p
λ̃1

4
jλ̃i: ðE8Þ

For η ¼ 1, we notice that j̃ ¼ λ̃1=4, which gives us
the interpretation of the f2 − 4 − 6g subalgebra as 1=4
quantized. Similarly, for η ¼ 4, the algebra satisfies the

“canonically normalized” SU(2) Lie algebra, with the
physical weight (or label) λ̃1=2.

APPENDIX F: CONFORMAL EMBEDDING:
SUð3Þ2 ⊕ SUð2Þ3 ⊂ SUð6Þ1

Branching rules provide the decomposition coefficients
of an irrep of a (affine) Lie algebra g (ĝk) into the irreps of a
smaller (affine) Lie algebra p ⊂ g (p̂k0 ⊂ ĝk). In our context,
we are interested in the decomposition of the irreps of
SUð6Þ1 into SUð2Þ3 ⊕ SUð3Þ2. Since the level of SU(6) is 1,
the only dominant highest-weight representations are the
fundamental representations ω̂0;1;…;5. Following the pro-
cedure detailed in Chap. 17.A of Ref. [36] for employing
Young tableaux and outer automorphisms, we obtain the
following decomposition in Eq. (F1),

ðF1Þ

where on the right-hand side, the first (second) Young
tableau labels irreps of SUð2Þ3 [SUð3Þ2]. We can rewrite the
above branching rules in terms of the Dynkin labels of the
corresponding irreps, namely,

ω̂0 ↦ ð½3; 0� ⊗ ½2; 0; 0�Þ ⊕ ð½1; 2� ⊗ ½0; 1; 1�Þ;
ω̂1 ↦ ð½2; 1� ⊗ ½1; 1; 0�Þ ⊕ ð½0; 3� ⊗ ½0; 0; 2�Þ;
ω̂2 ↦ ð½3; 0� ⊗ ½0; 2; 0�Þ ⊕ ð½1; 2� ⊗ ½1; 0; 1�Þ;
ω̂3 ↦ ð½0; 3� ⊗ ½2; 0; 0�Þ ⊕ ð½2; 1� ⊗ ½0; 1; 1�Þ;
ω̂4 ↦ ð½3; 0� ⊗ ½0; 0; 2�Þ ⊕ ð½1; 2� ⊗ ½1; 1; 0�Þ;
ω̂5 ↦ ð½2; 1� ⊗ ½1; 0; 1�Þ ⊕ ð½0; 3� ⊗ ½0; 2; 0�Þ; ðF2Þ
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where we use the standard definition of the irreps
of SU(N) in terms of Dynkin labels: λ̂ ¼ ½λ0; λ1;…� ¼
½k −P

r
i λi; λ1;…�, where r is the rank of the Lie algebra.

APPENDIX G: MAVERICK COSET
BRANCHING RULES

The spirit of the coset branching rules is analogous to
that of Appendix F in that we once again are considering
decompositions of the various representations λ̂ of the
affine Lie algebra ĝ into the representations μ̂ of the affine
Lie algebra p̂, which is given by

λ̂ ↦ ⨁
μ̂
bλ̂ μ̂μ̂; ðG1Þ

where bλ̂ μ̂ are the branching coefficients. This decompo-
sition can be rewritten in terms of characters,

χλ̂ ¼
X
μ̂

χfλ̂;μ̂gχμ̂; ðG2Þ

where χλ̂ ≡ qhλ̂−c=24trλ̂ðqL0Þ. The term in the trace accounts
for the “grade” or descendent level n of a state belonging to
the λ̂ irrep (i.e., already extracted out the conformal weight
of the primary state, hλ̂). For the maverick coset, the
restricted character decompositions have been carefully
computed in Refs. [51,52], which we reproduce in Table III
with our notations. Below each of the restricted characters

in Table III, we write down the combination of the three-
state Potts model characters (described below) that gives
these restricted characters of the coset field. These combi-
nations allow the conformal dimension of the coset model
to be obtained. We note that the conformal dimension
of the coset model is related to the conformal dimensions of
the parent algebra (ĝ) and the subalgebra (p̂): hχfλ̂;μ̂g ¼
hλ̂ þ n − hμ̂; as such, n can be extracted. For reference, the
characters of the three-state Potts models [36] employed in
Table III are

χvir1;1 ¼ q
−1
30ð1þq2þq3þ 2q4þ 2q5þ 4q6þ…Þ;

χvir2;1 ¼ q
2
5
− 1
30ð1þqþq2þ 2q3þ 3q4þ 4q5þ 6q6þ…Þ;

