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In the past decades, it was recognized that quantum chaos, which is essential for the emergence of
statistical mechanics and thermodynamics, manifests itself in the effective description of the eigenstates of
chaotic Hamiltonians through random matrix ensembles and the eigenstate thermalization hypothesis.
Standard measures of chaos in quantum many-body systems are level statistics and the spectral form factor.
In this work, we show that the norm of the adiabatic gauge potential, the generator of adiabatic
deformations between eigenstates, serves as a much more sensitive measure of quantum chaos. We are able
to detect transitions from integrable to chaotic behavior at perturbation strengths orders of magnitude
smaller than those required for standard measures. Using this alternative probe in two generic classes of
spin chains, we show that the chaotic threshold decreases exponentially with system size and that one can
immediately detect integrability-breaking (chaotic) perturbations by analyzing infinitesimal perturbations
even at the integrable point. In some cases, small integrability breaking is shown to lead to anomalously
slow relaxation of the system, exponentially long in system size.
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I. INTRODUCTION

Finding signatures of chaos in the quantum world has
been a long-standing puzzle [1–3]. In the past few years,
exciting progress has been made on characterizing the
effects of chaos on dynamical properties of quantum many-
body systems; see Fig. 1 [4–11]. Classical chaos is usually
described in terms of an exponential sensitivity of trajec-
tories to initial conditions [12]. However, the quantum
world precludes any definition of chaos in terms of physical
trajectories due to the Heisenberg uncertainty principle.
Alternatively, chaos can be defined in terms of the absence
of integrability. Classical Liouville-Arnold integrability is
formulated in terms of independent Poisson-commuting
integrals of motion. Again, although there have been many
attempts to characterize quantum integrability in a similar
way, no such unique definition exists [13–16].
In the past two decades, random matrix theory (RMT)

[17–19] has shown outstanding success in the understanding
of quantum chaos. Following the work of Wigner [20,21],

Bohigas, Giannoni, and Schmit [22] conjecture that the
energy-level statistics of all quantum systemswhose classical
analogs are chaotic should show level repulsion and belong to
one of three universal classes depending upon their sym-
metry: the Gaussian orthogonal ensemble, the Gaussian
unitary ensemble, or the Gaussian symplectic ensemble.
On the other hand, according to the Berry-Tabor conjecture
]23 ], integrable systems have uncorrelated energy levels and

usually exhibit Poissonian level spacing statistics.These ideas
were later extended to generic quantum systems and tested
numerically under the general framework of the eigenstate
thermalization hypothesis (ETH) [24–29]. By now, the
emergence of the random matrix behavior of quantum
eigenstates is an accepted definition of quantum chaos.
Numerically, two additional steps are required before

one can accurately compare the statistical properties (e.g.,
through level statistics or the spectral form factor [30,31])
of a particular quantum system with the predictions of
RMT: (i) remove any symmetries and (ii) rescale the
spectrum, setting the local mean level spacing to unity
(also called unfolding the spectrum). First, if symmetries
are not removed, energy levels in different symmetry
sectors do not have any correlations, so that spectra of
chaotic systems can show Poissonian distributions [32,33].
However, finding all symmetries of a many-body
Hamiltonian is computationally hard without any physical
intuition, since this task effectively involves searching for
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all possible (local) operators that commute with the
Hamiltonian. Second, there are various methods to unfold
the spectrum, and it is known that statistics, especially ones
measuring long-range correlations, can be sensitive to the
adopted unfolding procedure [34]. Moreover, the procedure
can also exhibit finite-size effects. In light of these issues, it
is advisable rather to use the ratio of two consecutive level
spacings [35,36] or survival probability (see Refs. [37,38]).
Here, we propose an alternative tool to detect chaos in

quantum systems, based on the rate of deformations of
eigenstates under infinitesimal perturbations. Mathe-
matically, the distance between nearby eigenstates (also
known as the Fubini-Study metric [39–42]) can be
expressed as the Frobenius norm of the so-called adiabatic
gauge potential (AGP) [39,43–45], which is exactly the
operator that generates such deformations. It is straightfor-
ward to show that this norm should scale exponentially
with the system size in chaotic systems satisfying the ETH
[39]. In this sense, quantum chaos manifests itself through
an exponential sensitivity of the eigenstates to infinitesimal
perturbations, which can be viewed as an analog to classical
chaos, reflected in the exponential sensitivity of trajectories
to such perturbations. Moreover, unlike standard probes
of RMT such as the spectral form factor (see, e.g.,
Ref. [46]) or the closely related survival probability (see
Refs. [37,38]), as well as level statistics, which depend only
on the eigenvalues of the Hamiltonian, the AGP norm is
sensitive to both the level spacings and the specific kind of
adiabatic deformation (perturbation).
We find that the norm of the AGP shows a remarkably

different, and extremely sensitive, scaling with system size
for integrable and chaotic systems: polynomial versus
exponential. In our method, we do not need to remove
any symmetries before computing the AGP norm needed in
the analysis of the level spacing distributions and do not
need to average over different Hamiltonians, which is
necessary to analyze the (non-self-averaging) spectral form
factor. We show that one can detect chaos through the
sharp crossover between the polynomial and exponential
scaling of the norm. The sensitivity of this norm to chaotic
perturbations is orders of magnitude greater than that of the
aforementioned methods. Using this approach, we find
several, previously unexpected, results for a particular but
fairly generic integrable XXZ spin chain with additional
small perturbations: (i) The strength of the integrability-
breaking perturbation scales exponentially down with the
system size, much faster than in previous estimates [47,48];
(ii) integrability-breaking deformations immediately lead to
an exponential scaling of the norm of the AGP, showing
that chaotic perturbations can be already detected in the
integrable regimes; and (iii) in the presence of small
integrability-breaking terms, the system can exhibit expo-
nentially slow relaxation dynamics, which is similar to the
slow dynamics observed in some classical nearly integrable
systems like the Fermi-Pasta-Ulam-Tsingou (FPUT) chain
[49–51]. We also find that such relaxation dynamics are

very different for observables conjugate [see Eq. (2) below]
to integrable and chaotic directions (perturbations) of the
Hamiltonian. We find similar results for an Ising model,
where the integrability is broken by introducing a longi-
tudinal field.
The connection with relaxation is not surprising, since

one representation of the AGP is in terms of the long-time
evolution of a local operator conjugate to the coupling.
Hence, our results relate to recent studies of information
propagation through operator growth in quantum many-
body systems [52–54], where chaotic and integrable
systems are again expected to exhibit qualitatively different
behavior (e.g., in operator entanglement [55,56] and
Lanczos coefficients [57,58]). Whereas most of the pre-
vious works focus mainly on short-time effects, here we
effectively focus on dynamics and operator growth at times
that are exponentially long in the system size (Fig. 1).

