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The predominant Ni-multiorbital nature of infinite-layer neodynium nickelate at stoichiometry and with
doping is revealed. We investigate the correlated electronic structure of NdNiO2 at lower temperatures and
show that first-principles many-body theory may account for Kondo(-lattice) features. Yet, those features
are not only based on localized Ni-dx2−y2 and a Nd-dominated self-doping band, but they heavily build on
the participation of Ni-dz2 in a Hund-assisted manner. In a tailored three-orbital study, the half-filled regime
of the former in-plane Ni orbital remains surprisingly robust even for substantial hole doping δ.
Reconstructions of the interacting Fermi surface designate the superconducting region within the
experimental phase diagram. Furthermore, they provide clues to recent Hall measurements, as well as
to the astounding weakly insulating behavior at larger experimental δ. Finally, a strong asymmetry between
electron and hole doping, with a revival of Ni single-orbital features in the former case, is predicted. Unlike
cuprates, superconductivity in Nd1−xSrxNiO2 is of distinct multiorbital kind, building up on nearly
localized Ni-dx2−y2 and itinerant Ni-dz2 .
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I. INTRODUCTION

The discovery of superconductivity in Sr-doped thin
films of infinite-layer (IL) NdNiO2 with a Tc in the 10-K
range marks a further milestone in the investigation of
transition-metal oxides [1]. Recent experimental works
provide details on the thin-film growth on a SrTiO3

substrate and, moreover, yield a phase diagram with doping
[2–4]. There, the superconducting region is placed in the
range 0.125≲ x≲ 0.25 within the Nd1−xSrxNiO2 system.
Notably, that area is neighbored by weakly insulating
regions on either side of the doping range. Not surprisingly,
the original findings [1] were already covered by many
theoretical works [5–29], with important earlier studies
[30–33] on similar nickelate systems as well.
Up to now, three (interlinked) key questions are asso-

ciated with the challenging physics of superconducting
nickelates. The first one deals with the basic comparison to
high-Tc layered cuprates. Though seemingly akin, IL
nickelate [see Fig. 1(a)] with the unusual Niþ formal
oxidation state shows prominent differences at stoichiom-
etry: NdNiO2 is weakly metallic and does not exhibit
magnetic ordering down to the lowest measured

temperatures [1]. Theoretical calculations furthermore
show that it has an additional self-doping (SD) band
crossing the Fermi level and that the charge-transfer
character is weaker than in cuprates [11,15]. Second,
strong correlations within the Ni-dx2−y2 state, together
with an existing SD band, raise the question about Kondo
(-lattice) physics at low temperatures. An experimentally
found [1] resistivity upturn below about T ∼ 70 K might
indeed be indicative of related processes. The third, highly
debated question is most relevant for the superconducting
mechanism, and it deals with the issue of deciding low-
energy physics based on single-Ni-orbital processes of the
Ni-dx2−y2 kind [18–23] versus processes of the multi-Ni-
orbital kind [7,9–11,31] at stoichiometry and with finite
hole doping from replacing Nd by Sr.
In a previous work [11], we focused on the one-to-

one comparison of IL nickelates with structurally akin
cuprates. The present study uncovers crucial Ni-multi-
orbital mechanisms for Kondo physics at stoichiometry
and for the accentuation of the superconducting region with
hole doping.
First-principles many-body theory and a realistic three-

band Hamiltonian investigation are utilized to establish our
current understanding of IL nickelates. Besides the sig-
nificance of Ni-dx2−y2 and the Nd-dominated SD band, we
unveil the decisive role of Ni-dz2 , both for Kondo(-lattice)
behavior at stoichiometry and for the characterization of the
normal-state correlated electronic structure with hole dop-
ing δ. While the Ni-dx2−y2 Fermi-surface sheet in the kz ¼ 0
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plane hardly evolves with increasing δ, an additional Ni-dz2
sheet becomes available in the kz ¼ 1=2 plane for dopings
in the region of the onset of superconductivity. On the other
hand, further changes of the Fermi surface at larger hole
doping may be connected to the experimentally found,
weakly insulating behavior. Furthermore, the given Fermi-
surface reconstructions with doping are in line with the
experimentally established Hall-data-based multiband pic-
ture of an evolution from electronlike to holelike transport.
In a final step, we compare hole doping with theoretical
electron doping and detect a stronger single-orbital char-
acter of Ni-dx2−y2 flavor on the electron-doped side.

II. METHODS

In essence, three methodologies are put into practice in
this work. First, the charge self-consistent combination [34]
of density functional theory (DFT), self-interaction correc-
tion (SIC), and dynamical mean-field theory (DMFT), i.e.,
the so-called DFTþ sicDMFT framework [35], is used to
provide a realistic approach to the temperature-dependent
correlated electronic structure of NdNiO2. The complete
Nið3dÞ shell enters the correlated subspace of the DMFT
impurity problem. Coulomb interactions on oxygen are
described within SIC and are incorporated in the O
pseudopotential [36]. A mixed-basis pseudopotential code
[37–39] takes care of the DFT part in the local density
approximation (LDA). The SIC is applied to the Oð2sÞ and
the Oð2pÞ orbitals via weight factors wp (see Ref. [36] for
more details). While the Oð2sÞ orbital is, by default, fully
corrected with wp ¼ 1.0, the common choice [35,36] wp ¼
0.8 is used for Oð2pÞ orbitals. Hence, the oxygen states are
treated beyond conventional DFTþ DMFT but still not on
eye level with Nið3dÞ. Cluster calculations for transition-
metal oxides (e.g., Refs. [40–42]) have been put forward in
this direction, but those schemes often suffer from other
problems, such as, e.g., parametrization issues and breaking
of translational invariance.

The Ndð4fÞ states are placed in the pseudopotential
frozen core since they appear irrelevant for the key physics
of superconducting IL nickelates [21]. A continuous-time
quantum Monte Carlo method in hybridzation expansion
[43] as implemented in the TRIQS code [44,45] is utilized to
address the DMFT problem. The DMFT correlated sub-
space is governed by a five-orbital full Slater Hamiltonian
applied to the Ni projected-local orbitals [46]. The projec-
tion is performed on the 6þ 5þ 1 ¼ 12 Kohn-Sham states
above the dominant Oð2sÞ bands, associated with Oð2pÞ,
Nið3dÞ, and the self-doping band. A Hubbard U ¼ 10 eV
and a Hund’s exchange JH ¼ 1 eV prove reasonable for
this large-energy window treatment of the given late
transition-metal oxide [11]. The fully localized-limit
double-counting (DC) scheme [47] is applied. The DFTþ
sicDMFT calculations are performed in the paramagnetic
regime. Maximum-entropy and Padé methods are
employed for the analytical continuation from Matsubara
space to the real-frequency axis. Stoichiometric lattice
parameters are taken from experiment [1].
Second, we employ the maximally localized Wannier-

function (MLWF) formalism [48,49] to construct an effective
three-orbital low-energy Hamiltonian for NdNiO2, which
will be utilized at stoichiometry and with finite doping.
Details of the construction are provided in Sec. IVA.
Third, the derived Hamiltonian is solved by the rota-

tionally invariant slave-boson (RISB) scheme [50–55] on
the mean-field level. The RISB electronic self-energy is
local (or extendable via cluster techniques) and consists of a
term that is linear in frequency as well as a static part. Thus,
it lacks the full frequency dependence of the DMFT self-
energy, but it is still well suited (here, at formal T ¼ 0) for a
large class of correlated materials problems. For details on
the computation of quantities such as the quasiparticle (QP)
weight Z or local spin correlations, see, e.g., Refs. [51,54].

