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The cyclotron resonance of monolayer graphene, encapsulated in hexagonal boron nitride and with a
graphite backgate, is explored via infrared transmission magnetospectroscopy as a function of the filling
factor at fixed magnetic fields. The impact of many-particle interactions in the regime of broken spin and
valley symmetries is observed spectroscopically. As the occupancy of the zeroth Landau level is increased
from half-filling, a nonmonotonic progression of multiple cyclotron resonance peaks is seen for several
interband transitions, revealing the evolution of underlying many-particle-enhanced gaps. Analysis of the
peak energies shows significant exchange enhancements of spin gaps both at and below the Fermi energy, a
strong filling-factor dependence of the substrate-induced Dirac mass, and also the smallest particle-hole
asymmetry reported to date in graphene cyclotron resonance.
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I. INTRODUCTION

In graphene, Coulomb interactions combine with spin
and valley degrees of freedom to generate an approximate
SU(4) symmetry, which when broken can give rise to novel
magnetic ground states in the quantum Hall regime at high
magnetic fields. These phenomena have been explored by a
variety of experimental probes, including electronic trans-
port, quantum capacitance, and scanning probe microscopy
experiments [1–7]. However, the excited states of this
system due to collective excitations between Landau levels
(LLs) in the broken-symmetry regime have not been

explored much to date [8,9]. Graphene is an ideal platform
in which to pursue such studies because, in contrast to
traditional two-dimensional electron systems having a
parabolic dispersion, the linear dispersion of graphene
allows the contribution of many-particle interactions to
directly modify the LL transition energies in measurements
of the cyclotron resonance (CR). Thus, the interplay of
interaction effects and broken symmetries can be explored
spectroscopically and on an even footing.
In this work, we study the CR in high-quality monolayer

graphene by varying the LL filling factor at various fixed
values of the magnetic field. Several interband transitions
are observed to display nontrivial dependence on the filling
factor. In the lowest interband transition, an intriguing
pattern of resonances appears, starting with a single peak at
half-filling of the n ¼ 0 LL (ZLL), which then splits into
four peaks at 3=4-filling and reduces to just two as the level
becomes completely occupied; meanwhile, the higher
interband excitations show interesting sequences of spectral
weight shifts with the changing LL occupation. Using a
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simple model of transitions between LLs having interac-
tion-enhanced valley and Zeeman gaps, we find that the gap
in the ZLL arising from coupling of graphene to the
encompassing hexagonal boron nitride (hBN) becomes
strongly enhanced both at half-filling and as the magnetic
field is increased. Moreover, we observe an enhancement of
Zeeman gaps both at and well below the Fermi level, with
the latter indicating an indirect exchange coupling due to
lattice-scale interactions coupling the two valleys in gra-
phene. While this work specifically addresses physics in
graphene, the approach is applicable, in principle, to any
system with a linear dispersion and thus may find utility in
understanding the competing roles of interactions and
symmetry breaking in Dirac, Weyl, or strongly correlated
materials [10,11].
In a strong magnetic field and absent symmetry break-

ing, graphene develops fourfold degenerate LLs (two each
for electron spin and the K and K0 valleys) with single-
particle energies given by En ¼ snℏωc

ffiffiffiffiffiffijnjp

, where ωc ¼
ffiffiffi

2
p

vl−1B is the cyclotron frequency, v ∼ 106 m=s is the band
velocity, lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

the magnetic length, sn ¼ signðnÞ,
and n ¼ 0;�1;�2… is the orbital index [12,13]. If the
sublattice symmetry of graphene is broken, as is common
for hBN-encapsulated devices, the valley-polarized n ¼ 0
level is split by E0;KðE0;K0 Þ ¼ þð−ÞM, where M is the
Dirac mass [14], and the jnj > 0 levels are shifted accord-
ing to En ¼ snℏωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jnj þ μ2
p

, with μ ¼ M=ℏωc. The CR
energies of interband or intraband transitions from LL m to
n are then given by the level separation

