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2Service de Physique de l’État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
3Division of Physical Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden

(Received 18 December 2019; revised 9 April 2020; accepted 21 July 2020; published 15 September 2020)

Active matter exhibits various forms of nonequilibrium states in the absence of external forcing,
including macroscopic steady-state currents. Such states are often too complex to be modeled from first
principles, and our understanding of their physics relies heavily on minimal models. These are mostly
studied in the case of “dry” active matter, where particle dynamics are dominated by friction with their
surroundings. Significantly less is known about systems with long-range hydrodynamic interactions that
belong to “wet” active matter. Dilute suspensions of motile bacteria, modeled as self-propelled dipolar
particles interacting solely through long-ranged hydrodynamic fields, are arguably the most studied
example from this class of active systems. Their phenomenology is well established: At a sufficiently high
density of bacteria, there appear large-scale vortices and jets comprising many individual organisms,
forming a chaotic state commonly known as bacterial turbulence. As revealed by computer simulations,
below the onset of collective motion, the suspension exhibits very strong correlations between individual
microswimmers stemming from the long-ranged nature of dipolar fields. Here, we demonstrate that this
phenomenology is captured by the minimal model of microswimmers. We develop a kinetic theory that
goes beyond the commonly used mean-field assumption and explicitly takes into account such correlations.
Notably, these can be computed exactly within our theory. We calculate the fluid velocity variance, spatial
and temporal correlation functions, the fluid velocity spectrum, and the enhanced diffusivity of tracer
particles. We find that correlations are suppressed by particle self-propulsion, although the mean-field
behavior is not restored even in the limit of very fast swimming. Our theory is not perturbative and is valid
for any value of the microswimmer density below the onset of collective motion. This work constitutes a
significant methodological advance and allows us to make qualitative and quantitative predictions that can
be directly compared to experiments and computer simulations of microswimmer suspensions.
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I. INTRODUCTION

In recent years, active systems emerged as a new state of
matter with unique properties that are absent from their
passive counterparts [1,2]. Such systems comprise particles
that are capable of extracting energy from their environ-
ment and using it to exert forces and torques on their
surroundings. The resulting self-propulsion and inter-
actions between particles break detailed balance at the
microscopic level, often leading to steady states that are
not invariant under time reversal and exhibit macroscopic

currents [3]. Such currents, or collective motion, are reported
in a variety of systems [4], including Vicsek particles [5],
mixtures of microtubules and molecular motors [6], light-
activated colloids [7], Quincke rollers [8,9], bacterial colo-
nies [10], sperm cells [11], locusts [12], birds, and fish [13].
The omnipresence of collective motion raises the need to
classify various active systems according to common fea-
tures of their phenomenological behavior. Marchetti et al. [2]
recently introduced two broad universality classes for active
systems, “dry” and “wet,” comprising particles dominated by
friction with their surroundings and long-ranged hydro-
dynamic interactions, respectively. Each class is expected
to be defined by a few, relatively simple model systems, and
significant effort has been invested into finding such models.
For dry active matter, these include Vicsek-like models
[4,14], that describe cases where alignment interactions are
dominant, and active Brownian particles [15,16] or run-and-
tumble particles [17], that describe systems dominated by
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steric forces randomizing their self-propulsion direction
either smoothly or in a discontinuous manner. In this work,
we study a minimal model for dilute suspensions of motile
bacteria that, arguably, play the same role for wet active
matter [18,19].
Collective motion in bacteria has been extensively

studied in dilute [20–22] and dense [23–30] suspensions.
These studies reveal the following sequence of dynamical
states. At very low densities, bacterial suspensions appear
featureless and disordered [22,24]. At higher, yet still
sufficiently low, densities, collective motion sets in on
the scale of the system. In this state, bacterial motion takes
the form of large-scale jets and vortices with typical speeds
that are larger than the swimming speeds of individual
organisms [20–22]. At significantly higher densities,
there emerges a typical length scale of the vortices, which
is comparable to about 5–10 times the bacterial size
[28,30,31]. Although this sequence of dynamical states
has never been simultaneously observed in a single
systematic bulk experiment, with the exception of
Sokolov et al. [26], the transition scenario is supported
by computer simulations of self-propelled particles inter-
acting through various forms of long-ranged hydrodynamic
fields and short-ranged steric repulsion [32–46].
Bulk experiments with Escherichia coli [22] and Bacillus

subtilis [21] show that the transition to collective motion
occurs around a volume fraction of bacterial bodies of about
1%–2%. At such densities, the typical distance between
organisms is about 5–8 times their body length, collisions are
rare, and the far-field hydrodynamic interactions are thought
to be dominant [18,19]. The latter are well described by a
“pusher” Stokesian dipolar field [47,48], generated when
two point forces of equal magnitude and pointing away from
each other are applied to a viscous fluid. Self-propelled
pusher dipolar particles, thus, form a minimal model for
dilute bacterial suspensions.
The transition to collective motion in dilute bacterial

suspensions can be understood in terms of a mean-field
kinetic theory [18,19] incorporating the minimal ingre-
dients discussed above. Such a theory identifies reorienta-
tion of bacteria in the velocity field created by other
organisms as the key ingredient leading to a global
isotropic-nematic transition. The globally ordered state
is, however, linearly unstable through a long-wavelength
generic instability [2,49], and there ensue never-settling
dynamics as a compromise between the two instabilities.
The critical density of bacteria at the onset of collective
motion is determined by the strength of their dipolar
interactions, their shape, and the way individual organisms
change their orientation: either by occasionally reorienting
in a random way (tumbling) or by rotational diffusion
[39,50–53]. Typically, the critical threshold density is
significantly lower in the latter case and goes to zero in
the absence of a decorrelation mechanism for individual
bacterium orientation. The mean-field kinetic theory has

also been extended to systems with steric interactions
[31,54–56] and to microswimmers suspended in non-
Newtonian fluids [57–59].
Below the onset of collective motion, the mean-field

kinetic theory predicts that the suspension is homogeneous
and isotropic, as featureless as a suspension of noninter-
acting microswimmers. These assumptions are widely used
when describing rheological properties of very dilute
suspensions [60–72] and enhanced diffusivity of tracer
particles [35,73–90]. However, recent large-scale lattice-
Boltzmann simulations of dipolar swimmers [42,45] reveal
the presence of very strong correlations below the onset of
collective motion. It is shown that various observables
deviate from their mean-field values at any density of
microswimmers [42], with the deviation diverging in the
vicinity of the onset. The origin of such strong correlations
can be readily attributed to the slow spatial decay of the
dipolar velocity field, implying a simultaneous coupling
between all microswimmers in the system. While this
argument is intuitive enough, its implementation as a
theoretical framework presents major technical challenges,
and only simplified cases were studied until now. In an
earlier work, Underhill and Graham [64] study the effect
of correlations on the fluid velocity spatial correlation
function by modeling the microswimmer orientational and
positional correlations based on symmetry arguments and
fixing the unknown parameters by comparing them to
agent-based simulations. They report a surprising logarith-
mic dependence of the fluid velocity spatial correlation
function on the system size. Recent work by Nambiar, Garg,
and Subramanian [91] extends that result by analytically
considering correlations between two microswimmers and
demonstrates that the logarithmic dependence is related to
the absence of a decorrelationmechanism for microswimmer
orientations and that it disappears for run-and-tumble micro-
swimmers. A systematic account for strong correlations
between all microswimmers is achieved by Stenhammar
et al. [42], who develop a kinetic theory for suspensions of
“shakers”—particles that apply forces to the fluid but do not
self-propel. A similar theory is developed by Qian, Kramer,
and Underhill [92], who study a stochastic kinetic theory for
two-dimensional suspensions of swimming microorganisms.
Analytical results obtained in that work are limited to the
case of slow swimming—a perturbation theory that assumes
that microswimmer self-propulsion is a small effect com-
pared to their thermal diffusion and advection by other
microswimmers. Such slow microswimmers are practically
indistinguishable from shakers, and these results have a
similar status as the theory by Stenhammar et al. [42].
In this work, we develop a kinetic theory that goes

