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Continuously monitoring the environment of a quantum many-body system reduces the entropy of
(purifies) the reduced density matrix of the system, conditional on the outcomes of the measurements.
We show that, for mixed initial states, a balanced competition between measurements and entangling
interactions within the system can result in a dynamical purification phase transition between (i) a phase
that locally purifies at a constant system-size-independent rate and (ii) a “mixed” phase where the
purification time diverges exponentially in the system size. The residual entropy density in the mixed phase
implies the existence of a quantum error-protected subspace, where quantum information is reliably
encoded against the future nonunitary evolution of the system. We show that these codes are of potential
relevance to fault-tolerant quantum computation as they are often highly degenerate and satisfy optimal
trade-offs between encoded information densities and error thresholds. In spatially local models in 1þ 1

dimensions, this phase transition for mixed initial states occurs concurrently with a recently identified class
of entanglement phase transitions for pure initial states. The purification transition studied here also
generalizes to systems with long-range interactions, where conventional notions of entanglement
transitions have to be reformulated. We numerically explore this transition for monitored random quantum
circuits in 1þ 1 dimensions and all-to-all models. Unlike in pure initial states, the mutual information of an
initially completely mixed state in 1þ 1 dimensions grows sublinearly in time due to the formation of the
error-protected subspace. Purification dynamics is likely a more robust probe of the transition in
experiments, where imperfections generically reduce entanglement and drive the system towards mixed
states. We describe the motivations for studying this novel class of nonequilibrium quantum dynamics in
the context of advanced quantum computing platforms and fault-tolerant quantum computation.
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I. INTRODUCTION

In thermodynamic equilibrium, pure quantum states can
only be achieved at absolute zero temperature. The non-
equilibrium thermodynamic cost of purification is encoded
in the third law of thermodynamics, which states that it is
impossible to reach a zero entropy (pure) quantum state in a
finite amount of time. In quantum information science,
purification plays an essential role in many models of
quantum computation, where one often assumes access to
highly pure computational or ancilla qubits [1]. Although it
is known that the requisite purification is possible given
sufficiently fine control over a quantum system and its
environment [2–5], the question of whether a generic
interacting many-body quantum system coupled to a

finite-temperature bath (i.e., an open quantum system)
can be driven to a pure state remains less understood [6,7].
An essential resource in controlling open quantum

systems is the ability to make measurements of the system,
which can then be used to perform feedback and conditional
control (e.g., the famous Maxwell demon) [8]. However,
purification does not require any feedback because the
continuous monitoring of the environment can be used to
continually gain information about the system, thereby
reducing the number of accessible states consistent with
the measurement record and the intermediate dynamics
[9–11]. Naively, one expects that continuous, perfect mon-
itoring will rapidly purify the system; however, it is known
from the study of quantum-error-correcting codes that quan-
tum states can be protected from extensive numbers of local
measurements [12–14]. Recently, there has been significant
experimental progress towards realizing the requisite ingre-
dients for such measurement-driven purification of many-
body states in quantum computing platforms [15–24].
In this article, we show that there is a dynamical purifi-

cation phase transition as one changes the measurement
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rate in a class of random quantum circuit models with mea-
surements. For pure initial states, it was shown recently that
there is an entanglement phase transition in these models
from area-law to volume-law entanglement [25–27], with
subsequent work deepening our understanding of this
family of entanglement phase transitions [28–30]. We
show that, for mixed initial states, this entanglement phase
transition transforms into a dynamical purification transi-
tion between a “pure” phase, with a constant purification
rate in the thermodynamic limit, and a “mixed” phase,
where the purification time diverges exponentially in
system size. Thus, if one takes the simultaneous limit of
an infinite system and infinite time, with any power-law
relation between system size and time, then an initially
maximally mixed state has a nonzero long-time entropy
density in the mixed phase, while it becomes pure, and
area-law entangled, in the pure phase.
We provide a more general definition of purification

transitions in terms of a phase transition in the quantum
channel capacity of the underlying open system dynamics.
This definition can be applied to arbitrary quantum chan-
nels, and it implies that a purification transition should be
fundamentally interpreted as a type of quantum-error-
correction threshold. Therefore, our results help us further
establish the connections between measurement-induced
phase transitions, channel capacities, and quantum error
correction [30]. We additionally strengthen these connec-
tions by showing that the unitary-measurement dynamics
projects the system into an optimal quantum-error-
correcting code space. This encoding achieves the capacity
for the future evolution of the channel in single-use error
correction. Thus, our work points to a large family of
previously unexplored codes with an optimal trade-off
between code rates and error thresholds, with relatively
simple encoding schemes, that may provide useful insight
or applications to fault-tolerant quantum computation.
To develop the basic phenomenology of purification

phase transitions, we numerically explore the measure-
ment-induced transition in the 1þ 1-dimensional stabilizer
circuit model of Ref. [28]. We find that tripartite mutual
information, or topological entanglement entropy [31,32],
allows a scaling analysis with substantially reduced finite-
size effects compared to other metrics, allowing more
precise estimates of the critical behavior. Unlike the rapid
linear-in-time growth of entanglement that can occur for
pure initial states, the bipartite mutual information of
maximally mixed initial states grows sublinearly in time.
This slow growth of the bipartite mutual information arises
from the natural formation of the quantum-error-corrected
code space described above, which protects the system
from measurement-induced collapse of coherent quantum
information.
The dynamics of quantum information in systems with

long-range interactions is currently an active area of
research [33–39]. The extreme limits of all-to-all coupled

systems have no notion of spatial locality or a well-defined
geometry, which requires one to revisit the conventional
definition of an area-to-volume-law entanglement transi-
tion. Interestingly, however, the purification transition we
find naturally persists in all-to-all coupled models with
k-local interactions.
Because of the difficulty in isolating and measuring

volume-law entanglement, purification dynamics can also
serve as a more robust probe of measurement-induced
entanglement transitions in experiments. For example, we
recently found that the purification dynamics of a finite
number of qubits acts as a local order parameter [40],
which, together with the quantum Fisher information [41],
allows direct experimental access to the phase transition on
near-term quantum computing devices. We argue that an
important motivation for studying this class of nonequili-
brium quantum dynamics is to develop more efficient
routes to fault-tolerant quantum computation.

II. OVERVIEW

Before describing our analysis, we present an overview
of the main results on purification transitions and dynami-
cally generated codes. Our definition of purification phase
transitions in open system dynamics fundamentally relies
on a quantity known as the quantum channel capacity,
which determines the maximum amount of quantum
information that can be transmitted by a noisy quantum
channel [42–45]. A closely related quantity is the coherent
quantum information, which plays an important role in the
basic theory of quantum error correction [46–48].
In Fig. 1(a), we provide a qualitative phase diagram for a

purification transition as a function of a generalized
measurement or decoherence rate p. For p > pc, there is
no pair of encoding and decoding operations that can
protect an extensive amount of quantum information. Thus,
the system always forgets initial conditions (purifies), and
the dynamics is fundamentally irreversible. On the other
hand, for p < pc, there are extensive subspaces that can be
arbitrarily well protected on all polynomial timescales in
the thermodynamic limit through quantum error correction;
i.e., the system remembers initial conditions. The maxi-
mum amount of quantum information that can be stored in
the system (depicted by the boundary line in the figure) is
given by the channel capacity.
The connection between measurement-induced phase

transitions, quantum channel capacities, and quantum error
correction was previously explored by Choi, Bao, Qi, and
Altman using a simplified model with either a single round
of measurements at the end of the circuit or nearly fully
scrambling dynamics on large blocks of qubits between
each round of measurements [30]. We show how these
connections can be established in a more general context by
considering the mixed-state dynamics of the underlying
quantum channel.
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Furthermore, we rigorously prove a sufficient set of
conditions under which the monitored channel dynamics
can act as an optimal encoding for the future evolution of
the system. We show numerically that these conditions are
satisfied for a representative family of models that exhibit
measurement-induced entanglement transitions. The associ-
ated high-fidelity recovery operations apply to a single use of
the channel. Thus, the system in the mixed phase generates a
family of quantum-error-correcting codes that saturate funda-
mental bounds on the trade-off between the density of encoded
quantum information and the associated error threshold.
The basic concept underlying our theorem is illustrated

in Fig. 1(b). We first run a monitored channel (defined
below) for a particular mixed-state input ρ0 on a timescale
polynomial in the system size. The repeated rounds of
measurements, followed by unitary scrambling dynamics,
randomly projects the system into a quantum-error-
correcting code-space density matrix ρm. Remarkably, this
encoding process is successful for the future evolution of
the channel that is statistically independent of the past
evolution. Stated more precisely, a random “code word”
jcii drawn from any ensemble representation of ρm ¼P

i λijciihcij can be approximately recovered back to this
state following further evolution with the channel. For a
correct choice of ρ0, this encoding scheme protects the
maximal possible amount of quantum information in the
thermodynamic limit. These results have broad implica-
tions for the study of measurement-induced phase tran-
sitions, as we describe in this article.
The classification of the complete family of information-

theoretic phases of unitary-measurement dynamics is a

fascinating and rich problem, with potential applications
in fault-tolerant quantum computation. In Sec. VIII, we
discuss a variety of motivations to better characterize
these phases and the associated quantum-error-correcting
codes in the ordered phase, as well as to investigate these
dynamics in intermediate-scale quantum devices. After
reading Secs. III A and III B, those readers less interested
in the proofs and further details of our analysis can avoid
the intervening sections and Appendixes, or return to
them later.
The paper is organized as follows: In Sec. III, we

introduce the random circuit model studied in this work
and establish the basic phenomenology of purification
transitions in unitary-measurement dynamics. We then
provide a more general definition of a purification tran-
sition in terms of the long-time scaling of the quantum
channel capacity with system parameters in the thermody-
namic limit. To make more explicit connections to unitary-
measurement models, we introduce the notion of strong
purification transitions, unitary-dephasing channels, and
monitored channels. In Sec. IV, we show rigorously that,
for monitored channels with a strong purification transition,
the late-time density matrix defines a quantum-error-
correcting code space that can saturate the channel capacity
bound for the future evolution of the system, with poten-
tially useful properties for fault-tolerant quantum compu-
tation. Furthermore, we show that the dynamics in the
ordered phase has interesting parallels to more conven-
tional decoding problems in quantum error correction. In
Sec. V, we discuss the class of monitored random circuit
models that have been broadly found to exhibit measure-
ment-induced entanglement transitions, which we study in
this work. We also describe the relation between quantum
trajectories and our definition of a purification transition. In
Sec. VI, we present a detailed overview of the critical
properties of the entanglement and purification transition in
1þ 1 dimensions based on a finite-size scaling analysis of
numerical simulations.
In Sec. VII, we introduce a family of two-local, infinite

range models that display clear signatures of the purifica-
tion transition. We find that the transition in this model
violates a version of the Hamming bound on pc [49],
indicating that the zero-rate codes near the critical point
are highly degenerate. Degenerate, zero-rate quantum
codes, such as the surface code [50], can have high-
error-correction thresholds and resilience to errors in gates
and measurements, making them potentially useful for
fault-tolerant quantum computation. In Sec. VIII, we
discuss the general phase diagram and universality classes
of measurement-induced transitions opened up by the
purification perspective presented here. We then discuss
the implications of our work for fault-tolerant quantum
computation and experimental studies of measurement-
induced phases in intermediate-scale quantum devices. We
present our conclusions in Sec. IX.

(a) (b)

(c)

Encoded inf. density

(Decoding fails)
Irreversible dynamics

Reversible 
dynamics 

(Decoding succeeds) S

E

R

MEncoding
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Random 
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FIG. 1. (a) Qualitative phase diagram for a purification phase
transition. Inside the blue region it is possible to encode an
extensive amount of quantum information and recover the initial
state for all polynomial times in the thermodynamic limit with
fidelity arbitrarily close to 1. Outside this boundary, there is no
encoding and decoding pair that succeeds, and the dynamics is
fundamentally irreversible. (b) Basic setup of the encoding-
decoding problem for the class of channels studied in this work
where the capacity-achieving encoding is implemented by the
dynamics of the channel itself. (c) General model for open system
dynamics using a reference R system and an environment E to
purify a quantum channel N . In the language of quantum error
correction, the initial-state preparation is the encoding operation,
while subsequent measurements and control are the decoding
operation.
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In Appendix A, we present a formal statement and proof
of our theorem on dynamically generated codes. In
Appendix B, we derive a bound on the channel capacity
by the average entropy of unravelings of the channel into
quantum trajectories. In Appendixes C–E, we provide more
details on the stabilizer formalism, mixed stabilizer states,
and methods to compute entropies of stabilizer states. In
Appendix F, we introduce a quantity that can be useful in
characterizing the optimal codes generated by the dynamics
that we define as the contiguous code length.

III. PURIFICATION TRANSITIONS

In this section, we first present an overview of the
phenomenology of purification transitions in the random
circuit models studied in this work, which are based on a
special class of quantum circuit dynamics known as
stabilizer circuits that can be classically simulated in
polynomial time. Such models were introduced in the
context of measurement-induced entanglement transitions
by Li, Chen, and Fisher [25,28]. We then provide a general
definition of purification transitions in terms of the scaling
of the channel capacity in the thermodynamic limit. This
definition is essentially a reformulation of a quantum-error-
correction threshold, but introducing it in this setting allows
us to formulate the necessary concepts and terminology
starting from basic concepts in open quantum systems. To
make more concrete connections to unitary-measurement
models, we introduce the notion of strong purification
transitions, unitary-dephasing channels, and monitored
channels. Such channels satisfy a weaker version of the
Knill-Laflamme conditions for quantum error correction
[1,51] and form the basis for our theorem on dynamically
generated quantum-error-correcting codes.

A. Random Clifford model

Measurement-induced phase transitions in ensembles of
quantum trajectories are now understood to generically
appear whenever there is a balanced competition between
unitary dynamics that increases the entanglement of the
system and a measurement process that reduces the
entanglement. Therefore, to establish the connection to
purification transitions, we study the “random Clifford”
model introduced in Ref. [28] [see Fig. 2(a)], where the
properties of the entanglement transition have been most
well established due to the ability to perform large-scale
numerics.
The model consists of a “brickwork” circuit of random

two-site unitaries drawn uniformly from the Clifford group,
operating on a linear chain of L qubits with periodic
boundary conditions. In between each layer of unitaries,
each site is measured in the Z basis with a fixed probability
p. One tunes through the phase transition by changing p.
Including the measurements, this random circuit is an
example of a stabilizer circuit, which, starting from the

computational zero state or any stabilizer state, can be
simulated on a classical computer in a time that scales
polynomially in L [52,53]. As a result, one can perform a
finite-size scaling analysis of the transition for hundreds or
even thousands of qubits. Furthermore, polynomial-time
classical algorithms have been introduced to compute
entropies and mutual information of stabilizer states
[54,55]. In Appendixes C–E, we provide a more detailed
overview of the formalism used to describe stabilizer
circuits and states.
Although these special properties of stabilizer circuits

make many aspects of their dynamics nongeneric, one of
the defining features of the Clifford group is that it forms a
unitary t design for t ≤ 3 [56,57]. This property implies that
channel-averaged properties of Clifford models often have
similar phenomenology to more general quantum chaotic
models [55,58,59]. The initial state can either be a mixed or
pure stabilizer state, where a mixed stabilizer state is

FIG. 2. (a) Random quantum circuit model studied in this work,
called the “random Clifford” model [25]. Local two-qubit
unitaries are drawn uniformly from the Clifford group in a 1D
brickwork arrangement with periodic boundary conditions.
Between each layer of gates, projective Z measurements happen
with probability p at each site. (b) Phase diagram for the late-
time, circuit-averaged entropy density hSðρÞi=L starting from
the completely mixed initial state. We took time t ¼ 4L and
L ¼ 256 and 512 to limit finite-size effects, although signatures
of the transition appear already at L ¼ 8. The blue curve shows
Aðpc − pÞν for A ≈ 7.3, p ≤ pc ¼ 0.1593ð5Þ and ν ¼ 1.28ð2Þ
obtained below.
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defined as the uniform mixture of all pure stabilizer states
associated with a given stabilizer group (see Appendix D).
A mixed stabilizer state with rank 2k has an equivalent
interpretation as a projector onto an ½N; k� stabilizer code,
where k refers to the number of logical, or encoded, qubits
in the code.

