
 

How Circular Dichroism in Time- and Angle-Resolved Photoemission Can Be Used
to Spectroscopically Detect Transient Topological States in Graphene

Michael Schüler ,1 Umberto De Giovannini ,2,3 Hannes Hübener ,3 Angel Rubio ,2,3,4

Michael A. Sentef ,3 Thomas P. Devereaux,1,5 and Philipp Werner 6

1Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory,
Menlo Park, California 94025, USA

2Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales,
Universidad del País Vasco UPV/EHU- 20018 San Sebastián, Spain

3Max Planck Institute for the Structure and Dynamics of Matter,
Luruper Chaussee 149, 22761 Hamburg, Germany

4Center for Computational Quantum Physics (CCQ), The Flatiron Institute,
162 Fifth Avenue, New York, New York 10010, USA

5Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
6Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland

(Received 25 March 2020; revised 23 June 2020; accepted 25 August 2020; published 19 October 2020)

Pumping graphene with circularly polarized light is the archetype of light-tailoring topological bands.
Realizing the induced Floquet-Chern-insulator state and demonstrating clear experimental evidence for its
topological nature has been a challenge, and it has become clear that scattering effects play a crucial role.
We tackle this gap between theory and experiment by employing microscopic quantum kinetic calculations
including realistic electron-electron and electron-phonon scattering. Our theory provides a direct link to the
build up of the Floquet-Chern-insulator state in light-driven graphene and its detection in time- and angle-
resolved photoemission spectroscopy (ARPES). This approach allows us to study the robustness of the
Floquet features against dephasing and thermalization effects. We also discuss the ultrafast Hall response in
the laser-heated state. Furthermore, the induced pseudospin texture and the associated Berry curvature give
rise to momentum-dependent orbital magnetization, which is reflected in circular dichroism in ARPES
(CD-ARPES). Combining our nonequilibrium calculations with an accurate one-step theory of photo-
emission allows us to establish a direct link between the build up of the topological state and the dichroic
pump-probe photoemission signal. The characteristic features in CD-ARPES are shown to be stable against
heating and dephasing effects. Thus, tracing circular dichroism in time-resolved photoemission provides
new insights into transient topological properties.
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I. INTRODUCTION

Topological properties play an important role in a wide
range of phenomena in condensed matter systems. In
periodic systems, the notion of quantum-geometric proper-
ties like the Berry curvature and their implications on the
macroscopic scale has become a central concept. The most
prominent examples are topological insulators (TIs) and
superconductors [1,2] with their protected surface or
edge states. Realizing topological insulators with integer
quantum anomalous Hall effect (QAHE) has proven to be a
challenge. In this regard, the remarkable progress in

creating two-dimensional (2D) materials and heterostruc-
tures thereof has opened new perspectives [3–6]. In 2D
materials, the topology typically arises due to the Kane-
Mele mechanism [7,8]: A gap opens at Dirac cones due to
spin-orbit coupling, giving rise to band inversion and thus a
topologically nontrival state. Monolayer graphene is a
paradigmatic example, and many attempts have been made
to turn graphene into a TI [9–11].
The possibility of opening a gap dynamically by pump-

ing graphene with circularly polarized light was first
proposed in Ref. [12]. In a Floquet picture, the periodic
electric field renormalizes the band structure by virtual
photon-emission and -absorption processes. By tailoring
the pump frequency and strength, a Chern-insulating phase
can be induced (Floquet-Chern insulator) [13], which
shows features of a QAHE [14–16]. The concept of
topological states engineered by periodic driving fields
has been extended to experiments on ultracold atoms
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[17,18], coherent excitations of the lattice degrees of
freedom [19], more general classes of 2D materials [20],
and different topological states such as Dirac and Weyl
semimetals [21].
To trace the pump-induced transient changes of the

electronic structure, time- and angle-resolved photoelectron
spectroscopy (TR-ARPES) has been established as a state-
of-the-art tool, which is well suited to capture Floquet
physics [22]. Still, observing light-induced topological
phases in experiments is a challenge. So far, the distinct
features of a Floquet state—the gap opening and Floquet
sidebands (replicas of the band structure associated with the
absorbtion or emission of photons)—have been reported
only for Bi2Se3 [23,24], although related effects like the
dynamical Stark effect [25] or photodressed effective band
structures [26] have been observed for different systems.
As an alternative technique for detecting the induced
topological state, time-resolved transport experiments on
graphene show a pump-induced Hall response [27].
However, in these experiments, a pump-induced population
imbalance also plays a role [28,29], and disentangling such
effects from those of the induced Berry curvature is a
nontrivial task. Furthermore, from these studies it becomes
evident that scattering effects are crucial in graphene. In
particular, the associated heating and dephasing effects
compete with the coherence required for a Floquet state
[30,31], although it is not clear yet which scattering
mechanism is most important.
We address this challenge in the present work by

considering the pump-induced dynamics in graphene
including both electron-electron (e-e) and electron-phonon
(e-ph) scattering. While e-e scattering determines the initial
stages of thermalization [32] and is thus essential for the
theoretical description, e-ph coupling is typically respon-
sible for the relaxation of excited states back to equilibrium
on a timescale of several hundred femtoseconds to pico-
seconds [33–35]. In a pumped system far from equilibrium,
ultrafast e-ph scattering furthermore plays an important role
in the population dynamics [36–42]. We focus explicitly on
the experimentally relevant regime of weak to moderate
pump field strength and map out the stability of the Floquet
physics. Our many-body treatment is combined with a full
treatment of the photoemission process, thus providing a
predictive link to TR-ARPES.
In addition to mapping out the momentum-dependent

band structure, ARPES can provide insights into the
quantum properties of the initial state by exploiting the
light polarization. For instance, the electron chirality and
the pseudospin properties can give rise to distinct circular
dichroism in graphene [43,44] or TI surface states [45,46].
More generally, momentum-dependent circular dichroism
allows us to trace orbital angular momentum, which is
intimately linked to the Berry curvature [47,48]. The latter
quantity was rigorously mapped out for paradigmatic 2D
systems—including graphene—in Ref. [49]. Measuring

dichroism in TR-ARPES will provide unprecedented
insights into pump-induced topological properties [50].
It is the main focus of the present work to clarify this

connection. Based on our predictive theory for TR-ARPES,
which is combined with an accurate one-step calculation
of the photoemission matrix elements, we map out the
induced circular dichroism in laser-driven monolayer
graphene. A comprehensive analysis of the Floquet state
and its stability against interaction effects reveals that both
e-e and e-ph scattering play an important role. Despite the
thus reduced coherence, the circular dichroism is found to
be robust even in the presence of strong dissipation, where
other signatures of a Floquet state—that is, opening of a
gap and sidebands—are strongly suppressed. Hence, the
circular dichroism is a hallmark manifestation of the
induced Floquet topological state, which provides conclu-
sive insights where other methods struggle.

II. SETUP, MODEL, AND METHODS

The dynamics in graphene is modeled by the
Hamiltonian

ĤðtÞ ¼ Ĥ0ðtÞ þ Ĥe-e þ Ĥe-ph; ð1Þ

where Ĥ0ðtÞ describes the free electronic structure includ-
ing the light-matter interaction. We consider the next-
nearest-neighbor tight-binding (TB) model defined by

Ĥ0ðtÞ ¼
X
k

X
j;j0;σ

hjj0(k −ApðtÞ)ĉ†kjσ ĉkj0σ: ð2Þ

Here, hjj0 ðkÞ is the TB Hamiltonian in the subspace of pz

orbitals, while the pump pulse [vector potential ApðtÞ]
is incorporated via the Peierls substitution. Under the
assumption of sufficiently localized pz orbitals, the full
nonlinear light-matter coupling is included. Details are
presented in the Appendix A.
The second term in Eq. (1) describes the e-e interaction.

Scattering effects are taken into account at the level of an
optimized Hubbard model (U ¼ 1.6J in units of the
hopping amplitude J), which has been shown to accurately
capture the electronic structure close to equilibrium [51].
We also include e-ph scattering by the last term in the
Hamiltonian (1), taking the full dispersion of the transverse
and longitudinal acoustic and optical modes into account.
The matrix elements for the e-ph coupling can be obtained
from the TB model [52,53]. We focus on in-plane phonon
modes modulating the hopping J, which is the dominant
mechanism for freestanding graphene [54].
The dynamics of the interacting system is treated

efficiently within the time-dependent nonequilibrium
Green’s functions (TD-NEGF) approach [55]. Because
of the relatively weak correlation effects, the second-order
treatment with respect to the e-e and e-ph interaction
provides an accurate description. Furthermore, we employ
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the generalized Kadanoff-Baym ansatz (GKBA) [56], which
reduces the otherwise enormous computational demands
significantly, while retaining a good accuracy, as demon-
strated in recent benchmark calculations [57–59]. Spectral
properties are improved by spectral corrections to the GKBA
[60]. All details on the methods can be found in Appendix C.