III. KONDO SIGNATURE IN NdNiO2 FROM
COMPREHENSIVE REALISTIC DMFT

In Ref. [11], we studied the interacting electronic
structure of NdNiO2 using the DFTþ sicDMFT method
at the system temperature T ¼ 193 K. At the reasonable
large interaction strength U ¼ 10 eV, the half-filled
Ni-dx2−y2 band is Mott insulating and does not participate
in the Fermi surface. This case is shown in Fig. 2(a), where
only the electron pockets of the self-doping band cross the
Fermi level εF in the kz ¼ 0 plane around Γ and in the
kz ¼ 1=2 plane around A. The SD band is of mixed Ni-Nd
character, namely, Nd-dz2;xy and an especially relevant
Ni-dz2 contribution to the Γ pocket [11,19]. A more detailed
discussion of the orbital hybridizations can be found
in Ref. [11].
At lower temperatures, a coupling of the localized

Ni-dx2−y2-based spin-1=2 and the remaining itinerant
degrees of freedom is suggested from the strong-coupling
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FIG. 1. Infinite-layer NdNiO2. (a) Crystal structure with Nd
(green), Ni (blue), and O (red) sites. (b) Brillouin zone with high-
symmetry points in the kz ¼ 0 and kz ¼ 1=2 plane. Green lines
depict the path for plots of the spectral function Aðk;ωÞ.
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situation. An underscreening scenario is then expected
because of the low filling of the electron pockets. But
importantly, there is zero nearest-neighbor hopping
between Ni-dx2−y2 and Nd-dz2;xy (e.g., Ref. [11]). Thus,
an intriguing Kondo(-lattice) picture is expected. Note,
however, that it is computationally challenging to reach
very low temperatures within our five-Ni-orbital realistic
DMFT framework.
Still, Fig. 2(b) displays the evolution of the k-resolved

correlated electronic structure at low energy with decreas-
ing T. At T ¼ 58 K, a flat-dispersion feature appears in the
spectral function Aðk;ωÞ close to εF, which further settles
below 40 K. The location of the electron pockets of the SD
band remains rather T independent. It is very tempting to
link this lowest-energy crossing of a flat-band feature and
itinerant, seemingly weakly correlated dispersions, to a
Kondo scenario. Yet, the spectral intensity of the flat feature

remains very weak at these reachable temperatures. The
orbital-resolved local spectrum depicted in Fig. 2(c) renders
it obvious that the main Ni-derived spectral weight in this
region is of Ni-dz2 character. At T ¼ 193 K, a single Ni-dz2
quasiparticle peak is located just below εF at about
−30 meV. Lowering the temperature first leads to a second
peak above the Fermi level that gradually becomes sharper
and shifts towards εF. Hence, the “Kondo resonance”
property, at least in that T range, is carried by the Ni-dz2
character, which points to a relevant participation of Ni-dz2
in the given low-energy physics. The local spectral weight
of the Ni-eg kind near εF strongly grows below T ¼ 58 K
[see inset at bottom in Fig. 2(c)], in good agreement with
the experimental temperature scale for the onset of the
resistivity increase. The orbital-resolved electron count is
hardly dependent on T, and it reads fnz2 ; nx2−y2g ¼
f1.845; 1.065g for Ni.
To investigate the roles of the two Ni-eg orbitals further,

we also extracted their k-resolved orbital characters (i.e.,
fat bands) in the interacting regime, as shown in Fig. 3(a).
First, it is once more confirmed that there is no Ni-eg
contribution to the electron pocket around A. Second, the
Ni-dx2−y2 orbital weight at low energy is much smaller than
the Ni-dz2 one. The Ni-dx2−y2 origin of the flat feature at
low T is still obvious. Third, the Ni-dx2−y2 orbital displays a
low-energy hybridization with Ni-dz2 within the Γ pocket;
however, interestingly, it is only along Γ − X in the chosen
Brillouin-zone path. This specific direction-dependent
hybridization is clearly visible already at T ¼ 193 K,
and by close inspection, it is even observable on the
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FIG. 2. Evolution of the DFTþ sicDMFT spectral data for
NdNiO2 with decreasing temperature. (a) k-resolved spectrum
Aðk;ωÞ along high-symmetry lines in the Brillouin zone over a
wide energy range at T ¼ 193 K (from Ref. [11]). (b) Low-
energy Aðk;ωÞ for three different temperatures. (c) T-dependent
Ni-dz2 and Ni-dx2−y2 local spectral function Aloc close to the
Fermi level. The small inset in the bottom part shows the two-
orbital integrated spectral weight in the energy window
½−0.05; 0.05� eV.

FIG. 3. Orbitals weights (i.e., “fat-band” picture) for Ni-dz2
(left) and Ni-dx2−y2 (right) character in the k-resolved DFTþ
sicDMFT spectrum of NdNiO2. (a) Along high-symmetry lines in
the Brillouin zone at T ¼ 193 K and T ¼ 39 K. (b) On the Fermi
surface in the kz ¼ 0 plane at T ¼ 193 K. Note that the Ni-dz2
color-scale maximum is 30 times larger than the Ni-dx2−y2 one.
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LDA level. Its structure is yet better revealed when plotting
the Ni-dx2−y2 orbital weight along the kz ¼ 0 Fermi surface
[see Fig. 3(b)]. The corresponding weight is strictly zero
along Γ − X, and along Γ − Z from Fig. 3(a). Since the
oxygen positions in real space correspond to the Γ − X
direction, we attribute this Ni-Ni hybridization to explicit
hopping via oxygen. It appears relevant for the present
Kondo scenario since it provides the sole, explicit Ni-dz2
connection between the single level and the Γ pocket at
lower temperatures [cf. Fig. 3(a)]. As an inspection below
T ¼ 58 K, a Fermi-surface maximum on the circular sheet
appears along Γ − X and splits perpendicular to the Γ − X
direction, respectively (not shown).
In order to eventually also connect to the spin degree of

freedom in the simplest manner, we choose a linear-
response(-kind) calculation. For T ¼ 39 K, we strongly
spin split the paramagnetic Ni-dx2−y2 occupation by hand
and perform a single DFTþ sicDMFT step allowing for
spin-polarized Ni self-energies. This one-step “magnetic-
order” calculation leads to a spin contrast in the low-
energy spectral function as shown in Fig. 4(a). As
expected, the single level, mirroring the localized-spin
behavior, is split into a larger-occupied spin-up branch and
a smaller-occupied spin-down part (due to the spin
splitting performed by hand). However, the effect of this
splitting on the itinerant pockets is important since it may
deliver information about the Kondo(-like) exchange
coupling. First, the A pocket shows only a weak spin
signature. Yet, the Γ pocket displays sizable spin splitting
and hence is Kondo affected by the localized Ni-dx2−y2
spin. As one can easily see, the pocket’s spin splitting is
the other way around; i.e., the spin-up band is shifted to
somewhat higher energies, which indeed points to an
antiferromagnetic (AFM) exchange coupling between
Ni-dx2−y2 and the SD band.
The size of the SD spin splitting at Γ amounts to 40 meV