ΔEm;n ¼ ℏωc

�

sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jnj þ μ2
q

− sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jmj þ μ2
q

�

; ð1Þ

with the selection rule jnj − jmj ¼ �1. In graphene,
these energies can also include contributions from many-
particle interactions, in contrast to materials with a para-
bolic dispersion where the center-of-mass and interparticle
coordinates are separable and CR becomes insensitive to
electron interactions, a result known as Kohn’s theorem
[15–17]. The linear dispersion of graphene mixes these
coordinates so that interactions can directly impact
LL transitions [18–23], leading to deviations from
Eq. (1) [8,24–27] and a dependence of CR on the LL filling
factor, ν ¼ 2πnsl2B, where ns is the charge carrier sheet
density [28].
The sample used in this study is an 820-μm2 sheet of

monolayer graphene sandwiched between approximately
40-nm-thick flakes of hexagonal boron nitride, assembled
using a dry-stacking technique [29] and placed on a 4-nm-
thick flake of single-crystal graphite lying on a lightly
doped, oxidized Si wafer. Electrical contacts to the edge of
the graphene were made using 3=60-nm-thick films of
Cr=Au, defined by standard electron beam lithography
fabrication. A 90-μm aluminum foil aperture restricts the
infrared light to the region immediately surrounding the

sample. All spectroscopic data in this work were acquired
at a base temperature of 300 mK (estimated sample
temperature of less than 2 K [30]) for fixed values of
the magnetic field using a broadband Fourier-transform
infrared spectrometer with instrumental resolution of
0.5 meV (with exploratory traces at other resolutions
[30]). Unpolarized blackbody light from the spectrometer
was coupled through a KBr window into a cryogen-free
dilution refrigerator with a 14-T solenoid, focused to and
defocused from the sample using custom parabolic optics,
and funneled via a compound parabolic collector to a
composite Si bolometer. Traces are acquired at target LL
filling factors and normalized to spectra taken at much
higher ν, where many of the transitions at the target ν are
Pauli-blocked, so that absorption features common to both
traces divide to unity [30]. Each normalized spectrum was
averaged for approximately 4 h.

II. CYCLOTRON RESONANCE RESULTS

A. Overview

In graphene, several interband CR transitions Ti can be
observed simultaneously at fixed filling factor, comprising
nominally degenerate pairs of inter-LL excitations n ¼
−i → i − 1 and 1 − i → i with energies given by Eq. (1).
Figure 1(a) shows a color map of transitions T1 through T5

acquired as a function of ν, in which the square-root
dependence of the energies on the LL indices is immedi-
ately apparent. A schematic of the allowed transitions
at half-filling is drawn in Fig. 1(b), and a representative
line cut at ν ¼ 0 is shown in Fig. 1(c). The very narrow
resonances follow from recent improvements in sample
fabrication [31,32] and are key to enabling our observa-
tions. In Fig. 1(d), we show T1 at ν ¼ 0 in devices from the
present and two prior works [25,28], revealing a clear
decrease in the half width at half maximum, Γ. In fact, the
lower two traces in Fig. 1(d) provide a comparison of two
common gating methods: The middle trace is acquired in a
sample with a distant, doped Si=SiO2 substrate on which
the encapsulated monolayer rests [28], while the lower
trace from the present work uses a local graphite gate.
By chance, these two devices have similar charge carrier
mobilities of 200 000 cm2=Vs, but the graphite-gated
device shows greater values of the quantum scattering
time τq extracted from Shubnikov–de Haas oscillations
[33], reflecting improved screening of charged impurities in
the SiO2 by the graphite. The CR lifetimes τCR ¼ ℏ=Γ in
Fig. 1(e) are similarly improved, and in fact, the value of
about 600 fs quoted for the present device is a lower limit,
as even narrower lines with τCR ≈ 2.5 ps (Γ ¼ 0.26 meV)
are seen at higher instrumental resolution. This latter value
is close to the transport time derived from the mobility [30],
suggesting that impurity collisions limit the CR lifetime.
Consistent with prior observations of CR in AlGaN=GaN
heterostructures [34], τCR can be several times larger than
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τq, which is reduced by variations in the carrier density
across the sample.