beyond the mean-field assumption for the general model of
dilute microswimmer suspensions described above. Our
theory explicitly includes particle self-propulsion of arbi-
trary strength and is valid at any density of microswimmers
below the onset of collective motion. This theory
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constitutes simultaneously a significant methodological
development compared to the work by Stenhammar et al.
[42] and a major advance in our understanding of one of the
key models defining wet active matter. Our theory allows us
to make explicit predictions for observables that can be
directly set against experiments and numerical simulations.
The paper is organized as follows. In Sec. II, we formulate

a kinetic theory for a model suspension of pusher dipolar
microswimmers. We explicitly find the dynamics of fluctu-
ations around the homogeneous and isotropic state that
describe the system below the onset of collective motion.
Since our theory differs significantly from the previous work
[42], we present its derivation in detail. We appreciate,
however, that some readers might be interested in only the
results of our theory without feeling the need to go through
the rather technical Sec. II. We, therefore, present our results
in a stand-alone Sec. III, which can be read without Sec. II.
There, we calculate the temporal and spatial correlation
functions, fluid velocity variance, energy spectra, and the
enhanced diffusivity of tracer particles. We conclude in
Sec. IV, while Appendixes contain additional derivations for
technically oriented readers.

II. KINETIC THEORY OF STRONGLY
INTERACTING SUSPENSIONS

A. Microscopic model

We consider a collection of N microswimmers contained
in a volume V at a finite number density n ¼ N=V. The
microswimmers are suspended in a Newtonian fluid with
the viscosity μ. Each microswimmer is described by its
instantaneous position xi and orientation pi, which we
collectively denote by zi ¼ ðxi; piÞ, where i ¼ 1…N enu-
merates the particles. Within our model, the dynamics of
the suspension is governed by the following equations
of motion:

_xαi ¼ vspα
i þ UαðxiÞ; ð1Þ

_pα
i ¼ Pαβ

i ½WβγðxiÞ þ BEβγðxiÞ�pγ
i ; ð2Þ

where the dot denotes the time derivative, the superscript
indices denote Cartesian components of vectors, and the
subscript indices label the particles. Throughout this work,
we utilize the Einstein summation convention for super-
script indices, while no summation is assumed over
repeated subscript indices.
The equations of motion (1) and (2) incorporate the

following physical ingredients. First of all, each swimmer
self-propels with the speed vs in the direction of its
orientation. To induce self-propulsion, swimmers generate
long-ranged flows in the suspending fluid [47]. The super-
position of these flows at the position of the ith swimmer,
UαðxiÞ, advects that particle in addition to its self-propul-
sion [see Eq. (1)] and reorients it according to Jeffrey’s

equation (2). The latter describes the dynamics of a passive
particle in an external flow [93], with

WβγðxiÞ ¼
1

2
½∇γUβðxiÞ −∇βUγðxiÞ�; ð3Þ

EβγðxiÞ ¼
1

2
½∇γUβðxiÞ þ∇βUγðxiÞ�; ð4Þ

being the Cartesian components of the vorticity and rate-of-
strain tensors, respectively. In Eq. (2), Pαβ

i ¼ δαβ − pα
i p

β
i is

the projection operator, δαβ denotes the Kronecker delta,
∇α

i ¼ ∂=∂xαi , and B ¼ ða2 − 1Þ=ða2 þ 1Þ is the measure of
the swimmer’s nonsphericity [93] based on its aspect ratio a.
For strongly elongated particles, B → 1, while for spheres,
B ¼ 0. Finally, each swimmer randomly changes its ori-
entation with a rate λ, thus mimicking the run-and-tumble
motion commonly exhibited by bacteria [94]. We note here
that we neglect the effects of rotational and translational
diffusion on the particle’s dynamics, and random tumbling
is, thus, the only source of stochasticity in our model.
The velocity field generated by a self-propelled particle

sufficiently far away from its surface is often well described
by the field produced by a point dipole with the same
position and orientation [47,48]. In a dilute suspension of
microswimmers, where the particles are sufficiently sepa-
rated from each other, we can approximate UαðxiÞ by a sum
of dipolar contributions:

UαðxiÞ ¼
XN
j≠i

uαdðxi; zjÞ; ð5Þ

where

udðxi; zjÞ ¼
κ

8π

�
3
ðpj · x0Þ2x0 þ ϵ2ðpj · x0Þpj

ðx02 þ ϵ2Þ5=2

−
x0

ðx02 þ ϵ2Þ3=2
�

ð6Þ

is the velocity field generated at xi by a hydrodynamic
dipole located at xj with the orientation pj. Here, κ ¼ Fl=μ
is the dipolar strength, where F is the magnitude of the
forces applied to the fluid, l is the dipolar length, and μ is
the viscosity of the fluid; x0 ¼ xi − xj, and x0 denotes the
length of x0. The dipole consists of two regularized
Stokeslets, that are introduced by Cortez, Fauci, and
Medovikov [95], with ϵ being the regularization length
of the order of the swimmer size. For pushers, κ > 0. For
free-swimming E. coli, the dipolar strength is measured
[48] to be about κ ∼ 800 μm3/s.
The main goal of our work is to calculate spatial and

temporal correlations of the fluid velocity in micro-
swimmer suspensions described by the model above.
Both quantities can be succinctly expressed through a
combined correlation function:
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CðR; TÞ ¼ lim
t→∞

1

V

Z
dxUαðx; tÞUαðxþ R; tþ TÞ; ð7Þ

whereUαðx; tÞ is the fluid velocity at the position x at time t
and the large-t limit guarantees independence of the initial
conditions. The spatial and temporal correlation functions
are trivially recovered by setting T ¼ 0 and R ¼ 0, respec-
tively. The bar in Eq. (7) denotes the average over the
history of tumble events and reflects the stochastic nature of
our model. To calculate this and similar averages, below,
we formulate a kinetic theory of microswimmer suspen-
sions based on our macroscopic model. Such theories are
extensively studied at the mean-field level [45,64,96–99].
Here, we go beyond the mean-field approximation and
explicitly take into account strong correlations between the
swimmers caused by the long-range nature of their hydro-
dynamic fields, Eq. (6).