[see Fig. 4(b)], which translates into a Kondo coupling as
JK ∼ 120 meV. This value is quite large for JK but indeed
in agreement with recent estimates [21,56]. Notably, a
Ni-dz2 supported AFM exchange is not in contradiction
with Hund’s first rule. In fact, in the regime of highly

occupied Ni-dz2 , a local S ¼ 1 triplet from dz2 and dx2−y2
favors an additional itinerant dz2 , which is AFM aligned to
dx2−y2 . As a final observation, the spin-contrast signal is
highlighted at the Γ − X crossing of the single level and the
Γ pocket, underlining, once more, the relevant Ni-dz2 role.

IV. LOW-ENERGY STUDYOF THE CORRELATED
ELECTRONIC STRUCTURE

To proceed on the electronic states in IL nickelates in a
more general and flexible way, let us turn to an explicit low-
energy description, where we focus on a minimal set of
degrees of freedom that are essential for the key electronic
processes at lower temperatures. For instance, the nearly
completely filled Ni-t2g states are fully included in the
DFTþ sicDMFT study, yet in a first step, their effect on the
essential physics at low energy may be cast into a
formulation based on integrating out those orbital degrees
of freedom.

A. Minimal Hamiltonian

For the selection of the truly relevant degrees of freedom
in an unbiased manner, it makes sense to be guided by the
previous, more comprehensive DFTþ sicDMFT picture.
From the results of Ref. [11] and those of Sec. III, the
natural conclusion has to be that we definitely need Ni-dz2 ,
Ni-dx2−y2 , and the SD band. The SD band carries important
weight from Nd-dz2;xy, which amounts to a four-orbital
Hamiltonian. This result is not unfeasible, but one wonders
if it is truly “minimal” also in a model sense for general IL
nickelates. For instance, we learned that the A pocket,
where the Nd-orbital contribution is most substantial [11],
is apparently not as important as the Γ pocket in the low-
temperature interacting regime. Therefore, it may be
sufficient for a truly minimal setting to merge the
Ndð5dÞ part at low energy with the remaining Ni-t2g,
Nið4sÞ, and Oð2pÞ contributions and ally them altogether
in a “stand-alone bath” degree of freedom coupled to the
Ni-eg orbitals.
We thus arrive at a three-orbital Hamiltonian, based

on Ni-dz2 , Ni-dx2−y2 , and a third orbital, which we still call
SD, but it understandably now carries all the non-Ni-eg
contributions at low energy. Concretely, the complete
Hamiltonian reads

Hmin ¼ Hkin þ
X
i

ðHðiÞ
int þHðiÞ

orbÞ; ð1Þ

using the label i for the unit cell. It incorporates the kinetic
part Hkin, the local-interacting part Hint, and a further
local, orbital contribution Horb. The kinetic Hamiltonian,
here liberated from all local terms, may be written with
hoppings t as

FIG. 4. Spin contrast A↑ðk;ωÞ − A↓ðk;ωÞ from a one-step
DFTþ sicDMFT calculation with spin-polarized Ni self-energies
(see text). (a) Energy window around the Fermi level. (b) Blow-
up close to Γ, to extract the spin splitting of the electron pocket.
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Hkin ¼
X

i≠j;mm0;σ

tij;mm0c†imσcjm0σ; ð2Þ

where m;m0 ¼ Ni-dz2 ;Ni-dx2−y2 ; SD, and σ ¼ ↑;↓. For
Hint, we choose a canonical Slater-Kanamori form to
describe local interactions among the Ni-eg orbitals, i.e.,

HðiÞ
int ¼ U

X
m¼z2;x2−y2

nm↑nm↓ þ
X
σ

fU0nz2σnx2−y2σ̄

þU00nz2σnx2−y2σ þ JHc
†
z2σc

†
x2−y2σ̄cz2σ̄cx2−y2σ

þ JHc
†
z2σc

†
z2σ̄cx2−y2σ̄cx2−y2σg; ð3Þ

and U0 ¼ U − 2JH, U00 ¼ U − 3JH. Thus, notably within
the present choice, explicit interactions within the SD
orbital, or between Ni-eg and SD, are set to zero in our
minimal realistic modeling. The final Horb not only deals
with the local sum εloc of kinetic energies but, importantly,
also has to take care of double counting due to a depiction
of strongly interacting Ni-eg coupled to a weakly interact-
ing SD state. Furthermore, the SIC description in the
DFTþ sicDMFT calculations addresses relevant inter-
actions on Oð2pÞ in this late transition-metal oxide, which
now also enters the double-counting term. Therefore, it
proves favorable in this minimal context to split the DC
correction into two parts: a negative shift of the SD state
through a potential μSD in the interacting case, and a
standard DC correction for explicitly interacting Ni-eg. For
the latter, we again choose the fully localized-limit form
[47]. The last term in Eq. (1) is hence given by

HðiÞ
orb ¼

X
mm0;σ

εlocmm0c†mσcm0σ − μSD
X
σ

nSDσ

−
X

m¼z2;x2−y2

�
U

�
ñeg −

1

2

�
− JH

�
ñegσ −

1

2

��
nmσ:

ð4Þ

As we will utilize the minimal Hamiltonian without charge
self-consistency, the ñ occupations in Eq. (4) refer to eg
fillings at U ¼ 0 (in the following, “U ¼ 0” is understood
as U ¼ JH ¼ 0). The potential μSD for the SD state is not
perfectly straightforward since therein we accumulate
various effects, such as electrostatics, interaction with
Oð2pÞ, etc. Since NdNiO2 for the present minimal three-
orbital Hamiltonian is located at total half-filling n ¼ 3, the
most canonical choice is provided by μSD ¼ U=2
(e.g., Ref. [57]).
For a concrete representation of the Hamiltonian form

described, maximally localized Wannier functions are
derived from the LDA electronic structure. For instruction,
Fig. 5 shows the LDA Fermi surface of NdNiO2 with its
three distinct sheets, namely, the larger Ni-dx2−y2-
dominated sheet as well as the pocket sheets around Γ

and around A. Because of the strong downfolding to three
orbitals, the disentangling procedure [49] is employed, and
the twofold dispersion closest to the Fermi surface is fixed
in an inner energy window. The result of this Wannier
construction is displayed in Fig. 6. The overall Wannier
dispersion agrees well with the LDA one, and the fat-band
analysis clearly identifies the Ni-dz2 , Ni-dx2−y2 , and SD
bands. The dispersions and fat bands around point A are
hard to align exactly within the present orbital setting,
which can be easily understood from the fact that the
occupied part of this very region has a sizable contribution
fromNi-t2g. However, again, from our more general DFTþ
sicDMFT description, the very details around the A point