II. ADIABATIC GAUGE POTENTIAL

Before proceeding, let us define the AGP and discuss
some of its key properties. Given a Hamiltonian HðλÞ
depending on a parameter λ, the adiabatic evolution of its
eigenstates as we vary this parameter is generated by the
AGP as (in units with ℏ ¼ 1)

AλjnðλÞi ¼ i∂λjnðλÞi; HðλÞjnðλÞi ¼ EnðλÞjnðλÞi: ð1Þ

Using the Hellmann-Feynman theorem, it is easy to see
that the matrix elements of the AGP between such
eigenstates are given by

hmjAλjni ¼ −
i

ωmn
hmj∂λHjni; ð2Þ

FIG. 1. Signatures of chaos. Quantum chaos manifests itself in
a vast range of different phenomena, each relevant up to a
particular system-size-dependent timescale. At the earliest times,
where dynamics are limited by the local bandwidth, one can see
the onset of chaos. In systems without spatial locality, this limit
could lead to fast scrambling, allowing one to identify a
Lyapunov exponent. Systems with spatial locality are further
characterized by an additional, so-called, butterfly velocity.
While this ballistic propagation ends at times OðLÞ, diffusive
dynamics continues up to the Thouless time OðL2Þ. All local
dynamics has now come to a stop; nonetheless, operators keep
spreading over operator space, becoming increasingly more
complex. This process continues for exponentially long times,
stopping only at the Heisenberg time exp½SðLÞ�.
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where ωmn ¼ EmðλÞ − EnðλÞ, ∂λH is the operator conju-
gate to the coupling λ, and we make the dependence on λ
implicit. The diagonal elements of Aλ can be chosen
arbitrarily due to the gauge freedom in defining the phases
of eigenstates. A convenient choice consists of setting all
diagonal elements equal to zero. For simplicity, we assume
there are no degeneracies in the spectrum, but, as will be
clear shortly, this assumption is not necessary and does not
affect any of the results below. We define the L2

(Frobenius) norm, also called the Hilbert–Schmidt norm,
of this operator as

jjAλjj2 ¼
1

D

X
n

X
m≠n

jhnjAλjmij2; ð3Þ

where D is the dimension of the Hilbert space.
This expression should scale exponentially with the

system size in chaotic systems satisfying the ETH:
jjAλjj2 ∼ exp½S�, where S is the entropy of the system
[39]. Within the ETH, the off-diagonal matrix elements
of local operators, including ∂λH, scale as hmj∂λHjni ∝
exp½−S=2� [25,28], while the minimum energy gap
between states, ωmn, scales as exp ½−S�. The scaling of
individual matrix elements is already explored in the
literature to study the crossover between chaotic and
nonergodic behavior, e.g., in the context of disordered
systems [59,60] and integrability breaking [61,62]; see the
Appendix G. As we demonstrate, the exponential scaling of
the norm of the AGP can be used to detect the emergence of
chaotic behavior in the system with tremendous (exponen-
tial) precision.
However, Eq. (2) is not particularly convenient: The

norm of the exact AGP can be dominated by the smallest
energy difference between eigenstates, and, as such, it is
highly unstable and difficult to analyze, especially close to
the ergodicity transition. Accidental degeneracies in the
spectrum that are lifted by ∂λH also cause the norm to
formally be infinite. To resolve this issue, it is convenient to
instead define a “regularized” AGP as follows:

hmjAλðμÞjni ¼ −i
ωmn

ω2
mn þ μ2

hmj∂λHjni; ð4Þ

where μ is a small energy cutoff. For the sake of brevity, we
drop the argument μ, and, unless specified otherwise, Aλ

refers to the regularized AGP. This change has a clear
physical intuition: Instead of considering transitions (matrix
elements) between individual eigenstates, we now consider
only transitions between energy shells with width μ. For
eigenstates with jωmnj ≫ μ, this process reproduces the
exact AGP, whereas in the limit jωmnj ≪ μ, the AGP no
longer diverges but reduces to a constant. Alternatively,
within the operator growth representation [see Eq. (10)
below], μ−1 has the interpretation of a cutoff time.
Numerically, this regularization has the immediate advantage

that it gets rid of any problem with (near-)divergences. Note
that μ does not need to be system-size independent for this
regularization. Interestingly, as long as μ ∝ exp½−S�, the
norm of the AGP within chaotic systems should also remain
proportional to exp½S�. We can use this flexibility in defining
μ to our advantage, choosing it to be parametrically larger
than the level spacing to eliminate any effect of accidental
degeneracies but still exponentially small to minimize the
deviation from the exact AGP. We find that choosing
μðLÞ ∝ L exp½−SðLÞ�, where L is the system size, is the
most convenient choice (see Appendix A).
From Eqs. (3) and (4), the norm of the regularized AGP

reads

jjAλjj2 ¼
1

D

X
n

X
m≠n

ω2
mn

ðω2
nm þ μ2Þ2 jhmj∂λHjnij2 ð5Þ

¼
Z

∞

−∞
dω

ω2

ðω2 þ μ2Þ2 jfλðωÞj
2; ð6Þ

where in the second equation we replace the summation
with an integration over the energy difference ωmn ¼
EmðλÞ − EnðλÞ and also define the response function

jfλðωÞj2 ¼
1

D

X
n

X
m≠n

jhnj∂λHjmij2δðωnm − ωÞ

¼ 1

D

X
n

Z
∞

−∞

dt
4π

eiωthnjf∂λHðtÞ; ∂λHð0Þgjnic;

ð7Þ

where f� � �g stands for the anticommutator and the connected
correlation function is defined as hnj∂λHðtÞ∂λHð0Þjnic ¼
hnj∂λHðtÞ∂λHð0Þjni − hnj∂λHðtÞjnihnj∂λHð0Þjni. For-
mally, this function represents an average over eigenstates
n of the sumof the squares of the off-diagonalmatrix elements
jhnj∂λHjmij2 with a fixed energy differenceωmn ¼ ω, which
can also be obtained as the Fourier transform of the nonequal
time correlation function of ∂λH. Within the ETH ansatz, this
function exactly coincides with the (averaged over eigen-
states) square of the function fλðωÞ introduced by Srednicki
[25], according to

hmj∂λHjni ¼ fλðω; ĒÞe−SðĒÞ=2σmn; ð8Þ

ω ¼ Em − En; Ē ¼ ðEn þ EmÞ=2; ð9Þ

with σnm a random variablewith zeromean and unit variance.
Recently, it was shown that the function jfλðωÞj2 remains
well defined and smooth in generic integrable systems
[61,63,64].
Alternatively, it is convenient to rewrite the regularized