B. Kinetic theory and Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy

The starting point of our theory is the N-particle prob-
ability distribution function FNðz1; z2;…; zN; tÞ that gives
the geometric probability of the system occupying a par-
ticular point in the 6N-dimensional phase space fz1;…; zNg
at time t. The N-particle probability distribution function is
symmetric with respect to swapping particle labels, reflect-
ing their indistinguishability, and is normalized:Z

dz1…dzNFNðz1;…; zN; tÞ ¼ 1: ð8Þ

Its time dynamics is governed by the master equation [100]

∂tFN þ
XN
i¼1

½∇α
i ð_xαi FNÞ þ ∂α

i ð _pα
i FNÞ�

¼ −NλFN þ λ

4π

XN
i¼1

Z
dpiFN; ð9Þ

where we introduce ∂α
i ¼ Pαβ

i ∂=∂pβ
i . The lhs of Eq. (9)

describes the probability fluxes to and from a particular point
in the phase space due to the deterministic particle dynamics
given by Eqs. (1) and (2), while the rhs gives the changes of
the probability due to random tumbling from and into that
phase-space point [18,52]. Next, we introduce the s-particle
correlation functions defined as

Fsðz1;…; zs; tÞ

¼ N!

ðN − sÞ!Ns ×
Z

dzsþ1…dzNFNðz1;…; zN; tÞ; ð10Þ

Below, we are interested in only the first partial correlation
functions F1, F2, and F3, that we further express as

F2ðz1; z2; tÞ ¼ F1ðz1; tÞF1ðz2; tÞ þGðz1; z2; tÞ ð11Þ

and

F3ðz1; z2; z3; tÞ
¼ F1ðz1; tÞF1ðz2; tÞF1ðz3; tÞ
þ Gðz1; z2; tÞF1ðz3; tÞ þ Gðz1; z3; tÞF1ðz2; tÞ
þ Gðz2; z3; tÞF1ðz1; tÞ þHðz1; z2; z3; tÞ; ð12Þ

where G and H are the irreducible (connected) correlation
functions [100]. The time evolution of Fs can be deduced
from the master equation (9) by integrating it over
fzsþ1;…; zNg. Integrating by parts and using Eqs. (11)
and (12), we obtain the following equations for the one- and
two-particle irreducible correlation functions:

∂tF1ðz; tÞ þ L½F1ðz; tÞ�ðzÞ ¼ −N∇α

Z
dz0Gðz; z0; tÞuαdðx; z0Þ − NPαβ ∂

∂pβ

Z
dz0Gðz; z0; tÞpγXαμνγ∇μuνdðx; z0Þ; ð13Þ

∂tGðz1; z2; tÞ þ L½Gðz1; z2; tÞ�ðz1Þ þ L½Gðz1; z2; tÞ�ðz2Þ þ N∇α
1

�
F1ðz1; tÞ

Z
dz0Gðz2; z0; tÞuαdðx1; z0Þ

�

þ N∇α
2

�
F1ðz2; tÞ

Z
dz0Gðz1; z0; tÞuαdðx2; z0Þ

�
þ NPαβ

1

∂
∂pβ

1

�
F1ðz1; tÞpγ

1X
αμνγ
1

Z
dz0Gðz2; z0; tÞ∇μ

1u
ν
dðx1; z0Þ

�

þ NPαβ
2

∂
∂pβ

2

�
F1ðz2; tÞpγ

2X
αμνγ
2

Z
dz0Gðz1; z0; tÞ∇μ

2u
ν
dðx2; z0Þ

�

¼ −SF
1;2 − SF

2;1 − SG
1;2 − SG

2;1 − SH
1;2 − SH

2;1; ð14Þ

where we introduce the operator
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L½Φ�ðzÞ ¼ vspα∇αΦðzÞ þ N∇α½ΦðzÞUα
MFðxÞ�

þ NPαβ ∂
∂pβ ½ΦðzÞpγXαμνγ∇μUν

MFðxÞ�

þ λΦðzÞ − λ

4π

Z
dpΦðzÞ; ð15Þ

acting on the variable z of an arbitrary function Φ ¼
Φðz1;…; zNÞ, and define the mean-field velocity field as

Uα
MFðxÞ ¼

Z
dz0F1ðz0; tÞuαdðx; z0Þ: ð16Þ

The rank-4 tensor

Xαμνγ
i ¼ Pαβ

i

�
Bþ 1

2
δμγδνβ þ B − 1

2
δμβδνγ

�
ð17Þ

encodes the tensorial structure of Jeffrey’s equation (2), and
the rhs of Eq. (14) is given in terms of

SF
i;j ¼ F1ðzj; tÞ

�
∇α

i ½F1ðzi; tÞuαdðxi; zjÞ�

þ Pαβ
i

∂
∂pβ

i

½F1ðzi; tÞpγ
iX

αμνγ
i ∇μ

i u
ν
dðxi; zjÞ�

�
; ð18Þ

SG
i;j ¼ ∇α

i ½Gðzi; zj; tÞuαdðxi; zjÞ�

þ Pαβ
i

∂
∂pβ

i

½Gðzi; zj; tÞpγ
iX

αμνγ
i ∇μ

i u
ν
dðxi; zjÞ�; ð19Þ

and

SH
i;j ¼ N

Z
dz0
�
∇α

i ½Hðzi; zj; z0; tÞuαdðxi; z0Þ�

þ Pαβ
i

∂
∂pβ

i

½Hðzi; zj; z0; tÞpγ
iX

αμνγ
i ∇μ

i u
ν
dðxi; z0Þ�

�
:

ð20Þ

Equations (13) and (14) are the beginning of a BBGKY
hierarchy of equations for partial distribution functions
[100]. As such, they do not form a closed system, as they
also depend on the three-particle irreducible distribution
function H. The BBGKY equations have been extensively
studied before [100,101], and they form one of the main
tools of analyzing statistical properties of many-body
systems. Here, we develop a similar technique for a
collection of microswimmers with long-range hydrody-
namic interactions. The assumptions we make below are
based upon the previous literature on BBGKYequations in
systems with long-range interactions [102–106], such as
plasmas and self-gravitating matter.
Before discussing our choice of closure for this system

of equations, let us briefly review the predictions of the

mean-field approximation to Eqs. (13) and (14), which
consists of neglecting all correlation functions beyond
s ¼ 1. The remaining equation determines the mean-field
approximation to the one-particle correlation function:

∂tFMF
1 ðz; tÞ þ L½FMF

1 ðz; tÞ�ðzÞ ¼ 0; ð21Þ

that has been extensively studied before [18,19,39,50–
53]. One of the solutions of this equation is given by a
constant, which is fixed to FMF

1 ðz; tÞ ¼ 1=ð4πVÞ by the
normalization condition Eq. (8). This solution, which is
valid at any number density, corresponds to a homo-
geneous and isotropic suspension of microswimmers. For
pushers ðκ > 0Þ, this state loses its stability [42,50–53]
at the critical number density of microswimmers ncrit ¼
5λ=ðBκÞ, while for pullers (κ < 0), the homogeneous and
isotropic state is always linearly stable within the mean-
field approximation.
The homogeneous and isotropic mean-field solution

implies that NFMF
1 ∼ n ∼Oð1Þ is finite in the thermody-

namic limit. This result, in turn, implies that, to leading
order, G ∼OðN−2Þ, H ∼OðN−3Þ, etc. A more comprehen-
sive discussion of this statement, together with the required
rescaling of the correlation functions, system parameters,
and time, is given elsewhere [42].
Building upon these results, here, we assume that, upon

approaching the thermodynamic limit, F1 is well approxi-
mated by FMF

1 , since the rhs of Eq. (13) is Oð1=NÞ
compared to its lhs. In the homogeneous and isotropic
state, the mean-field velocity vanishes: Uα