FIG. 5. LDA Fermi surface of pristine NdNiO2. (a) 3D view,
(b) view along kx, and (c) view along kz.
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FIG. 6. Wannier properties of the three-band model for IL
nickelate. Top panel: Low-energy LDA bands of NdNiO2 (light
blue) and Wannier dispersion (black) along high-symmetry lines
in the Brillouin zone. Middle panels: Orbital weights on the
Wannier dispersion (i.e., fat-band picture); from left to right:
Ni-dz2 , Ni-dx2−y2 , and SD orbital. Bottom panels: Constant-value
surfaces of the three Wannier orbitals (aligned as in the
middle row).
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are not crucial for the IL nickelate physics. It also becomes
clear from Fig. 6 that other DFT bands in the energy
window around ½−2;−1� eV are not included in the
minimal description, and therefore, it does not resemble
a true “monotonic” low-energy Hamiltonian. However, this
case is tailored to the present problem and “backed up” by
the full-fledged DFTþ sicDMFT study: The DFT bands
left out are of dominant Ni-t2g character and remain, to a
good approximation, filled spectators throughout the phase
diagram (see also the comment in Sec. V).
But, importantly, note that the present SD orbital not

only describes the electron pockets at Γ and A but also has
nonzero orbital weight on the Ni-eg-dominated dispersions,
mostly on the Ni-dz2 band. This fact is generally very
relevant to appreciate the role of Ni-dz2 and to understand
the following results with doping.
The real-space Wannier orbitals are shown in the bottom

part of Fig. 6. For Ni-eg, they resemble the expected
appearance. Substantial leaking of Ni-dx2−y2 onto in-plane
oxygen sites is a natural outcome of the strong down-
folding. Of course, by construction, here the SD orbital
cannot resemble an atomiclike orbital; since it is not based
on a highly localized viewpoint, its spread is comparatively
large and the Wannier center is in between Ni and Nd. It has
contributions from Nd, Ni, and O and furthermore breaks
the full-cubic symmetry. This orbital is important for its
“stand-alone” features coupled to Ni-eg.
Let us conclude this subsection by providing the

Wannier values for the local single-particle terms εloc

and for near hoppings t in Table I. The nearest-neighbor
hopping between Ni-dx2−y2 and SD, here notably included
in εloc, is indeed zero, but there is a sizable one between
Ni-dz2 and SD.

B. RISB solution

The paramagnetic RISB solution of the minimal
Hamiltonian Hmin in the stoichiometric half-filled case
and with finite doping is discussed. Technically speaking,
the present multiorbital Hamiltonian is solved in a “cluster-
RISB” fashion since the on-site Ni-eg effects and the
intersite effects between Ni-eg and the SD orbital are
treated on equal footing.

1. Stoichiometry

Pristine NdNiO2 resembles the half-filled n ¼ 3 case
of the three-orbital description. At U ¼ 0, the orbital
fillings read fnz2 ; nx2−y2 ; nSDg ¼ f1.84; 0.93; 0.23g; i.e.,
the Ni-dx2−y2 orbital lies somewhat below true half-filling.
Figure 7(a) shows the evolution of key quantities of the
low-energy electronic structure with increasing HubbardU.
Be aware that due to the strong downfolding, the lack of
charge self-consistency, as well as the RISB treatment, the
tailored U value surely differs from U ¼ 10 eV of the
DFTþ sicDMFT study.
As U grows from zero, charge transfers occur such as to

establish a truly half-filled Ni-dx2−y2 orbital in an orbital-
selective Mott transition scenario. For U ¼ 7 eV, the
fillings read fnz2 ; nx2−y2 ; nSDg ¼ f1.83; 1.0; 0.17g, and

TABLE I. Local single-particle terms and selected hoppings of
the derived Wannier Hamiltonian. All energies are in meV.

Orbitals εloc tðxÞ12 tðzÞ12 tðxÞ13

Ni-dz2 , Ni-dz2 −1479 −1 −398 0
Ni-dx2−y2 , Ni-dx2−y2 232 −387 −30 −50
SD, SD 1191 −13 −229 12
Ni-dz2 , SD 92 125 77 −8
Ni-dz2 , Ni-dx2−y2 0 41 0 9
Ni-dx2−y2 , SD 0 17 0 13
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FIG. 7. Minimal-Hamiltonian properties at half-filling for
μSD ¼ U=2. (a) Selected quantities for increasing U. The Hund’s
exchange is chosen as JH ¼ U=3 for U < 3 and fixed to JH ¼
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the QP weight Z (i.e., the inverse effective mass) of the in-
plane orbital reads Zx2−y2 ¼ 0.02, i.e., is close to zero. In
the following, we will understand the electronic states at
U ¼ 7 eV as the low-energy equivalent to the more
comprehensive DFTþ sicDMFT picture at U ¼ 10 eV.
The QP weight Zz2 remains close to unity due to the rather
large filling. The localization of the Ni-dx2−y2 electron is
accompanied by the buildup of a corresponding local
squared spin moment hs2i, which saturates at the limiting
value sðsþ 1=2Þ ¼ 3=4. The Ni-eg spin-spin correlations
are surely positive because of Hund’s first rule, and they
increase with a localization degree of Ni-dx2−y2 . On the
other hand, the intersite spin-spin correlations of the
fNi-eg; SDg kind are negative and much smaller in
magnitude. The fNi-dz2 ; SDg spin correlations are still
larger than the fNi-dx2−y2 ; SDg ones, which again proves
that a direct spin-spin coupling between the latter orbitals
is weak.
In view of the dichotomy between itinerant and localized

behavior in strongly correlated materials, let us further
focus on Fermi surfaces and local states. The noninteract-
ing Fermi surface in Fig. 7(b) shows the electron pockets
around Γ and A, as well as the Ni-dx2−y2-dominated sheet in
the kz ¼ 0; 1=2 planes. Note the closing of the latter sheet
along Z-R as a difference from conventional cuprate
fermiology (see Ref. [25] for a direct comparison). In
the strongly interacting case, the Γ pocket shrinks, and
since the QP at U ¼ 7 eV is not yet exactly zero, the
strongly renormalized Ni-dx2−y2 sheet still contributes to
the Fermi surface (yet it is now slightly enlarged due to the
exact half-filling). But in the kz ¼ 1=2 plane, the near-
Mott-insulating sheet apparently bends electronlike. The
warping close to kz ¼ 1=2 is therefore further strengthened
with strong correlations. We will not comment further on
the small-A-pocket features because of possible Wannier-
construction artifacts in that region for U ≠ 0.
The slave-boson amplitudes ϕqq0 connecting states q, q0