A. Time-resolved photoemission

The TD-NEGF approach provides a direct link to TR-
ARPES [39,61] by

Iðk; εf;ΔtÞ ¼ Im
X
jj0

Z
∞

0

dt
Z

t

0

dt0sðtÞsðt0ÞM�
jðk; p⊥Þ

× G<
jj0 ðk; t; t0ÞMj0 ðk; p⊥Þe−iΦðt;t0Þ; ð3Þ

whereΦðt; t0Þ ¼ R
t
t0 dt̄½ωpr − εpðt̄Þ�. Equation (3) represents

a time-dependent generalization of the one-step photoemis-
sion intensity [62]: The transient electronic structure of the
initial states is captured by the lesser Green’s function
G<

jj0 ðk; t; t0Þ (obtained from the TD-NEGF framework),
while the coupling to the final states is determined by the
matrix elements Mjðk; p⊥Þ. We compute Mjðk; p⊥Þ by
combining the TB model with a one-step theory of
photoemission. Benchmarks against state-of-the-art calcu-
lations based on the time-dependent density-functional
theory [22,63,64] ensure the predictive power of our
approach (see Appendix B). The photoelectron momentum
p ¼ ðk; p⊥Þ determines the energy in the absence of the
pump pulse by εf ¼ p2=2, while εpðtÞ ¼ ½p −ApðtÞ�2=2
during the pump; the time-dependent phase factor Φðt; t0Þ
takes the streaking of the continuum (laser-assisted photo-
emission, LAPE [65]) into account. The probe pulse is
characterized by the central frequency ωpr and the pulse
envelope sðtÞ. We denote the delay between the pump and
probe pulse by Δt [see Fig. 1(a)].
The pump photon energy is taken as ωp ¼ 1.5 eV,

which realizes a Floquet-Chern insulator with Chern
number C ¼ 1 [14]. This topological phase is robust
against a small detuning of the pump energy. The peak
field strength is chosen between E0 ¼ 1 × 10−3 and E0 ¼
4 × 10−3 atomic units (a.u.) (E0 ≃ 0.05 V=Å to E0 ≃
0.2 V=Å) corresponding to I0 ¼ 3.5 × 1010 Wcm−2 to
I0 ¼ 5.6 × 1011 Wcm−2 peak intensity. The largest field
strength is slightly above that of experimentally achievable
pulses, but reveals the physics particularly clearly. All
findings are generic and present also for weaker fields. The
pump pulse is assumed to be left-handed circularly polar-
ized (LCP) [see Fig. 1(a)], while we choose the envelope to
contain 20 optical cycles (Tp ¼ 55 fs duration) unless
stated otherwise. The probe pulse is assumed to have
the envelope sðtÞ ¼ sin2½πðt − ΔtÞ=Tpr� with a pulse
length of Tpr ¼ 26 fs. Its polarization is assumed to be
either right-handed circularly polarized (RCP) or LCP.

We compute the corresponding TR-ARPES intensity
ILCP=RCPðk; εf;ΔtÞ according to Eq. (3), thus yielding the
dichroic ICDðk;εf;ΔtÞ¼ ILCPðk;εf;ΔtÞ−IRCPðk;εf;ΔtÞ
and unpolarized signal Itotðk; εf;ΔtÞ ¼ ILCPðk; εf;ΔtÞ þ
IRCPðk; εf;ΔtÞ. For the photon energy of the probe pulse
we choose the value ℏωpr ¼ 52 eV, which is sufficient to
detect photoelectrons from the Dirac points. Furthermore,
scattering effects from the lattice have been found to be
minimal at this energy, such that the intrinsic dichroism
dominates [44].
The full time-dependent treatment based on the TR-

ARPES expression (3) is complemented by a Floquet
theory in the steady-state regime, where we assume
that each lattice site is coupled to a thermalizing bath.
This model provides a generic dissipation channel, which
allows us to investigate dephasing and dissipation effects
beyond e-e and e-ph scattering. Full details are presented in
Appendix D.

B. Induced pseudospin texture and
topological properties

To connect the photoemission theory to the light-induced
topological properties, let us start by discussing the nature
of the Floquet state. The energy spectrum is obtained from
the Floquet Hamiltonian

½Ĥnn0 �jj0 ðkÞ ¼
1

Tp

Z
Tp

0

dthjj0(k −ApðtÞ)eiðn−n0Þωpt

− nωpδnn0δjj0 ; ð4Þ

which captures all steady-state effects including photo-
dressing and sidebands. A simple physical picture is
obtained by applying Brillouin-Wigner theory [14],
which yields the effective Hamiltonian ĥeffðkÞ ¼

Δt

Pump

Probe
Orbital magnetization

K' K
Berry curvature 

0 >0 < 0

(a) (b)

FIG. 1. (a) Sketch of a pump-probe TR-ARPES setup: A left-
handed circularly polarized (LCP) pulse transiently dresses the
electronic structure, which is probed by a right-handed circularly
polarized (RCP), or LCP, short probe pulse. Delaying the probe
pulse by Δt with respect to the pump provides access to real-time
dynamics. (b) The induced Floquet-Chern insulator is charac-
terized by nonzero Berry curvature in the lower effective band
with the same sign at the two inequivalent Dirac points. The
resulting net orbital magnetization gives rise to circular dichroism
in photoemission spectroscopy.
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P
n≠0 Ĥ0nðkÞĤn0ðkÞ=nωp dressed by virtual absorption

and emission processes. Within this picture, a circularly
polarized pump field induces next-nearest-neighbor hop-
pings with a complex phase, thus opening a gap Δ at the
two inequivalent Dirac points K, K0. The finite gap Δ
corresponds to an occupation imbalance of the two equiv-
alent sublattice sites j ¼ A; B, resulting in a finite Berry
curvature [66]. Depending on the frequency and field
strength of the periodic drive, the effective Hamiltonian
can be tailored to be a Chern insulator, with the Chern
number determined by the specifics of the pump [14]. For a
strong enough high-frequency pump, a nonequilibrium
Hall response close to the quantized value can be realized
within this model [14–16].
The emergence of the gap Δ is directly connected to

the pseudospin properties with respect to the A, B sub-
lattice sites. The effective Hamiltonian can be expressed as
ĥeffðkÞ ¼ DðkÞ · σ̂ (σ̂ is the vector of Pauli matrices acting
on the sublattice space); the vector DðkÞ characterizes
the pseudospin structure of the Hamiltonian. Expand-
ing around the Dirac points, one finds DðK þ kÞ ≈
ð−vGky; vGkx; v2Ga0E2

0=ω
3
pÞ andDðK0 þ kÞ ≈ ðvGky; vGkx;

−v2Ga0E2
0=ω

3
pÞwith vG ¼ 3Ja0=2 (lattice constant a0) [66].

