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We present a new method for the spectral characterization of pulsed twin-beam sources in the high-gain
regime, using cascaded stimulated emission. We show an implementation of this method for a periodically
poled potassium titanyl phosphate spontaneous parametric down-conversion source generating up to
60 photon pairs per pulse, and we demonstrate excellent agreement between our experiments and our
theory. This work enables the complete and accurate experimental characterization of high-gain effects in
parametric down-conversion, including self- and cross-phase modulation. Moreover, our theory allows the
exploration of designs with the goal of improving the specifications of twin-beam sources for application in
quantum information, computation, sampling, and metrology.
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I. INTRODUCTION

Many pivotal experiments in quantum optics and tech-
nology rely on twin beams generated by sources based on
parametric nonlinear optical processes, and in recent years
there has been significant progress in the development of
such sources. In particular, high-gain two-mode squeezing
in modes with well-defined spatial and spectral properties
can be produced by parametric down-conversion (PDC)
in waveguiding structures, using quasi-phase-matching and
group-velocity-matching techniques [1–3]. The generation
of twin-beam pulses with up to tens of photon pairs has
been demonstrated experimentally [4]. Together with
the development of efficient photon-number-resolving
detectors [5], this enables a range of new experiments in
quantum optics, such as conditional non-Gaussian state
preparation [6,7] and boson-sampling experiments [8–11].
In dispersion-engineered pulsed PDC sources, residual

spectral correlations between the down-converted beams,

due to effects such as phase-matching revivals and non-
uniformity in the spectral phase of pump pulses
[12–15], result in the generation of a small number of
independently squeezed spectral modes with the same
spatial profile. In the high-gain regime, self-phase modu-
lation (SPM) of the pump pulses [16,17] and cross-phase
modulation (XPM) induced by the pump on the down-
converted beams [18] also affect the spectral and spatial
structure of PDC emission. In addition, time-ordering
corrections in the commonly used Hamiltonian evolution
description of PDC must be considered [19,20]. The
complex interplay between all of these phenomena makes
the study of pulsed PDC sources in the high-gain regime
challenging and the development of new techniques for the
experimental characterization and theoretical understand-
ing of nonperturbative PDC a priority. This paper focuses
on experimental characterization, while in a companion
paper [21] we develop theoretical approaches to treat the
nonperturbative regime. While the deviations from a
simpler framework are particularly well evidenced in the
high-gain regime of twin-beam generation, comprehensive
modeling and characterization building on our work can be
fruitfully applied to many other important applications,
such as single-photon sources in integrated photonics for
linear optical quantum computing [22] and single-photon
frequency conversion [23].
A large body of work has already been devoted to the

characterization of PDC sources, of course. Stimulated
emission tomography (SET) [24] is a general approach
used to infer the quantum properties of a spontaneous
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nonlinear process, such as spontaneous PDC, from an
intensity measurement of its corresponding stimulated
process, in this example, difference frequency generation
(DFG). While it has been the basis of many experiments
[25–30] and provides a detailed description of the spectral
mode structure of a PDC process, it is generally not used to
estimate the degree of squeezing. Although, in principle, it
is possible to derive the squeezing strength from the
amount of parametric amplification on a seed beam, in
practice this method is hindered by uncertainty in the
amount of overlap—spatial, spectral, or polarization—
between the seeding and amplified modes, as well as by
optical loss.
An alternative approach consists in using higher-order

photon correlation functions of the down-converted field to
estimate the number of modes in the source [19,31,32]. It
has the advantage of being insensitive to loss, but it
provides little information about the physical mechanisms
that degrade the performance of the source.
Here, we demonstrate a method that provides detailed

spectral information about the generated nonclassical light
and is applicable in the high-gain regime. It extends SET to
the measurement of all emission processes resulting from a
second-order optical nonlinearity. Broadband light is gen-
erated in the seed mode, effectively seeded through a
cascaded process by the stimulated emission signal (see
Fig. 1), so the resulting output intensities scale differently
with squeezing strength. The ratio between the output
intensities can then be used to estimate squeezing param-
eters, without any knowledge of detection efficiencies or
mode overlaps, in a strategy that resembles self-referenced
methods for estimating absolute detector efficiency using
light generation [33,34]. Additionally, the output of the
second process—cascaded stimulated emission—provides
phase information due to the coherent addition of light
generated by different pump frequencies and can be used to
estimate the joint spectral phase of the source.
To understand our cascaded stimulated emission mea-

surements, we use simulations of the PDC process, with a
small number of parameters extracted from experiments
mainly in the low-gain regime. We rely on Heisenberg-like
equations of motion describing the spatial evolution of field
amplitudes in the PDC source. Within the undepleted
classical pump approximation, we introduce an efficient
method for solving these equations with arbitrarily high
gain. We find excellent agreement between our experiments
and our theoretical predictions. We find that in the large-
gain regime (>2 photons=pulse spontaneous emission),
the performance of the twin-beam generation is signifi-
cantly affected by nonperturbative evolution, as well as
SPM of the pump field and XPM between the pump and the
down-converted modes. It has been suggested before that
these effects may significantly modify twin-beam source
performance [4,15,20], but their impact has not been
observed and modeled accurately before.

As our equations describe the PDC source at the
quantum level, we are able to accurately quantify the
effects of these processes on the generated squeezed
vacuum. Our results clarify some previously reported
measurements [4] where both nonperturbative effects and
third-order processes were present. We also show that our
model can be used to optimize the design of sources with
the goal of improving figures of merit, such as spectral
purity.

(a)

(b.1)

(c)

(b.2)

FIG. 1. (a) Schematic of an extended SET experiment, includ-
ing the broadband light generated in the seeding beam through a
cascaded DFG process. (b.1) Cascaded stimulated emission in a
PDC crystal. Seeding one of the two down-conversion modes
with a continuous-wave (cw) field (represented in orange),
bright light is generated through DFG between the pump
(represented in blue) and the seed. The DFG signal (represented
in red) acts as a seed for a second DFG interaction with the
pump field, leading to broadband light generation in the mode
that was originally seeded. The process is repeated with
decreasing strength. (b.2) Measured spectra of cascaded stimu-
lated emission for a nearly degenerate type-II PDC source
pumped with a pulse train centered at 783 nm. Seeding with a
cw laser at 1565 nm, we measured broadband signals in the
opposite polarization (red) as well as in the same polarization as
the seed (orange). (c) Full spectral response of the PDC process
reconstructed by scanning the seed wavelength. The cw seed
contribution was subtracted from the spectra. The spectral
responses are normalized to the maximum of the TF corre-
sponding to the unseeded mode.
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The outline of this paper is as follows: In Sec. I, we
introduce the spectral transfer functions that can be used to
characterize pulsed squeezing and discuss how they can be
extracted from cascaded stimulated emission. Then, we
give a theoretical framework for calculating parametric
down-conversion, valid both in the limits of small and large
gain, and discuss how most parameters for our theoretical
description are extracted from experiments in the small-
gain regime. In Sec. II, we compare theory and experiment
in both the small- and large-gain limits. We discuss our
results, and look forward to future experiments, in Sec. III.
Further technical details are presented in the Appendixes.

II. SPECTRAL DESCRIPTION
OF PULSED TWIN BEAMS

A. Input-output relations

Assuming negligible propagation losses—and within the
undepleted, classical pump approximation—broadband
two-mode squeezing in a waveguide source supporting a
single spatial mode for each field is fully described by
frequency-resolved input-output relations [14,15,21]:

aðoutÞs ðωÞ ¼
Z

dω0Us;sðω;ω0ÞaðinÞs ðω0Þ

þ
Z

dω0 Us;iðω;ω0Þa†ðinÞi ðω0Þ; ð1aÞ

aðoutÞi ðωÞ ¼
Z

dω0Ui;iðω;ω0ÞaðinÞi ðω0Þ

þ
Z

dω0 Ui;sðω;ω0Þa†ðinÞs ðω0Þ: ð1bÞ

Here, aðinÞsðiÞ ðωÞ denotes the annihilation operator for the

input signal (idler) field at frequency ω, and aðoutÞsðiÞ ðωÞ
denotes the annihilation operator for the respective output
mode. The integrals run over the relevant bandwidths. Both
input and output operators satisfy the canonical commu-
tation relations ½axðωÞ; a†yðω0Þ� ¼ δx;yδðω − ω0Þ and
½axðωÞ; ayðω0Þ� ¼ 0, with x; y ∈ fs; ig. The assumptions
made in order to derive these relations are detailed in our
companion paper [21].
The transfer functions (TFs) Us;s; Us;i; Ui;s, and Ui;i

completely describe the spectral properties of the state
generated in the PDC process, and all observable quantities,
such as correlation functions, can be predicted using
Eq. (1). The cross-mode TFs Us;iði;sÞ are sufficient for
describing spontaneous PDC, giving the joint spectral
amplitude of a photon pair in the low squeezing regime.
However, in this work, we show that measuring the same-
mode TFs Us;sði;iÞ, which are only accessible in the
stimulated regime, provides a redundancy that is very
useful for studying experiments involving high pump
powers, where new effects, such as SPM of the pump,
come into play. In the application presented here, a full set

of measurements involving all the TFs is crucial for
providing an explanation of the experimental results at
high pump powers.