MFðxÞ ¼ 0, since
the integral in Eq. (16) is then proportional to the total flow
rate through a surface surrounding the dipole. The latter is
zero due to incompressibility. Fluctuations around the
homogeneous and isotropic state are then governed by
Eq. (14) with F1 ¼ 1=ð4πVÞ. In the thermodynamic limit,
SG
i;j and SH

i;j are small compared to SF
i;j and are, thus,

neglected. Effectively, this weak-coupling approximation
[103,104] ignores the three-point irreducible correlations
H. The resulting equation reads

∂tGðz1; z2; tÞ þ L12½G� þ L21½G�

¼ 3B
ð4πVÞ2 fp

μ
1p

ν
1∇μ

1u
ν
dðx1; z2Þ þ pμ

2p
ν
2∇μ

2u
ν
dðx2; z1Þg;

ð22Þ

where

Lij½G� ¼ vspα
i∇α

i Gðz1; z2; tÞ

−
3nB
4π

pμ
i p

ν
i

Z
dz0Gðzj; z0; tÞ∇μ

i u
ν
dðxi; z0Þ

þ λGðz1; z2; tÞ −
λ

4π

Z
dpiGðz1; z2; tÞ: ð23Þ
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This equation has a transparent physical interpretation.
First, correlations between two particles are generated by
their mutual reorientation, as encoded in the rhs of Eq. (22).
Next, correlations are changed by each particle’s self-
propulsion and tumbling, represented by the first, and third
and fourth terms in Eq. (23), respectively. Finally, each
particle in the pair is reoriented by the velocity field created
by all other particles that are correlated with the second
particle in the pair. Effectively, this term renormalizes the
strength of the forcing on the rhs of Eq. (22) and is
reminiscent of the renormalization techniques developed in
sedimentation [107,108]. Remarkably, owing to the fact
that Uα

MFðxÞ ¼ 0, Eq. (22) does not contain the effect of
mutual advection by microswimmers underscoring the
purely orientational origin of their correlations.
Equation (22) has previously been derived and analyzed

for the case of shakers (vs ¼ 0) [42]. We now proceed to
solve it in the general case vs > 0.

C. Phase-space density fluctuations

While the two-point distribution function G, given by
Eq. (22), contains statistical information about fluctuations
in the system, it is not straightforward to relate it to the
spatial and temporal correlation function CðR; TÞ [Eq. (7)]
that we seek to calculate. To establish this connection, we
introduce a method based on the phase-space density

φðz; tÞ ¼
XN
i¼1

δ½z − ziðtÞ�; ð24Þ

pioneered by Klimontovich [109]. Here, δðzÞ is the three-
dimensional Dirac delta function. The average of the phase-
space density is related to F1 as can be seen from

φ̄ðz; tÞ ¼
Z

dz1…dzN
XN
i¼1

δðz − ziÞFNðz1;…; zN; tÞ

¼ NF1ðz; tÞ; ð25Þ

where we use Eq. (10). Fluctuations of the phase-space
density can formally be defined as δφ ¼ φ − φ̄, and their
second moment is given by

GKðz0; z00; tÞ≡ δφðz0; tÞδφðz00; tÞ
¼ N2Gðz0; z00; tÞ þ NF1ðz0; tÞδðz0 − z00Þ: ð26Þ

Below, we refer to GK as the Klimontovich correlation
function. Its utility is evident if one considers the spatial
correlation function CðRÞ, defined in Eq. (7) as

CðRÞ ¼ lim
t→∞

1

V

Z
dxUαðx; tÞUαðxþ R; tÞ: ð27Þ

The velocity of the fluid at a position x is given by the
superposition of the velocity fields generated by all
swimmers:

Uαðx; tÞ ¼
XN
i¼1

uαd½x; ziðtÞ�

¼
Z

dz0φðz0; tÞuαdðx; z0Þ: ð28Þ

Separating the phase-space density into its average and
fluctuations, φ ¼ φ̄þ δφ, the spatial correlation function
becomes

CðRÞ ¼ lim
t→∞

1

V

Z
dx
Z

dz0dz00uαdðx; z0Þuαdðxþ R; z00Þ

×

��
n
4π

�
2

þ GKðz0; z00; tÞ
�
: ð29Þ

The integral with the constant term vanishes, demonstrating
that GK fully determines the spatial correlation function.
Time evolution of the Klimontovich correlation function

can readily be derived from Eqs. (22) and (26), yielding

∂tGKðz1; z2; tÞ þ L12½GK� þ L21½GK�

¼ 2λ
n
4π

δðx1 − x2Þ
�
δðp1 − p2Þ −

1

4π

�
; ð30Þ

where Lij is defined in Eq. (23) and we use F1 ¼ 1=ð4πVÞ
in the homogeneous and isotropic state. To solve Eq. (30),
we introduce an auxiliary field hðz1; tÞ, that satisfies the
following equation:

∂thðz1; tÞ þ L11½h� ¼ χðz1; tÞ; ð31Þ

where χ is a noise term with the following properties:

hχðz1; tÞi ¼ 0; ð32Þ

hχðz1; tÞχðz2; t0Þi ¼ 2λ
n
4π

δðt − t0Þδðx1 − x2Þ

×

�
δðp1 − p2Þ −

1

4π

�
: ð33Þ

Here, the angular brackets denote the average over the
realizations of the noise χ and should not be confused
with the ensemble averages that we denote by bars in the
equations above. Equation (31) allows us to factorize the
Klimontovich correlation function as

GKðz1; z2; tÞ ¼ hhðz1; tÞhðz2; tÞi; ð34Þ

which replaces the deterministic Eq. (30) by a significantly
simpler stochastic Eq. (31) with a fictitious noise χ with
properly chosen spectral properties. Remarkably, the
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non-equal-time correlations of the phase-space density can
be expressed through the same auxiliary field:

δφðz0; t0Þδφðz00; t00Þ ¼ hhðz0; t0Þhðz00; t00Þi; ð35Þ

as implied by a seminal work of Klimontovich and Silin
[110]. This result, finally, leads to a direct relationship
between the field h, which encodes the statistical properties
of fluctuations in the suspension, and the combined
correlation function

CðR; TÞ ¼ lim
t→∞

1

V

Z
dx
Z

dz0dz00

× uαdðx; z0Þuαdðxþ R; z00Þhhðz0; tÞhðz00; tþ TÞi:
ð36Þ

D. Dynamics of the auxiliary field h

Here, we explicitly find the solution to Eq. (31) together
with Eqs. (32) and (33). Since Eq. (31) is linear in h, we
introduce the Fourier

hðz; tÞ ¼ 1

ð2πÞ3
Z

dkeik·xĥðk; p; tÞ ð37Þ

and the Laplace transforms

ĥðk; p; sÞ ¼
Z

∞

0

dte−stĥðk; p; tÞ: ð38Þ

We also require the Fourier transform of the regularized
dipolar field [Eq. (6)], which is given by

uνdðx; z0Þ ¼
−iκ
ð2πÞ3

Z
dkeik·ðx−x0Þ

×
AðkϵÞ
k

ðk̂ · p0Þðδνδ − k̂νk̂δÞp0δ; ð39Þ

where k̂ ¼ k=k and k ¼ jkj. The function A, defined as

AðxÞ ¼ 1

2
x2K2ðxÞ; ð40Þ

with K2ðxÞ being the modified Bessel function of the second
kind, is close to unity for x < 1 and quickly approaches zero
for x > 1. It serves as a regularization of the integrals over k,
suppressing contributions from length scales smaller than the
size of individual microswimmers.
Performing the Fourier and Laplace transforms of