B. Filling-factor dependence of T1

In Fig. 2, we focus on the T1 transition over filling
factors ν ¼ 0 to þ6, where a marked nonmonotonic evolu-
tion is seen from a single resonance at ν ¼ 0, to four
resonances around ν ¼ þ1, which reduce back to two for
ν≳þ2, which both fade away as ν → 6 and the n ¼ þ1
LL is completely filled; a sudden sharp rise in the lower-
energy resonance above ν ¼ 5 presages the extinction of
the resonance. Line cuts in Fig. 2(b) show details at half-
integer ν. The resonances manifest in intriguing patterns:
The higher-energy peaks at ν ¼ 1 appear and disappear at
different ν values, while the lower-energy pair appear
simultaneously and then merge with increasing ν. At
ν ¼ 2, the upper peak first appears at a lower energy near
ν ¼ 3=2 and then rapidly rises before leveling off for ν≳ 2.
Note that these features at ν ¼ 1 and 2 persist over a wide
range of ν. This effect is real and not due, for instance, to
small variations in the carrier density across the sample:
From thewidth of the Dirac peak in the zero-field resistance
vs density, we estimate a distribution of carrier densities
δns ≈ 2 × 1010 cm−2, or δν ≈ 0.1 at 8 T, rather smaller than
the range over which the ν ¼ 1 and 2 features persist [30].

At ν ¼ 1=2 and 3=2, broad resonances appear that, never-
theless, maintain the full spectral weight, suggesting all
transitions are present but undifferentiated [30]. This could
indicate the presence of dark magnetoexciton modes
serving as additional scattering channels: There are up to
16 distinct transitions between the 0 and �1 LLs, although
only the four that conserve the spin and valley are optically
active [18].
In Fig. 2(c), we introduce schematics representing the

simplest model of transitions between the n ¼ 0 and �1

LLs that aligns with the observed CR. These schematics are
drawn for ν ¼ 0;þ1, andþ2, with each of the four spin and
valley levels shown explicitly, albeit with greatly exagger-
ated level shifts and gap sizes. In graphene, the inappli-
cability of Kohn’s theorem implies the CR transition
energies will reflect the single-particle LL separations plus
many-particle shifts of the levels, along with excitonic and
exchange corrections due to the excited electron and
remnant hole [18–20,35,36]. Of course, the measured
energies do not indicate which portion is due to level
shifts vs exciton corrections. Therefore, we model each
transition energy as a sum of the LL separation plus the
difference of any valley and Zeeman gaps in each level,
with the understanding that these gaps are meant to
represent both single- and many-particle energies.
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FIG. 1. Cyclotron resonance transitions in graphite-gated monolayer graphene at B ¼ 8 T. (a) Color map of the normalized
transmission spectra ΔT=T in the midinfrared as a function of the LL filling factor ν, measured in the device shown in the inset to
panel (c). Several sharp CR transitions are visible, labeled T1 through T5. The higher noise in the region of T1 is due to the overall lower
transmission in the 60–150-meV energy range, compared to the other transitions (and below 60 meV, the signal goes to zero) [30].
(b) Schematic showing the allowed Landau-level transitions at ν ¼ 0, consisting of nominally degenerate pairs. (c) Representative line
cut of the color map at ν ¼ 0. (d) Evolution of CR line shape at ν ¼ 0 with the sample quality: The top trace is from a graphene-on-SiO2

device with mobility of 17 000 cm2=Vs [25], the middle is from a hBN-encapsulated device on SiO2 [28], and the bottom is the present
graphite-gated, hBN-encapsulated device; the latter two have the same mobility, μ ≈ 200 000 cm2=Vs. (e) CR lifetime τCR ¼ ℏ=Γ at
ν ¼ 0 (Γ is the half width at half maximum) vs a spread of quantum scattering times τq, derived from Shubnikov–de Haas oscillations
acquired for a range of carrier densities at 3 K [colors correspond to traces (d)] [30]. The dashed line marks τCR ¼ τq.
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For instance, at ν ¼ þ2, two resonances are observed,
although up to four transitions [two each for the valley and
spin, labeled a0, b0, c, and d in Fig. 2(c)] are allowed. All
LLs are either completely filled or empty, so interactions
are expected to be minimized. If we assume that the
Zeeman splittings in the n ¼ 0 and 1 LLs are equal, then
the observed CR splitting ΔEν¼2 ¼ Ec;d − Ea0;b0 arises
from transitions originating on either side of the valley
gap in n ¼ 0. Note that if the n ¼ 1 LL also has a nonzero
valley gap, it is still the difference of these gaps,
Δvν¼2 ≡ Δv0 − Δv1 ¼ ΔEν¼2, that is detected. If the
Zeeman splitting were also enhanced in one level over
another, this picture would predict additional resonances
that are not present in the data. Fitting the two peaks at
ν ¼ 2 with Lorentzians, we find ΔEν¼2 ¼ 5.0ð1Þ meV.
Since any valley splitting of the n ¼ 1 LL is likely to be
small, this result should be a good measure of the valley gap
in the ZLL. We identify this gap as due to sublattice
symmetry breaking from the presence of hBN [5] and
calculate a Dirac mass M ¼ 2.5 meV.
At ν ¼ 0, the single peak indicates that the four allowed