B. Extracting spectral transfer functions from cascaded
stimulated emission

In SET measurements, a monochromatic seed field is
coupled to one of the two polarization-orthogonal down-
conversion spatial modes. In the presence of the pump, this
seed generates light in the other mode by parametric
amplification, in a process known as DFG. The emission
is mapped over a range of seed frequencies, resulting in a
joint spectral distribution [24]. This process has previously
been used to measure the joint spectral intensity of photon-
pair emission in the low squeezing regime [25].
We can now describe SET using the notation introduced

above. Equation (1) remains valid when the annihilation
and creation operators are replaced by classical field
amplitudes αsðiÞðωÞ and their conjugates, as we detail in
Appendix A. Therefore, if the idler mode is seeded with the
coherent amplitude αini ðωÞ, light will be generated in the
signal mode with the amplitude

αðoutÞs ðωÞ ¼
Z

dω0 Us;iðω;ω0Þα�ðinÞi ðω0Þ: ð2Þ

For large αðinÞi , the coherent component at the output
dominates over the spontaneous emission, and the mea-
sured power spectral density (PSD) in the signal mode is

jαðoutÞs ðωÞj2, with units of photon number per hertz. In
Appendix B, we show that, for low PDC gains, the
amplitude of Us;iði;sÞ scales linearly with a parametric gain
proportional to the pump amplitude, as well as to the crystal
nonlinearity.
We can retrieve the absolute value of this transfer

function using a narrow-band seed at the tunable frequency
ω0, such that the PSD at the output is proportional to
jUs;iðω;ω0Þj2. The proportionality constant is given by the
seed intensity, the detection efficiency, and the overlap
between the seed mode and the seeded down-conversion
mode. Stacking the output spectra measured for a range of
seed frequencies, a two-dimensional distribution propor-
tional to jUs;iðω;ω0Þj2 can be obtained.
According to the classical equivalent of Eq. (A1), in the

seeded measurement, light is also generated in the same
mode as the seed, with amplitude

αðoutÞi ðωÞ ¼
Z

dω0Ui;iðω;ω0ÞαðinÞi ðω0Þ: ð3Þ

For low gain (see Ref. [13] and Appendix B),
Ui;iðω;ω0Þ ≈ δðω − ω0Þ, and Eq. (3) describes linear propa-
gation, without frequency generation in the seed mode.
With a more intense pump field, the squeezing strength
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increases, and a broadband “pedestal” is generated at
frequencies around the seed frequency. In Appendix B,
we show that, in a series expansion of the TFs up to second
order in the PDC interaction strength, the broadband
contribution to the same-mode TF arises with the term
proportional to the square of the parametric gain. A simple
physical picture to understand the broadband pedestal is
that of cascaded stimulated emission. The DFG field
generated in the signal mode leads to the generation of a
new DFG field in the idler mode (see Fig. 1).
In a manner analogous to the cross-mode transfer

function reconstruction, a two-dimensional distribution
proportional to jUi;ij2 can be obtained by measuring the
spectral intensity in the idler mode for a range of idler seed
frequencies. The two remaining transfer functions are
obtained by scanning a narrow-band seed in the signal
mode and measuring the spectral intensities in the
idler (jUi;sj2) and signal (jUs;sj2) modes. We denote the

broadband part of a same-mode TF as Ui;iðs;sÞ
ðbÞ ðω;ω0Þ ¼

Ui;iðs;sÞðω;ω0Þ − δðω − ω0Þ. To obtain the broadband part of
the TF experimentally, we subtract the seed spectrum,
which we measure in the absence of the PDC pump, from
the output.
We have identified a classical measurement protocol for

reconstructing the spectral transfer function corresponding
to the âðinÞsðiÞ term in the Bogoliubov transformation for the

amplitude operator âðoutÞsðiÞ [Eq. (A1)]. Therefore, we have

found a useful connection between experimentally acces-
sible information and the comprehensive theoretical
description of the twin-beam source. Note that in the
common perturbative description of photon-pair genera-
tion, this term is ignored altogether.
The seeded measurements are impacted by the (in general,

uncalibrated) coupling efficiency of the seed to the down-
conversion mode, ηin; sðiÞ, as well as by the detection
efficiency of the generated outputs, ηout; sðiÞ. The stimulated
emission from x to y, where x; y ∈ fs; ig, is given by

ηin;xηout;yjUy;x
ðbÞj2; ð4Þ

where the uncalibrated prefactors hinder the retrieval of the
absolute magnitude of the TFs and, therefore, the inference
of the parametric gain corresponding to the generated twin
beams. We rely on the different scaling of the same and
cross-mode TFs with the parametric gain in order to extract
it. We define a ratio of TF maxima,

κ ¼
max½jUs;s

ðbÞðω;ω0Þj�
max½jUs;iðω;ω0Þj�

max½jUi;i
ðbÞðω;ω0Þj�

max½jUi;sðω;ω0Þj� ; ð5Þ

which can be obtained by replacing the TFs by the respective
measured stimulated PSDs, as the ηin and ηout coefficients
defined in Eq. (4) cancel out. As we have indicated
previously, for low PDC gains, the amplitude of the

broadband part of the same-mode TFs grows quadratically
with the nonlinear gain, while the amplitude of the cross-
mode TFs grows linearly: Therefore, the ratio κ grows
linearly with the parametric gain (for low gain). As we detail
in subsequent sections, this different scaling allows us to
obtain the PDC gain from κ, independently of the seeding
and detection efficiencies, ηin; sðiÞ and ηout; sðiÞ.

C. Theory of parametric down-conversion

We limit our theoretical treatment to waveguide sources
with a single transverse spatial mode for each of the signal,
idler, and pump fields. The spectral structure of PDC in
such a scenario has been studied before in the perturbative
[35] and nonperturbative [13–15,20,36] regimes. We follow
an approach close to that of Wasilewski and Lvovsky
[13,14], describing the evolution of fields in space rather
than in time. At high pump powers, one expects that SPM
of the pump and XPM induced by the pump on the signal
and idler must be considered, and indeed we find these
effects significant in our KTP source. In our companion
paper [21], we provide a derivation of the equations of
motion (EOMs) of the signal and idler annihilation oper-
ators, with these effects included. In a medium where
group-velocity dispersion can be ignored within the band-
width of the signal and idler modes, it is convenient to use a
frame of reference that propagates at the group velocity of
the pump beam [21,37]. Assuming lossless propagation
and an undepleted classical pump, the monochromatic
annihilation operators for the slowly varying envelopes
of the signal (idler) in this propagating frame of reference,
asðiÞðz;ωÞ, fulfill the following EOMs [21,37]:

∂zasðz;ωÞ¼iΔksðωÞasðz;ωÞ

þiγPDCgðzÞð2πÞ−1=2
Z

dω0βpðz;ωþω0Þa†i ðz;ω0Þ

þiγXPM;sð2πÞ−1
Z

dω0Epðω−ω0Þasðz;ω0Þ;

ð6aÞ
∂zaiðz;ωÞ¼iΔkiðωÞaiðz;ωÞ

þiγPDCgðzÞð2πÞ−1=2
Z

dω0βpðz;ωþω0Þa†s ðz;ω0Þ

þiγXPM;ið2πÞ−1
Z

dω0Epðω−ω0Þaiðz;ω0Þ:

ð6bÞ

The first term on the right-hand side of the EOMs contains
ΔksðiÞðωÞ ¼ ð1=vsðiÞ − 1=vpÞðω − ω̄sðiÞÞ. Here, vsðiÞ and vp
are the group velocities of the signal (idler) and pump
pulses, respectively, and ω̄sðiÞ is the central frequency of the
signal (idler) mode. This term in the EOMs effectively
describes linear propagation through the waveguide.
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The complex function βpðz;ωÞ is the pump spectral
amplitude in the chosen reference frame, which evolves
slowly along z due to SPM inside the nonlinear region [21],
according to

∂zβpðz;ωÞ ¼ iγSPM

Z
dω0 Epðω − ω0Þβpðz;ω0Þ: ð7Þ

The pump spectral amplitude satisfies the normalization

Z
dωjβpðz;ωÞj2 ¼ Epð0Þ ¼ Ep; ð8Þ

where Ep is the energy in the pump pulse. Note the
difference in units between βpðz;ωÞ and the αsðiÞðωÞ
introduced earlier, near Eqs. (2) and (3).
The constant γPDC in Eqs. (6a) and (6b) is the second-

order nonlinear coupling strength, and the function gðzÞ
accounts for the possibility of a sign reversal of this
coefficient as is the case in periodically poled crystals. It
takes the values 1 or −1 over the length of a periodically
poled region and zero outside the crystal.
The third term describes XPM between the pump and the

signal (idler), with γXPM;sðiÞ a coupling strength that can be
different for the signal and idler. This term also contains the
frequency autocorrelation function of the pump spectral
amplitude, which, in this frame of reference, is spatially
invariant [21],

EpðΔωÞ ¼
Z

dω00 βpðz0;ω00 − ΔωÞ�βpðz0;ω00Þ; ð9Þ

where z0 is the input of the waveguide.
The solutions of the EOMs (6a) and (6b) have a

special form, which is related to the fact that the commu-
tation relations are preserved [21]. The TFs can always be
written as