in the RISB formalism provide useful insight in the local-
state behavior for different degrees of electronic correla-
tion. Let us first note the corresponding Hilbert space.
There are a total of 26 ¼ 64 (Fock) states available for our
three-orbital system, with each particle sector N ¼ 0;…; 6
contributing Nq ¼ 6!=ðN!ð6 − NÞ!Þ states. Thus, if cou-
pling between all states is allowed, the total number of ϕqq0

amounts to 64 × 64 ¼ 4096 for a three-orbital problem.
However, here, we only study normal-state properties and
therefore exclude couplings between different particle
sectors. A RISB implementation for pairing problems also
permitting such couplings has been put forward by Isidori
and Capone [52]. Without pairing, one ends up withP

N N2
q ¼ 924 slave-boson amplitudes (without using

symmetries) in the RISB calculation. The squared ampli-
tudes of the relevant part of those are depicted in Fig. 8 for
the noninteracting case and for U ¼ 7 eV. The values

jϕqq0 j2 may be interpreted as the weight for finding the
system in a quantum state characterized by q, q0 to occur
since

P
qq0 jϕqq0 j2 ¼ 1 holds. There is, of course, the option

to transfer from a Fock basis to a multiplet basis [54], but
because of the specific itinerant intersite structure of our
Hamiltonian, we remain in the Fock basis for a straightfor-
ward analysis.
Figures 8(a) and 8(b) first show that for sizable magni-

tudes, the weight matrix in q, q0-space is mostly diagonal.
Especially without interaction, quantum entanglement
between unlike states is rather implausible. But also along
the diagonal, the weights are much more distributed for
U ¼ 0 simply because there is no interaction-driven state
selection but only statistics of a Fermi gas. Since describing
half-filling, forU ¼ 7 eV the fluctuations in the 0,1 and 5,6
particle sectors are significantly suppressed. The truly
relevant diagonal Fock states are easily selected [see
Fig. 8(c)], using the notation

jqi ¼ j↑z2↓z2↑x2−y2↓x2−y2↑SD↓SDi: ð5Þ

(a)

(c)

(b)

Particle sector

0.2

0.1

0

0.1

0.2

0.3

0.4

|φ qq
’|2  *

50
   

   
   

   
   

   
 |φ

qq
|2

|1
11

00
0〉

|1
10

10
0〉

|1
01

10
0〉

|0
11

10
0〉

|1
10

01
0〉

|1
10

00
1〉

|1
11

10
0〉

|1
11

01
0〉

|1
10

11
0〉

|1
11

00
1〉

|1
10

10
1〉

|1
11

11
0〉

|1
11

10
1〉

|1
00

00
0〉

|0
10

00
0〉

|1
10

00
0〉

|1
01

00
0〉

|0
11

00
0〉

|1
00

10
0〉

|0
10

10
0〉

|0
11

00
0〉

|1
00

10
0〉 |1

10
00

0〉
|0

01
10

0〉

|1
11

00
0〉

|0
11

01
0〉

|0
11

01
0〉

|1
00

11
0〉

|1
10

10
0〉

|0
10

11
0〉

|1
11

00
0〉

|1
01

00
1〉

|0
11

00
1〉

|1
00

10
1〉

|1
10

10
0〉

|1
00

10
1〉

U=0
U=7 eV

1 2 3 4 5 60

α α’β β’γ γ’

FIG. 8. Local-state behavior of the minimal Hamiltonian via the
slave-boson weights jϕqq0 j2 connecting Fock states q, q0. (a,b)
Weight matrix in q, q0-space covering the N ¼ 0;…; 6 particle
sectors Np for weights greater than 10−5: (a) U ¼ 0 and
(b) U ¼ 7 eV. (c) Dominant diagonal weights (along the positive
axis) for U ¼ 0 and for U ¼ 7 eV, and dominant off-diagonal
weights (along the negative axis) within each particle sector for
U ¼ 7 eV (filled circles).

MULTIORBITAL PROCESSES RULE THE … PHYS. REV. X 10, 041002 (2020)

041002-7



Not surprisingly, the largest weight stems from the
j111000i and j110100i states in the three-particle sector,
i.e., two electrons in Ni-dz2 and one in Ni-dx2−y2 . Of course,
doubly occupied (sub)states in Ni-dx2−y2 , though appreci-
ated without interactions, are highly suppressed at large U.
There are still four relevant diagonal states for U ¼ 7 eV in
the two- and four-particle sectors, respectively. The ones in
the two-particle sector display Hund’s first rule within
Ni-eg. The ones in the four-particle sector exhibit fully
occupied Ni-dz2 as well as singly occupied Ni-dx2−y2 and
SD but, importantly, without spin-alignment differentiation
for the jϕqq0 j2 magnitude. In other words, without charge
fluctuation in Ni-dz2 , there is no exchange-favored dis-
crimination of fNi-dx2−y2 ; SDg spin states.
Finally, let us turn to the off-diagonal slave-boson

weights, of which there are a few in the strongly interacting
regime with sizable magnitude [cf. Figs. 8(b) and 8(c)] but
still much smaller than the diagonal ones. There is a
prominent ϕqq0 in the two-particle sector, connecting the
two Ni-eg states j100100i and j011000i, which clearly
marks the relevant singlet S ¼ 0; Sz ¼ 0 and triplet S ¼
1; Sz ¼ 0 entanglement in the eg manifold. The respective
twofold off-diagonal weights αð0Þ, βð0Þ, and γð0Þ in the three-
particle sector are more complicated but most interesting.
For clarity, let us enumerate them.

αð0Þ: scattering between doubly Ni-dz2, spin-up (down)
Ni-dx2−y2 and spin-up (down) Ni-dz2 , spin-down (up)
Ni-dx2−y2 , spin-down (up) SD.

βð0Þ: scattering between singlet (triplet) Ni-dz2 , Ni-dx2−y2
and spin-up (down) SD.

γð0Þ: scattering between doubly Ni-dz2, spin-up (down)
Ni-dx2−y2 and spin-up (down) Ni-dz2 , spin-up(down)
Ni-dx2−y2 , spin-down (up) SD.