transitions are all degenerate. By the schematic in Fig. 2(c),
the CR energy is given by the LL separation plus half the
difference of the valley gaps in the zeroth and�1 LLs. That
a single resonance is seen implies the valley gaps in the

n ¼ �1 levels must be equal; in addition, all of the Zeeman
gaps must be the same, or additional CR lines would be
seen. Actually, the ν ¼ 0 resonance is the broadest in T1,
suggesting there may be unresolved lines due either to a
differential enhancement of these gaps or a level repulsion
between the two degenerate pairs labeled fa; bg and fc; dg
in the figure if lattice-scale interactions couple theK and K0
valleys. Indeed, such a splitting appears at 13 Tas discussed
below. For now, we determine the valley-gap difference to
be Δvν¼0 ¼ 2ðEν¼0 − Eν¼2

avg Þ ¼ 7.3ð5Þ meV, where Eν¼2
avg is

the average energy of the two peaks at ν ¼ 2. This
difference yields a Dirac mass of 3.7 meV, substantially
enhanced over its value at ν ¼ 2.
Finally, four resonances are seen at ν ¼ 1, which

requires each transition to comprise a unique combination
of valley and spin gaps in the initial and final LLs. In
Fig. 2(c), we sketch a scenario where, for instance, the two
transitions fc; dg (which are degenerate at ν ¼ 0 and þ2)
now gain distinct energies at ν ¼ 1 when the Zeeman gaps
in the n ¼ 0 and 1 LLs become unequal. Moreover, the two
Zeeman gaps in the n ¼ 0 level marked Δz0;− and Δz0;þ
must be differentially enhanced, or else the transitions
marked a and d will remain degenerate. The difference of
the valley-gap energies in the n ¼ 0 and �1 LLs, namely,
Δvν¼1 ¼ Δv0 − Δv�1, and the two Zeeman differences

(a)

(b)

(c)

FIG. 2. Evolution of transition T1 vs filling factor. (a) High-resolution map of T1 vs filling factor from ν ¼ −0.07 to ν ¼ þ2.5. Traces
were acquired every δν ¼ 0.026, with additional traces at ν ¼ 3; 3.5;…; 6. Starting with a single bright peak at ν ¼ 0, four peaks appear
near ν ¼ þ1, which reduce to two peaks at ν ¼ 2 and higher. By ν ¼ 6, the T1 transition is extinguished as the participating LLs are
filled. (b) Detail of transitions by line cuts at half-integer fillings. The linewidths at ν ¼ þ1 are the narrowest observed, with τCR
reaching 2.5 ps, or a resonance quality factor Q ¼ 220. In between integer values of ν, only a single broad resonance is resolved.
(c) Schematic of transitions involving the n ¼ −1, 0, and þ1 LLs. Solid (dashed) lines indicate the K (K0) valleys, with valley gaps Δvi
and spin splittings Δzi explicitly included. The Fermi energy EF is shown as a dotted line. Each of the four spin and valley-preserving
CR transitions are shown in different colors, corresponding to the labels a, b, c, and d. As the filling factor is increased, the two
transitions from n ¼ −1 to 0 become Pauli blocked and are replaced by transitions from n ¼ 0 to þ1; this is indicated by a label change
a; b → a0; b0. Gaps indicated in this schematic represent single-particle levels enhanced by electron-electron interactions as discussed in
the text.
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Δz− ¼ Δz0;− − Δz�1;− and Δzþ ¼ Δz0;þ − Δz1;þ, can be
extracted by inverting a matrix that records the contribution
of each gap to the transition energy. The full procedure is
described in the Supplemental Material [30] and yields
Δvν¼1 ¼ 5.0 meV;Δzþ ¼ 2.1 meV, and Δz− ¼ 4.3 meV.
Note we assume that gaps in the n ¼ �1 levels are
identical. While the size of this valley gap is close to that
found at ν ¼ þ2, the spin gaps are significantly larger than
the bare Zeeman energy at this field, EZ ¼ 0.93 meV,
indicating a clear role for electron interactions. The
enhanced Δzþ splitting is notable, as both levels are
occupied and well below the Fermi energy. This case is
reminiscent of indirect exchange splitting in the spin sector
seen in GaAs quantum wells [37], except that here the
splittings occur in different valleys, indicating the presence
of lattice-scale interactions coupling valleys K and K0.
Meanwhile, the size of Δz− at the Fermi energy compares
well to a transport gap of about 5 meV, for ν ¼ −1 at 9 T,
as found in Ref. [4]. Casting these as effective g factors,
we find the spin gap at the Fermi level has g�z;− ¼
Δz−=μBB ¼ 9.3, and the buried spin gap (in the K valley)
has g�z;þ ¼ 4.5.
We briefly note that although Kohn’s theorem does not