Us;sðω;ω0Þ ¼
X
l

coshðrlÞρðlÞs ðωÞτðlÞs ðω0Þ; ð10aÞ

Us;iðω;ω0Þ ¼
X
l

sinhðrlÞρðlÞs ðωÞ½τðlÞi ðω0Þ��; ð10bÞ

Ui;iðω;ω0Þ ¼
X
l

coshðrlÞρðlÞi ðωÞτðlÞi ðω0Þ; ð10cÞ

Ui;sðω;ω0Þ ¼
X
l

sinhðrlÞρðlÞi ðωÞ½τðlÞs ðω0Þ��: ð10dÞ

Here, ρðlÞsðiÞ are normalized signal (idler) output spectral

modes, τðlÞsðiÞ are the corresponding input modes, and rl are

the corresponding squeezing parameters.
Remarkably, if SPM can be neglected and the PDC

nonlinearity is uniform or has a homogeneous periodic

poling, the EOMs (6a) and (6b) can be efficiently solved by
exponentiating the discretized differential operator [21].
Scenarios involving slow spatial variations of either the
pump amplitude (through SPM) or the effective nonlinear-
ity in periodically poled crystals require an additional step.
In those situations, we split the crystal into a number of
sections along the propagation direction, within each of
which the pump amplitude can be assumed uniform. The
input-output relations are then found by sequentially
applying the transformations for all sections. This pro-
cedure remains very efficient—for the discretized trans-
formations, it amounts to matrix multiplication—allowing
us to perform parameter sweeps effectively even in the
high-gain regime.
In treatments of squeezing, it is sometimes assumed that

one can neglect both the cross-phase modulation of the
signal and idler by the pump, and the SPM of the pump
itself. We refer to treatments that make this assumption as
“χð2Þ models.” In addition, when a weak quadratic non-
linearity is assumed, an analytical perturbative solution can
be derived for the joint spectral amplitude. In Ref. [15], a
high-gain extrapolation of such a perturbative solution was
used as an approximative model, in order to highlight
nonperturbative effects in the numerical results. We refer to
this as a “simplified χð2Þ model.”
The more general description that our EOMs (6a)

and (6b) provide goes beyond these models. The solutions
of the EOMs recover features of PDC that have been
introduced before as the results of time-ordering correc-
tions [20], including an enhanced squeezing rate as a
function of the pump power, and the distortion (frequency
broadening) of the Schmidt modes [15,20,21]. Moreover,
they account for the spectral transformation of the twin
beams caused by SPM and XPM. In consequence, we refer
to our description as a “χð2Þ=χð3Þ model.”
In subsequent sections, we address how all the param-

eters appearing in the EOMs (6a), (6b), and (7) can be
accurately determined, and we experimentally confirm the
predictions of the equations.

D. Extracting physical parameters from experiments

Our experimental demonstration employs a waveguided
periodically poled potassium titanyl phosphate (PPKTP)
type-II PDC source. The pump pulses with a central
wavelength of 783 nm and a pulse duration of around
1 ps propagate along the ordinary axis of the crystal (H
polarization). They generate a signal field with the central
wavelength at 1563 nm in the H polarization and an idler
field at 1569 nm in the V polarization. More details are
provided in Appendix C.
The design, reproduced from earlier work [2], achieves a

nearly separable joint spectrum. Therefore, the source
generates almost single-mode broadband, orthogonally
polarized, twin beams. The waveguide confinement makes
the source very bright. Previous to this work, up to 20
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photons per pulse (on average) generated by spontaneous
PDC have been reported [4]. However, the spectral struc-
ture of the twin beams in the high-gain regime has not been
systematically analyzed. Here, we show that we can
correctly predict the absolute values of the measured
TFs for this source up to an inferred mean photon number
of 60 per pulse.
The cascaded stimulated emission setup is depicted in

Fig. 2. We scan the frequency of a cw seed laser across the
bandwidth of the signal or idler mode. After selecting a
down-converted field by polarization filtering, we record
the spectrum of the generated light using an optical
spectrum analyzer (OSA). We perform measurements for
pump pulse energies ranging from 125 pJ to 600 pJ. The
pulse energy of the generated stimulated emission is
measured to be below 0.1 pJ, 3 orders of magnitude
smaller than that of the pump. This result justifies the
nondepleted pump approximation in our models. For each
pump power, we obtain all four TFs (absolute value) as
explained in Sec. II B.
Most parameters in Eq. (6) can be measured for this

source in the low-gain regime, either from stimulated
emission data or from simple complementary experiments,
as we summarize in this section. The values of the
parameters, as well as the methods we used to obtain
them, are listed in Table I. The reader interested in
replicating our method can find the necessary details in
Appendix D.
We measure the pump power spectral amplitude, jβpðz ¼

0;ωÞj2 (Appendix D 1), with an OSA. We extract the
spectral phase of the pump, arg½βpðz ¼ 0;ωÞ�, using a
standard ultrafast spectral phase measurement, SPIDER,

for the laser pulse and a spectral self-interference meas-
urement (Appendix D 2) for the phase added by the
bandpass filters used to shape the pump pulse, as shown
in Fig. 2.
We obtain the group-velocity mismatch between pump

and signal (idler) pulses, ð1=vsðiÞ − 1=vpÞ, from the angle
and bandwidth of the phase-matching function in a low-
gain JSI (Appendix D 3). This result is confirmed by a
direct interferometric measurement of the differential delay
between the two polarizations (signal or idler) using a
broadband field that propagates through the birefringent
PPKTP crystal (Appendix D 3).
We extract the PDC interaction strength γPDC from the

ratio between the maxima of the same-mode and cross-
mode TFs in the low-gain regime, where these amplitudes
are not influenced by other nonlinear processes
(Appendix D 4). The XPM interaction strength is obtained
from the shape of the same-mode TF in the low-gain regime
alone, as we show in the next section, as well as in
Appendix D 5. The SPM interaction strength γSPM is the
only parameter that we extract from a fit in the high-gain
regime: Once all other parameters are fixed, γSPM is chosen
to optimize the fitting of the high-gain TFs (Appendix D 6).

III. EXPERIMENTAL DEMONSTRATION

Here, we report our cascaded stimulated emission
measurements for an ample range of gains and demonstrate
the excellent agreement with our simulated TFs. Figure 3
summarizes the results for the lowest and highest pump
pulse energies. Each measured TF amplitude is compared
to the prediction of our EOMs (6a) and (6b), with
parameters fitted as explained in detail in Appendix D.
Remarkably, a single model is able to accurately account
for all the experimental data. In what follows, we report on
the most important features of the measured TFs and
provide their physical interpretation.

A. Low-gain spectra

We first measured the cross-mode stimulated emission
using a relatively low pump power (125 pJ), reproducing a
standard SET experiment. The square roots of the resulting

FIG. 2. Experimental setup.

TABLE I. Model parameters.

Parameter Symbol Value Method

Pump spectral amplitude jβpðz0;ωpÞj � � � Optical spectrum analyzer
Pump spectral phase arg ½βpðz0;ωpÞ� � � � SPIDER and spectral interferometry
Group-velocity mismatch 1=vs − 1=vp 1.70 ps=cm Angle and bandwidth of phase-matching profile

1=vi − 1=vp −1.02 ps=cm + direct interferometric measurement of group delay
PDC coupling γPDC 28 W−1=2 m−1 Ratio of the cross-mode and same-mode TF amplitudes
XPM coupling γXPM;s 0.16 W−1 m−1 Asymmetry of the same-mode TFs

γXPM;i 0.059 W−1 m−1

SPM coupling γSPM 0.56 W−1 m−1 Fitting of TFs in the high-gain regime
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FIG. 3. All measured and modeled TF amplitudes, in the low- and high-gain regimes, corresponding to strong and weak squeezing.
The color scale is normalized separately for each density plot. The TF amplitudes are plotted as a function of wavelength instead of
angular frequency, where they are connected by λ ¼ 2πc=ω. (a) Low squeezing (approx. 2 photons/pulse spontaneous emission)
(b) High squeezing (approx. 60 photons/pulse spontaneous emission).
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two-dimensional PSDs, corresponding to the absolute value
of Us;i and Ui;s, are depicted in the low-gain section of
Fig. 3. We inferred a spontaneous emission rate of
approximately 2 photons/pulse. In this regime, the cross-
mode TF is equal to the joint spectral amplitude of the
generated photon pairs.
In the same setup, we were able to resolve broadband

stimulated emission in the same polarization as the cw seed,
centered around the seed wavelength. By scanning the seed
wavelength, we reconstructed the two-dimensional spectral
distributions, which are shown in the low-gain section in
Fig. 3. As discussed in Sec. II B, these are proportional to
the absolute value of the same-mode TFs Us;s

ðbÞ and Ui;i
ðbÞ.