χvir3;1 ¼ q
7
5
− 1
30ð1þqþ 2q2þ 2q3þ 4q4þ 5q5þ 8q6þ…Þ;

χvir1;3 ¼ q
2
3
− 1
30ð1þqþ 2q2þ 2q3þ 4q4þ 5q5þ 8q6þ…Þ;

χvir4;1 ¼ q3−
1
30ð1þqþ 2q2þ 3q3þ 4q4þ 5q5þ 8q6þ…Þ;

χvir2;3 ¼ q
1
15
− 1
30ð1þqþ 2q2þ 3q3þ 5q4þ 7q5þ 10q6þ…Þ:

ðG3Þ

APPENDIX H: EXCITED STATES OF
CONFORMAL TOWERS

In the main text, we present the conformal towers for
energies Etot ≤ ðπ=lÞ. In Tables IV and V, we present the
remaining, higher energy, states for the free fermion and
after the double fusion with the impurity, respectively.

TABLE III. Maverick coset SUð3Þ2=SUð2Þ8 branching functions as computed in Refs. [51,52]. The grade denotes the descendent level
of the irreps of SUð3Þ2. The minimal model field labeling is the same as that in Ref. [36].

λ̂, SUð3Þ2 μ̂, SUð2Þ8 q−hλ̂;μ̂þc=24χfλ̂;μ̂g
Grade of λ̂

representation, n
Conformal

dimension, hλ̂;μ̂ Field label

½2; 0; 0� [8, 0] 0
0 I½2; 0; 0� [0, 8] 1þ q2 þ 2q3 þ 3q4 þ 4q5 þ � � � 2

½0; 1; 1� [4, 4] (¼χvir1;1 þ χvir4;1) 0

½0; 1; 1� [6, 2] 0
½0; 1; 1� [2, 6] 1þ 2qþ 2q2 þ 4q3 þ 5q4 þ 8q5 þ � � � 1 2

5
ϵ

½2; 0; 0� [4, 4] (¼χvir2;1 þ χvir3;1) 1

½1; 1; 0� [6, 2] 0

1
15

σ

½1; 1; 0� [2, 6] 1
½0; 0; 2� [4, 4] 1þ qþ 2q2 þ 3q3 þ 5q4 þ 7q5 þ � � � 0
½1; 0; 1� [6, 2] (¼χvir2;3) 0
½1; 0; 1� [2, 6] 1
½0; 2; 0� [4, 4] 0

½0; 2; 0� [8, 0] 0

2
3

Z

½0; 2; 0� [0, 8] 2
½1; 0; 1� [4, 4] 1þ qþ 2q2 þ 2q3 þ 4q4 þ 5q5 þ � � � 1
½0; 0; 2� [8, 0] (¼χvir1;3) 0
½0; 0; 2� [0, 8] 2
½1; 1; 0� [4, 4] 1
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APPENDIX I: BOUNDARY CONFORMAL FIELD
THEORY AND RESIDUAL ENTROPY

In this section, we briefly describe the rationale behind
Cardy’s boundary conformal field theory. This discussion is
employed in calculating the residual entropy in Appendix J.
We direct the reader to Refs. [23,36–38] for detailed
discussions.
As described in the main text, the impurity acts as a

conformally invariant boundary condition to the bulk
conformal theory. In the spirit of Cardy [37,38], it is
helpful to consider the conformal system on a cylinder of
spatial length l and periodic temporal length β that winds
around the circumference. The partition function for this
system is then given by

ZAB ¼ tr½expð−βHABÞ� ¼
X
a

naABχaðe−ðπβ=lÞÞ; ðI1Þ

where the subscript on the Hamiltonian indicates the
boundary conditions in the spatial direction, naAB are the
multiplicity coefficients described in the main text, and
χaðe−ðπβ=lÞÞ are the characters of the Virasoro algebra for
the conformal tower a. Equation (I1) can be understood as
the quantum mechanical partition function computed over
the “thermally coherent” time β ¼ 1=T.
However, one can perform a modular transformation,

which physically interchanges the temporal and spatial axes
τ ↔ x. The partition function for this system is

Zτ↔x
AB ¼ hAj expð−lHSÞjBi ¼

X
a

hAjaihajBiχaðe−ð4πl=βÞÞ;

ðI2Þ

where the subscript S indicates the modular transformation
has been made, and jai symbolically denotes the so-called
“Ishibashi” states that are used to enforce no momentum or
energy flow across the boundary. Because of the inter-
change of the temporal and spatial axes, Eq. (I2) can be
understood as the propagation of the evolution operator
over “time” l between initial and final states A and B. The
Virasoro characters in Eqs. (I1) and (I2) are related by the
modular S-matrix, which allows one to find a relationship
between the boundary conditions (encoded in the multi-
plicity coefficients naAB) and the boundary states (jA;Bi),

TABLE IV. Free-fermion tower with antiperiodic boundary
conditions at x ¼ l. The primary states for Etot > π=l are
presented here; primary states with Etot ≤ π=l are given in Table I.