B. Purification phases

We now describe the basic signatures of the phases in the
purification transition. One key signature of the transition is
shown in Fig. 2(b). Here, we take L ¼ 256 and 512 sites
and, starting from the completely mixed initial state,
ρ ¼ I=2L, we run many realizations of the random circuit
out to a time t (= number of two-site unitaries that have
acted on each qubit) that is a fixed multiple of L. We then
compute the entropy density of the resulting state hSðρÞi=L
averaged over random circuit realizations, assuming perfect
knowledge of the outcome of all measurements in each run
of the circuit [25–27]. For each such stabilizer circuit that
starts from this completely mixed initial state, the von
Neumann and all Renyi entropies are equal at a given time,
although they differ between circuits and can decrease with
time. Below a critical value of p ¼ pc ¼ 0.1593ð5Þ (deter-
mined to this level of precision below), we see that the late-
time density matrix has residual entropy density that is
independent of L with the scaling hSðρÞi=L ∼ ðpc − pÞν
for ν ¼ 1.28ð2Þ. In Sec. V, we show that this residual
entropy density directly implies an extensive channel
capacity (see Sec. III C for a definition). Although we
cannot run the dynamics for these sizes out to exponentially
long times, our finite-size scaling analysis in Sec. VI is
consistent with an exponentially divergent lifetime of the
plateau value of SðρÞ.
On the other hand, for p > pc, the average entropy

density decays to zero with a decay rate that is independent
of L (leading to a purification time of about lnL). To the
level of precision we can test, the values of pc and ν for the
purification transition are identical to those for the entan-
glement phase transition for pure initial states. In Sec. VI,
we provide a detailed overview of the properties of the
system near the critical point. We now give some intuition
for the physical origin of the two purification phases deep
in their respective regimes.
The basic origin of the pure phase can be simply

understood for p sufficiently close to 1. In this limit, each
layer of measurements projects the system into a near
perfect product state in the Z basis. As a result, any
correlations and complexity in the system can build up
only over a few sites before being decohered by the
measurements, which makes the system highly insensitive
to initial conditions. Since pure states are a fixed manifold
of the dynamics, the system will rapidly converge to zero
entropy density, regardless of initial conditions.
The mixed phase generally has a richer many-body

dynamics than the pure phase. It turns out that some basic

features of the mixed phase already appear when the
measurements occur only at a single given site at an
arbitrarily slow rate (technically, a sufficient condition
for large L is p ≪ 1=L3 [60]). In this limit, the spatial
structure of the circuit is largely irrelevant for the late-time
dynamics, and we can replace the unitary between mea-
surements by a random Clifford gate that acts on the entire
set of L qubits. Starting from the completely mixed initial
state, the density matrix after the first measurement is

ρ1 ¼
1

2L
ðI þm1ZÞ; ð1Þ

where m1 ¼ �1 is the first measurement outcome, and Z is
the Pauli-Z matrix on the site measured. The purity of the
system has increased by a factor of 2. Following the
intermediate-time dynamics and second measurement,
the density matrix is updated as

ρ2 ¼
P2U2ρ1U

†
2P2

Tr½U†
2P2U2ρ1�

¼ 1

2L
ðI þm2Z þ 2m1P2U2ZU

†
2P2Þ;

ð2Þ

where Pn ¼ 1
2
ðI þmnZÞ is a projector onto the state

consistent with the outcome of measurement n of mn ¼
�1 and Un is the unitary for the random circuit between
measurement n − 1 and n. To compute the denominator of
Eq. (2), we assume that U2ZU

†
2 ≠ Z (this is true with

probability 1 − 1
4L−1 since U2 maps Z to a random traceless

product of Pauli operators on all L qubits), such that
P2U2ZU

†
2 has zero trace. Using the property that the

Clifford group is a 2-design, we can compute the circuit-
averaged purity after this second measurement,

hTr½ρ22�i ¼ 3=2L: ð3Þ

Extending these arguments to many subsequent measure-
ments, one finds that each time a measurement occurs, it
increases the average purity by only 1=2L, so

hTr½ρ2n�i ¼ ðnþ 1Þ=2L; n ≪ 2L; ð4Þ

leading to an exponentially long purification time. The
average entropy satisfies the inequality

hSðρnÞi ≥ − loghTr½ρ2n�i ¼ L − logðnþ 1Þ: ð5Þ

This limiting case establishes some essential features of the
measurement-induced dynamics in the mixed phase,
including the insensitivity of the basic phenomenology
to spatial locality. Although some aspects of the above
argument extend to small but L-independent p, to establish
the existence of the mixed phase in the present work, we
rely on numerical solutions of the model. In addition to
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1þ 1-dimensional models, we also study the mixed phase
in all-to-all models in Sec. VII.

C. Purification transitions: Definitions

In this section, we present a mathematical definition of
purification transitions, including a refinement to strong
purification transitions, unitary-dephasing channels, and
monitored channels that describe the models that have been
found to exhibit measurement-induced entanglement tran-
sitions. The condition for a unitary-dephasing channel is
shown to be equivalent to a weaker version of the Knill-
Laflamme conditions for quantum error correction.
In the most general formulation of the problem, we are

considering an open, quantum many-body system under-
going time evolution of the form

N tðρÞ ¼ Tt ∘ � � �T1ðρÞ; ð6Þ

where Ti are quantum channels or completely positive-
trace-preserving (CPTP) maps [1]. The models we study
below are random and Markovian in the sense that the Ti
are generated from independent, identically distributed
ensembles, but we do not rely on this property in devel-
oping the concept of a purification transition.
As illustrated in Fig. 1(c), we can always consider a

purification of a quantum channel N by using a three-
component system consisting of a reference R, system S,
and an environment E. Within this framework, the initial
mixed state of the system ρ ¼ P

k λkjkSihkSj is prepared
through an entanglement operation between R and S, with
E in the computational zero state

jψRSEi ¼
�X

k

ffiffiffiffiffi
λk

p
jkRi ⊗ jkSi

�
⊗ j0i: ð7Þ

The open system dynamics is now modeled by an isometry
on SE UN called an isometric embedding,

jψRS0E0 i ¼
X
k

ffiffiffiffiffi
λk

p
ðIR ⊗ UN ÞjkRi ⊗ jkSi ⊗ j0i; ð8Þ

whereN tðρÞ ¼ TrRE0 ½jψRS0E0 ihψRS0E0 j� and the primes indi-
cate that UN has been applied to S and E. The original
quantum channel dynamics is recovered by tracing over R
and E0. For simplicity, we focus on qubit models in which
R, S=S0, and E=E0 consist of tensor-product Hilbert spaces
of two-level systems.
A crucial result in quantum information theory is that,

when the mutual information between the reference and the
environment is zero, there exists a perfect recovery oper-
ation acting only on the system that can recover the initial
entangled state jψRSEi [46]. To review the argument, note
that zero mutual information between R and E0 implies that
their reduced density matrix factorizes

ρRE0 ¼ ρR ⊗ ρE0 ; ð9Þ

where ρA ¼ TrAc ½ρ� is the reduced density matrix on A and
Ac is the complement of A. This factorization implies the
existence of a Schmidt decomposition for the pure state of
the form

jψRS0E0 i ¼
X
k;l

ffiffiffiffiffiffiffiffiffiffi
λkpl

p
jkRi ⊗ jψkli ⊗ jli; ð10Þ

where jkRi, jψkli, and jli are all orthonormal states. By
performing projective measurements of the operators

Ml ¼
X
k

jψklihψklj ð11Þ

and applying the unitary operation depending on the
measurement outcome Uljψkli ¼ jkSi, we can completely
recover the initial state. The recovery operation acts only on
S and can correct any initial state in support of ρ. As we
discuss later, such arguments can be generalized to the
more physically relevant situation of approximate quantum
error correction, where only ρRE0 approximately factor-
izes [47,48].
To quantify the notion of recoverability or reversibility of

the system in more general settings, we introduce the
single-use quantum channel capacity defined in terms of
the coherent quantum information,

Qð1ÞðN Þ ¼ max
ρS

IcðρS;N Þ; ð12Þ

IcðρS;N Þ ¼ SðρS0 Þ − SðρRS0 Þ ¼ SðρRE0 Þ − SðρE0 Þ; ð13Þ

where SðρÞ ¼ −Tr½ρ log ρ� is the von Neumann entropy
[61], ρA is the reduced density matrix on A, and the
maximum is taken over all density matrix ensembles ρS
on the system S. An important identity that follows from
Eq. (13) is SðρSÞ − IcðρS;N Þ ¼ IðR∶E0Þ ≥ 0, where
IðR∶E0Þ is the mutual information between the reference
and the environment following the application of USE. For
input states such that SðρSÞ ¼ IcðρS;N Þ, the mutual
information between the reference and the environment
is exactly zero, which implies the existence of a perfect
recovery operation according to the previous argument.
Thus, the single-use quantum channel capacity is the
maximum possible amount of quantum information that
can be perfectly transmitted with a single use of the noisy
channel.
In the theory of quantum error correction, it is helpful to

generalize the single-use channel capacity to many copies
using the limiting definition

QðN Þ ¼ lim
n→∞

1

n
Qð1ÞðN⊗nÞ ≥ Qð1ÞðN Þ: ð14Þ
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A finite value of Q implies that approximate quantum error
correction is possible on a space of asymptotic dimension
2nQ, even when it fails in a single use of the channel.
However, this may come at the cost of performing state
preparation (encoding) and decoding operations on the
n-fold replicated Hilbert space of the system [42–45]. For
the models considered below, one of our main results is the
explicit construction of optimal single-use encoding oper-
ations, with an associated existence proof for single-use
decoding.
With the concept of channel capacity in hand, we define a

purification phase transition with respect to a parameter p
(or set of parameters p⃗) in N t and a partially protected
subspace of S of dimension 2N . For p < pc, and any power-
law relation between the effective number of qubitsN in the
protected subspace and scaled time ta ¼ a1Na2þ1 þ a3ðNÞ
ðta > 0; a2 > acÞ [62], the channel capacity Qt of N ta is
extensive, limN→∞Qta=N ¼ cðpÞ > 0. In contrast, for
p > pc, the channel capacity density converges to zero in
this thermodynamic limit. As a result, a purification phase
transition can be interpreted as a type of error-correction
threshold for a family of protected subspaces acted on by a
few-parameter family ðp⃗; t; NÞ of quantum channels N t.
For the random and uncorrelated channels considered

below, the dynamics are statistically translationally invari-
ant in time. In this case, our definition of a purification
transition above suggests a stronger condition that the
subextensive corrections to the channel capacity are also
time independent on sufficiently long polynomial time-
scales, t > Nacþ1; i.e., for any sequence of allowed aðNÞ
with ac < a2, there exists a sequence bðNÞ with ta < tb
such that ðtb − taÞ=N → ∞ and jQta −Qtb j converges to
zero with N. We refer to a purification transition satisfying
this condition as a strong purification transition.
For these definitions to apply to unitary-measurement

models like the random Clifford model discussed above
(where capacity-achieving states are unknown), the defi-
nition of a purification transition has to be adapted to the
channel-averaged quantum capacity [30]

Īmax ≡max
ρ0

Z
dσIcðN σ; ρ0Þ; ð15Þ

where dσ is the measure over the ensemble of random
channelsN σ. The distinction from the quantum capacity is
that the maximum over input states is taken after averaging
the coherent quantum information over channels.As pointed
out in Ref. [30], for channel ensembles that are invariant
under single-site unitaries, Īmax is maximized for the
completely mixed input state taken in Sec. III B. The basic
argument is that the maximizing input state has to have the
same symmetries as the channel ensemble, which, in this
case, implies that it is given by the completelymixed state. In
Sec. V, we show that the coherent quantum information for
unitary-measurement circuits is equal to the entropy of the

mixed state averaged over measurement outcomes. To
strengthen the connections to our formal definitions, we
present further numerical evidence in Sec. VI C that the
random Clifford model introduced in Sec. III A realizes a
strong purification transition with parameter ac ≈ 1 for any
pair of sequences ða; bÞ satisfying ac < a2 and ðtb − taÞ=
ta → 0. As a result, the channel-averaged maximum code
rate cðpÞ ¼ SðρÞ=L can be approximated by the numerically
observed values in Fig. 2(b) for p < pc.
Our definition of a purification transition in terms of

intrinsic properties of the quantum channel is somewhat
distinct from the usual perspective on measurement-
induced transitions, which are typically defined in terms
of the properties of a particular ensemble of “quantum
trajectories” [25,26]. To define a trajectory, we express each
Ti in terms of a (not-necessarily-unique) set of Kraus
operators Am,

TiðρÞ ¼
X
m

AmρA
†
m;N tðρÞ ¼

X
m⃗

Km⃗ρK
†
m⃗; ð16Þ

where Km⃗ ¼ Amt
� � �Am1

. A quantum trajectory is given by
an element of the ensemble fpm⃗; Km⃗ρK

†
m⃗=pm⃗g, where

pm⃗ ¼ Tr½K†
m⃗Km⃗ρ� is the probability of a given measure-

ment record m⃗. Each trajectory has a physical interpretation
in terms of a sequence of continuous-time operations
interspersed with generalized measurements acting on
the system with measurement outcomes m⃗ [10,11]. In
Sec. V, we establish several concrete connections between
the trajectory viewpoint on measurement-induced transi-
tions and the channel viewpoint taken in this work. In
particular, we show that when all possible choices of Kraus
operators (i.e., unravelings) lead to an ensemble of pure
states Km⃗ρK

†
m⃗ ∝ jψ m⃗ihψ m⃗j, then the system is in a “pure

phase” (p > pc). On the other hand, when the system is in
the “mixed phase” (p < pc), then all possible unravelings
of the dynamics result in the trajectories remaining mixed
for exponentially long times.
The use of the replicated Hilbert space in the existence

proofs for encoding and decoding pairs makes these
operations difficult to study in specific models or imple-
ment in experiment. To establish more explicit construc-
tions of single-use encoding and decoding operations, we
introduce an additional constraint that also provides a
natural connection between the channel and trajectory
viewpoints: We demand that each individual channel Ti
of N t has at least one (not-necessarily-unique) isometric
embedding that evolves any two pure states of Sjψ1;2i as