The gap thus scales as

Δ ¼ DzðKÞ ∝ E2
0

ω3
p
: ð5Þ

Similarly, the quantum state of the lower (or upper)
effective band is characterized by the orbital pseudospin
vector rðkÞ; in particular, rzðkÞ ¼ PAðkÞ − PBðkÞ mea-
sures the occupation difference between the A and B
sublattice at a specific point in momentum space. The
pseudospin rzðkÞ is directly related to the topological
properties. One can show that the bands are topologically
trivial if DzðkÞ does not change sign across the BZ. In this
case, one finds rzðkÞ > 0 [rzðkÞ < 0] for DzðkÞ > 0
[DzðkÞ < 0] in the whole BZ corresponding to a charge-
density-wave pattern. In contrast, a topological phase
transition is accompanied by DzðkÞ changing sign, result-
ing in a band inversion. Instead, for graphene in equilibrium
and for the idealized limit of vanishing spin-orbit coupling
rzðkÞ ¼ 0, which implies vanishing Berry curvature.
Figure 2(b) shows the band structure of the effec-

tive Hamiltonian ĥeffðkÞ for E0 ¼ 2 × 10−3 and E0 ¼ 4 ×
10−3 a:u: along with the pseudospin properties. The lower
(upper) effective band with energy εlðkÞ [εuðkÞ] is char-
acterized by rzðkÞ > 0 [rzðkÞ < 0]. In Figs. 2(c) and 2(d),
we show the Berry curvature ΩðkÞ of the lower band and
the associated orbital polarization

mzðkÞ ¼ −
e
ℏ
½εuðkÞ − εlðkÞ�ΩðkÞ ð6Þ

from themodern theory of polarization [67,68]. As sketched
in Fig. 1(b), this orbital magnetic moment possesses the

same symmetry properties as the Berry curvature; in
particular, it has the same sign at K and K0. In the regime
of weak pump driving strength considered here, the pseu-
dospin and topological properties are fully characterized by
their behavior in the vicinity of the Dirac points. Explicit
calculation of the Chern number of the lower band of ĥeffðkÞ
confirmsC ¼ 1=2π

R
dkΩðkÞ ¼ 1, with the dominant con-

tribution coming from k close to K, K0. Hence, the
topological character of the system is reflected directly by
the orbital polarization (6) at the Dirac points. We remark
that stronger fields can induce more complex pseudospin
textures [69], while Floquet sidebands become important.

C. Orbital polarization and circular dichroism

In the absence of magnetic atoms, the induced orbital
polarization (6) is an intrinsic topological property, which is
due to the self-rotation of the underlying Bloch states.
This relation can be understood intuitively by constructing
wave packets jWkαi from Bloch states in a particular band
α. The finite spread in real space allows us to define the
angular momentum hL̂zikα ¼ hWkαjL̂zjWkαi. For a narrow
distribution in momentum space, hL̂zikα becomes inde-
pendent of the specific shape of the wave packet and thus
defines the orbital angular momentum of the Bloch states
itself [68], which is connected with the general orbital
polarization mzðkÞ ¼ e=mhL̂zikα.
A nonzero orbital magnetic moment mzðkÞ determines

the selection rules for photoexcitation properties [70] and
thus results in intrinsic circular dichroism. In general,

(a)

(c) (d)

(b)

FIG. 2. (a) Path in the first Brillouin zone (BZ) close to the K
point considered here. (b) Band structure of the effective
Hamiltonian ĥeffðkÞ compared to the equilibrium bands along
the path shown in (a). The insets illustrate the orbital pseudospin.
(c),(d) Berry curvatureΩðkÞ and orbital polarizationmzðkÞ of the
effective lower band (calculated within second-order Brillouin-
Wigner theory) for (c) E0 ¼ 2 × 10−3 and (d) E0 ¼ 4 × 10−3.
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circular dichroism arises from different contributions, such
as scattering of the photoelectron from the lattice. This
extrinsic effect is, for instance, responsible for the character-
istic dichroic signal from graphene [71]. Averaging around
high-symmetry points has been suggested as an efficient
way of separating the contributions [49]. The wave-packet
picture provides a direct link to intrinsic circular dichroism
in photoemission [49] and reveals that the angular momen-
tum hL̂zikα determines the selection rules; vanishing angular
momentum corresponds to vanishing dichroism.
The magnetic moment mzðkÞ is intimately connected to

the Berry curvature, as both quantities possess the same
symmetry properties [48]. In particular, in the case of two
(effective) bands, the orbital magnetic moment takes the
form of Eq. (6) and thus becomes proportional to the Berry
curvature. Hence, circular dichroism establishes a link
to momentum-resolved topological properties. For two-
orbital honeycomb lattice systems like graphene, this link
can be found explicitly in terms of the orbital pseudospin
texture. The leading contribution to the intrinsic dichroism
in ARPES becomes [49]

ICDðk; εfÞ ∝
2

k
rzðkÞkxaCCφ̃zðk; p⊥Þ

d
dk

φ̃zðk; p⊥Þ
× δðεαðkÞ þ ω − εfÞ: ð7Þ

Here, εαðkÞ is the energy of the valence band. The distance
between the two carbon atoms is denoted by aCC, while
φ̃zðk; p⊥Þ stands for the Fourier-transformed atomic pz
orbital. Hence, the dichroic signal is directly determined by
the pseudospin properties. Within the quasistatic picture of
periodically driven graphene outlined above, the induced
pseudospin and topological properties are expected to
manifest themselves in circular dichroism in TR-ARPES.

III. RESULTS

A. Floquet features and scattering processes

The simple physical picture based on the effective
Brillouin-Wigner Hamiltonian provides a simple descrip-
tion of the opening of the effective bands but fails to take
dynamical processes into account. To establish the link to
TR-ARPES under experimentally relevant conditions, we
now employ the full time-dependent treatment of the many-
body Hamiltonian (2), with emphasis on the stability of
the Floquet physics under e-e and e-ph scattering. Both
mechanisms give rise to population redistribution, dephas-
ing and, in the presence of e-ph coupling, dissipation.

1. Redistribution and heating

The dynamics of photoexcitation processes—especially
far from equilibrium—is strongly influenced by scattering
processes. Turning the e-e and e-ph interactions off, vertical
transitions induced by the pump pulse lead to isolated points
of nonzero population in the upper band determined by

energy and momentum conservation [Fig. 3(a), left panel].
The absorption of energy is limited by these restrictions;
resonant driving will induce Rabi oscillations and even
decrease the number of excited electrons. The picture
changes dramatically when e-e scattering is included
[Fig. 3(a), middle panel], since this leads to a thermalization
of electrons (holes) in the upper (lower) band. The balance
between the pumping strength and the scattering rate
governs the effective Floquet thermalization [72,73]. In
the limit of an infinitely long pulse, the system reaches a
quasithermal distribution with infinite temperature.
Similarly, e-ph scattering [Fig. 3(a), right panel] leads to
a redistribution of the excited electrons, thus providing a
pathway for further absorption. In contrast to e-e scattering,
the dissipative character of e-ph scattering (if the phonons
are considered as a heat bath with quasi-infinite heat
capacity) gives rise to a Floquet steady state [73].
For a quantitative picture, we compute the time-

dependent Green’s function as described in Sec. II.
To exclude that matrix-element effects mask the dynamics
discussed here, we simplify the TR-ARPES formula (3) to

Iðk; εf;ΔtÞ ¼ Im
X
j

Z
∞

0

dt
Z

t

0

dt0sðtÞsðt0ÞG<
jjðk; t; t0Þ

× e−iðωpr−εfÞðt−t0Þ ð8Þ

2
(a)

(b)

FIG. 3. (a) Illustration of the interplay between photoexcitation
and scattering processes close to a Dirac point. (b) TR-ARPES
spectra calculated with the simplified formula (8) with aligned
pump (E0 ¼ 4 × 10−3 a:u:) and probe pulse, for the free system
(left), including only e-e (middle) and only e-ph scattering (right
panel), respectively. The spectra are calculated along the path
shown in Fig. 2(a). The energy E ¼ εf − μ is the kinetic energy
of the photoelectrons shifted by the chemical potential
μ ¼ −4.6 eV. The red dashed lines represent the band structure
of the Floquet Hamiltonian (4).
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for this discussion. We assume overlapping pump and
probe pulses (Δt ¼ 0) and express the energy in terms of
the binding energy εb. The resulting spectra are presented in
Fig. 3(b). The physical picture of scattering processes
above is directly applicable to the TR-ARPES spectra.
Without any interaction, only electrons at certain momenta
are promoted to the excited-state manifold. The band
structure captured by Eq. (8) now exhibits Floquet sideband
features described by the Floquet Hamiltonian (4). The
corresponding band structure is shown by the red dashed
lines in Fig. 3. As Fig. 3(b) shows, the excited-state
population is restricted to the avoided crossings of the
Floquet bands.
Another important feature of the noninteracting treat-

ment is the peak occupation directly atK just above εb ¼ 0.
This is a manifestation of a “topological hole” in quantum
quenches [74]: Driving a topological phase transition and
opening the gap, the orbital character is preserved. This
effect is confined to the region close to K, where the time
evolution is nonadiabatic no matter how slowly the pump
pulse is switched on.
In contrast, the simulation with e-e scattering [Fig. 3(b),