AGP as a time integral [65–67]:
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Aλ ¼ −
1

2

Z
∞

−∞
dt sgnðtÞe−μjtjð∂λHÞðtÞ; ð10Þ

where sgnðtÞ is the sign function and

ð∂λHÞðtÞ ¼ eiHtð∂λHÞe−iHt ð11Þ

is the operator conjugate to the coupling λ in the
Heisenberg representation. The exponential factor
exp½−μjtj� can be seen as a particular choice of a filter
function in the context of quasiadiabatic continuation
[68–70]. Notably, Eq. (10) remains valid for classical
systems [65,66], and, therefore, the scaling of the AGP
norm can be used to detect classical chaos, which we leave
for future work.
Furthermore, Eq. (10) makes clear that the inverse of the

parameter μ plays the role of a cutoff time, limiting the
growth of ð∂λHÞðtÞ in the operator space. Note that this
time is much longer than the timescales generally studied in
the literature (e.g., the timescale characterizing the ballistic
propagation of information tLR ¼ L=vLR, where vLR is the
Lieb-Robinson velocity and L is the system size) [52–54].
One of the outcomes of our work is that an exponential
sensitivity to detecting the onset of chaos requires access to
exponentially long timescales (Fig. 1).

III. NUMERICAL RESULTS

We can now compare with results for the AGP in
integrable or nonergodic models. Specifically, we move
to the analysis of the norm of the regularized AGP for a
specific integrable XXZ model with open boundary con-
ditions [71–75], whose Hamiltonian is given below:

HXXZ ¼
XL−1
i¼1

ðσxiþ1σ
x
i þ σyiþ1σ

y
i Þ þ Δ

XL−1
i¼1

σziþ1σ
z
i : ð12Þ

We now consider the effects of various integrability-
breaking terms. Although the thermodynamics of the above
model can be solved exactly using the Bethe ansatz
[71–75], we still do not have access to matrix elements
of general local operators hnj∂λHjmi, and the exact AGP
remains out of reach even in the integrable limit.
Consequently, there are also no results on the scaling of
the AGP with increasing system size.
For reference, we also analyze an Ising model in the

presence of a longitudinal field whose Hamiltonian is given
below:

HIsing ¼
XL−1
i¼1

σziþ1σ
z
i þ hz

XL
i¼1

σzi þ hx
XL
i¼1

σxi ; ð13Þ

where open boundary conditions are chosen for the chaotic
Ising model. This model has a trivially integrable limit at
zero longitudinal field hz ¼ 0, which maps to a system

of free fermions [76]. In this noninteracting (free) limit,
the AGP can be computed analytically [39,77] (see
Appendix B). In the presence of the longitudinal field,
this model shows a Wigner-Dyson-type distribution of the
energy-level spacings, which is particularly pronounced at
the parameters hx ¼ ð ffiffiffi

5
p þ 5Þ=8 and hz ¼ ð ffiffiffi

5
p þ 1Þ=4

[78]. We use these values when computing the AGP in
the chaotic regime.
In Fig. 2, we show the AGP norm scaled by the system

size jjAλjj2=L [79] for the interacting XXZ model and the
Ising model at both the chaotic and noninteracting points.
Figure 2 clearly shows the remarkably different scalings
with system size L for chaotic, integrable, and free models.
For chaotic models, the scaled AGP norm shows the
exponential scaling expected from the ETH. For the free
model, the scaled norm is system-size independent up to
exponentially small corrections away from the critical point
(see Appendix B). For the integrable XXZ model, the
scaled AGP norm shows a nontrivial polynomial scaling:
jjAλjj2=L ∝ Lβ. We find that the exponent β is nonuniver-
sal and depends on the choice of the anisotropy Δ (see
Appendix D). We choose λ ¼ hx for both the integrable and
nonintegrable Ising models and λ ¼ Δ for the XXZ model.
While the exponential scaling of the AGP norm in the

chaotic regime and the constant AGP norm in the free
model are expected, the polynomial scaling of this norm of
the XXZ integrable model is very interesting and leads to

FIG. 2. AGP scaling. The rescaled norm jjAλjj2=L is presented
as a function of the system size for the chaotic Ising model
(yellow triangles), the integrable interacting XXZ model (blue
squares), and the integrable noninteracting Ising model (red dots).
The data corresponding to the chaotic Ising and integrable XXZ
models are fitted to an exponential and a linear function,
respectively (black lines). For the Ising models we set λ ¼ hx,
and for the XXZ model we set λ ¼ Δ. Inset: Rescaled AGP norm
for the free and interacting integrable models on a linear graph.
Parameters: hx ¼ 0.8 for the free model, Δ ¼ 1.1 for the
integrable model, and hx ¼ ð ffiffiffi

5
p þ 5Þ=8 and hz ¼ ð ffiffiffi

5
p þ 1Þ=4

for the chaotic model. jjAchaoticjj2 ∼ e0.9L and jjAintjj2 ¼
0.09L − 0.56.
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nontrivial conclusions. Recently, LeBlond et al. [61] have
shown that the matrix elements of local operators in this
integrable model are not sparse (as compared to the matrix
elements of noninteracting integrable models). The latter
implies that Eq. (6) for the AGP norm still applies, where
jfλðωÞj2 can also be found from the Fourier transform of
the symmetric correlation function (see Appendix C). Since
we choose μ to be exponentially small in the system size
and jjAλjj2 is polynomially (not exponentially) large, the
function fλðωÞ must vanish as ω → 0. This behavior is to
be contrasted with chaotic systems, where at small ω this
function saturates at a constant value, in agreement with the
random matrix theory [28].