UTi
jψkij0i ¼

X
m

Amjψkijmi; ð17Þ

where hψkjA†
mAm0 jψk0 i¼hψkjA†

mAmjψk0 iδmm0 and hmjm0i ¼
δmm0 . This condition implies that there is a Kraus repre-
sentation fAmg for Ti, such that, for any input state ρ,
TiðρÞ ¼

P
m AmρA

†
m ¼ P

m pmρm is given by a sum of
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orthogonal density matrices ρm ¼ AmρA
†
m=pm satisfying

Tr½ρmρm0 � ∝ δmm0 , where pm ¼ Tr½A†
mAmρ�. As a result, the

channel Ti always has at least one ensemble that can be
unraveled by making projective measurements onto the
image of Am. We call a channel satisfying Eq. (17) a
unitary-dephasing channel because it can be represented by
unitary dynamics followed by dephasing of some off-
diagonal coherences in the density matrix.
For composite channels N t formed from unitary-

dephasing channels, there is a natural realization of quantum
trajectories using what we call the monitored channels,

N m⃗;tðρÞ ¼ Mmt
∘ Tt ∘ … ∘ M1 ∘ T1ðρÞ; ð18Þ

Mmi
ðρÞ ¼ Pmi

ρP†
mi ⊗ jmiihmij; ð19Þ

where Pmi
is an isometric projector onto the image of Ami

in a representation of TiðρÞ ¼
P

mi
Ami

ρA†
mi that satisfies

Eq. (17). The N m⃗;t are completely positive trace-
nonincreasing maps that act on the input state as

N m⃗;tðρÞ ¼ Km⃗ρK
†
m⃗ ⊗ jm⃗ihm⃗j; ð20Þ

for Km⃗ ¼ Amt
� � �Am1

, thereby directly realizing a quantum
trajectory. We refer to the (trace-preserving) complete
mixture of monitored channels N u

t ¼
P

m⃗ N m⃗;t as an
unraveled channel. We define a set of monitored channels
as having a (strong) purification transition if its unraveled
channel has a (strong) purification transition in its quantum
capacity or channel-averaged quantum capacity. Note that
unraveled channels have the special property that they are
unitary-dephasing channels for every choice of t.
Unitary-dephasing channels are examples of “degrad-

able” quantum channels, which are defined by the con-
dition that ρE can be obtained by a CPTP map acting on the
system. As shown by Devetak and Shor, the quantum
channel capacity of a degradable channel is equal to the
single-use channel capacity QðN Þ ¼ Qð1ÞðN Þ [44]. This
identity helps simplify the calculation of Q, but it does not
provide explicit constructions for the encoding and decod-
ing operations or imply that they can be done with a single
copy of the system [63].
Before continuing, we discuss an interesting connection

between the unitary-dephasing condition in Eq. (17) and a
foundational result in quantum error correction known as
the Knill-Laflamme conditions [1,51]. Given a set of pure
quantum states, or code words, jcii, and a set of error
operators Ea, the necessary and sufficient conditions for
these errors to be correctable are

hcijE†
aEbjcji ¼ Cabδij; ð21Þ

where Cab is an arbitrary Hermitian matrix. Changing into
an orthonormal basis for C, ðV†CVÞab ¼ λaδab, implies

that there is a special set of error operators Ēa ¼
P

b EbVba
that are uniquely identifiable,

hcijĒ†
aĒbjcji ¼ λaδabδij: ð22Þ

If we interpret the Kraus operators in the quantum channel
as possible error operators, then the unitary-dephasing
condition in Eq. (17) essentially removes the constraint
from the Knill-Laflamme conditions that Eqs. (21) and (22)
are proportional to δij. This weaker condition implies that
the errors are detectable, even though the code words are
not protected. In this setting, an intuitive picture for a strong
purification transition in a unitary-dephasing channel is
that, in the mixed phase, the system spontaneously projects
the states of the system into code words that restore the full
Knill-Laflamme conditions [64]. As we show in Sec. IV, in
general, this is achieved only approximately [65–68].
Monitored channels naturally arise in the weak meas-

urement picture for unitary-measurement dynamics that use
ancilla qudits to perform the measurements of the system
(see Sec. V and also Refs. [29,30,41,69]). In this repre-
sentation, the computational basis states of the ancilla are
entangled with all possible paths in a quantum trajectory
evolution and then “dephased” by an environment. Thus,
the quantum trajectory can be unraveled by an observer
through projective measurements of the ancillae in their
computational basis. Several special properties of this class
of channels were exploited in recent works on the meas-
urement-induced entanglement transitions [30,41,69].
Here, we show that imposing the strong purification
condition on a monitored channel is enough to show that
the monitored dynamics gives rise to an optimal encoding
operation for the future evolution of the channel.
More specifically, we consider a monitored channel

N m⃗;t ¼ Mmt
∘ Tt ∘ � � � ∘ M1 ∘ T1 that exhibits a strong

purification transition. We prove that N m⃗;t defines a family
of quantum-error-correcting codes that can be efficiently
generated with a single use of N m⃗;ta for any allowed
sequence of pairs ða; bÞ in the thermodynamic limit. These
encodings have an associated high-fidelity, single-use
recovery operation for the future evolution of the unraveled
channel N u

tb;ta ¼
P

m⃗ Mmtb
∘ Ttb ∘ � � � ∘ Mmtaþ1

∘ Ttaþ1 on

the polynomial timescale tb − ta in the thermodynamic
limit. The amount of encoded information is optimal in the
sense that it converges to the channel capacity of N u

t for
any ta ≤ t ≤ tb. Our proof is based on randomly sampling
codes generated by the channel dynamics that have the
desired properties on average, which implies the existence
of a large subset of the codes with the desired properties.

IV. DYNAMICALLY GENERATED CODES:
EMERGENT QUANTUM ERROR CORRECTION

In this section, we describe in greater detail the proper-
ties of the quantum-error-correcting codes in the mixed
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phase in both many-copy and single-use quantum-error-
correction protocols. Our discussion of many-copy error
correction follows directly from well-known existence
proofs of encoding and decoding pairs that can achieve
the channel capacity of any quantum channel in the
asymptotic limit of an infinite number of copies [42,45].
The results of single-use quantum error correction are
specific to the class of unitary-dephasing channels intro-
duced in the previous section and, to our knowledge, have
not previously been discussed in the literature.
As we noted above, a key feature of a purification

transition is the associated existence of a quantum-error-
correcting code on the replicated Hilbert spaceH⊗n, which
can be decoded on all polynomial timescales. To make this
statement more precise, we let N t ¼ Tt ∘ � � � ∘ T1 be a
family of quantum channels indexed by integers t with a
purification transition. We fix ϵ > 0 and b with 1 < tb.
Now, there is an Nϵ and nϵ such that, for all N ≥ Nϵ and
n ≥ nϵ, jQtb=N − cðpÞj < ϵ, and there exists an encoding
Eb∶HnQtb

→ H⊗n and a recovery (decoding) operation

Rtb∶N
⊗n
tb ðH⊗nÞ → HnQtb

such that, for all input states ρ

[42,45],

jjR0;tb ∘ N⊗n
tb ∘ EbðρÞ − ρjj < ϵ; ð23Þ

where jjρ − σjj ¼ 1
2
Tr½jρ − σj� is the trace distance and Hn

is a Hilbert space of dimension 2n. The trace distance can
be related to the mixed-state fidelity

Fðρ; σÞ ¼ max jhψσjψρij2 ≥ 1 − 2jjρ − σjj; ð24Þ

where the maximum is taken over all purifications jψρi and
jψσi of ρ and σ, respectively.
It immediately follows from Eq. (23) that this encoding

operation can be successfully decoded for all earlier times
t < tb using the recovery operation

R0;t ¼ R0;tb ∘ N⊗n
tb;t; ð25Þ

where N t2;t1 ¼ Tt2 ∘ � � �Tt1þ1. In the case of a strong
purification transition, these encoding and decoding pairs
are optimal in the sense that they saturate the channel
capacity for any choice of a such that ta ≤ tb and ac <
a2; b2 in the thermodynamic limit.
The fidelity is a bound on the trace distance via

Eq. (24) and monotonically increases under quantum
operations FðN ðρÞ;N ðσÞÞ ≥ Fðρ; σÞ [70]. As a result,
the encoded dynamics N⊗n

t2 ∘ Eb at time t2 < tb can be
approximately reversed to any point in time t1 ≤ t2 with the
operation

Rt1;t2 ¼ N⊗n
t1 ∘ Eb ∘ R0;tb ∘ N⊗n

tb;t2 : ð26Þ

Thus, within the encoded subspace, the dynamics of the
channel acts as a type of effective, reversible unitary
dynamics.
In the thermodynamic limit, we do not expect to require

the infinitely replicated Hilbert space to construct high-
fidelity encoding and decoding operations, provided one
replaces the strong reversal condition in Eq. (23) by a
weaker, probabilistic reversal condition [47,68]. In this
case, it is likely that any system exhibiting a strong
purification transition can be encoded or decoded on the
allowed polynomial timescales; however, we have not
found a rigorous proof of this result. Instead, we establish
a version of this result for the special case of monitored
channels N m⃗;t with a strong purification transition.
Monitored channels include all models known to exhibit

measurement-induced entanglement transitions; however,
whether such models generically exhibit a strong purifi-
cation transition has not been addressed. In Ref. [30], it was
argued that a natural encoding operation for unitary-
measurement dynamics is given by a high-depth random
unitary circuit. The general argument was based on the idea
of quantum information scrambling in chaotic systems
applied to quantum-error-correction problems [71], which,
at a technical level, is related to the decoupling property of
2-designs such as (by definition) Haar random unitaries or
the Clifford group [72–74]. Although this encoding oper-
ation is provably optimal at vanishing measurement rates or
finite times in the thermodynamic limit, the extension of
this result to finite-measurement rates for times that scale
polynomially in the system size was not addressed outside
of the limiting case of nearly fully scrambling dynamics on
large blocks of qubits.
More recent work has used replica methods to derive

exact analytic mappings of the entanglement transition with
Haar random two-site gates and single-site measurements
to statistical mechanics models [41,69]. In the limit of an
infinite local Hilbert space dimension, these models map
exactly to a certain percolation problem controlled by the
measurement rate p (see also Ref. [26] for a different
mapping to percolation). From this mapping, one can show
that the system exhibits a purification transition at the same
value of p as the entanglement transition in this limit [41].
However, it is not currently known how to extend these
analytic methods to the physically relevant case of finite
local Hilbert space dimensions [69], stabilizer circuit
models like the random Clifford model, or more general
random circuit models. One promising direction for ana-
lytic progress is to consider dual-unitary random circuit
models perturbed by measurements [75].
Here, we show that imposing the strong purifi-

cation transition condition is a strong enough constraint
to imply that the encoding operation is directly imple-
mented by the monitored channel dynamics. Thus, in the
mixed phase of a strong purification transition, the moni-
tored channel dynamically generates a capacity-achieving
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quantum-error-correcting code for the future evolution of
the channel. We remark that this result was recently
anticipated in Ref. [49] (without making connections to
channel capacities), where it was referred to as a “self-
organized” quantum error correction. Similar to the exist-
ence of the single-shot encoding-decoding pair discussed
above, this optimal code-generation process may generi-
cally apply to systems exhibiting a strong purification
transition; however, we are unaware of a rigorous proof for
this conjecture. Such a result would have broader impli-
cations for fault-tolerant quantum computing because,
intuitively, it would suggest that the dynamics of a fault-
tolerant system may generically project the system into an
optimal code space for its future evolution. We leave a more
complete study of these possibilities for future work. We
summarize our results on emergent quantum error correc-
tion in monitored channels in the following theorem:
Theorem 1: (Informal) LetN m⃗;t¼Mmt

∘Tt∘���∘Mm1
∘T1

be a monitored channel indexed by measurement outcomes
m⃗ and integers t > 0 with a strong purification transition.
There is an input state ρ0 such that the density matrices
ρm⃗ ∝ N m⃗;taðρ0Þ obtained from evolving the monitored
dynamics define optimal (capacity-achieving) quantum-
error-correcting codes for the future evolution of the
unraveled channel N u

t;ta ¼
P

m⃗N m⃗;t;ta , i.e., Sðρm⃗Þ=N →
cðpÞ, and there is a high-fidelity reversal operation Rm⃗ta;t

such that the entanglement fidelity FeðRm⃗ta;t ∘N u
t;ta ;ρm⃗Þ→1

in the thermodynamic limit for ta ≤ t ≤ tb. Here, cðpÞ is
the channel capacity density of the unraveled channel
N u

t ¼
P

m⃗ N m⃗;t.
The formal statement and proof of the theorem are given

in Appendix A. This result is intuitively expected, but the
proof also provides useful bounds on the rate of conver-
gence of the entanglement fidelity. We show in Appendix A
how to use these bounds, in combination with our numeri-
cal results in Sec. VI C, to determine when the random
Clifford model can be approximated by a random unitary
circuit for p < pc. The methods of the proof are based on
elementary arguments from approximate quantum error
correction that ultimately rely on strong subadditivity of
entropy [76], adapted to this class of monitored channels.
The important role played by strong subadditivity can be
understood from the general setup for the channel dynamics
in Fig. 1(c) in terms of three components, R, S, and E. The
proof begins at a similar line of argument as we gave for
many-copy quantum error correction. In particular, ρ0 is
chosen as a capacity-achieving input state for the later time
tb: Icðρ0;N u

tbÞ ¼ Qtb .
In cases where such a state is difficult to find or initialize,

one can generalize the notion of a strong purification
transition to being dependent on a particular input state.
The only requirement is that the coherent quantum infor-
mation of this input state converges to an extensive value
with time-independent subextensive corrections over some
timescale. The proof of the theorem above carries through

to this case with only minor modifications. In cases where
the channel capacity density is zero, such as in the pure
phase ðp > pcÞ, Theorem 1 still applies; however, when
the channel capacity is not just subextensive but strictly
zero (or very close), the proof of the theorem applies for the
trivial reason that there is no code space where information
can be stored and the recovery operation only needs to
approximately succeed on a single-input state.
When the monitored channels N m⃗;t are drawn from a

random ensemble (i.e., random channels), as discussed in
Sec. III C, we define a channel-averaged strong purification
transition with respect to a fixed input state ρ0 by imposing
the same convergence conditions on the channel-averaged
quantum capacity Īmax. Since our proof is based on a
Markov inequality, the theorem directly generalizes to the
channel- and code-averaged code rate and recovery fidelity.
In models such as the random Clifford model, based on
random unitary circuits interspersed with projective mea-
surements [25–27], it is convenient to study channel-
averaged strong purification transitions for the completely
mixed input state ρ0 ¼ I=2N . The completely mixed state is
a natural input state for these models because its channel-
averaged coherent quantum information often saturates
Īmax (see Sec. III C).
We note that the entanglement fidelity FeðA; ρÞ ¼