middle panel] yields a considerable redistribution of the
occupation. In particular, the population close to K in the
effective upper band becomes very pronounced, which is in
stark contrast to the noninteracting case. Similar effects are
observed as a result of e-ph scattering [Fig. 3(b), right
panel], albeit high-energy features like the peak of the
occupation at εb ¼ 1.5 eV are suppressed due to the
dissipation. We also note that the spectra of the interacting
system align very well with the Floquet bands of the
noninteracting system, which indicates that renormaliza-
tion effects play a minor role (apart from a small energy
shift in the presence of e-e interactions).
As also inferred from Fig. 3(b), the number of excited

electrons is significantly larger if scattering channels are
available, giving rise to considerably larger energy absorp-
tion. This behavior becomes clear when inspecting the

change of kinetic energy per particle ΔE [Fig. 4(a)]. While
the pump pulse injects energy into the free system, this
energy is mostly emitted back when the pump envelope
approaches zero. This is in stark contrast to the result which
includes e-e scattering, which leads to continuous heating
and an order of magnitude larger absorption. e-ph scatter-
ing has a similar effect, even though the lack of full
thermalization and cooling by emitting phonons reduces
the kinetic energy. In contrast to e-e scattering, the effect of
e-ph coupling depends on the effective band structure.
Since the phonon spectrum is restricted to ≃200 meV,
phonon-mediated relaxation across a gap Δ > 200 meV
becomes strongly suppressed due to a phonon “bottleneck”
[39]. This effect is fully captured by our TD-NEGF
approach (see Appendix C 2 for details).

2. Decoherence

The pronounced heating and the resulting dephasing
effects—especially for resonant pumping as in graphene—
typically hamper the coherence required for Floquet
features [30,31]. Figure 4(b) shows representative photo-
emission spectra calculated from Eq. (8). Note that the
broadening of the spectra is mostly due to decoherence
effects, as the energy spectrum of the probe pulse is much
narrower.
To investigate how the scattering effects influence the

opening of a gap at K (or K0), we analyze Iðk ¼ K;
εb;Δt ¼ 0Þ by a two-peak Gaussian fit to extract the
Floquet gap Δ presented in Fig. 4(b). Comparing to the
gap Δ predicted by the noninteracting Brillouin Wigner
theory (see Sec. II B), we find that e-e scattering reduces
Δ only very weakly. As in Ref. [30], e-e interactions
renormalize the band structure in the vicinity of the Dirac
points, which increases Δ. However, this effect is compen-
sated by the decoherence due to e-e scattering. In contrast,
e-ph scattering has a strong effect, suppressing the Floquet
gap almost completely for E0 ≤ 2 × 10−3. Consistent with
Ref. [30], increasing the pump field strength stabilizes Δ.

(a) (b) (c)

Free
e-e
e-ph

Free
e-e

e-e + e-ph
e-ph

SidebandsSidebands

Time (fs)

FIG. 4. (a) Time-dependent kinetic energy and shape of the pump pulse. The components of the circular pump fields are reported in
purple (x) and green (y). (b) Photoemission spectra Iðk ¼ K; εf;ΔtÞ [cf. Eq. (8)] at the Dirac point, including e-e and e-ph interactions.
We use a pump pulse with Nc ¼ 30 optical cycles. (c) Floquet gap Δ as a function of the pump field strength extracted from the spectra
in (b) and Fig. 3(b). For the case of e-ph scattering, the broad spectra do not allow for an unambiguous determination of a gap.
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To trace the origin of this pronounced effect, we switch off
large-momentum e-ph scattering. The resulting spectra are
considerably sharper, and the Floquet gap is much more
pronounced. This shows that intervalley scattering is the
predominant source of decoherence. Furthermore, for E0 ≤
3 × 10−3 the Floquet gap is well within the phonon energy
spectrum, while for larger E0 the gap becomes larger than
the maximum phonon energy. Thus, e-ph relaxation across
the gap is suppressed, stabilizing Δ.
Including both e-e and e-ph scattering, this stabilization

allows us to determine Δ for E0 ≥ 2 × 10−3. The Floquet
gap is slightly larger than for e-ph coupling only. These
results show that phonons are the major source of
decoherence in this regime, while e-e scattering predomi-
nantly thermalizes the system.
Similar to the gap Δ, the Floquet sidebands remain

stable in the presence of scattering effects, but they are
broadened [see Fig. 4(b)]. The stability of the Floquet
features (at least for stronger driving) is consistent with the
ultrafast timescale of the pump pulse. The period of a
single cycle is 2.7 fs, which is much shorter than any
typical scattering time. Decoherence builds up over several
pump cycles.
Scattering processes and the resulting heating and

decoherence effects also strongly impact transport proper-
ties like the Hall response. In particular, decoherence was
identified as a key factor [31] to understand ultrafast
transport experiments [27], albeit on an empirical level.
Investigating ultrafast scattering processes as captured by
our theory thus provides a microscopic perspective on
transport properties.

B. Ultrafast Hall response

The light-induced topological state in the considered
regime is described by the effective Floquet Hamiltonian
ĥeffðkÞ (see Sec. II B), which yields a Chern number of
C ¼ 1 for the lower effective band. In the quasistatic
picture, the system should thus exhibit a quantized Hall
response in the limit of low effective temperatures [14].
However, the nonequilibrium situation in a pump-probe
setup renders a straightforward detection and interpretation
of the time-dependent Hall current difficult. Decoherence
due to scattering processes will reduce the Floquet gap (see
Sec. III A) and suppress the Hall response [28,29].
Increasing the pump strength stabilizes the Floquet features
at the cost of stronger pump-induced heating.
The anomalous Hall response under pumping and

including e-e and e-ph scattering can, in principle, be
obtained from the GKBA time propagation. However,
state-of-the-art experimental techniques enable the detec-
tion of ultrafast transient currents on the picosecond time-
scale, which is still a relatively long timescale for
microscopic many-body simulations, so that a direct
comparison is difficult.

1. Steady-state model

As we explain in Sec. III A, the e-e and e-ph interactions
primarily lead to a redistribution of the occupation, while
the effective band structure is governed by the free Floquet
Hamiltonian. Moreover, the distribution is quasithermal
with respect to the Floquet bands. In this situation, the
Floquet nonequilibrium steady-state (NESS) formalism
[75] provides an excellent description. Details are presented
in Appendix D. In essence, we assume that each lattice site
of graphene is coupled to a thermalizing bath (coupling
strength γ), which is characterized by an effective temper-
ature Teff . This setup corresponds to a metallic substrate;
however, here we treat it as a generic pathway for
dissipation and dephasing.
The balance between absorption and dissipation deter-

mines the occupation of the Floquet bands. The NESS
formalism yields the Green’s function G<

jj0 ðk; t; t0Þ (which
is now periodic in both time arguments). Inserting this
expression into Eq. (8), and assuming an infinitely long
pump and probe pulse yields

Iðk; εfÞ ∝ Im
X
j

G<
jjðωpr − εfÞ; ð9Þ

where

G<
jj0 ðωÞ ¼

1

Tp

Z
Tp

0

dtav

Z
∞

−∞
dtreleiωtrel

×G<
jj0

�
tav þ

trel
2
; tav −

trel
2

�
: ð10Þ

The NESS spectra obtained from Eq. (9) can be considered
a very good fitting model for the TR-ARPES spectra; a
quantitative comparison is shown in Sec. III D. Following
Ref. [14], the Hall response can be directly obtained
from the NESS model (see Appendix D for details).
Fixing γ to match the line width of the TR-ARPES spectra
in Fig. 4(b), the effective temperature Teff remains the only
free parameter.