hold in graphene, in general, a limited version is predicted
to survive for the T1 transition [18–20]. However, the
filling-factor-dependent shifts and splittings found here
strongly imply that even this remnant does not hold. We
speculate that either the hBN-induced moiré pattern (with a
length scale comparable to the magnetic length) or the
lattice-scale interactions invoked to explain the ν ¼ 0
ground state [6] are sufficient to break translation invari-
ance and render Kohn’s theorem inoperable.

C. Magnetic-field dependence of T1

To better understand the nature of these splittings, we
show the magnetic-field dependence of the extracted spin

and valley gaps at ν ¼ 1 in Fig. 3(a). The measured spin-
gap energies are substantially larger than the Zeeman
energy, which suggests an interaction enhancement con-
sistent with the ferromagnetic ground state at quarter-filling
in Ref. [4]. The gaps exhibit a sublinear increase with
magnetic field, close to the

ffiffiffiffi

B
p

dependence expected for
interaction effects, although further work is needed to
understand the precise field dependence. Unlike the spin
gaps, the ν ¼ 1 valley gap is observed to decrease with
increasing magnetic field. In Fig. 3(b), this valley gap
is compared with those for the half-filled and fully filled
n ¼ 0 LL, where we find the gaps at ν ¼ 1 and 2 remain
closely matched as the field changes. Since interaction
effects should be weakest at ν ¼ 2, this agreement suggests
the valley gap at ν ¼ 1 is hardly impacted by interactions.
In contrast, the valley gap extracted for ν ¼ 0 increases
dramatically with increasing magnetic field, consistent with
the understanding that the ground state at ν ¼ 0 involves an
interaction-driven breaking of valley symmetry, which
drives an enhancement of the gap [4,6,38]. A closer look
at T1ðν ¼ 0Þ for multiple fields in Fig. 3(c) shows the
resonance broadens at 8 T compared to 5 T, and it develops
a clear splitting by 13 T [note Δvν¼0 in Fig. 3(b) uses the
average value of this splitting]. As noted previously, this
result is perhaps due to level repulsion of degenerate
transitions in the two valleys by short-ranged Coulomb
interactions, known to be important in the study of
graphene and quantum Hall ferromagnetism but not yet
studied in the context of CR in graphene [38,39].

D. Particle-hole asymmetry

In Fig. 4(a), we zoom out to show T1 over an equal range
of positive and negative filling factors and find a small
but clear particle-hole asymmetry. For example, while the
ν ¼ �2 splittings are virtually identical in size at 5.0 meV,
the hole-side peaks lie a full 1.0 meV lower in energy.
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significantly larger than the bare Zeeman energy shown as a gray dashed line. (b) Comparison of the valley gaps calculated at integer
filling as a function of magnetic field. (c) T1 resonance at ν ¼ 0 for three magnetic fields. With increasing field, the resonance broadens
and shows an incipient splitting.
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Moreover, a closer look at ν ¼ −1 and þ1 in Figs. 4(b)
and 4(c) shows that the two lower-energy transitions are
both separated by 1.7 meVand exhibit a slow increase with
increasing jνj, but the hole-side pair is found to be 1.1 meV
lower than the electron-side pair. Meanwhile, the two
higher-energy peaks on the hole side nearly overlap,
compared to ν ¼ þ1, where we have seen that they are
individually resolved. Additionally, the relative shift of