F(IR ⊗ AðjΨRSihΨRSjÞ; jΨRSi) is defined as the mixed-
state fidelity between a purification jΨSRi of ρ and its image
under the channel A [77]. It is independent of the specific
choice of jΨSRi and quantifies the degree of quantum
coherence of the channel. For example, for any ensemble
representation e ¼ fλk; jkig of ρ ¼ P

k λkjkihkj, Fe is a
lower bound on the average fidelity for state transmission
F̄ðA; eÞ ¼ P

k λkF½AðjkihkjÞ; jki� ≥ FeðA; ρÞ. As a result,
a direct consequence of our theorem is that randomly
chosen input states from an arbitrary ensemble for ρm can
be evolved both forward and backward in time on all
polynomial timescales in the thermodynamic limit [78].
The recovery operations for intermediate times can be

constructed in a similar manner to Eq. (26) ðt1 < t2Þ,

Rmt1;t2 ¼ N t1 ∘ Rmta;t2 : ð27Þ

This representation of the recovery operations relies
on knowledge of the whole history of the evolution
from time ta to t2 to recover back to time t1. We can
see more explicitly why this occurs by considering strong
purification transitions where the subextensive corrections
to Icðρ0;N u

taÞ − Icðρ0;N u
tbÞ decay to zero faster than

1=ðtb − taÞ4 (see Appendix A). In this case, the decoding
problem can be simplified by studying the action of the
individual maps Ti on the code space. In particular, the
action of the first channel on a purification of ρm is

UTtaþ1
jΨRSEi ¼

X
kl

ffiffiffiffiffiffiffiffiffi
pljm

p jkmiAtaþ1ljmjψkjmijljmi:
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According to Theorem 1, each Ataþ1ljm can be approxi-
mated in the thermodynamic limit by an isometry into a set
of orthogonal spaces indexed by ljm. Let ϵ > 0 and N be
sufficiently large that the average recovery fidelity is
F̄e ≥ 1 − ϵ=ðtb − taÞ. By immediately performing a pro-
jective measurement on the system into the support of ρljm,
we can approximately map the dynamics to one of these
isometries up to an average error less than ϵ=ðtb − taÞ [79],

Mljm ∘ Ttaþ1ðjψkmihψkmjÞ → Utaþ1ljmjψkmi; ð28Þ

for jψkmi sampled from any ensemble for ρm. By an
inductive argument, we can perform a similar mapping
for each subsequent channel Tt up until t ¼ tb while
keeping the total average error bounded by ϵ.
As a result, the evolution of the channel N t interspersed

with projective measurements induces time-local unitary
dynamics on the code space in the thermodynamic limit,
with the usual group structure of unitary evolution.
However, the code-space density matrix ρm is continually
evolving in a manner that depends on the measurement
outcomes lt ¼ ðltaþ1;…;ltÞ. Consequently, the unitary
gates in each time step can depend on the full history of the
previous gates applied to the system, which is consistent
with the more general history dependence of Eq. (27). We
discuss further implications of these results in Sec. VIII B.

V. MONITORED RANDOM CIRCUITS

In this section, we discuss monitored channels defined in
terms of random quantum circuits. We also make more
concrete connections between the monitored channel
dynamics and the underlying dynamics of the composite
unitary-dephasing channel.
We consider random quantum channels of the form

N tðρÞ ¼
X
m⃗

Km⃗ρK
†
m⃗; ð29Þ

Km⃗ ¼ UtP
mt
t � � �U1P

m1

1 ; ð30Þ

where Pmi
i is a sequences of positive-operator-valued

measures (POVMs) that satisfy
P

m Pm
i ¼ I, m⃗ indexes

the measurement outcomes, and Ui are unitary operators
that can depend on the most recent measurement outcomes.
We will focus on the case where mi ∈ f0; 1g takes one of
two possible outcomes and Pm

i are simple single-site
projectors. These random channels have a decomposition
into unitary-dephasing channels as defined in Sec. III C;
however, whether the channel has a purification transition
depends on the details of the unitary gates and the space-
time position of the projectors. In this work, we consider
the case where the projectors and unitaries all act on a fixed
number of qubits. Absent monitoring, such a channel will
tend to drive the system towards infinite temperature.

A natural unraveling into quantum trajectories fpm⃗; ρm⃗g
for the channel dynamics takes the form

ρm⃗ ¼ Km⃗ρK
†
m⃗=pm⃗; N tðρÞ ¼

X
m⃗

pm⃗ρm⃗; ð31Þ

where pm⃗ ¼ Tr½K†
m⃗Km⃗ρ� is the probability of a given

trajectory. An equivalent description of the trajectory is,
in terms of a quantum circuit, interspersed with measure-
ments, as depicted in Fig. 3.
We show in Appendix B that the coherent quantum

information of the full channel N t is bounded by the
average entropy of any trajectory ensemble,

Icðρ;N tÞ ≤
X
m⃗

pm⃗Sðρm⃗Þ: ð32Þ

This bound can be used to constrain whether the underlying
channel N t is in a mixed or pure phase. To show this
constraint, we need to consider the coherent quantum
information of the replicated channel N⊗n

t . Applying the
bound in Eq. (32) to N⊗n

t and using subadditivity of
entropy results in the bound

Icðρ;N⊗n
t Þ ≤

X
i

X
fm⃗jg

pfm⃗jgSðρðiÞfm⃗jgÞ;

ρðiÞfm⃗jg ¼ p−1
fm⃗jgTrl≠i½Kfm⃗jgρK

†
fm⃗jg�;

Kfm⃗jg ¼ Km⃗1
⊗ � � � ⊗ Km⃗n

; ð33Þ

where ρ acts on the n-fold replicated Hilbert space

and ρðiÞfm⃗jg is the reduced density matrix of the ith replica

conditioned on the measurement record across all n
replicas fm⃗jg.

T
im

e

Space

Measurement 

System

Reference

Unitary dynamics

FIG. 3. Unitary-measurement dynamics in monitored random
circuits. The system is initially partially entangled with a set of
reference qubits and undergoes unitary dynamics interspersed
with measurements. The two phases in a purification transition
correspond to whether or not the measurements remove all
coherent quantum information of the input state on polynomial
timescales in the thermodynamic limit.
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Now, consider the case where all initial states converge to
zero entropy density averaged along trajectories. If we fix
the measurement records m⃗l on replicas l ≠ i, then the

density matrix ρðiÞfm⃗jg can be interpreted as a single-copy

quantum trajectory that occurs with a conditional proba-
bility pðm⃗ijm⃗l;l ≠ iÞ. Averaging over these conditional
probabilities implies that the average entropy density ofP

m⃗i
pðm⃗ijm⃗l;l ≠ iÞSðρðiÞfm⃗jgÞ must also converge to zero

for each value of the other measurement records. As a
result, each term in the upper bound in Eq. (33) converges
to zero, and the system is in a pure phase. On the other
hand, when some initial states have an extensive entropy
averaged along trajectories, the system can be in a
mixed phase.
These results show that the information theoretic proper-

ties of quantum trajectories strongly constrain the under-
lying quantum channelN t; however, it is important to note
that channel and trajectory viewpoints are not equivalent. In
particular, there is a common intermediate case where some
ensembles of quantum trajectories can remain mixed on
average, while the underlying quantum channel is still in a
pure phase (i.e., it has subextensive channel capacity)
according to our definition. To avoid these ambiguities
and more formally investigate trajectory ensembles from
the channel viewpoint, we consider the class of monitored
and unraveled channels introduced in Sec. III C,

N u
t ðρÞ ¼

X
m⃗

N m⃗;tðρÞ; ð34Þ

N m⃗;tðρÞ ¼ Km⃗ρK
†
m⃗ ⊗ jm⃗ihm⃗j; ð35Þ

which stores the classical data associated with the meas-
urement record in a register of ancillas. Here, the input state
ρ is the reduced density matrix of a system of N qubits
without the ancilla, and jm⃗i is the state of the ancilla qubits,
which are assumed to always be initialized in the computa-
tional zero state j0i. The unraveled channel describes a
physical evolution given by a sequence of unitary oper-
ations and perfect projective measurements of the system.
However, the ambiguity remains that even if one unraveled
channel N m

t is in a mixed phase, there is often a different
unraveled channelN p

t that will still be in a pure phase. For
example, such pairs of channels N m;p

t arise in the moni-
tored random circuits of the type studied in this work when
one allows for arbitrary (potentially nonlocal and high
weight) projective measurements of the system in defining
the unraveling [41]. Given these subtleties, it is an
interesting subject for future work to understand how, in
the context of measurement-induced phase transitions,
different N u

t are related to each other and to N t.
It follows immediately from the definitions that the

unraveled channel in Eq. (34) is a unitary-dephasing
channel of the type introduced in Sec. III C. For these

unraveled channels, the inequality in Eq. (32) is satu-
rated [80],

Icðρ;N u
t Þ ¼

X
m⃗

pm⃗Sðρm⃗Þ: ð36Þ

We showed in Sec. III A that the random Clifford model is a
monitored channel with a purification transition. We show
below that it also satisfies the conditions needed for a
strong purification transition. Applying Theorem 1 to this
model then shows that, for p < pc, the monitored channel
dynamically generates a quantum-error-correcting code
that protects against further loss of quantum information
in single-use quantum error correction.
More broadly, the dynamically generated codes for

stabilizer circuits with a strong purification transition are
examples of stabilizer quantum-error-correcting codes [81].
As a result, the associated encoding and recovery oper-
ations can be efficiently computed. The code space varies
according to the sequence of gates, measurement locations,
and measurements outcomes in the circuit, but by using
knowledge of the gates and measurement locations, one can
construct perfect encoding operations. The recovery oper-
ations are unitary Clifford circuits that require additional
access to the measurement record to decode (e.g., see
Appendix D). There is also considerable numerical and
analytical evidence that more general quantum trajectory
models with nonstabilizer dynamics undergo a strong
purification transition [41,82,83]. For such models, it is
not currently known whether the associated recovery
operations can be efficiently implemented.
In spatially local models, it is natural to expect that the

purification phase transition occurs concurrently with the
entanglement transition found recently in similar models
[25,26]. We find strong evidence for this scenario in the
1þ 1-dimensional random Clifford model. Several groups
have also recently verified our results that these two critical
points likely generally coincide in 1þ 1 dimensions with-
out quenched disorder [41,82,83]. We discuss plausible
conditions under which these critical points can move to
different points in the phase diagram in Sec. VIII A.

VI. CRITICAL PROPERTIES OF THE RANDOM
CLIFFORD MODEL IN 1+ 1 DIMENSIONS

In this section, we perform a careful examination of the
critical properties of the entanglement and purification
phase transition of the random Clifford model in 1þ 1
dimensions. We also discuss the properties of the optimal
quantum-error-correcting code in the mixed phase and
identify its strong purification phase transition parameters.
These parameters constitute an additional set of data that
describe critical properties of the line of phase transitions in
Fig. 1(a) for 0 ≤ p < pc. This line of critical points is
associated with the approach to the channel capacity limit
in the mixed phase of the unitary-measurement dynamics.
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A. Entanglement transition

One of the central findings of our numerical study of this
purification transition in 1þ 1 dimensions is that it occurs
concurrently, and with the same critical exponents, as the
entanglement phase transition for pure initial states. Thus,
before examining the scaling behavior of the mixed-state
dynamics, we first revisit the critical properties of the
entanglement phase transition for pure initial states.
In Ref. [28], it was shown that the critical region of the

entanglement phase transition can be precisely identified by
looking at the mutual information IðA∶BÞ ¼ SðρAÞ þ
SðρBÞ − SðρA∪BÞ between two antipodal regions on the
circle of length L=8. We have found that a similar, but
more accurate, probe of the critical point is to use the
tripartite mutual information between three contiguous
regions of length L=4 [see inset to Fig. 4(a)], defined as

I3ðA∶B∶CÞ ¼ IðA∶BÞ þ IðA∶CÞ − IðA∶BCÞ. For pure
states, I3ðA∶B∶CÞ is symmetric under all permutations
of ðA;B; C;DÞ, where D is the rest of the sample. The
tripartite mutual information, sometimes referred to as the
topological entanglement entropy [31,32], is a natural
measure of the degree to which information in a quantum
wave function is encoded nonlocally. Similar to the L=8
antipodal mutual information, it has the effect of removing
the logarithmic divergences that appear in the half-cut
entanglement at the critical point, which reduces finite-size
corrections to scaling. We find that hI3ðA∶B∶CÞi vanishes
in the pure phase, approaches a universal constant of about
−0.5 at the critical point, and has the expected negative
volume-law scaling in the mixed phase. This behavior can
be explained using a minimal cut picture for the entangle-
ment scaling near the critical point [82]. In Fig. 4(a), we
show the finite-size scaling near the critical point for I3
starting from pure initial states. We observe a clear crossing
of I3 vs p with increasing L, which we use to identify
pc ¼ 0.1593ð5Þ. From collapsing the L ¼ 128–512 data
with this value of pc, we extract ν ¼ 1.28ð2Þ. These
estimates are consistent with those reported in Ref. [28].
Another basic quantity of interest in characterizing the

transition is the correlation length ξ ∝ jp − pcj−ν. To
realize a quantitative measure of the correlation length
on both sides of the transition, we study IðA∶BÞ for the
region shown in an inset of Fig. 4(b), where A and B are of
equal size, r < L=4, and separated by a region of length r.
The mutual information is a basis-independent correlation
metric that can be used to upper bound all connected
correlation functions between A and B [84]. This quantity
decays exponentially with r with a decay length that
diverges as p → pc. To reliably extract the decay length,
we find that it is better to begin with the completely mixed
initial state and run only until time t ¼ 4L because pure
states for p < pc develop a strong feature near r ¼ L=4,
which obscures the exponential decay. This feature for pure
initial states arises because of the volume-law entangle-
ment, which implies that, when r exceeds L=4, IðA∶BÞ
grows linearly with r due to the volume-law scaling that
appears for L=4 < r ≤ L=3. Essentially, r ≥ L=4 is the
regime where ðA ∪ BÞc is not larger than A ∪ B, so it is an
inadequate bath to fully decorrelate A and B. In contrast, for
mixed initial states, the bipartite mutual information grows
sublinearly in time, leading to a much weaker feature near
r ¼ L=4 for early times.

B. Purification dynamics

With the basic, static scaling properties of the entangle-
ment transition established, we can now turn to the
dynamical scaling of the purification transition. The central
results are summarized in Fig. 5, which shows the scaling
behavior of the average entropy across the transition.
Because of the apparent conformal symmetry at the critical
point of this model [28], we assume a dynamical critical
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FIG. 4. (a) Average tripartite mutual information hI3ðA∶B∶CÞi
for three contiguous regions of length L=4 with pure initial states.
In the inset, we can identify pc ¼ 0.1593ð5Þ from the crossing
point for different sizes. Through a collapse of the L ¼ 128–512
data, we obtain ν ¼ 1.28ð2Þ. (b) Correlation length ξ extracted
from the decay with r of IðA∶BÞ for A and B of equal size r
separated by a region of length r. Note that ξ is well fit by the
function X�=jp − pcjν with X� ¼ 0.18=0.12 for p≷pc. The inset
shows a sample of the data used to extract ξ for p≷pc, L ¼ 64
and 128, and t ¼ 4L. Completely mixed initial conditions were
chosen to avoid a a strong feature that appears near r ¼ L=4 for
pure initial states with p < pc.
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exponent z ¼ 1 and take a dimensionless scaling function
for the entropy,

hSðρÞi ¼ Fðx; τÞ; ð37Þ

where x ¼ ðp − pcÞL1=ν and τ ¼ t=L. Note that the scaling
dimension of the entropy is zero, such that the L depend-
ence of hSðρÞi enters only through the scaling function,
which is consistent with the behavior we observed recently
for a different class of open-system entanglement phase
transitions [85]. This scaling has also recently been verified
using arguments based on conformal symmetry [83].
In Fig. 5(a), we show the scaled time dependence of the

entropy across the phase transition. For p > pc, there is
rapid exponential decay of the entropy. At the critical point
p ¼ pc, there is an intermediate-time regime during which
we observe power-law decay of the form Fð0; τÞ ∼ 1=τ,
which then crosses over to an exponential decay as the
entropy approaches 1 bit. For p < pc, we see an initially
rapid decrease in the entropy, which crosses over towards
an exponentially slow decay at late times. In Fig. 5(b), we
plot the entropy across the phase transition for different

values of the scaled time. In all cases, we see an excellent
collapse of the data for L ranging from 64 to 512.