Eq. (31), we obtain after rearranging

ĥðk;p; sÞ ¼ 1

σðk;p; sÞ
�
ĥ0ðk;pÞ þ χ̂ðk;p; sÞ

þ λ

4π
Ið0Þðk; sÞ þ 15λ

4π
ΔAðkϵÞfðk̂ · pÞIð1Þðk;p; sÞ

− ðk̂ · pÞ2Ið2Þðk; sÞg
�
: ð41Þ

Here, χ̂ðk; p; sÞ is the Fourier-Laplace transform of the
noise, σðk; p; sÞ ¼ sþ λþ ivsðk · pÞ, and we define

Ið0Þðk; sÞ ¼
Z

dpĥðk; p; sÞ; ð42Þ

Ið1Þðk; p; sÞ ¼
Z

dp0ðk̂ · p0Þðp · p0Þĥðk; p0; sÞ; ð43Þ

Ið2Þðk; sÞ ¼
Z

dpðk̂ · pÞ2ĥðk; p; sÞ: ð44Þ

In Eq. (41), ĥðk; p; t ¼ 0Þ ¼ ĥ0ðk; pÞ denotes some arbi-
trary initial condition; below, we demonstrate that the
long-time statistical properties of the suspension are
insensitive to ĥ0ðk; pÞ. In Eq. (41), we also introduce
an important dimensionless parameter Δ ¼ n=ncrit, where
ncrit ¼ 5λ=ðBκÞ is the mean-field onset of collective motion
in pusher suspensions, κ > 0. For pushers, Δ measures the
dimensionless distance from the onset, with Δ ¼ 1 corre-
sponding to the instability.
Equation (41) is a linear integral equation for ĥðk; p; sÞ,

and its solution is straightforward. Substituting Eq. (41)
into Eqs. (42)–(44) gives

Ið0Þðk; sÞ ¼ 1

1 − λ
4π f0

Z
dp

ĥ0ðk; pÞ þ χ̂ðk; p; sÞ
σðk; p; sÞ ; ð45Þ

Ið2Þðk; sÞ ¼ λ

4π
f1Ið0Þðk; sÞ

þ
Z

dpðk̂ · pÞ2 ĥ0ðk; pÞ þ χ̂ðk; p; sÞ
σðk; p; sÞ ; ð46Þ

Ið1Þðk; p; sÞ ¼ 1

1þ 15λ
8π ΔAðkϵÞðf2 − f1Þ

×

�Z
dp0ðk̂ · p0Þðp · p0Þ ĥ0ðk; p

0Þ þ χ̂ðk; p0; sÞ
σðk; p0; sÞ

þ ðk̂ · pÞ
�

λ

4π
f1Ið0Þðk; sÞ

þ 15λ

8π
ΔAðkϵÞðf2 − f1ÞIð2Þðk; sÞ

��
; ð47Þ

where
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fn ¼ 2π

Z
1

−1
dx

x2n

sþ λþ ivskx
: ð48Þ

Having found the explicit expression for ĥðk; p; sÞ,
we proceed to calculate the combined correlation function,
Eq. (36). Below, we show that only a small number of terms
from Eqs. (41) and (45)–(47) contribute to CðR; TÞ.

E. CðR;TÞ in terms of ĥðk;p;sÞ
In what follows, it is convenient to rewrite CðR; TÞ in

terms of the Fourier and Laplace transforms of all quan-
tities. Substituting Eq. (37) into Eq. (36) and using the
Fourier representation of the regularized dipolar field
[Eq. (39)], we obtain

CðR; TÞ ¼ lim
t→∞

L−1
s1;tL

−1
s2;tþT

κ2

ð2πÞ3V

×
Z

dke−ik·R
A2ðkϵÞ
k2

Z
dp1dp2ðk̂ · p1Þðk̂ · p2Þ

× ðδαβ − k̂αk̂βÞpβ
1ðδαγ − k̂αk̂γÞpγ

2

× hĥðk; p1; s1Þĥð−k; p2; s2Þiχ̂ ; ð49Þ

where L−1
s;t formally denotes the inverse Laplace transform

from s to t, given by the Bromwich integral [111]. The
angular brackets h� � �iχ̂ denote the average with the Fourier-
Laplace components of the noise χ, with the following
spectral properties:

hχ̂ðk; p; sÞiχ̂ ¼ 0; ð50Þ

hχ̂ðk; p1; s1Þχ̂ð−k; p2; s2Þiχ̂
¼ 2λV

n
4π

×
1

s1 þ s2

�
δðp1 − p2Þ −

1

4π

�
; ð51Þ

obtained by applying the Fourier-Laplace transform to
Eqs. (32) and (33). While the average in Eq. (49) can
readily be formed using the solution for ĥ found in
Sec. II D, the result is very cumbersome. Before proceed-
ing, we make two observations that greatly reduce the
number of terms contributing to Eq. (49).
First, we observe thatZ

dpðδαβ − k̂αk̂βÞpβfðk̂ · pÞ ¼ 0; ð52Þ

where f is an arbitrary function of k̂ · p. This statement is
readily demonstrated by representing p in spherical coor-
dinates with k̂ selected along the z axis and performing the
angular integrals componentwise. This result has profound
implications for the average hĥðk; p1; s1Þĥð−k; p2; s2Þiχ̂ in

Eq. (49). Every term in ĥðk; p1; s1Þ [Eq. (41)] that depends

on p1 only through its dependence on ðk̂ · p1Þ does not
contribute to CðR; TÞ, as its integral over p1 with the
corresponding dipolar field in Eq. (49) vanishes. The same
applies to ĥð−k; p2; s2Þ.
The second observation is related to the initial condition.

All terms that involve ĥ0ðk; pÞ depend on the Laplace
frequency s only through 1=σðk; p; sÞ, and their inverse
Laplace transform can be readily performed before any
other integration. Since the inverse Laplace transform of
1=ðsþ aÞ is e−at, where a is a complex number, the
dominant long-time behavior of such terms is given by
e−λt, where we ignore the subdominant oscillatory depend-
encies. In Eq. (49), we are interested in the t → limit, and
these terms also do not contribute to CðR; TÞ.
With these observations in mind, Eq. (41) can be

significantly simplified to read

ĥðk; p; sÞ

≅
χ̂ðk; p; sÞ
σðk; p; sÞ þ

ðk̂ · pÞ
σðk; p; sÞ

15λ
4π ΔAðkϵÞ

1þ 15λ
8π ΔAðkϵÞðf2 − f1Þ

×
Z

dp0ðk̂ · p0Þðp · p0Þ χ̂ðk; p
0; sÞ

σðk; p0; sÞ ; ð53Þ

where ≅ signifies that we kept only the terms that contribute
to CðR; TÞ. Now, the average hĥðk; p1; s1Þĥð−k; p2; s2Þiχ̂
assumes a tractable form that can be used in Eq. (49).
Separating the terms independent of Δ, we obtain
CðR; TÞ ¼ C0ðR; TÞ þ C1ðR; TÞ. Here,