In Fig. 4, we compare experiment and simulation along
the ω0 ≡ ωin ¼ ωout ≡ ω cut of the same-mode TFs. For
comparison, we added the prediction of a χð2Þ model. The
χð2Þ model is significantly less accurate, failing to predict
the asymmetry in the tails of the distribution observed
experimentally. We find that this asymmetry is explained
by the presence of cross-phase modulation induced by the
pump pulse on the down-converted modes. For frequencies
far from the PDC phase matching, the effect of XPM
appears as a pedestal around the cw seed. Along the ωin ¼
ωout contour, XPM results in a constant background. The
broadband component of the same-mode χð2Þ TF, obtained
from our simulations, shows a π phase step around the
central wavelength. In Appendix B, Eq. (B21), we show,
using an analytic approximation, that this π phase shift is a
general feature. The total TF is a coherent addition of the
XPM background and the narrow-band PDC signal, result-
ing in a Fano resonance [38]. This coherent addition
explains the asymmetric shape illustrated in Fig. 4. As
indicated above and detailed in Appendix D 5, we extract
the XPM interaction strength by optimizing the experi-
ment-theory fit for the profiles in Fig. 4. We find that the
XPM interaction strength is not equal for the signal and
idler modes, and we analyze this observation in detail in
Appendix E. The signal (with the same polarization as the
pump) has an XPM interaction strength roughly 3 times
greater than the idler (with polarization orthogonal to that
of the pump). The asymmetry of the same-mode TFs is
observed to be independent of the pump power, as both
cascaded PDC and XPM scale quadratically with the pump
amplitude in the low-gain regime. The independence of
pump power makes the TF asymmetry a robust feature and
a good way to estimate the ratio between χð2Þ and χð3Þ
interaction strengths.

B. High-gain spectra

Increasing the pump power, we observe additional
deviations from the χð2Þ model discussed above. The
high-gain section in Fig. 3 shows measurements with a
pump pulse energy of 600 pJ; we infer a spontaneous
generation rate of about 60 pairs of photons per pump

pulse. As expected in the high-gain regime, phase matching
lobes are suppressed, and the spectra are broadened [19]. In
addition to these effects, accounted for by the χð2Þ model,
the cross-mode TFs are highly distorted and the same-mode
TFs show a significant asymmetry with respect to the ωin ¼
ωout line.
We can account for these features only by incorporating

the effect of self-phase modulation of the pump into
Eqs. (6a) and (6b). The excellent agreement between the
χð2Þ=χð3Þ model and the high-gain data is clear evidence that
SPM explains spectral features that appear with high pump
pulse energy. The distortion of the cross-mode TFs is
related to the broadening and splitting of the pump
spectrum through SPM. The shift of the same-mode TFs
can be explained by the chirp accumulated by the pump
pulse due to SPM. As illustrated in Fig. 5, the spectral
phase of the pump is mapped onto the absolute value of the
same-mode TFs, as signals generated by different pump

(a)

(b)

FIG. 4. Same-mode TF slices showing the effect of XPM. The
plots show jUs;sði;iÞ

ðbÞ ðλin; λoutÞj for λin ¼ λout. Red lines: Measure-
ment (background subtracted). Black dashed lines: Model pre-
diction. Gray lines: Prediction of a model that does not include
XPM. The asymmetry arises from superposing the signals
generated by cascaded stimulated PDC and XPM.
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frequencies add up coherently in the cascaded frequency
generation process. In particular, a quadratic phase in the
pump field causes a shift of the same-mode TFs away from
the ωin ¼ ωout line.
The fact that changes in the spectral phase of the cross-

mode transfer function (JSA in the low-gain regime) are
mapped onto significant changes of the absolute value of the
same-mode transfer functions gives us access to spectral
phase information using only intensity measurements. While
we do not develop this here, in principle, a phase-retrieval
algorithm can be constructed based on this observation.

C. Scaling and absolute, loss-independent validation

The different scaling of same- and cross-mode TFs gives
us access to the twin-beam gain using cascaded stimulated
emission measurements outside of the high-gain regime. As
we show in Sec. II B and Appendix D 4, we can use ratios
of the measured PSDs to construct the coefficient κ, defined
in Eq. (5), which grows monotonically with the PDC
interaction strength and which is independent of detection
efficiency and mode overlap. Note that this coefficient
captures features related to the gain of the process in both
the low- and high gain regimes, and that in the low-gain
regime, it gives information pertaining to the squeezing
parameters characterizing the transformation of operators
in Eq. (10d). Figure 6 shows that our theory correctly
predicts the scaling of κ observed in the experiments.

D. Difference between measurement and simulation

Our theoretical model is consistent with experimental
data for a broad range of spontaneous photon-pair gen-
eration rates, from 1 photon pair/pulse on average to 60
photon pairs/pulse. To quantify the agreement between
experiment and theory, we introduce the integrated squared
error between the measured and simulated absolute values
of the TFs, normalized to unit area:

εx;y ¼
Z

dωdω0
����
jUx;y

meas ðbÞðω;ω0Þj
N x;y

meas
− jUx;y

sim ðbÞðω;ω0Þj
N x;y

sim

����
2

;

N x;y
sim ¼

�Z
dωdω0jUx;y

meas ðbÞðω;ω0Þj2
�
1=2

;

N x;y
sim ¼

�Z
dωdω0jUx;y

sim ðbÞðω;ω0Þj2
�
1=2

;

x; y ∈ fs; ig: ð11Þ

Here, Ux;y
meas ðbÞ is the broadband part of the power spectral

density measured in mode y when seeding mode x, and
Ux;y

sim ðbÞ is the corresponding simulated TF. In Fig. 7, we

show that, using the calibrated χð2Þ=χð3Þ model (solid lines),
εx;y < 2% for all pump powers. On the other hand,

(a) (b) (c)

FIG. 5. Amplitudes of the same-mode TFs, Us;sði;iÞ
ðbÞ ðω;ω0Þ.

Simulated same-mode TF for (a) Fourier-limited, (b) chirped,
and (c) higher-order chirped Gaussian pump pulses (intensity and
bandwidth in arbitrary units). A chirped pump causes a displace-
ment of the same-mode TF from the diagonal (b), while a higher-
order chirp leads to a more complicated deformation of the
same-mode TF.

FIG. 6. Ratio between the self- and cross-mode transfer
functions (κ) for different pump pulse energies.

FIG. 7. Mean-squared error between measured and modeled
TFs (details in the Sec. III.D). Solid lines are for the χð2Þ=χð3Þ

model; dashed lines are for the χð2Þ model.
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neglecting the effect of XPM and SPM (dashed lines), we
cannot produce a model that fits the experimental data for
all pump powers.

IV. PERFORMANCE OF THE SOURCE

We have characterized a source designed to provide a
high degree of squeezing in a small number of spectral
modes. We have developed a theoretical description that is
validated by our experimental results. We now use this
description to analyze the performance of the source. In
particular, we discuss high-gain effects on brightness and
spectral purity.

A. Photon number

We can calculate the spontaneously generated mean
photon number by adding the squares of the Schmidt
coefficients of the cross-mode TF [15], hni ¼ P

l sinh
2ðrlÞ.

In the perturbative cross-mode TFs (obtained in
Appendix B), the squeezing parameters are linearly propor-
tional to the pump amplitude. In the “simplified χð2Þ model”
[15], the spontaneously generated mean photon number is
hni ¼ P

l sinh
2ðcl

ffiffiffiffiffiffi
Ep

p Þ, where Ep is the pump pulse
energy and cl are constants set by the perturbative solution.
Our theoretical approach based on integrating EOMs offers
revised predictions, previously treated as time-ordering
corrections [15,20] (the connection between our treatment
and time domain evolution is clarified in Ref. [21]).
As illustrated in Fig. 8(a), the mean photon number

predicted by the χð2Þ model grows significantly faster with
pump pulse energy than predicted by the simplified χð2Þ

model. The χð2Þ photon number scaling is not simply a
sinh2 function with a different coefficient but rather a
different function. The predictions of the different models
converge in the low-gain regime but scale differently for
higher gain. The accurate mean photon number per pulse is
given by the “χð2Þ=χð3Þ model,” which combines the effect
of nonperturbative SPDC with that of SPM. The opposing
directions of these effects result in the nonperturbative
corrections being effectively hidden by SPM, such that the
brightness of the spontaneous emission can approach that
expected from a simplified χð2Þ computation [4]. Our
simulations show that the effect of XPM on the mean
photon number is negligible.

B. Spectral purity

We now consider the spectral multimodeness of the
source, quantified by the Schmidt number, defined as K ¼
ðPl sinhðrlÞ2Þ2=ð

P
l sinhðrlÞ4Þ [19,39]. A low Schmidt

number implies that there is little correlation between
the frequency spread of the signal and idler modes and
thus, ultimately, very low spectral entanglement. This
situation therefore allows high-purity single photons to
be heralded from pairs generated in the low-gain regime.

More generally, the Schmidt number quantifies the maxi-
mum visibility of the second-order interference between the
generated light and another optical mode [40]. It has been
shown that the Schmidt number of a PDC source is reduced
in the high-gain regime, due to the dominance of strongly
populated modes [15,41]. We find that the pump SPM
counteracts this effect: The Schmidt number saturates at a
moderate pump power. Figure 8 illustrates these observa-
tions. Our simulations show that the effect of XPM on the
spectral Schmidt number is negligible.