C. Structure of optimal code-space density matrices

As shown in Theorem 1 in Sec. IV, the late-time density
matrix defines an optimal quantum-error-correcting code
space for the channel dynamics, which motivates the study
of the structure of its correlations. In addition, these studies
help make a more direct comparison between the purifi-
cation phase transition for mixed initial states and the
entanglement phase transition seen for pure initial states.
A convenient diagnostic of the mixed-state density

matrix is the bipartite mutual information IðA∶AcÞ for A
of varying length r. For pure states, IðA∶AcÞ reduces to
twice the entanglement entropy. The main qualitative
features are illustrated in Fig. 6(a). For p ≥ pc, the mixed
state purifies on a timescale at most linear in L, which
implies that pure and mixed initial conditions have identical
late-time scaling behavior for IðA∶AcÞ. In the pure or area-
law phase, the long-time states exhibit only area-law
mutual information, which quickly converges to a constant
value independent of L. At the critical point, the system
builds up logarithmic mutual information. The most sig-
nificant result presented here is that, for p < pc, we
observe a sublinear scaling of IðA∶AcÞ for completely
mixed initial states, in contrast to the volume-law scaling
observed previously for pure initial states. The presence of
a logarithmic background for stabilizer circuits was iden-
tified through an indirect measure in Refs. [27,28]. We find
that mixed-state dynamics partially reveals this feature by
stripping away the volume-law mutual information.
Since the mixed state recovers the subextensive contri-

butions to the bipartite mutual information for p ≤ pc, a
natural approach to finite-size scaling of the transition is to
look at the difference of hIðA∶AcÞi between pure and
completely mixed initial conditions. The results are shown
in Fig. 6(b), where we see an excellent scaling collapse of
the data using the value of pc and ν obtained from Fig. 4(a).
At the critical point, where the system purifies after a time
of about L and builds up logarithmic mutual information
hIðA∶AcÞi ∼ 2αðpcÞ lnL, we find αðpcÞ ≈ 1.63ð3Þ [28].
Away from the critical point, it is difficult to reliably extract
αðpÞ from the mutual information of the mixed state.
According to our definition of a strong purification tran-

sition, the late-time behavior of the subextensive corrections to
the coherent quantum information is crucial in determining the
efficiency of the encoding operation. We present a finite-size
scaling analysis of this dynamics for the completely mixed
initial state in the inset to Fig. 6(b) forp ¼ 0.08 < pc.We find
a consistent scaling collapse using the ansatz

−hΔS=Δ ln ti ¼ Fðt=LÞ; ð38Þ

with the asymptotic behavior Fðt=LÞ ∼ L=t for t ≪ L and
Fðt=LÞ ∼ const for t ≫ L. Similar toEq. (37),we find that the
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FIG. 5. (a) Average entropy hSðρÞi vs scaled time τ in the mixed
phase p < pc, at the critical point p ¼ pc and in the pure phase
p > pc. (b) Finite-size scaling of hSðρÞi across the transition for
different values of the scaled time.
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scalingdimensionof the entropy is zero, and theL dependence
enters only through the scaling function. The late-time
behavior is consistent with an exponentially long purification
time. The early-time behavior exhibits a power-law scaling of
the same form as the early-time behavior of hSðρÞi at the
critical measurement ratepc. Connecting to our definition of a
strong purification transition, this power-law decay further
implies that ac ≈ 1 for this strong purification transition,while
the constant logarithmic derivative at late times requires the
pair of sequences ða; bÞ to satisfy ðtb − taÞ=ta → 0 in the

thermodynamic limit. These two conditions appear specific to
the optimal code-generation process because starting with an
entropy density significantly below the channel capacity limit
leads to a much more rapid convergence (not shown) to the
plateau value. For these input states that do not maximize the
channel-averaged quantum capacity, the likely strong purifi-
cationparameter isac ≈ 0 for anypair of sequences ða; bÞwith
0 < a2 and ta < tb in the thermodynamic limit.
We remark that Fan, Vijay, Vishwanath, and You

recently obtained some characterizations of the dynami-
cally generated quantum-error-correcting codes identified
in this work [49]. They focused on the mixed or volume-
law phase of a more general Haar random model (i.e., the
two-site Clifford gates are replaced by Haar random gates)
in one spatial dimension, but many of their arguments can
also apply to the Clifford model and to other geometries.
Using an approximate mean-field theory (see also
Ref. [86]), they found that the late-time entanglement of
a pure state for p < pc always has a background loga-
rithmic contribution of about αMF lnL (αMF ¼ 3=2), quali-
tatively consistent with the numerically observed behavior
for stabilizer circuits shown in Fig. 6(a). This background
logarithm term was argued to be a crucial aspect of the
inherent encoding of the initial state of the system into a
quantum-error-correcting subspace. Our results provide
additional evidence in support of this scenario. Theorem
1, combined with arguments presented in Ref. [30], implies
that starting from the completely mixed state generates the
optimal stabilizer code for this dynamics. We have shown
that this optimal code-space density matrix is characterized
by sublinear average mutual information. Thus, the back-
ground subextensive corrections to the pure-state entangle-
ment are likely an intrinsic aspect of the optimal quantum-
error-correcting code generated by the dynamics.
In addition, Fan et al. argued that one can bound the

critical measurement rate (pc ≤ 0.1893 for qubits) by
arguing that the states in the volume-law phase are
effectively encodings of a random Page state in a non-
degenerate quantum-error-correcting code. Although they
present the argument for one-dimensional models, the
nondegenerate code bound would apply to other geometries
with two-site gates followed by measurements of each
qubit with probability p. Note that a degenerate code is one
that can correct more errors than it can uniquely identify
(e.g., via syndrome measurements for stabilizer codes) [1].
In stabilizer codes, a sufficient condition for a code to be
degenerate is that its stabilizer group has elements of
weight less than the code distance (minimal weight of
the logical operators not in the stabilizer group). Short
elements in the stabilizer code group are intrinsic to
unitary-measurement dynamics because the measurements
are continually “injecting” single-site operators into the
code-space density matrix. Therefore, the significance of
this bound on pc for this problem is not immediately clear.
We present evidence below that it is a relevant bound in

FIG. 6. (a) Finite-size scaling of the average bipartite mutual
information hIðA∶AcÞi at t ¼ 4L, with A a contiguous region
of length r, and Ac its complement. In the pure phase
(p ¼ 0.20 > pc is shown) and at the critical point, hIðA∶AcÞi
becomes independent of initial conditions, displaying area-law
behavior in the pure phase and logarithmic scaling with r at the
critical point. In the mixed phase (p ¼ 0.12 < pc is shown),
hIðA∶AcÞi strongly diverges between mixed and pure initial
conditions, displaying volume-law scaling for pure initial
states and sublinear scaling for mixed states on this timescale.
(b) Finite-size scaling of the difference of half-cut mutual
information between pure and completely mixed initial condi-
tions at t ¼ 4L. The inset shows the logarithmic time derivative
of the entropy in the mixed phase ðp ¼ 0.08 < pc is shown),
which has a power-law decay of about 1=t for t ≪ L and
approaches a constant L-independent value at late times,
t ≫ L. The constant logarithmic derivative at late times is
consistent with an exponentially long purification time.
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1þ 1 dimensions, as argued by Fan et al., but not
necessarily for higher dimensions as we observe an explicit
violation in an all-to-all model.
A key property of a degenerate code is that it can still

have an error-correction threshold even when the distance
does not scale extensively in the system size. We can
sensitively test this aspect of the codes in the volume-law
phase because we can generate the optimal ensemble of
codes with respect to the code rate. By computing a
quantity we call the contiguous code length, we show in
Appendix F that the average distance of the optimal codes
in 1þ 1 dimensions is subextensive for p < pc but
apparently about L as one approaches the critical point.
As a result, the bound put forth in Ref. [49] may accurately
apply to 1þ 1-dimensional systems near pc, even though
the optimal codes deep in the volume-law phase appear to
be highly degenerate.
Outside 1þ 1 dimensions, it is natural to expect that the

code distance no longer has to scale linearlywith the number
of qubits near pc. In the next section, we study an all-to-all
generalization of this 1þ 1-dimensional stabilizer circuit
model, finding 0.30 < pcp ≤ 2=3 for the purification criti-
cal point pcp, in strong violation of the nondegenerate code
bound. As a result, even the codes near the critical point in
more than one dimension can be highly degenerate. As we
discuss in Sec. VIII, these channel-averaged optimal codes
are of potential practical relevance to fault-tolerant quantum
computation, which motivates a more detailed understand-
ing of their properties and performance.

VII. MIXED PHASE IN ALL-TO-ALL MODELS

In this section, we present a basic demonstration of the
existence of a mixed phase in all-to-all models. We show
that the purification critical point pcp violates a version of
the Hamming bound for nondegenerate codes that may
apply in 1þ 1 dimensions [49].
We consider random circuit models as above with two-

qubit gates and single-site measurements, but the gates are
allowed to act on arbitrary pairs of qubits in the system that
are chosen at random. In the context of measurement-
induced transitions, the existence of a phase transition has
not yet been established in all-to-all models. We also call
these all-to-all models “Bob,” which is an acronym for
“bag-of-bits”: Each time we apply a gate, we reach into the
bag of qubits and pull out two of them at random to act on
with a gate (see Fig. 7).
In these Bob models, the basic notion of an area-to-

volume-law entanglement transition (at pce) has to be
revisited because there is no clear distinction between
the surface and bulk in this geometry: All qubits are
adjacent to any entanglement cut. On the other hand, there
is still a natural anisotropy between space and time in such
models. Since a purification transition is fundamentally
about the memory of initial conditions, the definition in
Sec. III C naturally generalizes to this case. Entanglement

transitions refer to the geometric structure of the correla-
tions in the system and require more care to properly define
in this setting. As a result, we defer a more detailed study of
measurement-induced phase transitions in all-to-all models
to future work [87].
To establish the existence of the mixed phase, we turn to

the Bob Clifford model illustrated in the inset of Fig. 7. At
each time step, we randomly select a pair of sites, apply a
random two-qubit Clifford gate, and measure each of the
two sites with probability p. In the case of Haar random
gates, one can show analytically, using the mapping to a
percolation problem provided by Skinner, Ruhman, and
Nahum [26], that this model undergoes a percolation or
connectivity transition in the Hartley entanglement entropy
at pcc ¼ 2=3 [87,88]. For p > 2=3, the late-time density
matrix is necessarily in a zero entropy pure state regardless
of the choice of initial conditions or unitary gates; thus,
pcp ≤ 2=3 for this model.
We obtain a lower bound on pcp by using the order

parameter for themixed phase introduced in our recent work
[40]. The distinction from the discussion above is that we
replace the reference system that scales extensively with the
system size by a single reference qubit. For each circuit, we
define

SQ ¼
X
m⃗

pm⃗SðρRÞ; ð39Þ

as the entropy of this reference qubit averaged over
trajectories. In the mixed phase, the channel-averaged SQ
will persist for exponentially long times.

FIG. 7. Entropy of the system entangled with a single reference
qubit vs circuit depth starting from the reference qubit in a
maximally entangled state with one site and the rest of the system
in a random stabilizer state. At each time step Δt ¼ 2=N, a pair of
qubits is randomly selected, and one of the four operations in the
inset is applied. The late-time entropy density serves as an order
parameter for the mixed phase [40]. It approaches a plateau value
and stays near it for a time that increases exponentially in N over
this range of sizes. This behavior provides an estimated lower
bound on pcp, while an upper bound of pcp ≤ 2=3 can be
obtained from a percolation mapping for this circuit [26,87,88].
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The qualitative behavior of hSQi in the mixed phase is
shown in Fig. 7 forp ¼ 0.30. To set up these simulations, we
choose an initial state given by a random Clifford state; we
then measure one site in the system and place this qubit in a
maximally entangled state with the reference qubit. Similar
to the purification dynamics of the completely mixed state,
the reference qubit purifies for a short period that is
independent ofN before crossing over to a late-time plateau.
The persistence time of this plateau diverges exponentially
in N over this range of sizes. The results of these numerics
indicate that 0.30 < pcp ≤ 2=3 strongly violates the non-
degenerate code bound for 1þ 1-dimensional qubit models
pcp ≤ 0.1893 put forth in Ref. [49] (see discussion in
Sec. VI C). The optimal codes near the critical point are
likely degenerate, making them potentially useful for
applications in fault tolerance due to the higher error
thresholds that are possible with zero-rate, degenerate
quantum codes, such as the surface code [50].