IV. INTEGRABILITY BREAKING

Having established the scaling of the AGP norm in three
different regimes, we move to the analysis of integrability
breaking by small perturbations and focus on a more
generic XXZ model. As an integrability-breaking term,
we choose a magnetic field coupled to a single spin in the
middle of the chain, acting as a single-site defect:

V ¼ σz⌈ðLþ1Þ=2⌉; ð14Þ

where ⌈ðLþ 1Þ=2⌉ stands for the smallest integer greater
than or equal to ðLþ 1Þ=2. Then, we analyze the AGP for
the total Hamiltonian

H ¼ HXXZ þ ϵdV; ð15Þ

as a function of the integrability-breaking parameter ϵd.
Interestingly, in Ref. [80], it is argued based on the same
model that even a single-site defect is sufficient to induce
chaos in the thermodynamic limit. In Appendix E, we
analyze an extensive integrability-breaking perturbation by
considering H ¼ HXXZ þ Δ2V with V ¼ P

i σ
z
iþ2σ

z
i and

find the results to be consistent. The similarity between the
effects of local and global perturbations on spectral proper-
ties is also found in Ref. [81].
A challenging question is how quickly chaos emerges

when a nonergodic or integrable system is subjected
to an integrability-breaking perturbation. In classical
systems with few degrees of freedom, it is known from
Kolmogorov-Arnold-Moser theory that integrable systems
are stable against small perturbations [82–84]. It is widely
believed that quantum chaos is generally induced by
infinitesimal perturbations in the thermodynamic limit
[47,48,85,86], with the potential exception of many-body
localization [87,88], although the precise scaling of the
critical perturbation strength with the system size remains
an open question. A standard limitation of numerical
approaches (using, e.g., level statistics or spectral form
factor) addressing this question is the small system sizes

amenable to simulations, where it is possible to reliably
extract the data.
In Fig. 3(a), we show the scaling of the norm of the AGP

as a function of the system size for different perturbation
strengths ϵd. We choose the zero magnetization subspace of
the XXZ chain with the number of spins up N↑ ¼ bL=2c,
where bL=2c stands for the largest integer less than or equal
to L=2, and for the direction of the AGP we choose λ ¼ Δ,
i.e., as in Fig. 2. For the cutoff, we choose μ ¼ LD−1

0 ,
where D0 is the dimension of zero magnetization sector.
From the figure, we clearly see a sharp crossover in the
scaling of the norm of the AGP as a function of the system
size from the integrable power law behavior to the chaotic
exponential behavior. The straight lines are obtained by a
least squares fit, with the slope extracted for the largest ϵd
and then used for other perturbations. After the best fitting
parameters are found, the critical system sizes are obtained
for a particular defect energy at which the integrable
(polynomial) and chaotic (exponential) curves intersect.
These values are shown in the inset in Fig. 3(a), showing a
clear exponential scaling of the critical perturbation
strength with the system size. Interestingly, the slope of
the exponential scaling β ≈ 1.28 is almost twice the slope
predicted by the ETH, β ¼ logð2Þ ≈ 0.69. Notably, the
slope of 2 logð2Þ is the largest possible growth rate of the
AGP norm (see Appendix C). In the next section, we return
to this point and relate it to the emergence of relaxation
times that are exponentially long in system size.
Consistent results are obtained for the Ising model (13),

where one can consider breaking the integrability of the
transverse field Ising model (hz ¼ 0) by introducing a small
nonzero hz field, while probing the integrable direction
λ ¼ hx. The results are shown in Fig. 3(b). As in the XXZ
case, we observe a sharp crossover from the unperturbed
scaling of the AGP norm (see Fig. 2) to exponential scaling
with an exponent that exceeds the ETH expectation, once
again having implications on the long time relaxation of the
system.
To contrast the scaling of the AGP norm with more

traditional approaches in Fig. 4, we show the mean ratio of
energy-level statistics as a function of the defect energy for
system size L ¼ 16. Given subsequent energy-level spac-
ings sn ¼ Enþ1 − En, this ratio is defined as

rn ¼
minðsn; snþ1Þ
maxðsn; snþ1Þ

: ð16Þ

For nonergodic systems and Poissonian level statistics
hri ≈ 0.386, whereas for chaotic systems and Wigner-
Dyson statistics hri ≈ 0.536. In this model, the average
ratio hri shows the crossover from nonergodic to ergodic
behavior at ϵ�d ∼ 0.1 [89]. This crossover value of ϵd has a
very weak dependence on the system size. In comparison,
for the same system size L ¼ 16, the AGP norm shows a
clear crossover to chaos for a much smaller ϵ�d ∼ 10−3 [see
Fig. 3(a)]. For larger system sizes, the gap between the
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chaos thresholds extracted by these two methods becomes
even larger. Moreover, we also estimate the critical per-
turbation strength using the spectral form factor for the
same system size L ¼ 16. Since this estimation generally
does not self-average [90,91], we add disorder to the zz
coupling in the Hamiltonian [Eq. (15)], which reduces the
sensitivity of this probe to detect chaos. From the spectral
form factor, we find ϵ�d ∼ 0.1, a value where the level
statistics is roughly halfway between Poisson and Wigner-
Dyson (see Fig. 4). Such a correspondence is also observed
for disordered models in Ref. [46].

We believe that the reason that the AGP norm is so much
more sensitive is that it effectively detects the change in the
differential of the norm with the system size. The absolute
value of the AGP norm at the threshold is still much closer
to the integrable value than to the chaotic one. Such a
differential is much harder to detect using other measures,
e.g., the level spacing ratio, because this crossover is much
smoother, and it is harder to define a sharp threshold.
In Fig. 5, we show similar results, now choosing to

deform the Hamiltonian in the direction of the integrability-
breaking operator itself, i.e., λ ¼ ϵd for the XXZ chain and
λ ¼ hz for the Ising chain. We choose to work in the full
Hilbert space with dimension D ¼ 2L. We find that the
AGP norm shows exponential scaling even when ϵd ¼ 0,

(a)

(b)

FIG. 3. Integrability breaking. The rescaled AGP norm
jjAλjj2=L of (a) the XXZ chain with λ ¼ Δ and (b) the Ising
chain with λ ¼ hx. Both models show a sharp crossover from
polynomial to exponential scaling with system size, even for very
small integrability-breaking perturbation strengths. With decreas-
ing perturbation strength, the system size where this crossover
happens increases. Straight lines are the exponential fits with
jjAλjj2=L ∼ eβL, where β ¼ 1.28 for the XXZ and β ¼ 1.58 for
the Ising model. The insets show the scaling of the crossover
point, i.e., the dependence of the integrability-breaking pertur-
bation on system size. The critical perturbation strength scales
exponentially with system size, with ϵ�d ∼ e−0.8L for the XXZ
chain and h�z ∼ e−0.9L for the Ising chain. Parameters: (a) Δ ¼ 1.1
and (b) hx ¼ 0.75.

FIG. 4. Energy-level statistics. Mean ratio of energy-level
spacings hri as a function of defect energy ϵd for an XXZ chain
of length L ¼ 16 at anisotropy Δ ¼ 1.1. The arrow indicates the
value of the defect energy where chaos can be detected (for
L ¼ 16) using the exponential scaling of the AGP norm.