C. Improving source performance

We have shown that SPM due to the χð3Þ nonlinearity of
KTP has an impact on the performance of our source in the
high-gain regime. The results of our study, however,
suggest a simple optimization to counteract this effect:
prechirping of the pump pulses. If the sign and magnitude
of the chirp are appropriately chosen, it is possible to
counter the reduction in purity and brightness. In Fig. 9, we
show the Schmidt number predicted by our theory as a
function of the spontaneously generated photon number,

(a)

(b)

FIG. 8. (a) Number of spontaneously generated photons as a
function of pump pulse energy. (b) Spectral Schmidt number as a
function of the number of spontaneously generated photons. The
red lineshows theχð2Þ=χð3Þmodel; theblack line is for theχð2Þmodel
(onlyPDC,noSPMorXPM); and thegray line is the simplified χð2Þ

model (squeezing parameters rl ¼
ffiffiffiffiffiffi
Ep

p
cl) with the same predic-

tions in the low-gain regime. Note that the curves converge in the
low-gain regime but scale differently for higher gain.
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contrasted with what could be achieved using chirped
pump pulses. The dispersion parameter required to opti-
mize the performance of the source is D ¼ 178 fs=nm,
which can be easily achieved using a grating-based pulse
compressor.

V. CONCLUSIONS

In this work, we have demonstrated a general exper-
imental framework to characterize broadband twin-beam
sources in the high-gain regime. We have introduced
cascaded stimulated emission tomography, a seeded meas-
urement that generalizes SET, providing additional spectral
information about the generated twin beams. In particular,
we have shown that the redundancy offered by this
measurement allows for the self-referenced inference of
the PDC interaction strength, independently of seeding and
detection efficiency. Using the information offered by
cascaded SET, together with a small number of comple-
mentary measurements, we have fitted a theoretical model
of twin-beam generation, which yields all the complex TFs
that describe the process. We have experimentally identi-
fied and quantified nonperturbative, SPM, and XPM effects
in a high-gain PDC source. In fact, the development of the
EOMs (6a), (6b), and (7) was prompted by features of the
data that we were not initially able to explain. Our results
also clarify the absence of observed deviations from a
simplified χð2Þ model in previous work [4], as they can be
effectively hidden by third-order phenomena. This com-
pletes the picture of using classical probes to tomograph
twin-beam sources.
The twin-beam source setup that we used to develop and

validate our methods is an example of a class of pulsed
twin-beam sources engineered to suppress the emission of
light in multiple spatial and spectral optical modes, such
that the quantum states that they generate are useful for
quantum simulation and quantum sampling applications

[3,6–11]. Our ability to modify the parameters of the model
has allowed us to identify limitations of the current source
design and to explore new designs that overcome these
shortcomings. An interesting extension of our methods
would include spatially multimode twin-beam sources.
Efficient seeding of such sources has been demonstrated
[42], and spatial input-output relations, as well as spatio-
temporal correlations for parametric sources, have recently
been discussed [17,43].
We believe the framework presented here will advance

the study and design of twin-beam sources in the high-gain
regime. Comprehensive modeling and characterization
based on the methods that we introduce can also be applied
to many other important applications. Some examples are
heralded Fock state sources for linear optical quantum
computing and single-photon frequency conversion, both
key requirements for many quantum technologies [23].
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APPENDIX A: QUANTUM AND CLASSICAL
INPUT-OUTPUT RELATIONS

We can find the exact transformation that describes the
Heisenberg picture evolution of the creation or annihilation
operators by looking at how it transforms the classical
coherent amplitudes of a seed field. A broadband coherent
seed in the signal (idler) mode can be described as a
displaced vacuum, which in the Heisenberg picture can be
represented by splitting a creation operation in terms of its
mean value αs;i and its fluctuations δas;i,

aðinÞsðiÞ ðωÞ ¼ αsðiÞðωÞ þ δasðiÞðωÞ: ðA1Þ

The seed field is evolved following Eq. (1):

aðoutÞs ðωÞ ¼
Z

dω0Us;sðω;ω0Þ½δasðω0Þ þ αsðω0Þ�

þ
Z

dω0Us;iðω;ω0Þ½δa†i ðω0Þ þ αiðω0Þ�: ðA2Þ

A spectrally resolved power measurement of the signal
fields yields

FIG. 9. Effect of prechirping pump pulses on the spectral
Schmidt number of a PDC source as a function of the average
number of photons generated. The red line is for the Fourier-
limited pump pulses, and the black line is for the prechirped
pump pulses.
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PsðωÞ ∝ h½aðoutÞs ðωÞ�†aðoutÞs ðωÞi

¼
����
Z

dωdω0Us;sðω;ω0Þαsðω0Þ
����
2

þ
����
Z

dωdω0Us;iðω;ω0Þαiðω0Þ
����
2

þ
����
Z

dωdω0Us;iðω;ω0Þ
����
2

; ðA3Þ

and a similar equation for the idler power. We identify three
contributions to the PSD: The first, involving the self-mode
TFs, represents the seed power and cascaded DFG. The
second, involving the cross-mode TF, represents stimulated
emission (and higher-order cascaded DFG terms). The third

term represents spontaneous emission. This last term is
negligible for strong enough seed fields.

APPENDIX B: SECOND-ORDER PERTURBATIVE
EXPANSION OF PDC

Here, we perturbatively solve the PDC equations of motion
(6a) and (6b) up to second order in the PDC gain. We show
that,while the term linear in γPDC yields the usual joint spectral
amplitude, the second-order term yields a broadband pedestal
in the same-mode transfer function. This case illustrates our
simple physical picture: The same-mode emission is caused
by a cascaded processwhere a broadband signal (idler) photon
stimulated by the narrow-band idler (signal) seed sub-
sequently stimulates broadband emission in the idler (signal)
mode. Our fundamental integral equations are

asðz;ωÞ ¼ asðz0;ωÞeiΔksðωÞðz−z0Þ þ
iγPDCffiffiffiffiffiffi
2π

p
Z

z

z0

dz0gðz0ÞeiΔksðωÞðz−z0Þ
Z

dω0βpðz0;ωþ ω0Þa†i ðz0;ω0Þ; ðB1Þ

aiðz;ωÞ ¼ aiðz0;ωÞeiΔkiðωÞðz−z0Þ þ
iγPDCffiffiffiffiffiffi
2π

p
Z

z

z0

dz0gðz0ÞeiΔkiðωÞðz−z0Þ
Z

dω0βpðz0;ωþ ω0Þa†s ðz0;ω0Þ: ðB2Þ

The equations above are clearly formal solutions of Eqs. (6a) and (6b). Taking the adjoints and substituting into Eq. (B1), we have

asðz;ωÞ¼ asðz0;ωÞeiΔksðωÞðz−z0Þ þ
iγPDCffiffiffiffiffiffi
2π

p
Z

z

z0

dz0gðz0ÞeiΔksðωÞðz−z0Þ
Z

dω0βpðz0;ωþω0Þe−iΔkiðω0Þðz0−z0Þa†i ðz0;ω0Þ

þ γ2PDC
2π

Z
z

z0

dz0gðz0Þ
Z

z0

z0

dz00g�ðz00ÞeiΔksðωÞðz−z0Þ
Z Z

dω0dω00βpðz0;ωþω0Þe−iΔkiðω0Þðz0−z00Þβ�pðz00;ω0 þω00Þasðz00;ω00Þ;

ðB3Þ

and a similar equation for the evolution of aiðz;ωÞ obtained by letting s ↔ i in the last equation. In what follows, we only write
equations for the signal, but it is understood that a similar equation follows for the idler using the rule written in the last sentence.
These expressions are still exact. Beginning an iteration and looking at a final z ¼ z1, we have

asðz1;ωÞ ¼ asðz0;ωÞeiΔksðωÞðz1−z0Þ þ
iγPDCffiffiffiffiffiffi
2π

p
Z

z1

z0

dz0gðz0ÞeiΔksðωÞðz1−z0Þ
Z

dω0βpðz0;ωþ ω0Þe−iΔkiðω0Þðz0−z0Þa†i ðz0;ω0Þ

þ γ2PDC
2π

Z
z1

z0

dz0gðz0Þ
Z

z0

z0

dz00g�ðz00ÞeiΔksðωÞðz1−z0Þ

×
Z Z

dω0dω00βpðz0;ωþ ω0Þe−iΔkiðω0Þðz0−z00Þβ�pðz00;ω0 þ ω00ÞeiΔksðω00Þðz00−z0Þasðz0;ω00Þ: ðB4Þ

Then, writing

aðoutÞs ðωÞ ¼
Z

dω00Us;sðω;ω00ÞaðinÞs ðω00Þ þ
Z

dω0Us;iðω;ω0Þa†ðinÞi ðω0Þ;

aðoutÞi ðωÞ ¼
Z

dω00Ui;iðω;ω00ÞaðinÞi ðω00Þ þ
Z

dω0Ui;sðω;ω0Þa†ðinÞs ðω0Þ;

aðinÞx ðωÞ ¼ e−iΔkxðωÞz0axðz0;ωÞ; aðoutÞx ðωÞ ¼ e−iΔkxðωÞz1axðz1;ωÞ; ðB5Þ

we have
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Us;sðω;ω00Þ ¼ δðω − ω00Þ ðB6Þ