VIII. DISCUSSION

A. Phase diagram and universality classes

A phase diagram for the broader family of entanglement
and purification phases in unitary-measurement models is
presented in Fig. 8. Part of the richness of thesemodels arises
from the possibilities for multiple phase transitions with
intermediate phases. For example, in 1þ 1-dimensional
Haar models, the first entanglement transition that occurs as
one lowers the measurement rate from p ¼ 1 is a connec-
tivity or percolation transition where the wave function
sharply changes from a perfect product state over finite
clusters to a statewhere one of those clusters is extensive (we
call this transition point pcc) [26]. A useful diagnostic for
pcc in this case is the Hartley entanglement entropy, which
has an exact analytical mapping to a percolation problem.
This connectivity transition has also been found to occur in

close proximity to a transition from Poisson to Wigner-
Dyson level statistics in the entanglement spectrum for pure
states [89]. For stabilizer circuit models, the Hartley entropy
is not a good diagnostic for pcc because the entanglement
spectrum is always degenerate.
For Haar-random circuits with brickwork geometry in

1þ 1 dimensions, the entanglement transition for the
von Neumann entropy occurs at a much lower value
(pce ≈ 0.17) than the analytical result for 2D percolation
pcc ¼ 1=2 [26,82]. Interestingly, Bao, Choi, and Altman
found a whole family of critical points at intermediate
values of p between pce and pcc [41]; however, these
critical points emerged only after weighting the trajectories
by powers of their Born probability and circuit probability,
which led to the averages being dominated by rare
realizations that may not reflect the behavior of typical
realizations in the thermodynamic limit.
In this work, we have provided a stringent definition of

purification transitions in terms of the formation of an
extensive quantum-error-correcting code space in the sys-
tem. Calling this purification transition point in the phase
diagram pcp, the behavior for p < pcp has many of the
properties associated with the p ¼ 0 limit of random
unitary dynamics. In particular, we showed that the late-
time dynamics acts as a type of random unitary circuit on an
extensive encoded subspace, which will generically gen-
erate extensive entanglement. As a result, we suspect that
the purification critical point is the most stringent type of
“ordering” in these models. In the 1þ 1-dimensional
model studied here, we found that pce ¼ pcp, which has
now been argued to generally hold in 1þ 1 dimensions
without quenched disorder [41,83].
In future work, it will be interesting to determine if there

are any conditions under which pcp and pce can differ from
each other. In quantum trajectories, entanglement ordering
is related to spatial correlations in the quantum wave
function, whereas purification ordering captures correla-
tions between wave functions at different points in time.
Because of the asymmetric nature of the time and space
directions in these models, there is no intrinsic reason to
expect that these two critical phenomena must coincide. A
finite separation between pcp and pce requires an extended
range of p where the system purifies with a power-law
decay vs time that is slower than the growth of the
entanglement, which would be a type of quasi-long-range
entanglement ordering in the system. As a limiting exam-
ple, one can consider all-to-all models, where, at p ¼ 0, the
system can build up volume-law entanglement across all
cuts in the system on logN timescales. In this limit, any
power-law purification time could provide sufficient time to
build up extensive entanglement in the system while failing
to realize a reliable encoding of quantum information.
It is also of interest to obtain a precise understanding of the

critical behavior in these models. There is considerable
evidence that the measurement-induced entanglement and

Encoded Connected Product stateEntangled
Purifies Pure stateMixed

FIG. 8. General phase diagram for unitary-measurement mod-
els. At large values of p, the system breaks up into product states
over disconnected finite clusters. As p is lowered, the system first
undergoes a connectivity or percolation transition at p ¼ pcc
where an infinite cluster in the quantum wave function forms
[26]. Once the infinite cluster forms, it can undergo a phase
transition from subextensive to extensive bipartite entanglement
at p ¼ pce [25,26,28]. At the purification transition point pcp, we
show here that quantum information in the system becomes
reliably encoded in a finite-rate, capacity-achieving quantum-
error-correcting code. In 1þ 1 dimensions without quenched
disorder, the purification and entanglement transitions appear to
generally occur at the same point in the phase diagram. The ap-
propriate classification of these phase transitions with quenched
disorder or in higher dimensions remains open.
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purification transitions in 1þ 1 dimensions have an emer-
gent conformal symmetry [28,41,69,83]. The appropriate
classification of these conformal field theories (CFTs) is not
currently known. Although certain limiting cases are equiv-
alent to percolation [26,41,69], as noted in Ref. [28], the
observed value of αðpcÞ for stabilizer circuits differs from
that of 2D critical percolation by roughly a factor of 3,
suggesting that these models might be in different univer-
sality classes. More recently, Li, Chen, Ludwig, and Fisher
have found a variety of other surface scaling dimensions for
the “Clifford” CFT that differ from percolation [83]. Our
estimated bulk correlation length exponent ν ¼ 1.28ð2Þ, on
the other hand, is very close to the ν ¼ 4=3 of 2D
percolation. One possible explanation for the small differ-
ence in ν is that the Clifford critical point can be obtained by
a weak perturbation of a percolation fixed point [69].
We have also introduced a method to determine the order

parameter exponent for the purification transition in these
models [40]. Bulk order parameter exponents in 1þ 1
dimensions appear to be consistent with percolation for
both stabilizer circuits and more general models [40,82],
but there is some evidence for a small, but significant,
difference in the surface order parameter exponent in both
cases [40,82,83]. It has been argued that these critical
theories are described by logarithmic conformal field
theories with central charge zero [69]. Such theories have
logarithmic corrections to scaling [90], so we should be
cautious in interpreting small differences in apparent
critical exponents.
Many questions remain about the characterization of

these phase diagrams and universality classes, particularly
outside 1þ 1 dimensions or in the presence of quenched
disorder. The ubiquity of these phases in open quantum
system dynamics motivates the development of a deeper
understanding of the phase diagrams, the defining properties
of each phase, and the critical points. The close connections
that arise between these problems and fault-tolerant quan-
tum computation are also interesting to explore. In the near
term, these efforts should aid in characterizing the physics of
noisy intermediate-scale quantum devices.

B. Applications to fault tolerance

A significant consequence of Theorem 1 on dynamically
generated codes is that, under the stated conditions, it
provides a rigorous and efficient method to sample
quantum-error-correcting codes that satisfy an optimal
trade-off between a high code rate (obtained far below
the critical point p ≪ pcp) and high error thresholds
(obtained for p ∼ pcp), either numerically or in experiment.
These codes are often highly degenerate, require limited
encoding resources, and have natural realizations in terms
of stabilizer codes. These properties make them potentially
useful for fault-tolerant quantum computing (FTQC).
However, a fully fault-tolerant quantum computer or

memory needs to work despite errors in both gates and

measurements, whereas in our analysis, we have taken all
operations to be implemented in an ideal manner that is
perfectly known to the observer. Far away from pc, where
the correlation length ξ is much less than the system size,
conventional scaling arguments suggest that the encoding
and decoding operations away from the channel capacity
limit will already converge to high fidelity after depth
t=ξz ∼ logN in the thermodynamic limit, where z is the
dynamical critical exponent (z ¼ 1 for the 1þ 1-dimen-
sional model studied above). Although the logN scaling
implies that the encoding is unlikely to be directly
achievable in a fault-tolerant manner, such low-depth codes
with high code rates may be crucial in improving the
performance and flexibility of intermediate-scale quantum
devices [91]. Moreover, simple extensions of the present
models to include active feedback may allow the realization
of fully fault-tolerant encoding schemes in this framework.
We still have the problem of efficiently characterizing the

logical operator algebra of the code-space density matrices
ρm or implementing the recovery operations Rmta;t in an
efficient manner. Characterizing and finding recovery
operations for approximate error correction of quantum
channels is an active area of research in quantum informa-
tion theory (e.g., see Refs. [92,93]). Although our proof is
nonconstructive for the recovery operation, the bound that
we prove on its entanglement fidelity implies that there are
explicit recovery maps expressed in terms of ρm and the
N t;ta that also satisfy the conditions of Theorem 1 [47].
Furthermore, in the case of stabilizer circuits exhibiting a
strong purification transition, the logical operators and
recovery operations can be efficiently computed using
the Gottesman-Knill theorem [52,53]. Because of the large
number of advantages of stabilizer codes for FTQC, the
codes we have found in stabilizer circuits are likely the
most promising to explore in this context.
Our deconstruction of the recovery operation reduces the

decoding problem in the mixed phase to the problem of
characterizing the quantum circuitsUt2lt2 jm � � �Ut1lt1 jm aris-
ing from the mappings of the quantum channel dynamics
Mlijli−1m ∘ Ti → Uilijm. Provided one can efficiently com-
pute or approximate Utltjm for each combination ðt;lt; mÞ,
the full evolution in the mixed phase can be described by a
knownunitary circuit acting on the system. Inmost cases,we
expect that the correlations betweenmeasurement outcomes
will be short ranged for p < pc, which can be leveraged in
developing efficient decoding algorithms. In the case of the
order parameter for strong purification transitions (given by
the coherent quantum information of the system entangled
with a single-reference qubit [40]), the unitary circuit
described above has a representation in terms of a product
of single-qubit gates. The simplicity of this dynamics may
provide a useful starting point for investigatingmore general
decoding problems in the mixed phase. These decoding
problems are reminiscent of conventional quantum error
correction and suggest that studying the late-time dynamics
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of themixed phasemay provide useful insight into decoding
problems for standard quantum error correction (and
vice versa).
We have argued that there is substantial motivation to

better characterize the class of stabilizer and nonstabilizer
codes that arise in the mixed phase. Studying the associated
recovery operations for the channel dynamics may also
provide insight into decoding for quantum error correction
in more conventional scenarios. Because of their local
encoding schemes, degeneracy, and optimal trade-offs
between high code rates and error thresholds, these codes
have potential advantages for fault-tolerant quantum com-
putation with low overhead [91].

C. Experiments in near-term quantum devices

Current quantum computing devices are far from
meeting the full requirements for scalable fault-tolerant
operation [94]. The advantage of studying this class of
unitary-measurement dynamics in such near-term, inter-
mediate-scale quantum (NISQ) devices is that it combines
most of the necessary ingredients to realize general-purpose
quantum error correction but in a stochastic, unstructured
setting. Similar to the recent experiments on “quantum
supremacy” in random circuit sampling [95], we suspect
that realizing scalable demonstrations of measurement-
induced entanglement transitions would push towards
achieving what one might call “fault-tolerant quantum
supremacy.” Such intermediate milestones are crucial in
the drive towards scalable quantum computing.
In this vein, the purification dynamics introduced in this

work serves as a useful probe of these phase transitions
outside a fully fault-tolerant setting. The exact realization
of the ordered phase in d spatial dimensions requires a limit
where the local decoherence rate γ ≪ 1=Ldþ1 or smaller. In
contrast, assuming the local entropy production rate density
scales as γ, a crossover between the mixed and pure phases
should persist at late times with a crossover length scale ξc
that naively scales as γ−1=ðdþ1Þ for low enough d. In
addition, the purification dynamics displays a direct sig-
nature of the two phases already at the level of a single
reference qubit [40], which, together with the quantum
Fisher information [41], avoids the extensive overhead in
both experiment and data analysis associated with meas-
uring entanglement or entropy of large regions. Using these
local probes, the mixed and pure phases can be efficiently
studied in general models away from pc with constant
depth circuits t ≫ ξ and a large enough number of qubits to
suppress finite-size effects [40]. Such improvements in the
error resilience of quantum algorithms can be the difference
between applications on near-term devices and being
pushed into the future realm of full fault tolerance.
Although not strictly necessary [40], the most natural

setting to begin studying these dynamics in near-term
quantum computing devices is by implementing stabilizer
circuit models such as the ones considered in this work.

The existence of highly efficient classical algorithms for
these dynamics is crucial in benchmarking the performance
of the experimental device in a scalable manner. Although
one might argue that the experiment does not probe new
physics because its ideal dynamics can be classically
simulated, this is far from the case. The actual physical
evolution of the experimental system differs dramatically
from the simplistic simulations used for stabilizer circuits.
Stabilizer states are a rich class of quantum wavefunctions
that can have extensive entanglement and realize many of
the intrinsic subtleties associated with quantum mechanical
systems that do not have natural classical analogs.
Furthermore, there are many theoretical reasons to suspect
that fully fault-tolerant quantum computing will rely, at
some level, on stabilizer-based quantum-error-correcting
codes. By studying the statistical physics of stabilizer
dynamics, one is arguably gaining fundamental insight
into the phase of matter associated with a fully fault-
tolerant quantum computer [96].

IX. CONCLUSIONS

We have demonstrated the existence of a class of
dynamical purification phase transitions between one phase
where the many-body dynamics purifies arbitrary initial
states at a rate independent of the system size, and another
phase where the time to purify grows exponentially in the
size of the system. We proved several general results on this
class of phase transitions. To gain deeper insight into these
problems, we studied specific models of stabilizer circuits
that are amenable to large-scale numerics; however, the
general features underlying the phase transition are relevant
for many physical systems undergoing high-fidelity, con-
tinuous monitoring, interspersed with entangling dynamics.
Our observation that the bipartite mutual information for
completely mixed initial states grows sublinearly in time
may aid in the development of efficient classical decoders
for 1D nonstabilizer models using matrix product methods.
Furthermore, such purification transitions naturally arise

in systems with long-range interactions, which are relevant
to quantum computing platforms based on trapped ions
[97] or quantum networks [98]. The perspective on the
measurement-induced entanglement transitions in terms of
purification dynamics may also aid in experimental studies,
where imperfections almost inevitably drive the system
towards mixed states.
Finally, together with Ref. [30], we have shown that the

existence of the volume-law or mixed phase, where the
entropy density remains nonzero, implies an extensive
quantum channel capacity in the underlying open system
dynamics. In this work, we further established that the
monitored dynamics itself can be used to optimally encode
quantum information against the future nonunitary evolu-
tion of the system. These results have broad implications
for the study of measurement-induced phase transitions.
In particular, they imply that there is a “code space” of
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operators in the system that are not measured and, thus, can
preserve quantum information about the initial state. As a
result, the time evolution in the ordered phase at late times
becomes effectively reversible unitary dynamics in the
thermodynamic limit. The dynamically generated codes
are of intrinsic interest in quantum information because
they saturate fundamental bounds on the trade-off between
the density of encoded information and the threshold error
rate, with potential applications to fault tolerance. It would
be an interesting subject for future work to better character-
ize these codes and further explore the relations between
this family of measurement-induced phase transitions and
fault-tolerant quantum computation.
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APPENDIX A: DYNAMICALLY
GENERATED CODES

In this Appendix, we prove Theorem 1 from Sec. IV.
This theorem shows how to dynamically generate capacity-
achieving quantum-error-correcting codes for monitored
channels with a strong purification transition. Recall that a
unitary-dephasing channel T is one for which there exists a
representation in terms of Kraus operators fAmg such that,
for any input state ρ, TðρÞ ¼ P

m AmρA
†
m ¼ P

m pmρm
satisfies Tr½ρmρm0 � ∝ δmm0 , where ρm ¼ AmρA

†
m=pm and

pm ¼ Tr½A†
mAmρ�. This condition implies that there is a

block-diagonal representation for TðρÞ, which leads to an
interpretation for the dynamics in terms of unitary evolution
followed by dephasing of some off-diagonal coherences.
For any unitary-dephasing channel, there is an associated
projection-valued measurement map Mm defined by the
isometric projectors Pm onto the support of the image of
Am. A monitored channel N m⃗;t indexed by measurement
outcomes m⃗ and integers t > 0 is defined by a sequence of
unitary-dephasing channels Ti with projection-valued
measurement maps Mmi

,

N m⃗;tðρÞ ¼ Mmt
∘ Tt ∘ � � � ∘ Mm1

∘ T1ðρÞ; ðA1Þ

Mmi
ðρÞ ¼ Pmi

ρP†
mi ⊗ jmiihmij: ðA2Þ

The formal statement of the theorem is as follows:
Theorem 1. Let N m⃗;t ¼ Mmt

∘ Tt ∘ � � � ∘ Mm1
∘ T1 be

a monitored channel indexed by measurement outcomes m⃗
and integers t > 0 with a strong purification transition. For
any p < pc, ϵ > 0, and any allowed pair of sequences
ða; bÞwith ta < tb, ac < a2, there exists anNϵ such that, for
any N ≥ Nϵ, there is an input state ρ0, a family of quantum-
error-correcting code spaces defined by the density oper-
ators ρm ∝ N m;taðρ0Þ form ∈ fðm1;…; mtaÞg, and a family
of high-fidelity recovery operations Rmta;t for all m and
ta < t ≤ tb with an average code rate and entanglement
fidelity

����
X
m

pmSðρmÞ=N − cðpÞ
���� < ϵ; ðA3Þ

X
m

pmFeðRmta;t ∘ N u
t;ta ; ρmÞ ≥ 1 − 2

ffiffiffi
ϵ

p
; ðA4Þ

respectively. Here, cðpÞ is the channel capacity density
of the unraveled channel N u

t ¼
P

m⃗N m⃗;t for ta ≤
t ≤ tb, pm ¼ Tr½Nm;taðρ0Þ� is the probability of
obtaining the code defined by ρm, and N u

t;t0 ¼P
m⃗ Mmt

∘ Tt ∘ � � � ∘ Mmt0þ1
∘ Tt0þ1.