FIG. 5. Integrability-breaking deformation at the integrable
point. The AGP norm jjAλjj2 shows an exponential scaling at
the integrable point for the XXZ chain (squares) with λ ¼ ϵd and
the Ising chain (circles) with λ ¼ hz. The black lines correspond
to exponential fits, i.e., jjAλjj2 ∼ eβL, where β ≈ logð2Þ. XXZ
parameters: Δ ¼ 1.1 and ϵd ¼ 0. Ising parameters: hx ¼ 0.75
and hz ¼ 0.
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i.e., when the Hamiltonian is integrable. We find a good
fit to the exponential scaling jjAλjj2 ∼ eβL, with now
β ≈ logð2Þ. Again, we confirm that the results remain
the same if we use an extensive integrability-breaking term
instead (see Appendix F).

V. LONG RELAXATION TIMES

We already mentioned a very peculiar fact following
from Fig. 3: Namely, instead of the perhaps expected
crossover of the integrable polynomial scaling of the AGP
norm to the ETH exponential scaling with the slope log(2),
the AGP crosses over to the exponential scaling regime
with the slope β ¼ 1.28, which is almost twice as large as
the slope predicted by the ETH, β ¼ logð2Þ ≈ 0.69.
Combining this result with Eq. (6), which we highlight
works in both integrable and nonintegrable regimes, we
conclude that at small ω the function jfλðωÞj2 should scale
exponentially with the system size. This conclusion implies
that the system must have exponentially long relaxation
times, which are known to exist in classical chaotic systems
like the FPUT chain [49–51]. Although we cannot rule out
the eventual relaxation to the ETH value for system sizes
greater than those we study, our results here suggest that,
while an exponentially small perturbation is sufficient to
induce chaos in the system, it takes an exponentially long
time for the system to relax to the steady state. In
Appendix E, we show that a similar behavior persists if
we break the integrability by a small extensive perturbation,
here chosen as the second-nearest-neighbor Ising inter-
actions. We find the same slope of β ≈ 1.28, ruling out that
this scaling is induced by the ultralocal nature of the
perturbation in Fig. 3(a). As the defect energy is increased
further to large values (in particular, ϵd ∼ 1), we find that
the slope of the AGP norm’s exponential growth reduces
again to the ETH value of β ≈ logð2Þ (see Appendix F).
To make the connection between the AGP norm and the

relaxation time more explicit, let us observe that from
Eq. (6) for sufficiently small μ one can make the following
estimate:

jjAλjj2 ∼
jfλðμÞj2

μ
: ð17Þ

For integrable directions λ (e.g., λ ¼ Δ for the XXZ model)
and L > L�, where the AGP norm has exponential scaling,
the norm becomes

jjAλjj2 ∼ CeβðL−L�Þ; ð18Þ

where C roughly is the value of the unperturbed AGP norm
at L�. Recall that we observe a scaling of the critical
perturbation strength like ϵd ∼ e−αL

�
, such that one finds

jfλðμÞj2 ∼ CμeβðL−L�Þ ∼ Cϵηde
κL; ð19Þ

where η ¼ β=α, κ ¼ β − logð2Þ, and we neglect all poly-
nomial factors in system size. For the XXZ model, the
exponents are η ≈ 1.6 and κ ≈ 0.85 logð2Þ (see the caption
of Fig. 3). Because jfλðωÞj2 is the Fourier transform of the
two-point correlation function of ∂λH [see Eq. (8)], as
ω → 0, it is proportional to the relaxation time of the
system. Combining these considerations, we see that for the
XXZ model we have

τ ∼ ϵηde
κL; ð20Þ

with both κ and η of Oð1Þ. Similarly, for the Ising model,
τ ∼ hηzeκL, where η ≈ 1.8 and κ ≈ 1.28 logð2Þ (see the
caption of Fig. 3). We see that the relaxation time increases
exponentially with the system size. For large system sizes,
it can saturate at some L-independent value, which should
diverge as ϵd → 0. This result would reflect the crossover
of the scaling of the AGP norm to the ETH result:
jjAλjj2 ∝ exp½SðLÞ� ¼ exp½logð2ÞL�. While this scenario
seems likely, we do not see any signatures for such a
crossover within our numerics and, thus, cannot rule out
more exotic scenarios for the behavior of the relaxation
time with the system size. Moreover, at intermediate system
sizes accessible to our numerics, we see an extremely stable
exponential scaling of the AGP norm (and, hence, of the
relaxation time), with the exponent β independent of the
strength of the integrability-breaking perturbation as long
as it is sufficiently small. Interestingly, in a follow-up work
[92], a similar exponential scaling of the AGP norm with
β ≈ 2 logð2Þ is observed in a disordered central spin model
even in the absence of any small parameters, i.e., at large
integrability-breaking perturbations. We note that, in all the
systems analyzed so far in this regime, β saturates near
the maximum allowed value 2 logð2Þ, within numerical

FIG. 6. The spectral weight for the integrable perturbation. The
spectral weight jfλðωÞj2 for the integrable perturbation λ ¼ Δ in
the XXZ model at small integrability-breaking perturbation ϵd ¼
0.05 (solid lines) and at the integrable point ϵd ¼ 0 (dashed lines).
The remaining parameters are the same as in Fig. 3.
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precision. From the point of view of operator spreading,
this value is very reminiscent of the 2 logð2Þ scaling of the
operator entanglement entropy in maximally chaotic dual-
unitary models [93]. Whether it is a simple coincidence or
there is a deeper connection remains to be understood.
To illustrate these general considerations about the

relaxation times, we extract the function jfλðωÞj2 directly.
Usually, it is very difficult to do so at exponentially small
frequencies of interest, since there are very few eigenstates
involved, hence leading to large fluctuations. Here, we
compute jfλðωÞj2 by replacing all the delta functions in
Eq. (8) with Lorentzians of width μ. In all the figures,
μ ¼ L2−L, consistent with the AGP regularization. The
total spectral weight is subsequently computed on a

logarithmically spaced grid. All the figures show the
average spectral weight in each bin.
In Fig. 6, we show the extracted spectral weight jfλðωÞj2

for the XXZ model with λ ¼ Δ for a small integrability-
breaking perturbation ϵd ¼ 0.05 (solid lines) and exactly
at the integrable point ϵd ¼ 0 for four different system
sizes L ¼ 12, 14, 16, 18. As predicted from the AGP
scaling, there is a clear exponentially growing spectral
weight at small frequencies with an exponentially shrinking
frequency range, where it plateaus. In the integrable
regime, conversely, jfλðωÞj2 is exponentially decreasing
with the system size, approaching zero in the thermody-
namic limit.
To contrast this behavior of the spectral function with the

other two regimes where the AGP norm shows exponential
scaling with β ¼ logð2Þ, in Fig. 7, we show jfλðωÞj2 in
such regimes. The top shows the jfλðωÞj2 for the non-
integrable perturbation λ ¼ ϵd at the integrable point of the
XXZ model ϵd ¼ 0, while the bottom corresponds to the
perturbation λ ¼ Δ at the strongly nonintegrable point
ϵd ¼ 0.5 where the system satisfies the ETH [32,63].