þ γ2PDC
2π

Z
z1

z0

dz0gðz0Þ
Z

z0

z0

dz00g�ðz00Þe−iΔksðωÞz0
Z

dω0βpðz0;ωþ ω0Þe−iΔkiðω0Þðz0−z00Þβ�pðz00;ω00 þ ω0ÞeiΔksðω00Þz00 ;

Us;iðω;ω0Þ ¼ iγPDCffiffiffiffiffiffi
2π

p
Z

z1

z0

dz0e−iΔksðωÞz0gðz0Þβpðz0;ωþ ω0Þe−iΔkiðω0Þz0 : ðB7Þ

The first-order perturbative result in Us;i in the last set of
equations describes how a field in the idler (signal) mode
stimulates the generation of a field in the signal (idler)
mode, and it is often employed in the context of photo-pair
generation, where the first-order approximation of
Us;iði;sÞðω;ω0Þ is the joint spectrum of SPDC photon pairs.
This set of equations can be written in a more elegant form
by introducing the phase-matching function (PMF)

Φ½Δkðω;ω0Þ� ¼
Z

z1

z0

dzffiffiffiffiffiffi
2π

p gðzÞe−iΔkðω;ω0Þz; ðB8Þ

Δkðω;ω0Þ ¼ ΔksðωÞ þ Δkiðω0Þ ðB9Þ

¼ ðΔβsÞðω − ω̄sÞ þ ðΔβiÞðω0 − ω̄iÞ; ðB10Þ

Δβx ¼ 1=vx − 1=vp; ðB11Þ

and recalling that, in the low-gain regime, the spectral
content of the pump is not changed, allowing us to write

βpðz;ωþ ω0Þ ¼
ffiffiffiffiffiffi
Ep

σ

r
F

�
ω − ω̄s þ ω0 − ω̄i

σ

�
; ðB12Þ

where FðxÞ is the L2 normalized pump shape [i.e.,R
dxjFðxÞj2 ¼ 1] and we used the fact that

ω̄p ¼ ω̄s þ ω̄i. With these definitions, we finally write

Us;iðω;ω0Þ ¼ iγPDC

ffiffiffiffiffiffi
Ep

σ

r
F

�
ωþ ω0 − ω̄p

σ

�
Φ(Δkðω;ω0Þ):

ðB13Þ

Note that if, for example, gðzÞ is a top-hat function of length
L centered at the origin, then

Φ(Δkðω;ω0Þ) ¼ Lffiffiffiffiffiffi
2π

p sinc(Δkðω;ω0ÞL=2): ðB14Þ

The mean number of spontaneously generated signal
(idler) photons per pump pulse is thus

hnsðiÞi ¼
Z

dωha†s ðωÞasðωÞi ¼
Z

dω dω0jUs;iðω;ω0Þj2

¼ γ2PDCEpl��� 1
vs
− 1

vi

��� ; ðB15Þ

where l ¼ R lmax
lmin

dzjgðzÞj2 is the effective length of the
crystal. Note that a gðzÞ with a top-hat shape of length L
will have precisely l ¼ L.
When the idler(signal) mode is seeded, broad-

band DFG will be generated in the conjugate
mode (Appendix A) with a total intensity IsðiÞ ∝R
dω dω0jUs;iði;sÞðω;ω0Þj2 ¼ hnsðiÞi.
The second-order term that appears in Us;sðω;ω0Þ and

Ui;iðω;ω0Þ generates a broadband contribution in the
seeded mode with amplitude proportional to the square
of the PDC gain.
Under certain circumstances, it is possible to evaluate

this term analytically. For this evaluation, we assume a
Gaussian nonlinearity profile and pump profile,

gðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
πγ=24

p e
− z2

γl2 ; FðxÞ ¼ 1ffiffiffi
π4

p e−
x2
2 ; ðB16Þ

where γ ≈ 0.193 is chosen so that the PMF associated with
this nonlinearity profile has the same full width at half
maximum as the one associated with a top-hat profile.
Under these approximations, letting z0 → −∞ and
z1 → þ∞, one can write the intermode transfer function
as a double Gaussian,

Us;iðω;ω0Þ ¼ iγPDCl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep

πσ

ffiffiffiffiffiffiffi
γ=2

pr
exp ð−vMvTÞ; ðB17Þ

v ¼ ðω − ω̄s;ω0 − ω̄iÞ; ðB18Þ

M ¼
�
μ2s μ2

μ2 μ2i

�
; ðB19Þ

μ2s;i ¼
1

4
l2γΔβ2s;i þ

1

2σ2
; ðB20Þ

μ2 ¼ 1

4
γΔβiΔβsl2 þ 1

2σ2
: ðB21Þ
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Similarly, one can write a simple analytical expression for
the second-order intramode transfer function,

Us;sðω;ω00Þ ¼ δðω − ω00Þ þ Us;s
b ðω;ω00Þ; ðB22aÞ

Us;s
b ðω;ω00Þ ¼ γ2PDCEpl2 ffiffiffi

γ
p

ffiffiffi
π

p
σμi

e−x
2
−−x2þ(1þ i erfiðxþÞ);

ðB22bÞ

xþ ¼
ffiffi
γ

p
l

2
ð 1vs − 1

vi
Þ

2σμi
ðωþ ω00 − 2ω̄sÞ; ðB22cÞ

x− ¼ μsffiffiffi
2

p ðω − ω00Þ; ðB22dÞ

and erfiðxÞ ¼ erfðixÞ=i is the imaginary error function,
which is an odd function of its argument. Thus, the
phase of Us;s

b ðω;ω00Þ has a jump when crossing the line
ωþ ω00 − 2ω̄s ¼ 0. This observation will become useful
when we compare the form of the transfer function of the
cascaded (second-order) χð2Þ process, which, as just men-
tioned, is a phase jump, and the pure χð3Þ process, which
does not. Finally, note that an analogous expression for the
intramode transfer function Ui;i

b ðω;ω00Þ can be obtained by
letting i ↔ s in Eq. (B21).

APPENDIX C: EXPERIMENTAL SETUP DETAILS

The nonlinear crystal in our experiment is an 8-mm
PPKTP chip manufactured by ADVR, made from a z-cut
wafer, with a set of waveguides written using a proton
exchange process. The waveguides have roughly 4 μm×
4 μm cross sections. The chip output is AR coated for
1550 nm. We pump the source with a pulsed Ti:Sapphire
laser (Coherent Chameleon) with central wavelength
783 nm, 8-nm bandwidth, and 80-MHz repetition rate,
which we filter using two bandpass thin-film filters
(Semrock LL01-785-12.5) to a bandwidth of 1.9 nm.
The periodic poling has a spatial period of 104 μm, which
leads to quasi-phase matching for a signal and an idler
around 1560 nm. Using an ordinarily polarized pump
(H polarization), we obtain signal (H polarization) and
idler (V polarization) beams with respective central wave-
lengths of 1563 nm and 1569 nm.
The phase matching of the type-II PDC process has been

engineered to obtain signal and idler fields at telecom
wavelengths with an almost separable joint spectrum. In the
weak squeezing regime, where we may approximate that
only single-photon pairs are produced, the joint spectrum of
a PDC source can be expressed as a product of two factors:
a pump function and a phase-matching function [35]. As
illustrated in Fig. 10, the pump function, related to energy
conservation, introduces anticorrelation of the frequencies

of photons generated in the PDC process. The nature of the
phase-matching function, related to momentum conserva-
tion, depends on the dispersion relation of the guided
modes. In a medium with normal dispersion, both the
signal and idler commonly have higher group velocity than
the pump, resulting in frequency anticorrelations [44]. In
the waveguided PPKTP, due to the birefringence of the
material, the group velocity of a pump field at 783 nm in the
ordinary polarization falls in between the group velocities
of the signal and idler fields centered around 1565 nm in
orthogonal polarizations, which results in a phase-matching
function with positive frequency correlations [2]. The
combined effect of these two factors with the correct
balance of pump and phase-matching bandwidths, as
illustrated in Fig. 10, can produce an almost separable
joint spectrum.
To measure the direct and cascaded DFG signals, we

seed one of the down-converted fields with a cw laser and
measure the generated stimulated emission using an OSA.
For the seed field, we use a Yenista Tunics T100S-HP cw
fiber laser with a wavelength tunable between 1500 nm and
1680 nm. The laser has a very high spontaneous noise
suppression, over 100 dB over a bandwidth of 1 nm. After
polarization filtering using birefringent waveplates and a
Glan-Taylor polarizer, we record spectra of the generated
light using a Yokogawa AQ6370D OSA. The OSA has a
high dynamic range of 78 dB over 1 nm, allowing us to
distinguish the weak broadband cascaded DFG signal
(<1 nW) from the narrow-band seed (≈600 μW). While
the linewidth of the seed laser is many orders of magnitude
smaller than the broadband cascaded DFG emission, the
finite resolution of the OSA (0.2 nm) broadens the width of
the narrow-band component of the spectra, hindering the
retrieval of the broadband pedestal. To remove the cw seed
from the data, we first subtract a background trace from it,
where we send the seed beam but not the pump through the
crystal. Fluctuations of the seed power between the
moment when the data and the background are measured
led to an imperfect extinction of the narrow-band compo-
nent. We eliminate this cw remnant by masking the
frequency range occupied by it and interpolating the
remaining spectrum, as illustrated in Fig. 11.