these higher-energy peaks with increasing jνj shows oppos-
ing trends near ν ¼ −1 and þ1, with both pairs lying close
together at the left side of the graphs (more negative ν) and
separating toward the right (for more positive ν), breaking
ν → −ν symmetry. Finally, the highest energy peak on the
hole side is only 0.4 meV lower than the electron side.
Relative to the CR energy, this symmetry breaking is a
nearly 0.8% effect, too small to have been noticed in early
broadband spectroscopic studies [24] but matching an
asymmetry apparent in the data of Refs. [25,28].
However, in terms of the many-particle-enhanced valley
and spin gaps, these small shifts are quite significant. For
instance, applying the same analysis used in the discussion
of Fig. 2, we find for B ¼ 8 T that Δvν¼−1 ¼ 5.7 meV,
Δzν¼−1þ ¼ 1.2 meV (or effective g factor g�z;þ ¼ 2.6), and
Δzν¼−1

− ¼ 6.7 meV (g�z;− ¼ 14.4).
Such particle-hole asymmetry is not predicted by many-

particle theories to date but may arise at the single-particle
level due to next-nearest-neighbor hopping [40]. In this
picture, a field-dependent asymmetry between the
−n → n − 1 and 1 − n → n transitions was derived for
the high-n limit in Ref. [41], giving Easym ¼ 3

ffiffiffi

2
p

ℏωct0a=
tlB ≈ 0.56 meV at 8 T [where tðt0Þ is the nearest (next-
nearest) neighbor hopping, and a the C-C atom distance in
graphene]. This value lies within a factor of 2 of the
asymmetry energies seen here, suggesting we are seeing
an intrinsic property of the underlying band structure.
In contrast, far larger particle-hole asymmetries up to a
few percent of E0;1 have been reported in swept-field CR
studies of graphene-on-oxide, monolayer and multilayer
epitaxial graphene, and encapsulated graphene with double
moiré potentials [8,9,42,43].

E. Effective and renormalized band velocities

In Fig. 5(a), the transition energies at ν ¼ 0 and 8 T are
plotted as a function of transition number Ti, parametrized
as an effective velocity veffðTiÞ ¼ ΔEmeasðTiÞ=ΔEcalcðTiÞ
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(c) Arrhenius plot of the device resistance at charge neutrality and zero magnetic field. The slope implies a gap of 15.0 meV. The inset
shows the measured resistance vs temperature.
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½v ¼ 106; μ ¼ 0�. We see that veff increases from T1 to T2

and, thereafter, gradually decreases in agreement with
previous measurements [28]. We fit these data in two
ways: First, in the basic noninteracting picture with
energies given by Eq. (1), using fixed band velocity v
and mass μ (with μ set equal to the splitting at ν ¼ 2). This
model clearly does not capture the measured variation in
veff . Far better results are found using the theory of
Ref. [35], which accounts for many-particle contributions
to CR in a single-mode approximation [44]. The fit has
three parameters: an interaction-renormalized band velocity
vren, the Dirac mass, and an overall Coulomb interaction

that we fix at VC ¼ ffiffiffiffiffiffiffiffi

π=2
p

e2=ð4πϵlBÞ ¼ 50 meV [45].
This fit provides a good account of the variation in veff
vs Ti and also the size of the T2 splittings, and it yields
vren ¼ 1.105 × 106 m=s and M ¼ 2.76 meV, close to the
Dirac mass value at ν ¼ 2 discussed above. Carrying out
this procedure at other magnetic fields and filling factors
yields the vren values in Fig. 5(b). There, the resulting linear

decrease against lnð ffiffiffiffiffiffiffiffiffiffiffi

B=B0

p Þ is anticipated in Ref. [20],
which predicts that the slope is given by −ðαc=4ϵÞ, where α
is the fine-structure constant and c the speed of light. This
running of the velocity with B is the generalization to finite
field of the interaction-renormalized band velocity at zero
field that was predicted before graphene was isolated [46]
and seen in electronic transport [47]. The slope determines
a dielectric constant of ϵ ¼ 6.4, which is likely dominated

by the in-plane ϵ of hexagonal boron nitride [48] and is in
good agreement with magneto-Raman measurements [22].