2. Thermalization and effective temperature

To connect to the time-dependent microscopic treatment
(including thermalization due to the scattering) and access
the picosecond timescale, we employ a single-temperature
model for the electronic temperature TelðtÞ adopted from
Ref. [35]:

d
dt

TelðtÞ ¼
IðtÞ

αcel(TelðtÞ)
; ð11Þ

where celðTÞ denotes the electronic heat capacity at
temperature T, while IðtÞ represents the envelope of the
intensity of the pump pulse. The parameter α is adjustable.
Note that we ignore the phonon contribution here, as the
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rapid thermalization of the phonon subsystem prevents
cooling of electrons during the pump pulse. The model
obtained by solving Eq. (11) is then fitted to the electronic
temperature obtained from the GKBA simulation for
varying length of the pump pulse.
With this model at hand, we can extrapolate TelðtÞ to

longer timescales. Figure 5 shows the electronic temper-
ature for a pulse duration of Tp ¼ 250 fs and Tp ¼ 500 fs.
The system heats up considerably; one finds a scaling Tel ∼
E2
0 and roughly Tel ∼ Tp in the considered regime. The Hall

response σxy (defined as the time average of the Hall
current) is shown in the lower panel in Fig. 5. For
Tp ¼ 250 fs, σxy increases monotonically with E0,
although a saturation sets in for E0 ≤ 2 × 10−3. The
maximum value reached is σxy ≈ 0.63e2=h, which corre-
sponds to approximately 32% of the quantized value

σð0Þxy ¼ 2e2=h. Increasing the pump duration to
Tp ¼ 500 fs, the heating effects dominate for larger E0,
thus suppressing the Hall response with growing E0. The

quantized value σð0Þxy cannot be approached in this regime.
In general, the nonequilibrium Hall response contains a

topological contribution due to the induced Berry curvature
(see Sec. II B) and a contribution arising from a probe-
induced population imbalance [28]. The latter effect has
been found to dominate for weak pump field strengths, as
we use here [28]. Note that the NESS formalism employed
here includes both contributions at the level of linear
response. Isolating the Berry curvature contribution is a
considerable task; this is where circular dichroism and the
energy resolution of TR-ARPES can provide valuable
complementary insights.

C. Time-resolved photoemission and
circular dichroism

Nowwe investigate how the induced Berry curvature and
pseudospin texture manifest themselves in the circular
dichroism. To this end, we employ the full TR-ARPES
expression (3) including photoemission matrix elements
and laser dressing of the final states. The time-dependent
Green’s function entering Eq. (3) is computed taking both
e-e scattering and e-ph scattering into account.
Figures 6(a) and 6(b) show the build up of the photo-

dressed band structure captured by the unpolarized inten-
sity Itotðk; E;ΔtÞ (the energy E is the kinetic energy of the
photoelectron shifted by the chemical potential μ), and the
corresponding dichroic signal ICDðk; E;ΔtÞ. In the initial
phase of the pump-induced dynamics (Δt < 0), Floquet
features like a gap opening or sidebands are hardly visible,
although a kink at E − ωpr ¼ −0.75 eV indicates the onset
of transient photodressing [Fig. 6(a)]. The portion of the
pump pulse overlapping the probe pulse [see inset in
Fig. 6(a)] is broad in frequency space; therefore, electrons
are excited nonresonantly and redistributed by e-e and e-ph
scattering. The dichroic signal resembles the equilibrium
case [43,44] but with positive dichroism ð½ICDðk; E;ΔtÞ >
0� for E − ωpr < 0. For aligned pump and probe pulses
[Fig. 6(b)], the unpolarized spectrum combines features of
the cases of e-e and e-ph scattering in Fig. 3(b). By
switching off the corresponding phase factor in Eq. (3), we
find that LAPE effects have little influence, apart from a
slight enhancement of the sideband intensity relative to the
zero-photon effective band. Inspecting ICDðk; E;Δt ¼ 0Þ,
a clear asymmetry becomes apparent. In particular, below
E − ωpr ¼ 0 close to the K point, positive dichroism (i.e.,
photoemission by a LCP probe pulse) dominates.
To investigate the dichroism in more detail, we integrate

the TR-ARPES signal over a small region in momentum
space in the vicinity of K,

Ntot=CDðE − ωprÞ ¼
Z

dkItot=CDðk; εf;Δt ¼ 0Þ; ð12Þ

presented in Figs. 6(c) and 6(d) for E0 ¼ 2 × 10−3 and
E0 ¼ 4 × 10−3. Close to E − ωpr ¼ 0, the dichroism is
pronounced and positive (negative) below (above) the
Fermi energy. This sign change corresponds directly to
the behavior of the pseudospin in Fig. 2(b). It is remarkable
that our full one-step theory, which includes scattering of
the photoelectron from the lattice, is in line with the simple
physical picture outlined in Sec. II B. While intricate final-
state effects have a profound impact on the concrete angular
distribution of the dichroism, quantities integrated around
high-symmetry points are more sensitive to intrinsic
circular dichroism related to topological properties. We
confirm this picture for several systems in Ref. [49].
Therefore, the dichroism observed in Figs. 6(c) and 6(d)

FIG. 5. Upper panel: electronic temperature Tel obtained from
the single-temperature model (11) for pump-pulse duration Tp ¼
250 fs (blue) and Tp ¼ 500 fs (red) as a function of the pump
field strength E0. Lower panel: corresponding Hall response.
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arises due to the orbital magnetization and follows the
proportionality to the pseudospin (7).
To quantify the circular dichroism relative to the unpo-

larized signal, we integrate Ptot=CD ¼ R
dεNtot=CDðεÞ over

the range indicated by the orange box in Figs. 6(c) and 6(d).
The ratio PCD=Ptot is shown in Fig. 6(e) as a function of the
pump-probe delay, which confirms that the build up of the
dichroism follows the pump envelope. Inspecting PCD=Ptot
for Δt ¼ 0 [Fig. 6(f)], we find a roughly linear dependence
on the pump field E0. Although the pseudospin behaves as
rzðKÞ ∝ E2

0 (which can be seen from Brillouin-Wigner
theory), the heating effects, which increase with E0, result
in an overall linear behavior. As the system absorbs more
energy if only e-e scattering is present, the dichroism is
slightly reduced compared to the system with only e-ph
scattering. Apart from such subtle effects, the dichroism is
remarkably stable against dephasing and scattering. Note
that the dichroism is sizable for E0 ¼ 2 × 10−3, where
almost no Floquet gap can be observed [see Fig. 4(b)].

D. Robustness of the circular dichroism

The stability of the circular dichroism against interaction
effects—in contrast to the Floquet gap—is a striking
feature. To corroborate that this conclusion is not limited
to the simplified model of e-e correlations, or an artifact of
the specific treatment in this work, we perform calculations
within the NESS formalism (see Appendix D for details).

Inserting the Green’s function obtained from Eq. (10) into
Eq. (3) and assuming an infinitely long pump and probe
pulse yields

Iðk; εfÞ ∝ Im
X
jj0

M�
jðk; p⊥ÞG<

jj0 ðωpr − εfÞMj0 ðk; p⊥Þ:

ð13Þ

Note that we neglect LAPE effects here. The Green’s
function is fully determined by the properties of the bath
characterized by the coupling strength γ and the effective
temperature Teff .
Figure 7(a) illustrates that the Floquet NESS description

of ARPES (13) provides a very good approximation of the
full TR-ARPES treatment (3) for appropriate parameters γ
and Teff . Even though the agreement for the momentum-
integrated signal Ntot is good, deviations indicate that the
system exhibits a nonthermal distribution for overlapping
pump and probe pulses [76]. The dichroic signal NCD,
however, agrees very well. On this basis, we can now
increase the bath coupling strength γ, which also sets the
dephasing timescale, and investigate the robustness of the
circular dichroism. Performing an analysis as for Fig. 6(f),
we calculate the relative energy-integrated dichroic signal
for increasing γ. The result is presented in Fig. 7(b). The
dichroism stays robust over a large range of dissipation
strengths; more than doubling γ compared to the realistic

Time (fs)

(a) (c) (e)

(b) (d) (f)

D
ic

hr
oi

sm
D

ic
hr

oi
sm

Pump-probe delay (fs)

FIG. 6. (a),(b) Build up of Floquet features and circular dichroism in TR-ARPES for Δt ¼ −18 fs (a) and Δt ¼ 0 (b) calculated along
the path depicted in Fig. 2(a). All spectra are obtained including e-e and e-ph scattering. The energy E ¼ εf − μ is measured with
respect to the chemical potential μ. The unpolarized intensity is shown in the left panels, while the dichroic spectra are shown on the
right-hand side. (c),(d) Momentum-integrated unpolarized and dichroic TR-ARPES spectra (over a disk around K with kr ¼ 0.25 a:u:
radius) for E0 ¼ 2 × 10−3 (c) and E0 ¼ 4 × 10−3 (d). The orange boxes indicate the range of energy integration for (e) and (f).
(e) Relative integrated dichroic signal as a function of the pump-probe delay. (f) Dichroic signal as a function of the pump field
strength.
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value used in Fig. 7(a) roughly reduces the dichroism by a
factor of 2. We remark that γ also sets the linewidth of the
photoemission spectra and thus captures the decoherence
effects that we discuss in Sec. III A.
We also calculate photoemission spectra according to

Eq. (13) for the values of γ from Fig. 7(b). The Floquet gap
gets strongly suppressed for increasing dephasing γ, con-
sistent with Ref. [29], up to a point where no gap can be
observed anymore. Nevertheless, as Fig. 7(b) demonstrates,
the circular dichroism stays robust even in this strongly
dissipative regime.