Proof.—In the proof, we find it convenient to work
mostly with the trace-preserving unraveled channels N u

t
andN u

t;t0 . The proof begins from a similar line of argument
as given in Sec. IV for many-copy quantum error correc-
tion. We take N sufficiently large that jQta=N − cðpÞj < ϵ
and jQta −Qtb j < ϵ2. Now, let ρ0 be an input state
satisfying Icðρ0;N tbÞ ¼ Qtb . Let jψRSi be a purification
of ρ0 ¼

P
k λkjψk0ihψk0j. From the definition of monitored

channels, we can purify the unraveled channel N u
t as

UN u
t
jψRSij0i ¼

X
kl

ffiffiffiffiffiffiffi
pkl

p jkRijψklijli; ðA5Þ

Icðρ0;N u
t Þ ¼ SðρSÞ − SðρEÞ ¼

X
l

plSðρlÞ; ðA6Þ

ρl ¼
X
k

pkljψklihψklj=pl; ðA7Þ

where l ∈ fðm1;…; mtÞg indexes the measurement out-
comes,

ffiffiffiffiffiffiffi
pkl

p jψkli ¼
ffiffiffiffiffi
λk

p ðAljψk0iÞjli is a tensor product
of the state of the system Aljψk0i with the classical register
state jli used to record the measurement outcomes, pkl is
the joint probability of starting in state jψk0i and finding the
system in the support of ρl, and pl ¼ P

k pkl.
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Taking ρm ¼ N m;taðρ0Þ=pm, from Eq. (A5) and our
choice of input state, we can establish the bound on the
average code rate at time ta,

����
X
m

pm

N
SðρmÞ − cðpÞ

����
¼ jIcðρ0;N u

taÞ=N − cðpÞj
≤ maxðjQta=N − cðpÞj; jQtb=N − cðpÞjÞ < ϵ; ðA8Þ

where the second line follows from the fact that Ic is
monotonically decreasing under quantum operations (e.g.,
see Ref. [46]).
Now, consider the continued dynamics of the purifica-

tion jψmi ¼
P

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkm=pm

p jkRijψkmi of ρm under an iso-
metric embedding of N u

t;ta ,

UN u
t;ta
jψmij0i ¼

X
kl

ffiffiffiffiffiffiffiffiffiffi
pkml

pm

r
jkRijψkmlijli; ðA9Þ

where l ∈ fðmtaþ1;…; mtÞg. The mutual information
between the reference system and the environment for this
future evolution is given by

IðR∶EjmÞ ¼ SðρmÞ − Icðρm;N u
t;taÞ

¼ SðρmÞ −
X
l

pljmSðρmlÞ; ðA10Þ

where pljm ¼ pml=pm is the conditional Born probability
of measurement record l conditioned on the prior meas-
urement recordm and pml ¼ P

k pkml. The key step in the
proof is that the average mutual information is then given
by the decrease in coherent quantum information

IðR∶EjmÞ ¼
X
m

pmIðR∶EjmÞ

¼ Icðρ0;N u
taÞ − Icðρ0;N u

t Þ < ϵ2; ðA11Þ

where the bound follows because Qta;b is an upper or lower
bound on Icðρ0;N u

t Þ for all ta ≤ t ≤ tb and we take N
sufficiently large that jQta −Qtb j < ϵ2.
Since mutual information is non-negative, we can use a

Markov inequality to bound the probability that it is larger
than ϵ,

P½IðR∶EjmÞ > ϵ� ≤ IðR∶EjmÞ=ϵ < ϵ: ðA12Þ

When IðR∶EjmÞ < ϵ, this implies that the reduced density
matrix of the reference and environment is close to a
product state in the sense that

FðρREjm; ρRjm ⊗ ρEjmÞ ≥ 1 − 2
ffiffiffi
ϵ

p
: ðA13Þ

We now show how this bound can be used to construct a
high-fidelity recovery channel following Ref. [48]. For
completeness, we reproduce the full argument. First, we let
jΨSRjmi ¼

P
k λkjmjkRjmijϕkjmi be a purification ρm into

orthonormal states. Recall that Fðρ; σÞ is defined as the
maximum square overlap over all purifications of ρ and σ.
We fix a purification of ρREjm given by the state obtained
from the evolution of jΨSRjmi under the isometric embed-
ding UN t;ta

,

jΨRSEjmi ¼
X
kl

ffiffiffiffiffiffiffiffiffiffiffi
pkljm

p jkRjmijϕkljmijljmi; ðA14Þ

where jljmi is the state of the environment conditioned on
observing state jmi at time ta. Note that this case is a
different representation of the evolved state from Eq. (A9).
By definition, there exists some purification jΨ̂RSEjmi of
ρRjm ⊗ ρEjm that saturates the fidelity

FðρRE; ρR ⊗ ρEÞ ¼ jhΨ̂RSEjmjΨRSEjmij2: ðA15Þ

The state jΨ̂RSEjmi will have a Schmidt decomposition of
the form

jΨ̂RSEjmi ¼
X
kl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λkjmpljm

q
jkRjmijϕ̂kljmijljmi; ðA16Þ

with all states in the threefold tensor product orthonormal.
This purified state can be corrected back to the original
entangled state jΨSRjmi by a projective measurement onto

the support of ρljm, e.g., Pljm ¼ P
k jϕ̂kljmihϕ̂kljmj, fol-

lowed by an isometry

U†
tljm ¼

X
k

jϕkjmihϕ̂kljmj; ðA17Þ

which was also used in Eq. (28) of Sec. IV. Applying this
recovery operation, which acts only on S, to the reduced
density matrix ρRSjm ¼ TrE½jΨRSEjmihΨRSEjmj� results in a
corrected state of the system and reference

Rmta;tðρRSjmÞ ¼
X
l

U†
tljmPljmρRSjmPljmUtljm ¼ ρcRSjm:

Since the fidelity is monotonically increasing under quan-
tum operations [70], this result implies the bound on the
entanglement fidelity

FeðRmta;t ∘ N t;ta ; ρmÞ ¼ FðρcRSjm; jΨRSjmiÞ
≥ FðjΨ̂RSEjmi; jΨRSEjmiÞ
¼ FðρREjm; ρRjm ⊗ ρEjmÞ
≥ 1 − 2

ffiffiffi
ϵ

p
: ðA18Þ
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Using Eqs. (A12) and (A18), we can bound the average
entanglement fidelity as stated in the theorem. □

The theorem is nonconstructive for ρ0 and Rmta;t

(because of the assumption of channel capacity saturation
of ρ0 and the reliance on jϕ̂kmli, respectively) but otherwise
explicit. The theorem can be generalized to the case where
ρ0 does not saturate the channel capacity, but it has a strong
purification transition with respect to ρ0 [i.e., the coherent
quantum information Icðρ0;N tÞ converges to an extensive
value with time-independent subextensive corrections].
This generalization is useful in numerical studies or experi-
ments where capacity-achieving ensembles can be difficult
to find or initialize. As discussed in Sec. VIII, the existence
of this recovery operation implies that there is also an
explicit recovery operation expressed in terms of ρm and
N u

t;ta with similar fidelities [47].
In Sec. IV, we introduced a stronger condition that the

recovery map from tb to ta can be approximately decom-
posed into a time-local sequence of isometries acting on the
system. To avoid a large buildup in the error, we require that
the average entanglement fidelity for the recovery operation
at each time step satisfies F̄e > 1 − ϵ=ðtb − taÞ. We can see
how to satisfy this condition from the proof of Theorem 1.
In particular, in Eq. (A11), we can impose the condition
that jQta −Qtb j < ϵ4=16jtb − taj4, which ensures that
F̄e > 1 − ϵ=ðtb − taÞ. As a result, this decomposition is
satisfied when jQta −Qtb j decays to zero faster than 1=jtb −
taj4 in the thermodynamic limit. For the strong purification
transition in the random Clifford model, we found in
Sec. VI C that the difference in channel-averaged qua-
ntum capacity scales at late times t ≫ L as jĪmaxðtaÞ−
ĪmaxðtbÞj ∼ lnðtb=taÞ ≈ ðtb − taÞ=ta. Applying the
constraint jĪmaxðtaÞ − ĪmaxðtbÞj ≪ 1=jtb − taj4, we find that
the recovery operation can be decomposed into a time-local
unitary circuit for sequences ða; bÞ satisfying 1 < a2,
ta < tb, and ðtb − taÞ=t1=5a → 0 in the thermodynamic limit.

APPENDIX B: CHANNEL CAPACITY BOUND

In this Appendix, we prove that the coherent quantum
information of the quantum channel N t ¼

P
m⃗ Km⃗ρK

†
m⃗

defined in Eq. (29) is upper bounded by the average entropy
of the mixed state in any unraveling of the channel,

Icðρ;N tÞ ≤
X
m⃗

pm⃗Sðρm⃗Þ; ðB1Þ

where pm⃗ is the probability of a given quantum trajectory
and ρm⃗ ¼ Km⃗ρK

†
m⃗ is the density matrix for a single

trajectory. To prove this bound, we first purify the dynamics
to a unitary operation on a combined reference, system, and
environment, where the environment acts as a register to
record the quantum trajectories,

jψRS0E0 i ¼
X
m⃗;k

ffiffiffiffiffiffiffiffiffiffiffiffi
λkpkm⃗

p
jkRi ⊗ jψkm⃗i ⊗ jm⃗i; ðB2Þ

Km⃗jkSi ¼ ffiffiffiffiffiffiffiffi
pkm⃗

p jψkm⃗i: ðB3Þ

The coherent quantum information satisfies the identity

SðρSÞ − IcðρS;N tÞ ¼ SðρRÞ þ SðρE0 Þ − SðρRE0 Þ
¼ IðR∶E0Þ ¼ DðρRE0 jρR ⊗ ρE0 Þ;

where primes denote the reduced density matrix after
applying I ⊗ USE (note, ρR0 ¼ ρR), IðA∶BÞ is the mutual
information between subsystems A and B, and DðρjσÞ ¼
−Tr½ρðlog σ − log ρÞ� is the relative entropy. The relative
entropy is monotonically decreasing under the action of
quantum channels due to strong subadditivity of quantum
entropy [76]. Applying the dephasing channel to the
environment,

EðρEÞ ¼
X
m⃗

hm⃗jρEjm⃗ijm⃗ihm⃗j; ðB4Þ

results in the identity

SðρSÞ − IcðρS;N tÞ
¼ DðρRE0 jρR ⊗ ρE0 Þ ðB5Þ

≥ D½ðI ⊗ EÞðρRE0 ÞjρR ⊗ EðρE0 Þ� ðB6Þ

¼ SðρRÞ −
X
m⃗

pm⃗Sðρm⃗Þ: ðB7Þ

Since SðρSÞ ¼ SðρRÞ, this completes the proof.
For the unraveled channel N u

t (or unitary-dephasing
channels, more generally), there is no need to apply the
dephasing channel to the environment to arrive at the
identities in Eqs. (B5)–(B7) [80]. In this case, the additional
ancilla qubits ensure that each trajectory results in a
distinct, orthogonal state of the system. As a result, we
arrive at the equality Icðρ;N u

t Þ ¼
P

m⃗ pm⃗Sðρm⃗Þ.

APPENDIX C: STABILIZER FORMALISM

In this Appendix, we provide an overview of the basic
properties of stabilizer circuits. The Pauli group PN acting
on N qubits consists of tensor products of Pauli operators,

ilI ⊗ Z ⊗ X ⊗ Y ⊗ � � � ; ðC1Þ

which we abbreviate as ilZ2X3Y4 � � �, with a group
operation defined by the usual matrix multiplication. The
group is non-Abelian when accounting for the phase factors
il and has a total number of elements 4Nþ1. Given a
quantum state jψi on a d-dimensional Hilbert space, there
is an associated subgroup of the unitary group UðdÞ called
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a stabilizer group StabðjψiÞ defined as the set of unitaries
U ∈ UðdÞ such that Ujψi ¼ jψi. Here, we are interested in
the much more restricted set of stabilizer states, which are
equal to the set of states that are uniquely defined by their
stabilizer group when restricted to the Pauli group
SðjψiÞ ¼ StabðjψiÞ ∩ PN . More specifically, stabilizer
states jψi are defined by Abelian subgroups S ⊂ PN such
that −1 ∉ S, S has a minimal generating set of N linearly
independent Pauli group elements, and, for every g ∈ S,
gjψi ¼ jψi. Each such stabilizer group S has 2N elements.
It is a convenient fact that stabilizer states are in a one-to-

one correspondence with the set of states that can be
generated by acting on j0i⊗N with Clifford group circuits
[52]. The Clifford group for N qubits CN is a subgroup of
Uð2NÞ that has the defining property that each U ∈ CN
maps elements of the Pauli group to other elements of the
Pauli group, i.e., UPNU† ¼ PN . A direct consequence of
this fact is that Clifford group circuits map stabilizer states
to stabilizer states. The full Clifford group is equal to the set
of unitaries generated by HadamardH, phase P, and CNOT
gates

H ¼ iffiffiffi
2

p
�
1 1

1 −1

�
; P ¼

�
e−iπ=4 0

0 eiπ=4

�
;

UCNOTjs1; s2i ¼ js1; s1 ⊕ s2i;

where ⊕ is modulo-2 addition. Another important class of
operations that preserve stabilizer states includes measure-
ments of Hermitian Pauli operators. The set of quantum
circuits generated by Clifford group circuits and measure-
ments of Hermitian Pauli operators are known as stabilizer
circuits.
The Gottesman-Knill theorem states that, when stabilizer

circuits act on stabilizer states, an efficient classical
algorithm exists to simulate their quantum dynamics
[52]. The overall efficiency of this algorithm for a depth
t circuit with nmeasurements scales asO(ðtþ nÞN2)when
implemented following the approach detailed by Aaronson
and Gottesman [53]. In addition, partial traces, which map
pure stabilizer states to mixed stabilizer states, and entan-
glement of stabilizer states can also be efficiently computed
in a time OðN3Þ [54,55,99]. The mathematical structure
underlying these algorithms is an exact mapping between
the evolution of stabilizer states and efficient operations
over GFð2Þ2Nþ1 [81,100]. In this formalism, we map
elements of the Pauli group

ilI ⊗ Z ⊗ X ⊗ Y ⊗ � � � → (ð0; 0; 1; 0; 0; 1; 1; 1;…Þjl=2);

to a binary vector through the mapping I → ð0; 0Þ,
Z → ð1; 0Þ, X → ð0; 1Þ, and Y → ð1; 1Þ, paired with the
additional entry l=2 specifying the power of i out front.
The Pauli group operation amounts to modulo-2 addition of
the first 2N entries of this vector, while the last entry must

be updated in a way that preserves the commutation
relations of the Pauli group elements. More explicitly,
representing two elements of the Pauli group as

Pi ¼ (ðzi; xiÞjri); i ∈ f1; 2g; ðC2Þ

ðzi; xiÞ ¼ ðzi1; xi1;…; ziN; xiNÞ; ðC3Þ

we obtain

P1 þ P2 ¼ (ðz1 ⊕ z2; x1 ⊕ x2Þjr1 · r2); ðC4Þ

2r1 · r2 ¼
�
2r1 þ 2r2 þ

X
j

gðz1j; x1j; z2j; x2jÞ
�

mod 4;

ðC5Þ

where we denote the Pauli group operation by þ, and
gða; b; c; dÞ is a function that takes 4 bits as input
and outputs the power to which i is raised in the pro-
duct μabμcd ¼ igða;b;c;dÞμa⊕c;b⊕d, where μ00 ¼ I; μ01 ¼
X; μ10 ¼ Z, and μ11 ¼ Y,

gð0; 0; c; dÞ ¼ 0; gð1; 1; c; dÞ ¼ c − d;

gð1; 0; c; dÞ ¼ dð1 − 2cÞ; gð0; 1; c; dÞ ¼ cð2d − 1Þ:

This function encodes the single-site commutation relations
of the Pauli group. Given a generating set for a subgroup of
the Pauli group with M elements, as well as an additional
set of 2N −M linearly independent generators for the rest
of the Pauli group, we can store all this information as a
2N × ð2N þ 1Þ-dimensional matrix over GFð2Þ, called a
tableau representation for this subgroup. In Ref. [53],
explicit algorithms are presented that take advantage of
this tableau representation to evolve both pure and mixed
stabilizer states in polynomial time in the number of qubits,
gates, and measurements applied to the system.