F. Filling-factor dependence of T2 and T3

Finally, in Fig. 6, we explore the evolution of the second
interband transition T2. Inspection of the color map and line
cuts shows that a splitting is just resolved at ν ¼ 0, with
peaks of approximately equal strength. This splitting
evolves into a bright and sharp peak at ν ¼ þ1 accom-
panied by a much weaker resonance on the high energy
side; at ν ¼ þ2, the splitting persists, but most of the
spectral weight has shifted to the higher-energy peak.
Similar to T1, at half-integer fillings, only a single broad
resonance is seen, although the integrated intensity remains
constant over this range of ν [30]. The peaks are split by
2.8 meV at ν ¼ 0 and 4.7 meV at ν ¼ þ2. The behavior
with changing magnetic field shown in Fig. 6(d) is rather
different than for T1. For T2, a single ν ¼ 0 peak at 5 T
gains a splitting at 8 T but reverts to a broader single
resonance at 13 T. Since the T2 transition comprises two
nominally degenerate pairs of transitions n ¼ −2 → þ1
and −1 → þ2 in each valley, as above, a weak valley
coupling may split the degeneracy. Whether the splitting is
observed may depend on the width of the resonances,
which increases with field. For instance, at 8 T, the splitting
is greater than the width, and it can be seen but is likely
masked by further broadening of the resonance by 13 T. In
contrast, at ν ¼ 2, the sharp single peak at 5 T evolves by
13 T into an unexpectedly large splitting, nearly 13 meV,
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FIG. 6. Evolution of the second interband transition T2 vs filling factor. (a) High-resolution map of T2 for the same filling factor range
as Fig. 1. The horizontal band at 298 meV is due to the harmonics of 60 Hz. Two peaks are just resolved at ν ¼ 0, while the spectrum is
dominated by a single peak at ν ¼ þ1, and two peaks appear again at ν ¼ þ2, albeit with more intensity in the higher peak. The
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Zeeman splittings are suppressed. (d) Spectra at ν ¼ 0 and þ2 as a function of magnetic field. A remarkably large splitting, nearly
13 meV in size, appears at ν ¼ þ2 at 13 T.
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far larger than any other splitting seen in this work. In the
many-particle theories of Refs. [19,35], interactions alone
suffice to break the degeneracy of the n ¼ −2 → þ1 and
−1 → þ2 transitions at both ν ¼ 0 and 2; further, small
corrections are expected for a finite Dirac mass. For T2,
Ref. [35] predicts an approximately 3-meV splitting for a 5-
meV gap. This prediction roughly matches the scale of
splittings at 8 T but greatly underestimates the ν ¼ 2

splitting at 13 T. This large splitting is a surprise since,
for ν ¼ 2, all orbital levels are filled or empty and
interaction corrections should be minimal. At this time,
no mechanism is clearly responsible for such a large
splitting at ν ¼ 2.
The next higher interband transition T3 also shows an

intriguing and larger-than-expected sequence of splittings.
A map of the transition energies vs filling factor, along with
line cuts at an integer filling factor, is included in the
Supplemental Material [30]. The signal-to-noise ratio in
even-higher interband transitions is not sufficient to resolve
splittings.

III. CONCLUSION

When applied to graphene, cyclotron resonance becomes
a novel tool for spectroscopy of many-particle physics
since Kohn’s theorem no longer applies. Here, it enables us
to follow the evolution of many-particle enhanced gaps in
the broken-symmetry regime of clean monolayer graphene,
where we find a Dirac mass that is significantly enhanced at
half-filling of the zeroth LL, and Zeeman gaps both at and
below the Fermi energy that are enhanced by direct or
indirect exchange effects. These observations highlight the
importance of lattice-scale interactions coupling the K and
K0 valleys in graphene. Moreover, a very small but finite
particle-hole asymmetry is seen, which underscores the
device quality and sets upper limits on the symmetry of the
linear dispersion in graphene. These results promise that
with continually improving device fabrication techniques,
it will soon be possible to perform spectroscopy of excited
states in the fractional quantum Hall regime.
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