IV. SUMMARY AND DISCUSSION

We presented a detailed investigation of the topological
properties of graphene pumped with circularly polarized
light under realistic conditions. Within the simple picture
based on an effective renormalized Hamiltonian, a gap
opens at the Dirac points, thus giving rise to nonzero
Berry curvature and orbital polarization. In the considered
regime of ℏωp ¼ 1.5 eV pump photon energy and for
realistic field strength, graphene becomes a Floquet-
Chern insulator. While predicted within a noninteracting
theory, we show that this induced topological state is robust
against e-e and e-ph interactions for strong enough—but
realistic—field strength of the pump laser.
Finding definite manifestations of the induced topologi-

cal state in experiments is a challenge. The opening of a
gap—as first reported in TR-ARPES experiments on
Bi2Se3 [23,24]—would be a clear signature of the effective
Floquet bands. Based on our time-dependent atomistic
calculations including e-e and e-ph interactions, we show
that the Floquet bands are formed but broadened by the
dephasing due to the interactions. Both e-e and e-ph
scattering are essential to capture the pronounced occupa-
tion of the excited bands. Heating effects would be severely
underestimated by simulations which lack these scattering
channels. The Floquet gap is found to be relatively stable

against interaction effects for larger pump field strengths,
although e-ph coupling—predominantly intervalley scat-
tering—gives rise to significant dephasing. For weak to
moderate field strengths (E0 ≤ 2 × 10−3 a:u:), the Floquet
gap is hardly visible, which implies that the opening of a
gap is not a useful criterion for experiments in the
considered regime.
In addition to the Floquet gap, the anomalous Hall

current measured during the pump pulse—similar to the
experiment in Ref. [27]—can provide insights into the
induced topological state. Extrapolating to feasible time-
scales by an effective temperature model, we find very
pronounced heating effects (the effective electronic tem-
perature can reach several 10 000 K). These heating
effects (which increase with the field strength) compete
with the stabilization of the Floquet gap, thus suppressing
the Hall response far below the quantized value for
realistically long pump pulses. In particular, for a pulse
duration of Tp ¼ 500 fs, we find that the heating effects
dominate for stronger pump fields. Furthermore, the Hall
response also contains a contribution arising from a
population imbalance, which is difficult to discern from
the contribution originating from the induced Berry
curvature.
This is where TR-ARPES can provide valuable insights.

The energy resolution allows us to observe the effective
bands and their occupation even in a hot state. Moreover,
measuring circular dichroism provides a direct link to the
topological state. Intrinsic dichroism arises due to the
orbital magnetization [49], which is proportional to the
Berry curvature in the simple effective model. For gra-
phene, in particular, the dichroism is a direct map of the
induced pseudospin texture, which is intimately connected
to the topological state. Combining accurate one-step
calculations of the photoemission matrix elements with
atomistic time-dependent simulations provides a state-of-
the-art approach to TR-ARPES and the circular dichroism
in particular. We show that the thus obtained band-resolved
dichroism is in line with the pseudospin properties and is
sizable even when the Floquet gap cannot be observed.
Furthermore, the dichroism is robust against scattering
effects and dissipation, which is corroborated by a steady-
state model.
Measuring circular dichroism in ARPES—accompanied

by a predictive theory—thus provides a tool for tracing
topological properties in and out of equilibrium in an
unprecedented way with full band (and even spatial
[77,78]) resolution in real time. More generally, our
proposal can be used to detect Berry curvature in non-
equilibrium systems even in the absence of a clear Hall
response. Examples are topological states in the excited-
state manifold [20] or nonequilibrium tuning of the Berry
curvature [21,79]. This new capability may boost the
discovery and understanding of transient topological
phenomena.
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FIG. 7. (a) Comparison between the momentum-integrated
unpolarized (upper) and dichroic (lower panel) signal for E0 ¼
4 × 10−3 a:u: obtained from TR-ARPES [same as in Fig. 6(d)]
and from the NESS formalism. The effective temperature is set to
Teff ¼ 1=30 a:u: (b) Energy-integrated dichroism [extracted as in
Fig. 6(f)] as a function of the bath coupling strength γ. The dashed
vertical line indicates the value of γ in (a).
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APPENDIX A: TIGHT-BINDING
HAMILTONIAN AND ORBITALS

We describe the electronic structure of graphene at the
level of the next-nearest-neighbor TB model defined by

Ĥ0 ¼
X
k

X
j;j0;σ

hjj0 ðkÞĉ†kjσ ĉkj0σ: ðA1Þ

Here, ĉ†kjσ (ĉkjσ) creates (annihilates) an electron with
momentum k and spin σ; j labels the sublattice site within
the unit cell. Employing a compact matrix notation, the
Hamiltonian is constructed in the TB approximation as

hðkÞ ¼
�

0 gðkÞ
g�ðkÞ 0

�
ðA2Þ

with

gðkÞ ¼ −Jeik·τð1þ e−ik·a2 þ e−ik·ða1þa2ÞÞ; ðA3Þ
where a1;2 denote the lattice vectors and τ ¼ tB − tA the
vector connecting the sublattice sites. The hopping ampli-
tude is chosen as J ¼ 2.628 eV.
The Bloch states ψkαðrÞ are obtained by the Wannier

representation

ψkαðrÞ ¼
1ffiffiffiffi
N

p
X
R

X
j

CαjðkÞeik·ðRþtjÞwjðr −RÞ

≡X
j

CαjðkÞϕkjðrÞ; ðA4Þ

where the coefficients CαjðkÞ are the eigenvectors of the
Hamiltonian (A2). The Wannier orbitals are approximated
by Gaussian wave functions of the type

wjðrÞ ¼ Cjze−αjðr−tjÞ
2

: ðA5Þ

The parameters Cj and αj are fitted to atomic orbitals.

APPENDIX B: ONE-STEP CALCULATION OF
MATRIX ELEMENTS

The photoemission intensity is governed by Fermi’s
golden rule given by

Iðp; εfÞ ∝ jhχp;p⊥ jϵ̂ · D̂jψkαij2δðεkα þ ℏω − εfÞ: ðB1Þ

Here, the photon energy is given by ℏω, and εf ¼ ðp2 þ
p2⊥Þ=2 is the energy of the photoelectron final state jχp;p⊥i.
The matrix element of the dipole operator D̂ and the
polarization direction ϵ̂ determine the selection rules. The
in-plane momentum p is identical to the quasimomentum k
up to a reciprocal lattice vector. While formally equivalent,
the choice of the gauge for the transition operator D̂ plays
an important role in developing accurate approximations.
In this work, we use the momentum operator D̂ ¼ p̂ ¼
ðℏ=iÞ∇. However, for capturing effects such as circular
dichroism, accurate final states jχp;p⊥i are required. For
instance, approximating the final states by plane waves, the
circular dichroism vanishes. Therefore, we compute jχp;p⊥i
explicitly as eigenstates of a model potential. In particular,
we construct a muffin-type scattering potential of the form

VðrÞ ¼
X
R

v0ðjr −RjÞ; ðB2Þ

where the sum runs over all lattice sites. The spherical
atom-centered potential is modeled by a smoothed boxlike
dependence v0ðrÞ ¼ −V0=f1þ exp½a0ðr − r0Þ�g. The
parameters V0, a0, and r0 are adjusted to approximate
the ab initio photoemission spectra (see below).
The final states are Bloch states with respect to the in-

plane momentum, while they obey time-reversed LEED
asymptotic boundary conditions in the out-of-plane (z)
direction. Thus, it is convenient to expand the final states as

χp;p⊥ðrÞ ¼
X
G

eiðpþGÞ·rξp;p⊥;GðzÞ: ðB3Þ

The photoelectron momentum p is identical to the crystal
momentum kþG0 of the initial Bloch states due to in-plane
momentum conservation (up to a reciprocal lattice vector
G0). Assuming photoemission from the first BZ (G0 ¼ 0),
the expansion coefficients in Eq. (B3) are fixed by

χp;p⊥ðrÞ → eik·r þ
X
G

RGe−iðkþGÞ·r; ðz → ∞Þ;