FIG. 10. The product of a pump function (energy conservation)
and a phase-matching function (momentum conservation) can
yield a separable joint spectrum.
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APPENDIX D: IDENTIFYING THE EOM
PARAMETERS

In this Appendix, we describe in detail how we identify
the physical parameters that enter in our theoretical
description in Eqs. (6a), (6b), and (7) of the SPDC. We
describe how these parameters can be extracted from the TF
data mostly in the small-gain limit, complemented with
some additional measurements.

1. Pump spectral intensity

The pump spectral amplitude at position z in the crystal,
βpðz;ωÞ, is a complex-valued function. In our experiment,
we measure the absolute value of βpðz ¼ 0;ωÞ in two ways
(see Fig. 12): First, we perform a direct measurement of the

pump spectrum at the chip input using an OSA, which
provides the squared modulus of the pump spectral
amplitude. Second, we confirm this result by extracting
the pump spectral density from low-gain cross-mode TF
measurements.

2. Pump spectral phase

We used an APE LX-Spider (wavelength range between
750 and 900 nm) to characterize the spectral phase of the
Ti:Sapphire pump laser, but we could not extend that
measurement to the filtered pump (1.9-nm bandwidth)
because of the limit in the spectral resolution of the
apparatus. We characterized the spectral phase added by
the filters using a spectral self-interference measurement:
The filtered pump is interfered with a sample of the same,
unfiltered field, thus revealing their differential spectral
phase. The total spectral phase of the pump is obtained by
adding the spectral phase of the reference beam, measured
using SPIDER, and the phase added by the optical filters,
measured through spectral interference.
Let us briefly detail the spectral interference process by

which we measure the phase added by the optical filters.
The complex spectral amplitude corresponding to the sum
of the unfiltered reference βref and the filtered pump field
βpðωÞ is

βsumðωÞ ¼ βref þ jβpðωÞj exp½iðϕðωÞ þ ΔtωÞ�; ðD1Þ

where we omit the spatial label in the field amplitudes,
implicitly assuming a position before the chip input. We
assume that the unfiltered reference is much broader than
the filtered pump, such that the former can be treated as a
field with a constant spectral density. Without loss of
generality, we also take the spectral phase as constant.

FIG. 12. Magnitude (solid line) and phase (dashed line) of the
filtered pump spectral amplitude. The magnitude shown here
corresponds to that measured using the OSA and agrees very well
with the pump function of a low-gain JSI. The phase shown here
corresponds to the addition of the phase of the unfiltered pump
measured using SPIDER and the differential phase of the filtered
pump measured through spectral interferometry.

FIG. 11. (a) Reconstruction of the stimulated emission spec-
trum as a function of seeding wavelength, measured in the seed
polarization. Color indicates the absolute value of the field
(square root of the measured spectral power density). (b) The
red line represents one “slice” of the background subtracted data,
showing a noisy measurement around the seed wavelength,
where the OSA detector is blinded by the seed; the black line
is the reconstructed spectrum obtained by interpolating over the
noisy region.
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The phase of the filtered pump is the sum of ϕðωÞ, the
phase added in the filtering process, and Δtω, representing
a temporal delay with respect to the reference field.
The measured PSD is

PðωÞ∝ jβsumðωÞj2
¼ jβref j2þjβpðωÞj2þjβref jjβpðωÞjcosðϕðωÞ−ΔtωÞ;

ðD2Þ

where we recognize that the last term describes spectral
fringes with a period of approximately 1=Δt, modulated by
the spectral phase added by the optical filters. We assume
that the delay between the interfering beams is large, so the
interference fringes that it causes are fast compared with the
spectral interference due to the filters’ spectral phase. This
modulation can be retrieved by keeping only positive
frequencies above the bandwidth of the base-band compo-
nent of IðωÞ, which corresponds to the complex signal

PHF ∝ jβref jjβpðωÞj exp½Δtωþ ϕðωÞ�; ðD3Þ

the argument of which corresponds to the spectral phase
added by the filters, modulo a linear component.
Our SPIDER measurement reveals that the chirp intro-

duced in the unfiltered pump by the power-distribution
optics is small, reaching less than 0.1 rad over the filtered
pump bandwidth. The spectral phase added by the dielec-
tric filters is the main contribution to the total spectral
phase. This measurement agrees with the specifications
provided by the supplier of the filters (Semrock). In Fig. 12,
we show the measured magnitude and phase of the pump
spectral amplitude.

3. Group-velocity mismatch

In our model, the group velocities of the pump, signal,
and idler fields determine the linear propagation of the
fields in the crystal. We need the two group-velocity
mismatch parameters, ΔβsðiÞ ¼ 1=vsðiÞ − 1=vp. The phase-
matching (PM) function (see Appendix B) of a low-gain
joint spectral amplitude has the simple form

ΦPMðΩs;ΩiÞ ∝ sinc

�
L
2
ðΔβsΩs þ ΔβiΩiÞ

�
; ðD4Þ

where L is the crystal length andΩsðiÞ ¼ ωsðiÞ − ω̄sðiÞ are the
detunings from the central phase-matching frequencies.
Perfect phase-matching occurs for frequencies Ωi ¼
Ωs tanðθPMÞ, with tanðθPMÞ ¼ −Δβs=Δβi. Rotating to a
frequency frame by the phase-matching angle, θPM,

Ωjj ¼ cosðθPMÞΩs þ sinðθPMÞΩi; ðD5Þ

Ω⊥ ¼ cosðθPMÞΩi − sinðθPMÞΩs; ðD6Þ

the phase-matching function depends only on the
perpendicular component:

ΦPMðΩ⊥Þ ∝ sinc

�
1

2
Ω⊥

Δμ
cosðθPMÞ þ sinðθPMÞ

�
; ðD7Þ

where we have introduced the quantity Δμ ¼
LðΔβs − ΔβiÞ ¼ Lð1=vs − 1=viÞ, which corresponds to
the group delay between the signal and idler over the
crystal length. This parametrization makes it clear that, in
the symmetric group-velocity-matching case, the phase-
matching bandwidth is inversely proportional to the walk-
off between the signal and idler pulses in the crystal. We
can write the group-velocity-mismatch parameters ΔβsðiÞ in
terms of Δμ and θPM as

Δβs ¼
Δμ
L

tanðθPMÞ
tanðθPMÞ þ 1

; ðD8aÞ

Δβi ¼ −
Δμ
L

1

tanðθPMÞ þ 1
: ðD8bÞ

To obtain the phase-matching angle θPM, we reconstruct
a broad section of the phase-matching function by meas-
uring the cross-mode TF as we scan the pump power and by
joining the resulting measurements [see Fig. 13(a)]. We
find the phase-matching angle θPM ¼ 59.2°.

FIG. 13. Group-velocity-mismatch characterization. (a) Meas-
urement of the phase-matching angle. Four low-gain JSIs with
different pump central frequencies are joined to reconstruct a long
section of the phase-matching function. (b) Inference of Δμ by
measuring the bandwidth of the phase-matching profile. The
measured intensity profile (solid black line) is fitted with a sinc2

function (dashed red line), and the group delay is obtained from
Eq. (D7). (c) Direct measurement of Δμ by measuring spectral
interference between two orthogonal polarizations of a broad-
band SLED after traveling through the crystal. The oscillating
spectral intensity (red line) is transformed to the Fourier domain,
and a corresponding spectral phase is obtained (black line), from
which the spectral oscillation period is retrieved.
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The second parameter, Δμ, can be obtained by measur-
ing the spectral interference due to walk-off between pulses
in the signal and idler polarizations propagating through the
source. We launch broadband light from a very broadband
(∼100 nm) superluminiscent light-emitting diode (SLED)
in diagonal polarization through the PPKTP waveguide.
The input polarization state can be written as jDi ¼
ðjHi þ jViÞ= ffiffiffi

2
p

. The output polarization state is then
ðeiϕH jHi þ eiϕV jViÞ= ffiffiffi

2
p

. Up to first order in the wave-
length λ, we have

ϕV − ϕH

¼ ω0L

��
nVðω0Þ − nHðω0Þ

c
þ 1

vi
−

1

vs

�
þ
�
1

vs
−

1

vi

�
λ

λ0

�

¼ constantþ 2πc
λ20

Δμλ; ðD9Þ

where ω0 is the central frequency of the signal or idler
fields, λ0 is the corresponding central wavelength in
vacuum, and nV=Hðω0Þ is the refractive index experienced
by the vertical/horizontal polarizations of a field at said
central wavelength. Thus, when we project the output on
the diagonal polarization, in the output wavelength spec-
trum we will observe fringes with period λ20=ðcΔμÞ.
Figure 13(c) shows our measurement of these spectral
fringes, from which we extract a delay between the signal
and idler of Δμ ¼ 2.2 ps.
As shown in Fig. 13(b), we independently infer the value

of Δμ by measuring the phase-matching profile of a low-
gain JSI and fitting it to the function predicted in Eq. (D7).
While it is known that inhomogeneities in the periodic
poling of a nonlinear crystal lead to distortions of the phase-
matching profile [45,46], the good fit of the data to a “sinc”
function allows us to assume that the periodic poling in this
waveguide does not show a significant inhomogeneity. We
must note that this was not the case in other waveguides of
the same chip, which yielded phase-matching profiles
showing important deviations from a sinc function (see
Fig. 14). The value of the group delay that fits the
bandwidth of the measured phase-matching profile is again
Δμ ¼ 2.2 ps, confirming our previous measurement.
The values of the group-velocity-mismatch parameters

retrieved fromEqs. (D8a) and (D8b), togetherwith the results
of our measurements, and assuming a crystal of length
L ¼ 8 mm, are βs ¼ 1.7 ps=cm and βi ¼ −1.0 ps=cm.