VI. DISTINGUISHING BETWEEN INTEGRABLE
AND ETH REGIMES

The AGP clearly depends on both the Hamiltonian H
and the direction along which it is deformed, i.e., ∂λH. In
the previous sections, we argue that generic perturbations in
chaotic systems lead to an AGP norm scaling exponentially
with the system size, whereas in integrable models inte-
grability-preserving perturbations lead to an AGP norm
scaling polynomially. This scaling is directly reflected in
the relaxation times of ∂λH through its probing of the zero-
frequency limit of jfλðωÞj2. However, in specific cases,
polynomial scaling of the gauge potential can also be
observed in chaotic systems.
In particular, there is a special class of operators which

can be represented as K ¼ i½H;B�, where B is a local
operator or a sum of local operators. A current can, e.g., be
represented in this way as B ¼ P

i ini, where ni is the
conserved charge; ni ¼ σiz for the XXZ model. For such
operators, Aλ ¼ B by construction, and the AGP has a
polynomial norm irrespective of whether the system is
integrable or chaotic. For such operators, jfλðωÞj2 must
also vanish at ω → 0, consistent with recent numerical
results [63]. On a related note, see Ref. [94]. Physically, this
nondivergence of the AGP, even in the chaotic systems
satisfying the ETH, simply follows from the fact that
deforming the Hamiltonian with the operator K is a
symmetry transformation, which does not change the
spectrum of the Hamiltonian but simply transforms the
eigenstates with the unitary operator U ¼ expð−iλBÞ.
When checking for quantum chaos, such deformations
can be explicitly excluded when probing the scaling of the
gauge potential.
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FIG. 7. The spectral weights for the nonintegrable perturbation.
The spectral weight jfλðωÞj2 for the nonintegrable perturbation
λ ¼ ϵd in the XXZ model at the integrable point ϵd ¼ 0 (top) and
for the perturbation λ ¼ Δ at the strongly nonintegrable point,
i.e., in the ETH regime, ϵd ¼ 0.5 (bottom). The dashed lines in
the bottom are the result at the integrable point ϵd ¼ 0, showing
the high-frequency behavior remains unmodified even at these
large perturbation strengths. The remaining parameters are the
same as in Fig. 6.

MOHIT PANDEY et al. PHYS. REV. X 10, 041017 (2020)

041017-8



While the existence of nontrivial deformations with
polynomial scaling of the AGP norm is an indicator of
integrability, generic integrability-breaking perturbations
give rise to exponential scaling, in which case the specific
dependence on μ offers further information. Note that this
indicator also implies the existence of a family of integrable
models, excluding more exotic “isolated” integrable sys-
tems where every possible perturbation breaks integrability.
In the previous section, the scaling of the AGP norm is

the same as one would expect from the ETH, even though at
ϵd ¼ 0 the system is integrable and the ETH is clearly
violated. The non-ETH behavior can be seen, e.g., in large
eigenstate-to-eigenstate fluctuations of the expectation
value of σz⌈ðLþ1Þ=2⌉ [64]. For this perturbation, the scaling

of the AGP with the system size simply tells us that
jfλðωÞj2, which remains well defined in such models,
saturates to a nonzero constant at small ω, as confirmed
directly in the previous section. Similar to the usual matrix
elements of observables, the information about the inte-
grability of the system is now contained in the statistical
properties of the AGP norm.
More specifically, for random matrix ensembles, the

statistical properties of the fidelity susceptibility (equiv-
alent to the contributions to the AGP norm for individual
eigenstates) are analyzed in Ref. [95], where the distribu-
tion for different eigenstates is considered. The fidelity
susceptibility zn;λ of an eigenstate jnðλÞi is equivalent to

zn;λ ≡ 1

D
hnjAλ

2jnic ≡ 1

D

X
m≠n

jhnjAλjmij2; ð21Þ

such that jjAλjj2 ¼
P

n zn;λ.
Let us briefly present a simple derivation of the tail of

this distribution and then contrast the AGP distribution for
integrable and ETH regimes. The tail of this distribution for
typical (random) perturbations is dominated by contribu-
tions from neighboring energy levels, such that its distri-
bution inherits its properties from the level spacing
distribution.
Recall that the exact AGP norm with μ ¼ 0 is given

by Eqs. (2) and (3). For a typical perturbation, we can
replace the numerator of Eq. (2) with a random matrix such
that typical matrix elements are of the order of 1=

ffiffiffiffi
D

p
[see

Eq. (8)]. The tail of the distribution for large zn;λ is
dominated by nearby energy levels, and we can approximate

zn;λ ≈
C
s2n

; ð22Þ

where sn is the level spacing Enþ1 − En now normalized by
the Hilbert space dimension (such that the mean value of s is
unity) and C is an unimportant constant, which we can set to
one. The scaling of the probability distribution at large zλ
follows as

Prðzλ ¼ xÞ ∼ 1

x3=2
P

�
1ffiffiffi
x

p
�
; ð23Þ

where PðsÞ is the normalized nearest-neighbor level spacing
distribution.
For integrable systems, there is no level repulsion,

Pðs → 0Þ ≠ 0, and we have (to dominant order)

Prðzλ ¼ xÞ ∝ x−3=2 ð24Þ
for x ≫ 1. Note that, as a consequence of this fat tail, the
mean AGP diverges without regularization. The regulari-
zation with μ in the norm of the AGP effectively introduces
a cutoff to the energy denominator at the rescaled cutoff
μ̄ ¼ μD. Assuming that the AGP norm is dominated by the
contributions zn;λ for which the derived scaling holds, we
can say that the average fidelity susceptibility is given by
hzλi ∝ 1=μ̄, and, hence, jjAλjj2 ¼ Dhzλi ∼D=μ̄. This result
agrees with the observed scaling shown in Fig. 5. On the
other hand, chaotic systems satisfying the ETH exhibit
level repulsion and PðsÞ ≈ sβ, resulting in Prðzλ ¼ xÞ ∝
x−ð3þβÞ=2 at large values of x. For the considered Ising and
XXZ model, the relevant random matrix ensemble is a
Gaussian orthogonal ensemble, for which β ¼ 1 and

Prðzλ ¼ xÞ ∝ x−2: ð25Þ
In contrast to the integrable model, the mean hzλi ∼
− logðμ̄2Þ diverges only logarithmically with the cutoff.
These simple scaling arguments agree very well with
numerical observations shown in Fig. 8.
From this analysis, we can conclude that choosing a

fixed μ ∼ 1=D leads to the same scaling of the AGP norm
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FIG. 8. AGP norm distribution. Distribution of the eigenstate
contributions zλ to the rescaled AGP norm [see Eq. (22)] for the
XXZ model with L ¼ 16 spins. The two curves describe the
results for the nonintegrable perturbation λ ¼ ϵd at the integrable
point ϵd ¼ 0 (blue) and for the perturbation λ ¼ Δ at the strongly
nonintegrable point ϵd ¼ 0.5 (yellow). Black lines show the
expected scalings z−3=2λ and z−2λ for the integrable and non-
integrable model, respectively.
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with the Hilbert space dimension for the integrable model
with a chaotic deformation λ and for the ergodic ETH
model. However, these two limits can still be distinguished
by either the different scaling of the AGP norm with the
cutoff μ or, equivalently, by the presence of an exponential-
in-system-size difference between the typical and the
average contributions of individual states to the AGP norm
in the former (integrable) regime and the lack of such an
exponential difference in the latter (ETH) regime.