χp;p⊥ðrÞ →
X
G

TG eiðkþGÞ·r; ðz → −∞Þ; ðB4Þ
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where RG and TG are reflection and transmission coeffi-
cients, respectively. Expanding the potential in plane waves,

VðrÞ ¼
X
G

eiG·rVGðzÞ; ðB5Þ

the final states (B3) are determined by the Schrödinger
equation

X
G0

��
−
∂2
z

2
þ ðpþGÞ2

2

�
δG;G0 þ VG−G0 ðzÞ

�
ξp;p⊥;G0 ðzÞ

¼
�
p2

2
þ p2⊥

2

�
ξp;p⊥;GðzÞ: ðB6Þ

We solve Eq. (B6) together with the boundary condition
(B4) employing the renormalized Numerov method as
in Ref. [80].
After obtaining the final states, the matrix elements

Mαðk; p⊥Þ ¼ hχk;p⊥ jϵ̂ · D̂jψkαi are computed by

Mαðk; p⊥Þ ¼
X
G

ϵ̂ ·ðkþGÞ
Z

∞

−∞
dzξ�p;p⊥;GðzÞϕkα;GðzÞ;

ðB7Þ
where ϕkα;GðzÞ denote the plane-wave expansion coeffi-
cients of the Bloch states (A4).
The thus calculated matrix elements are benchmarked

against ab initio calculations based on time-dependent
density function theory (TDDFT) (analogous to
Ref. [49]). We find the best agreement of the resulting
ARPES spectra with the first-principles results for
V0 ¼ 3.0, a0 ¼ 5, and r0 ¼ 1 (atomic units). As a char-
acteristic benchmark, we compute the total intensity
Itotðk; εfÞ and the circular dichroism ICDðk; εfÞ along
the path shown in the inset in Fig. 8. As is known from
theory [49] and experiment [43,44], this region in momen-
tum space is where the circular dichroism is most pro-
nounced (while it vanishes in the Γ − K direction).
Figure 8 shows Itotðk; εfÞ and ICDðk; εfÞ within the

TB+one-step theory and compares it to the first-principles
calculations. Except for the exact magnitude of the circular
dichroism, the TB+one-step approach matches the TDDFT
results very well, thus endorsing it as an excellent method
for the description of qualitative behavior (especially close
to the Dirac point).

APPENDIX C: TIME-DEPENDENT
NONEQUILIBRIUM GREEN’S
FUNCTIONS CALCULATIONS

We treat the dynamics in pumped graphene including e-e
scattering as well as e-ph coupling within the framework of
the TD-NEGF approach based on the single-particle GF
defined on the Kadanoff-Baym contour C:

Gjj0;σðk; t; t0Þ ¼ −ihTCĉkjσðtÞĉ†kj0σðt0Þi: ðC1Þ

Here, TC denotes the contour ordering symbol. Since the
spin-orbit coupling is negligibly small in graphene, we drop
the spin index in what follows. The contour GF (C1) obeys
the equation of motion

(i∂t − hMFðk; tÞ)Gðk; t; t0Þ ¼ δCðt; t0Þ

þ
Z
C
dt̄Σðk; t; t̄ÞGðk; t̄; t0Þ: ðC2Þ

Here, we employ a compact matrix notation. The self-
energy Σðk; t; t0Þ captures all interaction effects beyond the
mean-field (MF) Hamiltonian hMFðk; tÞ. Projecting onto
observable times using the Langreth rules transforms the
equation of motion (C2) into the usual Kadanoff-Baym
equations (KBEs). Solving the KBEs poses a considerable
computational challenge, as the computational effort grows
asN3

t withNt time steps. To reduce the numerical effort and
the memory demands, we employ the generalized

FIG. 8. Comparison of the ARPES intensity Iðk; εfÞ for
different binding energies within the ab initio method and the
TB+one-step approach. We show the characteristic path in the BZ
orthogonal to Γ-K passing through K (see inset).
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Kadanoff-Baym ansatz (GKBA). The GKBA transforms
the two-time KBEs to the single-time kinetic equation for
the single-particle density matrix ρðk; tÞ:

∂tρðk; tÞ þ i½hMFðk; tÞ; ρðk; tÞ� ¼ −½Iðk; tÞ þ H:c:�;
ðC3Þ

where the collision integral Iðk; tÞ is defined by

Iðk; tÞ ¼
Z

t

−∞
dt̄(Σ<ðk; t; t̄ÞGAðk; t̄; tÞ

þ ΣRðk; t; t̄ÞG<ðk; t̄; tÞ): ðC4Þ

Correlations of the initial state ρðk; t ¼ 0Þ are built in
by adiabatic switching: At t ¼ −∞, the equilibrium
density matrix is determined by the MF treatment, while
correlation effects are gradually incorporated by replacing
Σðk; t; t0Þ → fðtÞfðt0ÞΣðk; t; t0Þ with a smooth switch-on
function fðtÞ. However, Eqs. (C3) and (C4) are not closed
in terms of ρðk; tÞ since, in principle, information on the
whole two-time dependence of the GF enters the collision
integral (C4). Within the GKBA, the two-time dependence,
which captures spectral information, is approximated by

G<ðk; t; t0Þ ¼ −GRðk; t; t0Þρðk; t0Þ þ ρðk; tÞGAðk; t; t0Þ;
ðC5aÞ

G>ðk; t; t0Þ ¼ GRðk; t; t0Þρ̄ðk; t0Þ − ρ̄ðk; tÞGAðk; t; t0Þ;
ðC5bÞ

where ρ̄ðk; tÞ ¼ 1 − ρðk; t0Þ. Here we approximate
GRðk; t; t0Þ by the MF GF

(i∂t − hMFðk; tÞ)GRðk; t; t0Þ ¼ δðt − t0Þ: ðC6Þ

1. Electron-electron interactions

As has been shown in Ref. [51], graphene can be treated
to a good approximation as an effective Hubbard model
with U ≈ 1.6jJj, which we adopt in this work. Thus, we
consider

Ĥe−e ¼
U
2

X
R

X
j;σ

�
n̂Rjσ −

1

2

��
n̂Rjσ̄ −

1

2

�
; ðC7Þ

where n̂Rjσ is the density operator for unit cell R.
The value for U is clearly in the weakly interacting

regime. Therefore, we employ the second-order expansion
in the Coulomb interaction (second Born approximation)
for the self-energy:

Σe−e;≷
jj0 ðk; t; t0Þ ¼ U2

N2
k

X
q;p

G≷
jj0 ðk − q; t; t0ÞG≷

jj0 ðqþ p; t; t0Þ

×G≶
j0jðp; t0; tÞ: ðC8Þ

Here, Nk denotes the number of points sampling the BZ.

2. Electron-phonon coupling

We also include e-ph interactions, which are modeled by
the Hamiltonian

Ĥe-ph ¼
1ffiffiffiffiffiffi
Nk

p
X
q;ν

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCωqν

p X
k

X
jl;σ

Γν
jlðqÞĉ†k−qjσ ĉklσX̂qν;

ðC9Þ

where we include the phonon modes ν ∈ fLA;TA;
LO;TOg. ωqν stands for their dispersion; MC is the mass
of the carbon atom. The phonon coordinate operator is
defined by X̂qν ¼ ðb̂qν þ b̂†−qνÞ=

ffiffiffi
2

p
.

Systematic studies and transport experiments [52,81]
have demonstrated the feasibility of a weak-coupling
treatment. Hence, we employ the (non-self-consistent)
Midgal approximation. The e-ph contribution to the self-
energy is then given by

Σe-ph;≷
jj0 ðk; t; t0Þ ¼ i

Nk

X
q;ν

1

MCωqν

X
ll0

Γν
jlðqÞG≷

ll0 ðk − q; t; t0Þ

× Γν
l0j0 ðqÞD≷

ν ðq; t; t0Þ: ðC10Þ

Here, D≷
ν ðq; t; t0Þ denotes the free phonon GF.