APPENDIX D: MIXED STABILIZER STATES

In this Appendix, we introduce some basic properties of
mixed stabilizer states. If we define an Abelian subgroup
S ⊂ PN , such that −1 ∉ S, that is generated by M < N
elements, then the common eigenspaces of the elements of
S have dimension 2N−M. A mixed stabilizer state is a
normalized projector onto the þ1 eigenspaces of S:

ρ ¼ 1

2N

YM
i

ðI þ Z̄iÞ ¼
1

2N

X
g∈S

g; ðD1Þ

where Z̄i are a generating set for S. Associated to the set of
generators Z̄i are a set of flip operators X̄i that satisfy
½X̄i; X̄j� ¼ δij and X̄iZ̄j ¼ ð−1Þδij Z̄jX̄i. Given such a sta-
bilizer group, we can always extend the generating set ofM

DYNAMICAL PURIFICATION PHASE TRANSITION INDUCED … PHYS. REV. X 10, 041020 (2020)

041020-23



stabilizers Z̄i and associated flip operators X̄i to a complete
generating set for PN by finding an additional set of
2ðN −MÞ operators fZ̄Mþ1; X̄Mþ1;…; Z̄N; X̄Ng, such that
the whole generating set satisfies the usual Pauli algebra. If
we think of the stabilizer group S associated with the mixed
state as defining a stabilizer quantum-error-correcting code
[81], then these additional 2ðN −MÞ operators would be
referred to as logical operators in the code space. Here, the
code space just refers to the subspace of the Hilbert space
on which ρ acts trivially.
The combined unitary-projective measurement dynamics

applied to the completely mixed state drives the system to a
mixed stabilizer state ρt with a set of generators Z̄i. If we fix
a time t and initialize the system at t ¼ 0 in an arbitrary
state in any of the code spaces with generators f�Z̄ig, then
these states will each be mapped under the dynamics to a
unique state in the code space of ρt. As a result, all initial
states in the code space can be recovered using a state-
independent unitary operation (fixed by the measurement
record but dependent on the gates and measurement
locations) that is a product of single-site unitaries that
collectively flip the generators Z̄i back to their sign in the
initial state.

APPENDIX E: ENTANGLEMENT, ENTROPY,
AND MUTUAL INFORMATION OF

STABILIZER STATES

In this Appendix, we describe methods to compute
entropies of stabilizer states. The density matrix for a pure
stabilizer state has the explicit representation

ρ ¼ 1

2N

YN
i

ðI þ Z̄iÞ ¼
1

2N

X
g∈S

g; ðE1Þ

where fZ̄1;…; Z̄Ng is a generating set for S. For pure states,
the entanglement of a region A is simply the von Neumann
entropy of the reduced density matrix on A. From the
expression for ρ, we can see that

ρA ¼ TrAcρ ¼ 1

2jAj
X
g∈SA

g ¼ 1

2jAj
YrA
i

ðI þ Z̄iÞ; ðE2Þ

where SA is a subgroup of S with the defining property that
g is equal to the identity when restricted to Ac, i.e.,
IAc ⊗ TrAcg ¼ 2jAcjg, and fZ̄1;…; Z̄rAg is a generating
set for SA. From this expression, we can see that stabilizer
states have a completely degenerate entanglement spec-
trum, such that the von Neumann entropy is given by the
simple expression SðρAÞ ¼ −Tr½ρA log ρA� ¼ jAj − rA,
where rA is the number of elements in a minimal generating
set for SA. Thus, to compute the entanglement, it is
sufficient to find the order of SA. This task can be
accomplished by writing a reduced tableau representation

for ρ consisting of an N × 2N matrix over GFð2Þ, whose
rows are the binary vectors associated with fZ̄1;…; Z̄Ng.
By restricting this matrix to the columns corresponding to
Ac, we can determine rA by performing row reduction on
this N × 2jĀj matrix to put it into upper triangular form
[54]. Such a procedure will generate a linearly independent
set of r̄A stabilizers that act nontrivially on Ac. The total
stabilizer group S is generated by this set of stabilizers,
together with a generating set for SA, such that
N ¼ rA þ r̄A; thus, we arrive at the formula

SðρAÞ ¼ jAj − rA ¼ r̄A − jAcj; ðE3Þ

where rA and r̄A can be computed in time OðN3Þ using
Gaussian elimination.
Although the above algorithm can be applied to

compute the bipartite entanglement of a given partition
A ⊂ f1;…; Ng, there is a natural extension of this algo-
rithm that can be used to efficiently compute the bipartite
entanglement of any contiguous region for a fixed ordering
of sites, where contiguous is defined for periodic boundary
conditions with respect to the chosen ordering [28,55].
First, we introduce the notation of the left lðgÞ and right
rðgÞ end points of a stabilizer g, which are defined as the
minimal and maximal sites on which g acts nontrivially.
The algorithm proceeds by taking a tableau representation
for the generators of a stabilizer state with respect to the
chosen ordering and performing row reduction on the entire
N × 2N matrix. This procedure effectively operates on the
left end points of the stabilizers. In the second step, row
reduction is performed on the right end points, which aims
to put the matrix into lower triangular form but with an
added constraint that one always eliminates right end
points by combining the stabilizer with a “shorter” stabi-
lizer, where the length of a stabilizer g is defined as
dðgÞ ¼ rðgÞ − lðgÞ. This second round of row reduction
preserves the left end points of the stabilizer generators and
results in a tableau matrix in the clipped gauge, which is
defined by the condition that, for every site x, the stabilizer
generators satisfy

nðxÞ ¼ jfZ̄i∶lðZ̄iÞ ¼ xgj þ jfZ̄i∶rðZ̄iÞ ¼ xgj ¼ 2; ðE4Þ

with the sum rule
P

x nðxÞ ¼ 2N. The constraint in
Eq. (E4) is an immediate consequence of the above row
reduction procedure. Such a representation does not
uniquely fix the stabilizer generators, but it allows for an
efficient calculation of r̄A for any contiguous region in
terms of the positions of the left and right end points
[28,55],

SðρAÞ ¼
1

2
jfZ̄i∶lðZ̄iÞ ∈ A& rðZ̄iÞ ∈ Ac

or lðZ̄iÞ ∈ Ac & rðZ̄iÞ ∈ Agj: ðE5Þ
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As a result, by performing two steps of row reduction to put
the stabilizers into the clipped gauge, the entanglement can
be efficiently computed for all NðN − 1Þ þ 1 contiguous
subregions by simply checking end-point positions of the
stabilizers, which reduces the overhead of the entanglement
calculation by a factor of OðN2Þ for each subregion.
Entanglement of mixed states is generically difficult to

compute as it requires one to distinguish classical and
quantum correlations. However, entropies and mutual
information of mixed stabilizer states can be efficiently
computed using similar methods as described for pure
states. The entropy formula for a given subregion A has to
be updated because r̄A þ rA ¼ M (M is the number of
independent generators for the mixed stabilizer state),

SðρAÞ ¼ jAj − rA ¼ jAj −M þ r̄A; ðE6Þ

e.g., SðρÞ ¼ N −M. Similar to pure states, we can define a
clipped gauge for mixed states by performing left and then
right row reduction on the first M rows of the tableau
representation for ρ. For a given site x, instead of Eq. (E4),
we have the identity

nðxÞ ¼ jfZ̄i∶lðZ̄iÞ ¼ xgj þ jfZ̄i∶rðZ̄iÞ ¼ xgj ≤ 2;

with the sum rule
P

x nðxÞ ¼ 2M.
Another difference between pure and mixed states in this

representation is that it is not sufficient to know just the end
points of the stabilizers in the clipped gauge to compute the
entropy of contiguous subregions. For subregions A that do
not wrap around site N, there is a formula for the entropy:

SðρAÞ ¼ jAj − jfZ̄i∶lðZ̄iÞ ∈ A& rðZ̄iÞ ∈ Agj: ðE7Þ

However, for contiguous regions that wrap around N, there
is the possibility that the left and right end points are both in
A, but the stabilizer has support outside of A. In this case,
additional linear independence tests have to be performed
on Ac, which can take time OðN3Þ. As a result, for some
contiguous regions, there is no advantage to working in the
clipped gauge for the purposes of computing the subsystem
entropy of mixed states.

APPENDIX F: CONTIGUOUS CODE LENGTH

A mixed stabilizer state is a normalized projector onto a
quantum-error-correcting code space. A shorthand notation
to identify the power of a code is ½N; k; d�, which specifies
that the code is defined on N physical qubits, encodes k
logical qubits, and can correct any error that acts on up to
ðd − 1Þ=2 physical qubits, where d is the code distance.
The code distance is defined as the minimal weight
(number of nonidentity sites) of all possible Pauli group
elements that commute with the stabilizer group S but are
not contained in S.

Given an ½N; k; d� stabilizer code S with k > 0 and
a set of geometric partitions of the qubits A ¼ fAi∶Ai ⊂
f1;…; Ngg, we define a code distance with respect to A,

dA¼min
Ai

fNAi
∶∃g∈PN;gjAc

i
¼ I; ½g;S�¼0;g∉Sg; ðF1Þ

where PN is the Pauli group on N qubits and NA is the
number of elements in A. If no such Ai ∈ A exists, then we
define dA ¼ maxAi

NAi
. The code distance d ¼ dP, where

P is the set of all partitions of f1;…; Ng. In general,
computing the distance of an arbitrary stabilizer code is
expected to be exponentially hard in N.
For the stabilizer codes considered in Sec. VI, which are

generated by an underlying 1D random circuit, it is natural
to define the contiguous code length containing site x as
lx ≡ dAx

, where Ax is the set of all contiguous regions of
f1;…; Lg such that x ∈ Ai for every Ai ∈ Ax. We distin-
guish periodic and open boundary conditions by whether 1
and L are considered neighbors. The average contiguous
code length is defined as

l ¼ 1

L

X
x

lx: ðF2Þ

A closely related quantity called the linear code distance
lmin ¼ minx lx was introduced by Bravyi and Terhal in
Ref. [101]. For a given partition A, we can determine
whether there exists a logical Pauli group operator that lives
on A by performing Gaussian elimination on the tableau
representation of a generating set for the logical operators
restricted to Ac, which takes a time at most polynomial in L
[54]. Since the set of all contiguous regions of a 1D
geometry is polynomial in L, we can also compute the
average code length for S in a time polynomial in L. The
average contiguous code length is an upper bound on the
code distance l ≥ lmin ≥ d.
In Fig. 9, we show the optimal code-averaged hli for the

1þ 1-dimensional model studied in Sec. VI. We perform
the encoding step by starting from a completely mixed state
and running each circuit for a time t ¼ 4L. As a con-
vention, we define the code distance of an ½N; 0� code (i.e.,
a stabilizer state) as zero. With this convention, hli equals
the probability that the system is in a mixed state (and thus
defines a code) times the average contiguous code length of
those trajectories, which is why hli decays to zero in the
pure phase. Deep in the mixed phase ξ=L ≪ 1, hli scales
subextensively as hli ∼ La ða ¼ 1=3 − 1=2Þ over this
range of sizes, whereas in the critical region of the mixed
phase ξ=L ∼ 1, hli seems to scale as hli ∼ L. We also find
that the average linear code distance hlmini (not shown) has
the same scaling as the hli throughout the mixed phase.
The extensive scaling of hliwith system size near pc in this
1þ 1-dimensional model gives us additional evidence in
support of the bound on pc ≤ 0.1893 for the entanglement
transition for qubits in 1þ 1 dimensions [49].
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19, 2955 (2018).

[93] A. Gilyén, S. Lloyd, I. Marvian, Y. Quek, and M.M.
Wilde, Quantum Algorithm for Petz Recovery Channels
and Pretty Good Measurements, arXiv:2006.16924.

[94] J. Preskill, Quantum Computing in the NISQ Era and
Beyond, Quantum 2, 79 (2018).

[95] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A.
Buell et al., Quantum Supremacy Using a Programmable
Superconducting Processor, Nature (London) 574, 505
(2019).

[96] D. Aharonov, Quantum to Classical Phase Transition in
Noisy Quantum Computers, Phys. Rev. A 62, 062311
(2000).

[97] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P.
Maunz, L.-M. Duan, and J. Kim, Large-Scale Modular
Quantum-Computer Architecture with Atomic Memory
and Photonic Interconnects, Phys. Rev. A 89, 022317
(2014).

[98] H. J. Kimble, The Quantum Internet, Nature (London) 453,
1023 (2008).

[99] D. Fattal, T. S. Cubitt, Y. Yamamoto, S. Bravyi, and I. L.
Chuang, Entanglement in the Stabilizer Formalism, arXiv:
quant-ph/0406168.

[100] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.
Sloane, Quantum Error Correction and Orthogonal
Geometry, Phys. Rev. Lett. 78, 405 (1997).

[101] S. Bravyi and B. Terhal, A No-Go Theorem for a
Two-Dimensional Self-Correcting Quantum Memory
Based on Stabilizer Codes, New J. Phys. 11, 043029
(2009).

MICHAEL J. GULLANS and DAVID A. HUSE PHYS. REV. X 10, 041020 (2020)

041020-28

https://doi.org/10.1103/PhysRevB.101.104302
https://arXiv.org/abs/quant-ph/9606012
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1142/S1230161208000043
https://doi.org/10.1142/S1230161208000043
https://arXiv.org/abs/1210.6644
https://arXiv.org/abs/1312.7646
https://arXiv.org/abs/2006.07304
https://doi.org/10.1063/1.1666274
https://doi.org/10.1063/1.1666274
https://doi.org/10.1103/PhysRevA.54.2614
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevB.101.060301
https://arXiv.org/abs/2003.12721
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.123.110601
https://arXiv.org/abs/2004.06736
https://doi.org/10.1103/PhysRevB.101.235104
https://doi.org/10.1088/1751-8113/46/49/494001
https://arXiv.org/abs/1310.2984
https://doi.org/10.1007/s00023-018-0716-0
https://doi.org/10.1007/s00023-018-0716-0
https://arXiv.org/abs/2006.16924
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevA.62.062311
https://doi.org/10.1103/PhysRevA.62.062311
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://arXiv.org/abs/quant-ph/0406168
https://arXiv.org/abs/quant-ph/0406168
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1088/1367-2630/11/4/043029
https://doi.org/10.1088/1367-2630/11/4/043029