VII. CONCLUSIONS

We found that the properly regularized norm of the
adiabatic gauge potential, the generator of adiabatic defor-
mations, can serve as an extremely sensitive probe of
quantum chaotic behavior. Within chaotic systems, this
norm scales exponentially with the system size, whereas it
scales polynomially in interacting integrable systems and is
approximately system-size independent in noninteracting
systems for adiabatic deformations preserving integrability.
For adiabatic deformations breaking integrability, expo-
nential scaling is generally observed.
Using the present method to investigate the effects of an

integrability-breaking perturbation on the XXZ and Ising
chains, we found that perturbations that are exponentially
small in system size suffice to induce chaotic behavior. We
also found that such a small integrability-breaking term
leads to anomalously slow dynamics along the integrable
directions, with the relaxation time scaling exponentially
with the system size. Such integrability-breaking perturba-
tions can also be detected at the integrable point, where no
anomalous dynamics occur. Even though typical perturba-
tions show exponential scaling of the regularized norm of
the adiabatic gauge potential, regardless of whether the
system is integrable or not, one can distinguish the two
cases by their dependence on the regularization parameter
or by their fluctuations.

This result motivates the use of the adiabatic gauge
potential, which is connected with both deformations of
eigenstates and operator dynamics, as a sensitive probe into
either chaotic or integrable behavior of quantum many-
body systems.
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APPENDIX A: CUTOFF SCALING WITH
SYSTEM SIZE

Unless stated otherwise, in all calculations we choose a
cutoff μ ¼ LD−1, where D is the dimension of the Hilbert
space. The prefactor L is chosen to remove the logarithmic
correction coming from the zero-frequency contribution of
jfðω ¼ 0Þj2 ¼ L in chaotic models (see Appendix C). This
choice can also be motivated by plotting the AGP norm and
comparing it with respect to different choices of cutoff.

(a) (b) (c)

FIG. 9. Effects of regularization. Size dependence of the rescaled AGP norm jjAλjj2=L for different choices of scaling for the cutoff μ
close to chaotic-integrable transition point: (a) When μ ¼ L−1=2D−1

0 , where D0 is the dimension of zero magnetization sector, the
variation of the norm with the system size is noisy. (b) When μ ¼ L2D−1

0 , the norm, albeit smooth, is no longer very sensitive to small
integrability-breaking perturbations. (c) When μ ¼ LD−1

0 , the norm is both appropriately smooth and exponentially sensitive to
integrability-breaking perturbations. Model: XXZ chain with a defect in the middle [Eq. (15)]. Parameters: Δ ¼ 1.1 and λ ¼ Δ.
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We first study this norm close to the chaotic-integrable
transition point and then later describe its effect deep in the
chaotic regime.
When we are close to the chaotic-integrable transition

point and the cutoff is too small (e.g., μ ¼ L−1=2D−1), then
we find that the AGP norm is too sensitive to the exponen-
tially close eigenstates, showing a nonsmooth exponential
scaling, which makes it hard to draw any conclusions [see
Fig. 9(a)]. On the other hand, if the cutoff is too large (e.g.,
μ ¼ L2D−1), then the AGP norm, albeit smooth, is no longer
sensitive to the small strength of integrability-breaking
perturbations [see Fig. 9(b)]. In Fig. 9(c), with μ ¼ LD−1,
we find that the rescaled AGP norm shows an exponential
scaling that is both appropriately smooth and exponentially
sensitive to integrability-breaking perturbations.
Deep in the chaotic (ergodic) phase, we find that the

numerically obtained scaling for the norm of the AGP is
almost the same for the different choices of cutoff scaling
we study.

APPENDIX B: DERIVATION OF AGP FOR
THE FREE MODEL

As shown in Refs. [39,77], the AGP for changing the
transverse field hx in a free Ising model with periodic
boundary conditions is given by

Ah ¼
XL
l¼1

αlOl; ðB1Þ

where the operators Ol are given by the following Pauli
string operators:

Ol ¼
XL
j¼1

ðσxjσzjþ1…σzjþl−1σ
y
jþl þ σyjσ

z
jþ1…σzjþl−1σ

x
jþlÞ

ðB2Þ
and the coefficients αl are given by

αl ¼ −
1

4L

XπðL−1Þ=L

k¼0

sinðkÞ sinðlkÞ
ðcos k − hxÞ2 þ sin2 k

: ðB3Þ

The norm of the AGP follows as

jjAhjj2 ¼
1

2L
Tr½A2

h� ¼ 2L
XL
l¼1

α2l ; ðB4Þ

where Tr½OlOp� ¼ 2Lþ1L is used, since all strings of Pauli
matrices are trace-orthogonal. The above expression is used
to compute the AGP norm for the free model in Fig. 2 in the
main text.
To obtain the scaling with system size, we can use the

analytical expressions of αl for large enough system sizes
[39], i.e., αl ¼ h−l−1x in the paramagnetic phase where
h2x > 1. Using this result, we find that

jjAhjj2 ∼
1

h2xðh2x − 1ÞLð1 − e−2L log hxÞ: ðB5Þ

Recall that the correlation length in the transverse field
Ising model ∼1= log hx.