The e-ph coupling matrix elements Γν
jlðqÞ are computed

from the symmetry of the phonon modes and the Bloch
states. In this work, we adopt the canonical modes from
Ref. [82], while the e-ph couplings are taken from the TB
model from Ref. [52]. For completeness, we gather the
formulas for the couplings below:

ΓTAðqÞ ¼ jqj
�

2α βAe−ðqÞ2
βAeþðqÞ2 2α

�
; ðC11aÞ

ΓLAðqÞ ¼ jqj
�

0 βAe−ðqÞ2
βAeþðqÞ2 0

�
; ðC11bÞ

ΓLOðqÞ ¼ i

�
0 βOeþðqÞ

−βOe−ðqÞ 0

�
; ðC11cÞ

ΓTOðqÞ ¼
�

0 −βOeþðqÞ
−βOe−ðqÞ 0

�
: ðC11dÞ

Here, e�ðqÞ ¼ ðqx � iqyÞ=jqj. For the constants α, βA,
and βO we adopt the GW values from Ref. [52].
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3. Spectral corrections

The GKBA underestimates self-energy effects for the
two-time dependence of the GF. Therefore, we correct the
retarded GF by the static correlation correction from
Ref. [60] by solving

(i∂t − hMFðk; tÞ − Σ̃ðk; tÞ)G̃Rðk; t; t0Þ ¼ δðt − t0Þ: ðC12Þ

Here, the effective one-time self-energy is approximated by

Σ̃ðk; tÞ ¼
Z

dt̄ΣRðk; t; t − t̄Þ: ðC13Þ

Tests show that these corrections have little influence on the
dynamics of ρðk; tÞ. Therefore, we employ the correction
in a “one-shot” fashion: After obtaining ρðk; tÞ for all time
steps, we construct the lesser and greater GFs according to
Eq. (C5), substitute them into Eq. (C13), and compute the
retarded GF from Eq. (C12). Finally, the corrected lesser
GF is obtained from Eq. (C5), replacing GR → G̃R.

4. Numerical details

The GKBA calculations are performed with a highly
accurate, in-house compute code. All collision integrals
(C4) are computed using fifth-order Gregory quadrature
[83], while the equation of motion (C3) is solved with a
fifth-order Adams-Moulton predictor-corrector scheme.
We use Nt ¼ 4500 to Nt ¼ 5600 equidistant time points
and a time step of h ¼ 0.5 a:u: (convergence is checked).
The full first BZ is sampled by an Nk ¼ 96 × 96 grid in
momentum space.

APPENDIX D: FLOQUET STEADY-STATE
FORMALISM

The Floquet NESS formalism is a powerful tool for
describing the dynamically equilibrated balance of

absorption, scattering, and dissipation [75]. Here we con-
sider the noninteracting graphene system, where each
lattice site is coupled to a fermionic bath characterized
by an embedding self-energy [55]. To determine the steady
state, one first solves for the retarded Floquet GF

½ĜRðk;ωÞ�−1 ¼ ω − ĤðkÞ − Σ̂RðωÞ; ðD1Þ
where ĤðkÞ denotes the matrix representation of the
Floquet Hamiltonian (4) in the combined space of orbitals
and Floquet indices. For the retarded self-energy, we
invoke the wideband limit approximation ΣR

nj;n0j0 ðωÞ ¼
−iδnn0δjj0γ=2. The parameter γ describes the coupling
strength. The lesser component of the self-energy repre-
senting the occupation of the bath is given by

Σ<
nj;n0j0 ðωÞ ¼ iδnn0δjj0γfðω − μþ nωpÞ; ðD2Þ

where fðωÞ denotes the Fermi distribution with inverse
temperature β ¼ 1=Teff ; μ is the chemical potential of the
reservoir, which is assumed to be aligned with the chemical
potential of undoped graphene. The lesser Floquet GF is
then determined by the Keldysh equation

Ĝ<ðk;ωÞ ¼ ĜRðk;ωÞΣ̂<ðωÞ½ĜRðk;ωÞ�†: ðD3Þ

Finally, the physical GF is obtained by switching to the
two-time representation

G<
jj0 ðk; t; t0Þ ¼

X
nn0

Z
ωp=2

−ωp=2

dω
2π

G<
nj;n0j0 ðk;ωÞ

× e−iωðt−t0Þe−inωptein
0ωpt0 : ðD4Þ

The thus obtained GF is substituted into Eq. (10), which
yields the steady-state photoemission expression (13).
The Hall response is calculated (ignoring vertex correc-

tions) as in Ref. [14]:

σxyðωÞ ¼
1

ω

2

NkSc
ReTr

X
k

Z
ωp=2

−ωp=2

dω0

2π
(v̂xðkÞĜRðk;ω0 þ ωÞv̂yðkÞĜ<ðk;ω0Þ þ v̂xðkÞĜ<ðk;ω0 þ ωÞv̂yðkÞĜAðk;ω0Þ)

ðD5Þ

in the limit ω → 0. Here, the velocity matrix elements in the
Floquet representation are defined by

vα;nj;n0j0 ðkÞ ¼
1

Tp

Z
Tp

0

dt
∂
∂kα hjj0(k −ApðtÞ)eiðn−n0Þωpt:

ðD6Þ

At a given coupling strength γ (and fixed pump parame-
ters), the only adjustable parameter is the effective temper-
ature Teff , which can be different from the electronic

temperature Tel. To obtain Teff corresponding to a certain
Tel, we compute the averaged kinetic energy (without a
pulse) by

Ekin ¼
1

Nk

X
k

X
jj0

hjj0 ðkÞ
1

Tp

Z
Tp

0

dtG<
jj0 ðk; t; tÞ ðD7Þ

from the physical GF (D4) as a function of Teff . Comparing
to the dependence EkinðTelÞ in thermal equilibrium then
allows us to determine the relation between Teff and Tel.
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Man, and K. M. Dani, Pulling Apart Photoexcited Electrons
by Photoinducing an In-Plane Surface Electric Field,
Sci. Adv. 4, eaat9722 (2018).

[78] I. Cucchi, I. Gutiérrez-Lezama, E. Cappelli, S. M. Walker,
F. Y. Bruno, G. Tenasini, L. Wang, N. Ubrig, C. Barreteau,
E. Giannini, M. Gibertini, A. Tamai, A. F. Morpurgo, and
F. Baumberger, Microfocus Laser-Angle-Resolved Photo-
emission on Encapsulated Mono-, Bi-, and Few-Layer
1T’-WTe2, Nano Lett. 19, 554 (2019).

[79] E. J. Sie, J. W. McIver, Y.-H. Lee, L. Fu, J. Kong, and N.
Gedik, Valley-Selective Optical Stark Effect in monolayer
WS2, Nat. Mater. 14, 290 (2015).

[80] M. Schüler, Y. Pavlyukh, and J. Berakdar, Nuclear-Wave-
Packet Dynamics Mapped Out by Two-Center Interference
in the HeHþ

2 Molecule, Phys. Rev. A 89, 063421 (2014).
[81] C.-H. Park, N. Bonini, T. Sohier, G. Samsonidze,

B. Kozinsky, M. Calandra, F. Mauri, and N. Marzari,
Electron-Phonon Interactions and the Intrinsic Electrical
Resistivity of Graphene, Nano Lett. 14, 1113 (2014).

[82] S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and
J. Robertson, Kohn Anomalies and Electron-Phonon
Interactions inGraphite, Phys. Rev. Lett. 93, 185503 (2004).

[83] M. Schüler, D. Golež, Y. Murakami, N. Bittner, A.
Hermann, H. U. R. Strand, P. Werner, and M. Eckstein,
NESSi: The Non-Equilibrium Systems Simulation Package,
Comput. Phys. Commun. 257, 107484 (2020).

HOW CIRCULAR DICHROISM IN TIME- AND ANGLE- … PHYS. REV. X 10, 041013 (2020)

041013-17

https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.77.054438
https://doi.org/10.1103/PhysRevB.77.054438
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1038/ncomms8047
https://doi.org/10.1038/ncomms8047
https://doi.org/10.1103/PhysRevLett.120.087402
https://doi.org/10.1103/PhysRevB.83.121408
https://doi.org/10.1103/PhysRevLett.120.197601
https://doi.org/10.1103/PhysRevB.96.045125
https://doi.org/10.1103/PhysRevB.96.155122
https://doi.org/10.1103/PhysRevB.96.155122
https://doi.org/10.1103/RevModPhys.86.779
https://doi.org/10.1126/sciadv.aat9722
https://doi.org/10.1021/acs.nanolett.8b04534
https://doi.org/10.1038/nmat4156
https://doi.org/10.1103/PhysRevA.89.063421
https://doi.org/10.1021/nl402696q
https://doi.org/10.1103/PhysRevLett.93.185503
https://doi.org/10.1016/j.cpc.2020.107484