Thus, these weights provide the desired spin differentiation
in the scattering processes between the three orbitals,
relevant for paving the way toward establishing a proper
Kondo(-lattice) picture. Accordingly, the weights scale as
γð0Þ > αð0Þ > βð0Þ, which, importantly, provides further
quantitative evidence for a Hund-assisted Kondo scenario
via Ni-dz2 , leading to AFM exchange between localized
Ni-dx2−y2 and the SD band.
To conclude this discussion at stoichiometry, we comment

on the role of the potential shift μSD, which has so far been set
to μSD ¼ U=2. Figure 9 depicts the modifications in the
electronic states by varying μSD to smaller and larger values.
Generally, the effects from changing μSD by reasonable
amounts are comparatively weak. The given potential shift
defines the energy location of the SD band; thus, a smaller
(larger) value shifts it upwards (downwards) with respect to
μSD ¼ U=2 [see Fig. 9(a)].Understandably, a largerμSD leads
to a stronger filling of the SD band and to a decrease of
correlation strength inNi-dx2−y2 [see Fig. 9(b)]. Thegrowth of
the fNi-dz2 ;Ni-dx2−y2g spin-spin correlation with increasing
μSD in Fig. 9(c) may be attributed to the less-filled Ni-dz2 in

this situation, strengthening theNi-dz2 moment. Furthermore,
the μSD variation renders the coupling between itinerant and
local degrees of freedom obvious. Figure 9(c) shows, for
instance, the growth of an off-diagonal jϕqq0 j2 near the
diagonal at the upper end of the four-particle sector. This
growth amounts to the coupling of states fj011011i,
j100111ig, describing scattering between singlet or triplet
Ni-eg and doubly occupied SD. Thus, the growth of SD
occupation from a corresponding band that sinks below the
Fermi level also leads to an increase of ϕqq0 amplitudes
associated with a completely filled SD state.
The observed μSD variations provide confidence that at

stoichiometry, the setting μSD ¼ U=2 indeed proves rea-
sonable. For instance, the existence of the Γ electron-pocket
Fermi surface is a robust feature of the DFTþ sicDMFT
study (also reported from many other theoretical works).

2. Hole doping

The experimental doping with Sr, and, accordingly, the
replacement of Nd3þ by Sr2þ, leads to the doping of holes
into the nickelate compound. In Ref. [11], we studied this
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doping process by a DFTþ sicDMFT treatment of realistic
supercells for Nd1−xSrxNiO2 at T ¼ 193 K. It was found
that for x ¼ 0.125, while both Ni-eg orbitals gain holes
(though Ni-dz2 gains slightly more), the lowest-energy
response comes mainly from Ni-dx2−y2 . However, for
x ¼ 0.25, the number of holes in Ni-dz2 is quite large,
and the lowest-energy response is twofold but dominated
by Ni-dz2. This case is apparently not in line with the
cupratelike, single-orbital, hole doping of Ni-dx2−y2 .
In the following, hole doping is investigated in more

detail from the low-energy perspective within the minimal-
Hamiltonian approach. It amounts to changing the total
filling to n ¼ 3 − δ, with δ > 0. This approach surely
misses some effects of the realistic Nd substitution by
Sr, but it should be geared to unveil the key qualitative
features with doping. For instance, one (also electrostatic-
supported) effect of true Sr doping is the shifting of the Γ
electron pockets into the unoccupied region [11,20,21,27].
In the minimal-Hamiltonian scheme, part of the corre-
sponding underlying mechanism surely goes into the value
of μSD. Hence, we use the two values μSD ¼ 3=7U andU=2
for comparison and to correctly include that upward
shifting qualitatively.
Figure 10 summarizes the key changes with hole doping

from the minimal-Hamiltonian perspective for U ¼ 7 eV.

Notably, the differences between μSD ¼ 3=7U and U=2 are
small and mostly quantitative. The first surprising (though
already suggested by DFTþ sicDMFT) observation is the
very weak change of the Ni-dx2−y2 orbital filling with
increasing δ [cf. Fig 10(a)]. It remains very near half-filling
up to the investigated limiting value δ ¼ 0.4. In fact,
starting from stoichiometry, nx2−y2 first decreases slightly
until δ ∼ 0.1, and afterwards, it increases progressively
toward half-filling. On the other hand, nz2 decreases
steadily with δ. The second surprise is the increase of
the SD filling with hole doping. As one associates the
electron pockets with SD, one naively expects a δ-induced
depopulation of that orbital. However, one has to recall the
important fact that the SD state hybridizes substantially
with Ni-dz2 over a large energy region (see bottom-right
diagram of Fig. 6). With large U on Ni, the eg electrons try
hard to escape to the SD state if they cannot achieve
complete localization. Hence, there is a correlation-induced
change of the hybridization, apparently activated here for
hole doping, such that the SD state increases its weight on
the deep-lying Ni-dz2-dominated band and more electrons
can benefit from the favorable SD-orbital location. This
mechanism is proven by Zz2;SD being the only sizable off-
diagonal QP weight, and its absolute value steadily
increasing with δ [see bottom of Fig. 10(b)]. This off-
diagonal Z monitors the outlined intersite hybridization
modification between Ni-dz2 and the SD state. Thus, the
strong doping of Ni-dz2 is triggered by the direct hole
creation from δ, as well as by additional charge transfer to
the SD state. This process is apparently energetically more
favorable than putting more holes in Ni-dx2−y2 .
The diagonal QP weights Zm behave as expected with δ,

i.e., Zz2 decreasing and Zx2−y2 exhibiting a nonmonotonic
behavior with a maximum around δ ∼ 0.1. Note again that
the Ni-dx2−y2 correlation strength at the large doping of
δ ∼ 0.4 becomes comparable to the one at half-filling.
Expectedly, the spin-spin correlation between the Ni-eg
orbitals increases with δ due to the enhancement of the
Ni-dz2 localization.
The described evolutions in fillings and many-body

observables are accompanied by obvious changes of the
interacting Fermi surface, shown in Fig. 10(b). For
δ < 0.11, the fermiology in the kz ¼ 1=2 plane is basically
equivalent to the stoichiometric scenario, i.e., showing an
electronlike pocket around Z [see right part of Fig. 7(c)].
Yet, for δ > 0.11, there is a Lifshitz transition with an
emerging second pocket around A. This pocket should not
be confused with the original small SD-based electron
pocket. The Lifshitz transition is realized by a doping- and
correlation-induced shift of the rather flat Ni-dz2-dominant
dispersion in the kz ¼ 1=2 plane onto the Fermi level. Note
that already at stoichiometry, the enhanced proximity of the
latter dispersion to εF compared to IL cuprates has been
documented within LDA [11] and was also revealed within
DFTþ U [24].
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those occurring at δ ¼ 0.26).
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Hence, the Fermi surface is reconstructed at δ ∼ 0.11,
giving rise to the topology shown in Fig. 11 for δ ¼ 0.16.
Moving along kz, the original Ni-dx2−y2 hole pocket bends
over toward an electron pocket, shown for kz ¼ 0.41. At
kz ¼ 0.45, a new heart-shaped hole pocket starts out along
the nodal line. It opens up to a large hole sheet around A at
kz ¼ 1=2. The nature of the novel larger pocket around A is
of the mixed Ni-eg kind. There is still another Lifshitz
transition at larger δ. For δ < 0.26, the van Hove singularity
at Z lies below the Fermi level, and above for δ > 0.26.
Therefore, the kz ¼ 1=2 pocket around Z vanishes for hole
doping beyond δ ¼ 0.26. It is surely tempting to relate
these reconstructions with the experimental phase bounda-
ries of superconductivity [2,4].
The k-integrated orbital-resolved QP spectral functions