APPENDIX C: AGP BOUND

Recall that the norm of the AGP can be expressed as

jjAλjj2 ¼
Z

dω
ω2

ðω2 þ μ2Þ2 jfλðωÞj
2; ðC1Þ

with

jfλðωÞj2 ¼
1

D

X
n

X
m≠n

jhnj∂λHjmij2δðωnm − ωÞ; ðC2Þ

and ωnm ¼ En − Em. It follows directly from Eq. (C1), and
x2=ðx2 þ 1Þ2 ≤ 1=4, that

jjAλjj2 ≤
1

4μ2

Z
dωjfλðωÞj2 ¼

jj∂λHjj2
4μ2

: ðC3Þ

Consequently, for any local perturbation, the norm of the
regularized AGP—where we set μ ∼ L2−L—cannot grow
faster than 4L. Not only does it appear that this bound is
saturated when probing integrable directions ∂λH in
models in which the integrability is weakly broken, it
further implies that those observables ∂λH take exponen-
tially long to relax. Indeed, the above scaling can be
achieved only by effectively having jfλðμÞj2 ∼ 2L. Yet,
the total spectral weight

R
dωjfλðωÞj2 is only polynomially

large in the system size, implying that the corresponding
spectral weight must be localized in a region Δω ∼ 2−L.
Combined with expression (8), the latter implies ∂λHðtÞ
takes exponentially long to relax to equilibrium.
For interacting integrable models, we find jjAjj2 ∼ Lβ,

where the exponent β is nonuniversal. Since the norm is not
exponential in system size, the function jfλðμÞj2 ∼ 2−L.
This result means that the function should vanish in the
zero-frequency limit, which implies oscillatory dynamics
of the observable ∂λHðtÞ.

APPENDIX D: EFFECTS OF THE ANISOTROPY
IN THE XXZ MODEL

In this Appendix, we again consider the XXZ
Hamiltonian [Eq. (12)]:

HXXZ ¼
XL−1
i¼1

ðσxiþ1σ
x
i þ σyiþ1σ

y
i Þ þ Δ

XL−1
i¼1

σziþ1σ
z
i ; ðD1Þ

where Δ is the anisotropy and we take Δ ¼ λ as the
adiabatic deformation, but now at different values of Δ.
We find that the slope of the AGP norm depends non-
trivially on Δ (Fig. 10).
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APPENDIX E: NNN INTERACTIONS IN
THE XXZ CHAIN

In the main text, we study the effect of a strictly local
integrability-breaking operator (whose support is a single
site). Looking into the effects of the locality, we here study
an extensive integrability-breaking operator. We add a next-
nearest-neighbor (NNN) interaction to the XXZ chain, with
the Hamiltonian given as

HNNN ¼ HXXZ þ Δ2

XL−2
i¼1

σziþ2σ
z
i : ðE1Þ

The above model is chaotic for large enough Δ2 [32]. We
choose λ ¼ Δ (Fig. 11) and λ ¼ Δ2 (Fig. 12). In the limit
Δ2 → 0, when the above Hamiltonian [Eq. (E1)] is inte-
grable, the former (latter) is the integrability-preserving
(breaking) direction. As shown in Figs. 11 and 12, results
are similar as for the strictly local perturbation studied in
the main text. This similarity implies our results are robust
to the nature of the adiabatic deformation.

APPENDIX F: UNIVERSAL SLOPE
OF THE AGP NORM

Here, we study the AGP norm in the XXZ chain in the
limit when the magnitude of the integrability-breaking

FIG. 11. Integrability breaking through NNN interaction:
Rescaled AGP norm jjAλjj2=L with λ ¼ Δ of the XXZ chain
at Δ ¼ 1.1 shows a sharp crossover from polynomial to ex-
ponential scaling with the system size, even for very small
perturbation strengthsΔ2. AsΔ2 decreases, the system size where
this crossover happens increases. Straight lines are the exponen-
tial fits with jAλjj2=L ∼ e1.28L. Inset: The integrability-breaking
defect energy scales exponentially with the system size, i.e.,
Δ�

2 ∼ e−0.9L. This result is calculated for the symmetry sector with
zero magnetization.

FIG. 12. Integrability-breaking deformation. Rescaled AGP
norm jjAλjj2=L for the XXZ chain at Δ ¼ 1.1 with λ ¼ Δ2.
This result is calculated for the full Hilbert space, not in any
specific symmetry sector.

FIG. 10. Anisotropy. Rescaled AGP norm jjAΔjj2=L for the
XXZ chain at different values of the anisotropy Δ.

FIG. 13. Universal slope at large integrability-breaking
strengths. Rescaled AGP norm jjAλjj2=L for different models:
(A) Model: XXZ chain with NNN interaction [Eq. (E1)].
(a) λ ¼ Δ and (b) λ ¼ Δ2. Parameters: Δ ¼ 1.1 and Δ2 ¼ 1.
(B) Model: XXZ with a defect in the middle [Eq. (15)]. (a) λ is
chosen as Δ. Inset: AGP norm jjAλjj2 for XXZ with a defect in the
middle model, where λ is chosen as ϵd. Parameters: ϵd ¼ 1 and
Δ ¼ 1.1. This result is calculated for the full Hilbert space, not in
any specific symmetry sector.
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perturbation (either the local defect energy ϵd or the NNN
interaction strength Δ2) is of the same magnitude as the
Δ=J energy scale. In this limit, we find that the AGP has an
exponential scaling with the system size characterized by
an almost universal slope β ≈ log 2, which is close to the
one predicted by the ETH. Details about the model and its
parameters are given in the caption of Fig. 13.

APPENDIX G: COMPARISON TO MANY-BODY
“THOULESS CONDUCTANCE”

For the sake of completeness, we explicitly compare the
current results for a single impurity in an XXZ chain to
what would have been obtained using previous related
measures [59,60]. The authors of Ref. [59] define a many-
body Thouless conductance

GNN ¼ 1

D − 1

X
n

log
jhnj∂λHjnþ 1ij

Enþ1 − En
; ðG1Þ

denoted as G in Ref. [59]. The link to the present log jjAλjj
is directly apparent. Apart from looking at the typical
instead of the mean, the main difference is that GNN
takes into account only transitions to neighboring levels.
Numerical results are shown in Fig. 14. In the parameter
regime that is studied in this work, the measure behaves as

GNN ¼ κLþ cðϵdÞ; ðG2Þ

where κ ≈ 0.87 is independent of the perturbation ϵd and
the constant c decreases with ϵd. A slightly different
measure is introduced in Ref. [60], namely,

Gmax ¼
1

D

X
n

max
m

log
jhnj∂λHjmij
jEm − Enj

; ðG3Þ

denoted as [v] in the original work. The latter removes
the bias toward neighboring levels and instead takes the
maximum possible ratio of the matrix element to the energy
difference. As discussed in the main text, at the onset of
chaos, we see a large amount of spectral weight appear
at low frequency, and the latter dominates the scaling of
the AGP. As a consequence, we expect Gmax to be more
sensitive to this phenomenon, and this measure should
more closely resemble log jjAλjj. Numerical results are
shown in Fig. 15; these indeed confirm this situation is the
case albeit features being less pronounced.
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