C0ðR; TÞ ¼
λnκ2

16π4
lim
t→∞

L−1
s1;tL

−1
s2;tþT

Z
dke−ik·R

A2ðkϵÞ
k2

×
Z

dpðk̂ · pÞ2½1 − ðk̂ · pÞ2� 1

s1 þ s2

×
1

λþ s1 þ ivskðk̂ · pÞ
1

λþ s2 − ivskðk̂ · pÞ
ð54Þ

represents correlations in the fluid created by noninteracting
swimmers. The double inverse Laplace transform in the
equation above can be performed using the method outlined
in Appendix A. It yields

lim
t→∞

L−1
s1;tL

−1
s2;tþT

1

s1 þ s2

1

λþ s1 þ ivskðk̂ · pÞ

×
1

λþ s2 − ivskðk̂ · pÞ
¼ e−λTþivskTðk̂·pÞ

2λ
: ð55Þ

Performing the angular integration, we finally obtain
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C0ðR; TÞ ¼
nκ2e−λT

π2

Z
∞

0

dk
sin kR
kR

A2ðkϵÞ

×
yð12 − y2Þ cos y − ð12 − 5y2Þ sin y

y5

����
y¼vskT

:

ð56Þ

All other terms in Eq. (49) correspond to additional
correlations generated by the hydrodynamic interactions
among the swimmers, and, as such, they are dependent on
the dimensionless microswimmer density Δ. Performing
the angular integration over p1 and p2 gives

C1ðR; TÞ ¼
2λnκ2

15π2
lim
t→∞

L−1
s1;tL

−1
s2;tþT

Z
∞

0

dk
sin kR
kR

A2ðkϵÞ

×
1

λþ s1

1

λþ s2

1

s1 þ s2

z1ψðz1Þ þ z2ψðz2Þ
z1 þ z2

×

�
z1ψðz1Þ

ω − z1ψðz1Þ
þ z2ψðz2Þ
ω − z2ψðz2Þ

þ z1z2ψðz1Þψðz2Þ
½ω − z1ψðz1Þ�½ω − z2ψðz2Þ�

�
: ð57Þ

Here, we introduce ω ¼ vsk=½λΔAðkϵÞ� and the function
ψðzÞ, defined as

ψðzÞ ¼ 5

2

3zþ 2z3 − 3ð1þ z2Þ arctan z
z5

; ð58Þ

which is related to f2 − f1 used in the previous section.
The variable zi ¼ vsk=ðλþ siÞ allows us to write Eq. (57)
in a compact form but hides its complex dependence on
the Laplace frequencies s1 and s2. Its inverse Laplace
transform is discussed below.

F. Approximate double inverse Laplace transform

The integrand of Eq. (57) is not a rational function of s1
and s2, and we are unable to calculate its double inverse
Laplace transform exactly. Instead, here, we develop a
rational approximation to ψðzÞ that allows us to find
C1ðR; TÞ analytically.
First, we observe that, if the poles of an analytic function

are known, its large-t behavior is determined by the pole
with the smallest negative real part [111]. Therefore, the
presence of the pole at −λ in Eq. (57) makes all poles with
real parts smaller than −λ irrelevant in the large-t limit. This
result reflects the fact that individual tumbling events are
always a source of decorrelation between microswimmers.
Next, we introduce the dimensionless persistence length

L ¼ vs=ðλϵÞ, which compares the typical run length of a
swimmer to the dipolar regularization size; see Eq. (6).
Although our theory is correct for any value of L, in this
work, we consider L ¼ 0–25, ranging from nonswimming
(shaker) particles to wild-type E. coli bacteria (see Sec. III

for a discussion). Contributions to the integrand in Eq. (57)
with kϵ > 1 are strongly suppressed by the regularizing
factor AðkϵÞ, and, therefore, when approximating ψðzÞ,
the relevant domain is −λ < ReðsÞ < 0, with vsk=λ not
exceeding L.
In Appendix B, we show that a surprisingly good

approximation to ψðzÞ on this domain is given by

ψaðzÞ ¼
7

7þ 3z2
: ð59Þ

The simple structure of this expression allows us to deduce
the pole structure of the integrand in Eq. (57). Indeed, with
ψðzÞ replaced by ψaðzÞ and factorizing

1

ω − zψðzÞ ¼
7þ 3z2

3ωðz − zþÞðz − z−Þ
; ð60Þ

where

z� ¼ 7

6ω

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12

7
ω2

r �
; ð61Þ

the denominators in Eq. (57) can now be written as
products of linear polynomials in s1 and s2. It is now
straightforward to perform the inverse Laplace transform of
this expression using the method outlined in Appendix A.
Taking the limit of t → ∞ finally gives

C1ðρ; τÞ ¼ e−τ
nκ2

15π2ϵ

Z
∞

0

dξ
sin ξρ
ξρ

A2ðξÞ

2
64− cos

� ffiffiffi
3

7

r
Lξτ

�

þ eð1=2ÞAðξÞΔτ

1 − AðξÞΔþ 3
7
L2ξ2

8<
:2 − AðξÞΔþ 6

7
L2ξ2

2 − AðξÞΔ

× cosh

 
1

2
AðξÞΔτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12L2ξ2

7A2ðξÞΔ2

s !

þ
sinh



1
2
AðξÞΔτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12L2ξ2

7A2ðξÞΔ2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12L2ξ2

7A2ðξÞΔ2

q
9=
;
3
75; ð62Þ

where we change the integration variable to ξ ¼ kϵ and
introduce the dimensionless parameters ρ ¼ R=ϵ and
τ ¼ λT. In Appendix C, we verify that Eq. (62) provides
a good approximation to the long-time behavior of Eq. (57).

III. RESULTS

For the benefit of readers who skip Sec. II, we repeat our
main result, which comprises an explicit expression for the
combined correlation function CðR; TÞ, defined in Eq. (7).
It describes the steady-state correlations between the fluid
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velocity at two points in space separated by a distance R
and two instances in time separated by a time-interval T.
Our theory includes full hydrodynamic interactions
between microswimmers and is valid at any density up
to the onset of collective motion. The result consists of the
noninteracting part