4. Parametric down-conversion gain

In the low-gain regime, where the effect of SPM and
XPM can be neglected, and assuming a homogeneous
periodic poling, the PDC equations of motion (6a) and (6b)
are defined solely by Δβs;Δβi and βpðz ¼ 0;ωÞ, as well as
the PDC coupling strength γPDC. Integrating the EOMs
allows us to compute the quantity κ, as defined in Eq. (5),
which, as we have explained in Sec. II B, is independent of

the seeding and detection efficiency, using γPDC as a
free fitting parameter. From the results in Appendix B,
one can easily show that κ is linearly proportional to γPDC in
the low-gain regime. In the high-gain regime, the relation
between κ and γPDC becomes nonlinear, but it remains
monotonically increasing. This monotonic dependence
allows us to use κ as a robust proxy to derive the PDC
coupling strength γPDC from experimental intensity
ratios.
In our experimental demonstration, we fit the predictions

of our model to the experimental values of κ as a function of
pump pulse energy, as illustrated in Fig. 6. In order to
mitigate the effect of measurement noise, we smooth the
spectral distributions using a Gaussian kernel with a
standard deviation of 0.35 nm before taking their maxima.
The best-fit parameter was γPDC ¼ 28 W−1=2=m−1.

5. Cross-phase modulation

Cross-phase modulation of the narrow-band seed by the
broadband pump appears as a spectral broadening of the
former. In our seeded measurements, this effect appears
as a broadband pedestal surrounding the cw component
of the same-mode TFs. According to our simulations of
Us;s=i;i

b ðωout;ωinÞ, the amplitude is constant along a contour
where ωin þ ωout is constant, and its magnitude is propor-
tional to the power of the pump. As mentioned in the
previous Appendixes (e.g., Appendix B), the same-mode
TFs contain another broadband component due to cascaded
PDC. Our simulations show that the cascaded PDC
amplitude scales linearly with the pump power, and it
exhibits a π phase jump around the central phase-matching
wavelength [this is also readily seen by examining the
analytical result in Eq. (B21)]. Because of this nontrivial
spectral phase, the XPM and PDC contributions interfere
either constructively or destructively at different frequen-
cies, resulting in an emission spectrum shaped like a Fano

FIG. 14. Phase-matching profiles of different waveguides in the
same chip. We observe a variability of the shape of the phase-
matching profiles, which can be caused by periodic poling
inhomogeneity.
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resonance [38], as illustrated in Fig. 15. The asymmetry of
this spectrum allows us to accurately estimate the XPM
coupling strength in relation to the PDC coupling strength.
In Fig. 4, we use diagonal cuts of the same-mode TFs at the
lowest power (in order to avoid other nonlinear phenom-
ena) and find the XPM interaction strength γXPM;sðiÞ that
best fits their asymmetric “tails.” The best-fit parameters are
γXPM;s ¼ 0.16 W−1m−1 and γXPM;i ¼ 0.06 W−1m−1.

6. Self-phase modulation of the pump

The effect of SPM of the pump is visible in the high-gain
regime: The cross-mode TFs show a clear broadening, as
well as splitting of the pump function. Also, the same-mode
TFs lose their symmetry, which is consistent with a chirped
pump, as illustrated in Fig. 5.
Assuming that dispersion of the pump is negligible, its

evolution along the waveguide is given by the differential
equation (7). Having measured βpðz ¼ 0;ωÞ, the SPM
interaction strength γSPM is the only fitting parameter left,
which determines the evolution of the pump spectral
amplitude along the waveguide. To obtain the value of
γSPM, we take the complete signal or idler EOMs (6a) and
(6b), with all the other parameters fitted using the low-gain
regime measurements described above, and we find the
value of the SPM interaction strength that best fits the high-
gain TFs according to the error metric defined in Eq. (11).
The best-fit parameter is γSPM ¼ 0.56 W−1 m−1.

APPENDIX E: ASYMMETRY IN THE
CROSS-PHASE MODULATION COEFFICIENTS

In this Appendix, we provide an analysis of the way in
which waves propagating in a material can experience
different nonlinear effects because of their polarization
relative to a strong pump. Suppose we have a pump wave
with central frequency ω̄p and a signal wave with central

frequency ω̄s polarized in the same direction, say, the y
direction. Then, the polarization term responsible for the
XPM will be [47]

Pyðω̄sÞ ¼ ϵ0χ
ð3Þ
yyyyEyðω̄sÞEyðω̄pÞEyð−ω̄pÞ þ…; ðE1Þ

where … are terms obtained by permuting the different
fields appearing in the first term. The fields associated with
the three frequencies (ω̄s, ω̄p, −ω̄p) can be combined in any
order, giving 3! ¼ 6 different terms. Thus, in all, we would
have

Pyðω̄sÞ ¼ 6ϵ0χ
ð3Þ
yyyyEyðω̄sÞEyðω̄pÞEyð−ω̄pÞ: ðE2Þ

Now, suppose the pump is in the y direction, but the idler is
in the x direction. Then, one of the terms contributing to the
cross-phase modulation would be

Pxðω̄iÞ ¼ ϵ0χ
ð3Þ
xxyyExðω̄iÞEyðω̄pÞEyð−ω̄pÞ þ…: ðE3Þ

For this particular χð3Þ component, we could put the fields
at ω̄p and −ω̄p in other orders (2! permutations), so from
this particular component, we would expect

Pxðω̄iÞ ¼ 2ϵ0χ
ð3Þ
xxyyExðω̄iÞEyðω̄pÞEyð−ω̄pÞ: ðE4Þ

However, there will be other tensor components involving

x’s and y’s. In particular, we can expect a χð3Þxyyx and a χð3Þxyxy.
In each one of these components, there will be two
permutations of the fields at ω̄p and −ω̄p that share the
same Cartesian component, so in all

Pxðω̄iÞ ¼ 2ϵ0χ
ð3Þ
xxyyExðω̄iÞEyðω̄pÞEyð−ω̄pÞ

þ 2ϵ0χ
ð3Þ
xyyxEyðω̄pÞEyð−ω̄pÞExðω̄iÞ

þ 2ϵ0χ
ð3Þ
xyxyEyðω̄pÞExðω̄iÞEyð−ω̄pÞ ðE5Þ

¼ 2ϵ0ðχð3Þxxyy þ χð3Þxyyx þ χð3ÞxyxyÞ
× Exðω̄iÞEyðω̄pÞEyð−ω̄pÞ: ðE6Þ

which are for different polarizations. For the same polari-
zation, we have Eq. (E2). So,

Pyðω̄sÞ ¼ 6ϵ0χ
ð3Þ
yyyyEyðω̄sÞEyðω̄pÞEyð−ω̄pÞ ðsame polÞ

ðE7Þ

Pxðω̄sÞ ¼ 2ϵ0ðχð3Þxxyy þ χð3Þxyyx þ χð3ÞxyxyÞ
× Exðω̄sÞEyðω̄pÞEyð−ω̄pÞ ðdiff polÞ: ðE8Þ

If one assumes the following symmetry in the third-order
susceptibility (satisfied, for instance, by an isotropic
medium),

FIG. 15. Asymmetric magnitude of the TF “cut” Us;s
ðbÞðω;ωÞ

due to interference between PDC and XPM. Top-left panel:
Simulated cut with only PDC. Bottom-left panel: Simulated cut
with only XPM. Right panel: Simulated cut with PDC and XPM.
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χð3Þyyyy ¼ χð3Þxxyy þ χð3Þxyyx þ χð3Þxyxy; ðE9Þ

so

Pyðω̄sÞ ¼ 6ϵ0ðχð3Þxxyy þ χð3Þxyyx þ χð3ÞxyxyÞ
× Eyðω̄sÞEyðω̄pÞEyð−ω̄pÞ ðsame polÞ; ðE10Þ

Pxðω̄iÞ ¼ 2ϵ0ðχð3Þxxyy þ χð3Þxyyx þ χð3ÞxyxyÞ
× Exðω̄iÞEyðω̄pÞEyð−ω̄pÞ ðdiff polÞ; ðE11Þ

differing precisely by a factor of 3. To the best of our
knowledge, the tensor components of the third-order non-
linear susceptibility of PPKTP have not been reported in
the literature; however, this simple calculation provides a
plausible argument for the approximate factor of 3 found
between the different cross-phase modulation constants of
the signal and idler fields.
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