shown in Fig. 12 for selected dopings underline the
scenario we just discussed: For δ ¼ 0.06, the Ni-dz2 weight
at the Fermi level is still small, whereas for δ ¼ 0.16, it is
larger than Ni-dx2−y2 and peaks at εF. The latter inter-
mediate region therefore displays the strongest susceptibil-
ity for Ni-dz2-driven instabilities in a highly localized
Ni-dx2−y2 background. For δ ¼ 0.30, the Ni-dz2 weight
close to εF is again smaller, since the Fermi level is located
in a “pseudogap” of Ni-dz2 weight. This structure is well
understood from Ni-dz2 occupation of states with small kz
and unoccupied states with kz closer to 1=2, due to the
doping-dependent QP band shifts.

A further complexity issue has to be discussed. Upon
increasing δ and running through the described Fermi
surface reconstructions, the character partition between
Ni-dz2 and Ni-dx2−y2 on the (near-)kz ¼ 1=2 Fermi sheets
also varies because the original bands of both orbital
characters sweep through each other in that region of the
Brillouin zone with doping [see Fig. 7(b)]. Hence, a
nontrivial mixing of characters due to correlation-modified
hybridizations takes place. Table II summarizes the basic
information in simple terms for selected dopings in the
three distinct regions. We see that the intermediate doping
region 0.11 < δ < 0.26 displays the most intriguing case
with the strongest multiorbital character of the Fermi
surface. Note that the issue of mixed Fermi-surface
character does not arise in the kz ¼ 0 plane: The Γ −M
pocket is of a perfect Ni-dx2−y2 kind throughout the studied
hole-doping region.
In fact, recent experimental Hall data in the normal state

are interpreted as going from an electronlike to a holelike
transport scenario with doping [2,4]. This interpretation is
in line with our findings since, for small δ, transport should

FIG. 11. Interacting Fermi surface along kz at δ ¼ 0.16, for
U ¼ 7 eV and μSD ¼ 3=7U.
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TABLE II. Qualitative orbital-character strength on the inter-
acting Fermi-surface sheets in the kz ¼ 1=2 plane for selected
hole dopings. See bottom right of Fig. 11 for a visualization of
both Fermi sheets.

Orbital Fermi sheets δ ¼ 0.06 δ ¼ 0.16 δ ¼ 0.30

Ni-dz2 Around Z Moderate Strong � � �
Around A � � � Moderate Weak

Ni-dx2−y2 Around Z Strong Moderate � � �
Around A � � � Moderate Strong
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mainly arise from the vanishing SD electron pockets and
the electronlike bent region around Z, which has mixed
Ni-eg character (cf. Table II). But for δ > 0.11, the hole
pocket around A appears, showing sizable Ni-dz2 weight for
intermediate doping.
Last but not least, the present results allow us to also

provide an explanation for the puzzling, weakly insulating
behavior for x > 0.25 in experiment [2,4]. First, the SD
electron pockets are above the Fermi level at larger hole
doping. Second, Ni-dx2−y2 remains essentially half-filled
and localized for large δ; the kz ¼ 0 Fermi sheet is
Ni-dx2−y2 dominated and thus is the only one remaining
in the kz ¼ 1=2 plane (see Table II for δ ¼ 0.30). Thus,
transport from that orbital sector is, by any means, very
weak at larger δ. Third, the only remaining Fermi sheet with
strong Ni-dz2 character for large δ lies along kz, i.e.,
between Γ − Z [see Fig. 10(c) for δ ¼ 0.30]. But that sheet
will mainly account for transport in the c-axis direction of a
Nd1−xSrxNiO2 crystal. Yet transport measurements have so
far been performed on thin films. In summary, in-plane
conductivity at hole dopings beyond the upper super-
conducting phase boundary is indeed expected to be very
weak from our theoretical study.
The δ variation of the Ni-eg multiorbital character is

schematically sketched in Fig. 13, where the doping-
dependent Fermi-surface sheets are counted with respect
to their participation of either of the Ni-eg flavors. It is seen
that the intermediate region of hole doping, which inter-
estingly agrees rather well with the experimental region for
superconductivity, is designated with the most pronounced
multiorbital character.

3. Comparison between electron and hole doping

The dichotomy between electron and hole doping is an
essential part of the high-Tc cuprates physics [58].
Therefore, in the final section, we compare, in basic terms,
the electron-doped region within the minimal-Hamiltonian
approach with the hole-doped one. Experimentally,

electron doping of NdNiO2 has not been achieved yet.
In analogy to cuprates, it could formally be realized by, e.g.,
replacing Nd3þ with Ce4þ. The theoretical calculations are
straightforwardly extended to electron doping by fixing the
total particle number at n ¼ 3 − δ with δ < 0.
Figure 14 displays the comparison of both doping

regimes. We lower the Hubbard interaction to U ¼ 6 eV
since the RISB numerics of the electron-doped region turns
out to be more challenging. Nonetheless, the hole-doped
side behaves qualitatively identical to U ¼ 7 eV.
Let us thus focus on the electron doping, which shows

singular differences from hole doping. Starting with the QP
weights, it is seen that for small δ, the correlation strength
in Ni-dx2−y2 apparently increases compared to half-filling.
After a minimum at δ ∼ −0.1, the QP weight Zx2−y2 then
strongly recovers and increases to the limiting value
δ ¼ −0.4. The doping δ ¼ −0.1 apparently marks the true
orbital-selective Mott-transition point in the IL nickelate.
The Ni-dx2−y2 filling remains fixed at half-filling for small
δ, but then it grows beyond the latter transition point.
Expectedly, the Ni-dz2 orbital has to accommodate even
more electrons with electron doping. Yet, because of the
large associated Coulomb-repulsion cost, it succeeds in not
becoming completely filled but can delegate some charge
to the remaining orbitals. It is also not surprising that the
SD orbital becomes further filled, too. With electron
doping, no sophisticated correlation-induced change of
hybridization has to be invoked in order to place additional
electrons in the SD state. Correspondingly, the off-diagonal
QP weight Zz2;SD is small for electron doping. Thus, albeit
original electron pockets of the SD band shift deeper into
the occupied region, the coupling, at least to Ni-dz2 , appears
weaker. The Ni-eg spin-spin correlations are much smaller
for electron doping because of the even stronger Ni-dz2
filling. Interestingly, when adding electrons, the spin-spin
correlations between Ni-dx2−y2 and SD change sign from
negative to positive at the critical point δ ¼ −0.1.
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FIG. 13. Schematic sketch of the Ni-eg multiorbital character
with δ. The “þ” symbols denote a Fermi-sheet participation of
x2 − y2 or z2, respectively, around M, Z, A or along kz in the
Brillouin zone.