Q, U(1) jf , SUð2Þ3
[Three-state
Potts model] j̃, fSUð2Þ8 ðl=πÞEtot

..

. ..
. ..

. ..
. ..

.

1 3
2

σ 1 3
2

1 3
2

Z 0 3
2

3 3
2

I 0 3
2

3 1
2

I 1 3
2

3 1
2

ϵ 1
2

3
2

4 1 σ 1
2

2
4 0 σ 1 2
4 0 Z 0 2
5 1

2
σ 1

2
5
2

5 3
2

σ 1 7
2

5 3
2

Z 0 7
2

TABLE V. Primary operator content after double fusion of
primary states of energies Etot > π=l. The primary states with
Etot ≤ π=l are given in Table II.

Q, U(1) jf , SUð2Þ3
[Three-state
Potts model] j̃, fSUð2Þ8 ðl=πÞEtot

..

. ..
. ..

. ..
. ..

.

1 3
2

σ 1
2

11
10

3 1
2

I 1
2

11
10

2 0 Z 1
2

6
5

3 1
2

ϵ 0 13
10

2 1 σ 1 7
5

0 1 ϵ 1 7
5

1 3
2

σ 1 3
2

1 3
2

Z 0 3
2

3 3
2

I 0 3
2

3 1
2

I 1 3
2

3 1
2

ϵ 1
2

3
2

0 1 I 3
2

8
5

2 0 σ 3
2

8
5

4 0 σ 1
2

8
5

1 3
2

Z 1
2

17
10

3 3
2

I 1
2

17
10

4 1 σ 0 9
5

3 1
2

ϵ 1 19
10

4 0 σ 1 2
4 1 σ 1

2
2

4 0 Z 0 2
1 3

2
σ 3

2
21
10

3 1
2

I 3
2

21
10

4 0 Z 1
2

11
5

5 1
2

σ 0 23
10

4 1 σ 1 12
5

5 1
2

σ 1
2

5
2

4 0 σ 3
2

13
5

5 1
2

σ 1 29
10

5 3
2

σ 1
2

31
10

5 3
2

σ 1 7
2

5 3
2

Z 0 7
2

5 3
2

Z 1
2

37
10

5 3
2

σ 3
2

41
10
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X
b

Sabn
b
AB ¼ hAjaihajBi; ðI3Þ

where Sab is the modular S-matrix, and b sums over the
conformal towers. Equation (I3) is known as “Cardy’s
equations,” which allow boundary conditions (left-hand
side) to be related to boundary states (right-hand side) [23].

APPENDIX J: RESIDUAL ENTROPY

The impurity entropy is defined as [23]

SimpðTÞ≡ lim
l→∞

½Sðl; TÞ − S0ðl; TÞ�; ðJ1Þ

where S0ðl; TÞ is the free-fermion entropy, and the large l
limit indicates the thermodynamic (macroscopic) limit; the
zero-temperature limit is taken after the macroscopic limit.
The large l=β limit suggests that Eq. (I2) would be
convenient to employ for the partition function, as only
the lowest or ground state would need to be used from
the summation. The impurity entropy at T ¼ 0 can then
be shown to be SimpðT ¼ 0Þ ¼ lnhAj0ih0jBi, where j0i
denotes the ground state. This can be understood as the sum
of entropies arising form the two boundaries A, B [19,20].
Applying the “fusion-rule” hypothesis of Affleck and
Ludwig along with Cardy’s equations (in conjunction with
the Verlinde formula [23]) leads to Eq. (J3). Considering
our maverick coset formulation, we focus only on thefSUð2Þ8 sector (taking η ¼ 4 canonical normalization) as
the remaining sectors are decoupled from the impurity. This
allows us to employ the modular S-matrix for canonically
normalized SUð2Þk,

Smn ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

kþ 2

r
sin

�
πð2mþ 1Þð2nþ 1Þ

kþ 2

	
: ðJ2Þ

The residual entropy (for generalized k channels) is thus

SimpðT ¼ 0Þ ¼ ln

�S01=2ðkÞ
S00ðkÞ

�
¼ ln

�
sin 2π

kþ2

sin π
kþ2

�
: ðJ3Þ

Taking k ¼ 8 in Eq. (J3) yields the residual entropy given
in Sec. IX.
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