0.40.20-0.2-0.4
δ

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

n m

dz
2

dx
2
-y

2

SD

0.40.20-0.2-0.4
δ

-0.2

0

0.2

0.4

0.6

0.8

1.0

Z
m

 , 
Z

m
m

’

0.40.20-0.2-0.4
δ

-0.05

0

0.05

0.10

0.15

0.20

<
s m

s m
’>

z
2
;x

2
-y

2

10*(z
2
;SD)

10*(x
2
-y

2
;SD)
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The electron-doped region might be interesting because
of obviously stronger Ni-dx2−y2 correlation at low doping
and possibly intriguing competition between Kondo corre-
lations and magnetic order. Superconducting tendencies
like those on the hole-doped side are not expected since
electron doping should not lead to comparable intricate
Fermi-surface reconstructions as Ni-dz2 becomes too
strongly filled. However, apparently, the electron-doped
side supports a stronger Ni single-orbital picture of the
Ni-dx2−y2 kind. Thus, despite the coexistence with the
remaining SD band, similarities to cuprates might be more
pronounced with electron doping.

V. SUMMARY AND DISCUSSION

Using comprehensive DFTþ sicDMFT, as well as an
aligned minimal-Hamiltonian representation solved within
RISB, we were able obtain important insight into the very
rich physics of NdNiO2 in pristine conditions and with
finite doping.
Relevant features of a stoichiometric Kondo(-lattice)

scenario at lower temperature are revealed, showing that
a calculated, sizable, AFM Kondo coupling JK ∼ 120 meV
builds onto the cooperation of Ni-dx2−y2 , Ni-dz2 , and the
self-doping band. The Ni-dz2 and the SD band both take
part in the screening of the Ni-dx2−y2 spin, whereby the
former orbital has a mediating role through a Hund-
assisting mechanism. The onset of significant Kondo
correlations around T ∼ 60 K matches well with the
experimental T ¼ 70 K for the beginning resistivity upturn
[1]. An interesting k-selective Ni-eg hybridization via
oxygen around Γ deserves further investigation.
A realistic minimal three-orbital Hamiltonian is advo-

cated, which describes the low-energy competition of both
Ni-eg orbitals linked to a SD state that carries the effect of
the remaining Ndð5dÞ, Oð2pÞ, Ni-t2g, and Nið4sÞ. This
Hamiltonian serves the goal of providing a faithful repre-
sentation of the key degrees of freedom of IL nickelate. Its
canonical structure, i.e., two strongly interacting orbitals
coupled to a stand-alone bath state, may prove useful for
other nickelates or related problems.
The system with hole doping δ is remarkably different

from hole-doped cuprates. The Ni-dx2−y2 occupation only
very weakly departs from half-filling, and the orbital even
regains correlation strength at larger δ. On the other hand,
the Ni-dz2 orbital eagerly collects holes—also at the
expense of the SD orbital, which counterintuitively gains
electrons by a correlation-induced change of hybridization
to Ni-dz2 . While the QP weight for the latter orbital
decreases with δ, it remains in a weak-to-moderate corre-
lation regime of Zz2 ∼ 0.7 at intermediate doping. Further
key aspects at hole doping are two apparent Fermi-surface
constructions that designate 0.11 < δ < 0.26 as the region
with the strongest multiorbital nature and entanglement.
It is an orbital-selective(-kind) situation with highly

correlated, hardly doped Ni-dx2−y2 and still substantially
filled Ni-dz2 sharing two Fermi sheets in the kz ¼ 1=2 plane
of the Brillouin zone. This specific doping region agrees
well with the two experimentally determined ranges, i.e.,
0.125 < x < 0.25 by Li et al. [2] and 0.12 < x < 0.235 by
Zeng et al. [4], for the appearance of superconductivity
in Nd1−xSrxNiO2.
Moreover, our realistic description may not only explain

the experimentally observed change from electronlike to
holelike transport in Hall measurements, but it may also
provide a reason for the weakly insulating behavior found
on both sides of the superconducting region. In essence,
Ni-dx2−y2 remains nearly localized for any reasonable hole
doping, and the itinerant contribution of Ni-dz2 remains
generally small for δ < 0.11 while contributing mostly to
c-axis transport for δ > 0.26. The latter should be masked
in the available thin-film studies of Nd1−xSrxNiO2.
Finally, theoretical electron doping leads to quite different

characteristics than hole doping. Most notably, even further
correlation-strength enhancement within Ni-dx2−y2 is found
for small negative δ, and the spin exchange between the latter
and the SD orbital switches to ferrolike behavior. The
predominant Ni-dx2−y2 characteristics on the electron-doped
side deserve further experimental investigation.
The present theoretical results raise several further

questions. For instance, one wonders about the role of
Ni-t2g states with hole doping since those are also located
close to the Fermi level. However, from our defect-
supercell DFTþ sicDMFT study [11], which included
all Nið3dÞ on equal footing, they become only weakly
doped, and their contribution to relevant low-energy
physics appears minor up to x ∼ 0.25. An intuitive reason
for this case may be given by the fact that, already at the
LDA level, Ni-eg more strongly disperses than Ni-t2g. At
strong coupling, with Ni-dx2−y2 becoming half-filled, the
only appreciable itinerant Nið3dÞ degree of freedom to
balance the electronic energy cost is thus provided by
Ni-dz2 . Second, if the IL nickelate superconductivity is
based on multiorbital Ni-eg processes and not on the
singular cuprate mechanism, the question arises as to
why stable pairing is not much more common in nickel-
based transition-metal oxides. Yet, one has to be aware that
the orbital-selective(-like) scenario allied with intriguing
fermiology in the intermediate doping region is quite
specific; to our knowledge, it has not yet been reported
for other nickelates, which brings us to the most pressing
question concerning the pairing mechanism that emerges
from the present normal-state scenario. A straightforward,
simple answer is not available because of the complex
entanglement between localized and itinerant multiorbital
degrees of freedom. From the renormalized-band perspec-
tive, a nesting mechanism involving the flattened, larger,
hole-pocket sheets around A might be conceivable. From a
more localized perspective, recent suggestions based on
Ni-eg couplings have been put forward [9,10]. However,
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those interesting proposals miss the details of the intricate
low-energy dispersions that evidently mark the intermedi-
ate doping region.
Beyond speculations, as the main conclusion, the super-

conductivity in thin films of Nd1−xSrxNiO2 is most
definitely not of the single-orbital cuprate kind. This
conclusion can be appreciated as the opening of a new
fascinating chapter on the research of superconducting
correlated materials.
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