C0ðρ; τÞ ¼
nκ2e−τ

π2ϵ

Z
∞

0

dξ
sin ξρ
ξρ

A2ðξÞ

×
yð12 − y2Þ cos y − ð12 − 5y2Þ sin y

y5

����
y¼Lξτ

ð63Þ

and the interacting correlation function C1ðρ; τÞ, given
in Eq. (62). Here, ρ ¼ R=ϵ, where ϵ is a length scale
comparable to the microswimmer size, and τ ¼ λT, where λ
is the tumbling rate. The relative distance to the instability
threshold is measured by Δ ¼ n=ncrit, which is the dimen-
sionless number density of the particles, where ncrit ¼
5λ=ðBκÞ is the microswimmer number density at the onset
of collective motion for pusher microswimmers [42,52,53];
the parameter B is defined after Eq. (4). Our theory is valid
for Δ < 1.
A central role in our theory is played by the dimension-

less persistence length L ¼ vs=ðλϵÞ that compares the
typical distance covered by a swimming microorganism
between two tumble events to the dipolar regularization
length scale ϵ. As we see below, the observables we
consider here depend strongly on L, and it is, therefore,
important to estimate its realistic values. For wild-type E.
coli bacteria, the swimming speed is strain dependent,
and we use vs ∼ 20–25 μm=s as a representative value
[48,112], while for the tumbling rate we use λ ∼ 1 s−1 [94].
The parameter ϵ, which is introduced in Eq. (6), regularizes
our theory at the length scale below which the dipolar
velocity field does not approximate sufficiently well the full
velocity field created by a single bacterium. Naïvely, one
can identify ϵwith half the body length of E. coli, leading to
ϵ ∼ 1 μm. A more hydrodynamically sound approach is to
interpret ϵ as the length of the effective hydrodynamic
dipole generated by a bacterium. Drescher et al. [48]
measure the velocity field of swimming E. coli bacteria
far away from boundaries and conclude that it is well
represented by a pair of equal and opposite forces applied
to the fluid at a distance of 1.9 μm apart. Identifying the
cutoff distance with half of the dipolar length again gives
ϵ ∼ 1 μm. In this work, we consider L ¼ 0–25; we hypoth-
esize that this range is relevant for the wild-type E. coli.
Furthermore, using the same hydrodynamic interpretation
of ϵ as above, the L ¼ 5 case approximately corresponds
to the simulations of Stenhammar et al. [42], while the
L ¼ 0 case describes nonswimming bacteria (shakers).
Ultimately, the values of L suitable for a particular

microorganism have to be determined experimentally, as
we discuss in Sec. IV. Finally, we observe that the typical
values of L are higher yet for nontumbling bacteria, where
the role of the main orientation decorrelation mechanism is
played by the (effective) rotational diffusion.
The full expression Cðρ; τÞ ¼ C0ðρ; τÞ þ C1ðρ; τÞ, given

as a definite integral, constitutes the main technical result of
our study. We now explicitly work out its predictions for the
spatial and temporal correlation functions and other exper-
imentally accessible observables. When discussing their
physical meaning, we vary the dimensionless persistence
length L while keeping all the other parameters of the
microswimmers fixed. We note that, in reality, the dipolar
strength and shape of a microorganism uniquely determine
its swimming speed and, hence, L. We, however, see
varying L as a tool to disentangle the effects of self-
propulsion (ability to change one’s position in space) from
the strength of the hydrodynamic disturbances it causes. In
particular, we consider two limiting cases: shakers (L ¼ 0)
and fast swimmers (L → ∞). The former case corresponds
to microswimmers that exert dipolar forces on the fluid but
do not self-propel and change their positions only due to
being advected by the velocity fields created by other
microswimmers [42]. The latter case, while obviously
nonphysical, is a useful tool to assess the effect of fast
swimming on various quantities of interest. When studying
the behavior of the observables listed above in the vicinity
of the transition to collective motion, we fix the value of L,
so that fast swimming should be understood as large yet
finite L, and consider the limit Δ → 1. We do not consider
the opposite order of the limits. Finally, we note that the
terms representing hydrodynamic interactions in Eq. (30)
are proportional to the swimmer’s nonsphericity B that
enters the Jeffrey equation, Eq. (2). The limit of non-
interacting microswimmers, therefore, corresponds to set-
ting B to zero, which, in turn, can be achieved by setting
Δ ¼ 0, while keeping n finite.

A. Velocity variance

Our first quantity of interest is the fluid velocity variance
hU2i≡ Cðρ ¼ 0; τ ¼ 0Þ. In the absence of thermal noise,
rearrangements of the microswimmer positions and ori-
entations are the sole source of fluid velocity fluctuations.
For this reason, it is used in previous studies as an order
parameter to identify the onset of collective motion [42,45].
Summing up Eqs. (63) and (62), and setting ρ ¼ 0 and
τ ¼ 0, we obtain

hU2i ¼ κ2n
15π2ϵ

Z
∞

0

dξA2ðξÞ

×
2 − AðξÞΔþ 6

7
L2ξ2

½2 − AðξÞΔ�½1 − AðξÞΔþ 3
7
L2ξ2� : ð64Þ
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We evaluate this integral numerically and plot the fluid
velocity variance normalized by its value in the noninter-
acting case hU2iðΔ ¼ 0Þ≡ hU2i0, given by [45]

hU2i0 ¼
κ2n
15π2ϵ

Z
∞

0

dξA2ðξÞ ¼ 21κ2n
2048ϵ

: ð65Þ

Note that hU2i0 corresponds to a superposition of uncorre-
lated fluctuations in the fluid velocity, which, by virtue
of the central limit theorem, is proportional to n. Any
deviations of hU2i from that value signify the presence of
correlations.
As can be seen in Fig. 1, the fluid velocity fluctuations

exhibit significant correlations at any density of the micro-
swimmers, as recognized previously [42]. Starting from its
noninteracting value at Δ ¼ 0, the variance increases with
Δ, until it diverges at the onset of collective motion. The
strongest correlations are exhibited by suspensions of
shakers, while swimming acts to reduce correlations. For
large but finite values of L, the variance increases mildly
from its noninteracting value, until it rises sharply in a small
vicinity of Δ ¼ 1, with the size of this region shrinking
with L. Interestingly, the rise of hU2i0 for Δ < 1 remains
finite even in the L → ∞ limit. In other words, while
swimming clearly reduces correlations, it does not remove
them entirely, and the suspension is never described by the
mean-field theory.
To determine the scaling of the fluid velocity variance

as Δ → 1, we observe that in that limit the integrand in
Eq. (64) is dominated by small values of ξ, where
AðξÞ ≈ 1 − ξ2=4. Using this approximation in Eq. (64)
and replacing the upper integration limit by unity, we obtain

hU2i ∼ κ2n
15πϵ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12

7
L2

q ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p ; Δ → 1: ð66Þ

Therefore, our theory predicts that the fluid velocity
variance diverges as ð1 − ΔÞ−1=2 in the vicinity of the
transition to collective motion, for any finite value of L.

B. Spatial correlations

Our next quantity of interest is the equal-time spatial
correlation function Cðρ; T ¼ 0Þ, given by

CðρÞ ¼ κ2n
15π2ϵ

Z
∞

0

dξ
sin ξρ
ξρ

A2ðξÞ

×
2 − AðξÞΔþ 6

7
L2ξ2

½2 − AðξÞΔ�½1 − AðξÞΔþ 3
7
L2ξ2� : ð67Þ

While this integral cannot be evaluated analytically, a good
approximation can be obtained by setting AðξÞ ¼ 1 in the
integrand, yielding

CðρÞ ≈ κ2n
30πϵð1 − ΔÞρ

�
1 −

Δ
2 − Δ

exp

�
−

ffiffiffi
7

3

r ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p ρ

L

��
:

ð68Þ

For Δ ¼ 0, this equation reproduces the result obtained
previously for noninteracting swimmers [45,64,98,99].
In Fig. 2, we evaluate Eq. (67) numerically and

compare it against the analytic approximation [Eq. (68)];
κ2ncrit=ð15π2ϵÞ is chosen as the normalization factor. For
all values of L and Δ, the approximation works well for all
but small spatial separations ρ, where the spatial correlation
function is, essentially, equal to the fluid velocity variance.
As with the fluid velocity variance, the strongest corre-
lations are exhibited by suspensions of shakers, L ¼ 0.
In this case, the spatial correlation function changes very
slowly at short distances and decays as ρ−1 at large
distances. Close to the onset of collective motion, the
typical scale ρ0 at which the crossover occurs can be
estimated from Eqs. (66) and (68), by requiring that
Cðρ0Þ ¼ hU2i. For L ¼ 0, this estimation yields
ρ0 ∼ ð1 − ΔÞ−1=2. This result is readily verified by the
data in Fig. 2(a): As the system approaches the onset of
collective motion, the overall strength of the correlations
grows, with the region of strong correlations extending to
progressively larger scales.
The effect of swimming on the behavior of CðρÞ is

demonstrated in Figs. 2(b) and 2(c). As L increases, the
strongly correlated core at moderate separations shrinks,
indicating that the steady growth of orientational correla-
tions is reduced by the mixing introduced by swimming.
The overall strength of correlations inside the core also
decreases with L, reflecting the reduction of the fluid
velocity variance by swimming. At large distances, CðρÞ
recovers the behavior seen in shakers, with the crossover
distance given by ρ1 ∼ Lð1 − ΔÞ−1=2, as can be deduced
from the exponential in Eq. (68). This behavior is further
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Δ

100

101

〈U
2
〉/
〈U

2
〉 0

L = 0 (shakers)

L = 5
L = 10
L = 25
L → ∞

FIG. 1. The fluid velocity variance hU2i normalized by its
noninteracting value hU2i0 for various values of L. The dotted
line represents the noninteracting case hU2i ¼ hU2i0. Note that
the L → ∞ line turns sharply upward and diverges in the
vicinity of Δ ¼ 1 in a way that cannot be resolved on the scale
of this graph.
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demonstrated in Fig. 3, where we plot CðρÞ for Δ ¼ 0.9
and various values of L. In the limit of fast swimming,
L → ∞, the correlation function deviates modestly from
the noninteracting case for almost all values of Δ,
exhibiting a quick rise and the divergence associated
with the onset of collective motion only in a very small
vicinity of Δ ¼ 1.
The data in Fig. 2 and Eq. (68) demonstrate that CðρÞ

exhibits an algebraic decay for large distances, and a true
correlation length can, thus, not be defined. A phenom-
enological correlation length ηcorr can nevertheless be
defined as a distance over which CðρÞ decreases by a
certain amount, as employed in Refs. [22,45]. Setting
CðηcorrÞ ¼ αhU2i, with α < 1, we obtain

ηcorr ∼ ð1 − ΔÞ−1=2; Δ → 1; ð69Þ

similar to any other typical distance discussed above.

C. Fluid velocity spectrum

Next, we discuss the fluid velocity energy spectrum EðkÞ
that is closely related to the spatial correlation function
CðρÞ. Defined as

EðkÞ ¼ 4πk2ÛαðkÞÛαð−kÞ; ð70Þ

this quantity is often used in turbulence research to study
the cascade of the kinetic energy [113]. Although the
kinetic energy is not a useful concept for Stokesian flows,
EðkÞ provides an insight into the relative strength of fluid
motion at various scales. The energy spectrum is propor-
tional to the Fourier transform of CðρÞ and, up to a
prefactor, is given by the integrand of Eq. (67):

EðξÞ ¼ 8π

15
κ2nA2ðξÞ × 2 − AðξÞΔþ 6

7
L2ξ2

½2 − AðξÞΔ�½1 − AðξÞΔþ 3
7
L2ξ2� ;

ð71Þ

where, again, ξ ¼ kϵ. This expression is plotted in Fig. 4
for various values of Δ and L.
First, we observe that EðξÞ has significant energy content

at all large scales, ξ < 1, that quickly decays to zero at the
organism-size scales, ξ ∼ 1, due to the regularizing factor
AðξÞ. This decay is not caused by some form of energy
cascade but is due to the nature of the dipolar field created
by the microswimmers. Indeed, the dipolar velocity field
decays in space as r−2, while its Fourier transform scales as
k−1. Together with the definition of EðkÞ [Eq. (70)], this

(a) (b) (c)

FIG. 2. The spatial correlation function CðρÞ as a function of the distance ρ for various values of Δ. (a) L ¼ 0, (b) L ¼ 5, and
(c) L ¼ 25. The solid lines are calculated by numerically evaluating Eq. (67), while the dashed lines are the analytic approximation
[Eq. (68)]. The legend applies to all panels.

FIG. 3. The spatial correlation function CðρÞ as a function of
the distance ρ for Δ ¼ 0.9 and various values of L. At sufficiently
large distances, CðρÞ recovers the shaker behavior, while at small
distances, correlations are suppressed by swimming. Note that the
L → ∞ line, serving as the limit beyond which correlations
cannot be suppressed, joins the shaker line at ρ → ∞.
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result implies that EðkÞ ∼ k0 even for a single micro-
swimmer; i.e., the dipolar field has a constant energy
content at every scale.
In the presence of interactions, the energy spectrum of

shakers (L ¼ 0) preserves the overall structure described
above, while its absolute value increases with Δ and,
eventually, diverges at Δ ¼ 1. For swimmers, the increase
in the energy content is mostly confined to large scales,
while in the limit of fast swimming (not shown), the rise
in the energy content on the approach to the onset of
collective motion is confined to the largest scales available
(k → 0) and starts to be visible only in a very close vicinity
of Δ ¼ 1.

D. Temporal correlations

The temporal correlation function CðτÞ¼C0ðρ¼0;τÞþ
C1ðρ¼0;τÞ is given by Eqs. (63) and (62). The corre-
sponding expressions do not simplify significantly in the
limit ρ ¼ 0, and we do not repeat them here. In Fig. 5,
we plot CðτÞ normalized by its value at τ ¼ 0, which is
given by the fluid velocity variance hU2i. As with the
other quantities discussed above, the temporal correlation
function exhibits a progressively slower decay as Δ
approaches the onset of collective motion, eventually
diverging at Δ ¼ 1. For swimmers, this decay is offset by
a decay of CðτÞ at short times that becomes more
pronounced as L increases. For very large swimming
speeds, the temporal correlations differ only marginally
from the noninteracting case for most values of Δ,
eventually exhibiting a rapid increase and divergence
in a very small vicinity of Δ ¼ 1.
To understand the behavior of CðτÞ at long times, we

analyze its individual contributions. The integral in the
noninteracting part, C0ðTÞ, can be explicitly evaluated,
giving

C0ðτÞ ¼
nκ2

πϵ

e−τ

8α4ð4þ α2Þ2
�
4ð24þ 8α2 þ α4ÞE

�
−
α2

4

�

− ð4þ α2Þð24þ 5α2ÞK
�
−
α2

4

��
; ð72Þ

where α ¼ Lτ and KðxÞ and EðxÞ are the complete elliptic
integrals of the first and second order, respectively. In the
limits of small and large α, this equation predicts

C0ðτÞ ∼
nκ2

πϵ
e−τ ×

(
21π
2048

; Lτ → 0;
1

4ðLτÞ3 ; Lτ → ∞:
ð73Þ

At short times, tumbling is the leading source of decorre-
lation, while at large τ the noninteracting temporal corre-
lation function C0 decays as τ−3e−τ, as reported previously
[45,99]. The crossover time is set by α ¼ Lτ ¼ vst=ϵ ∼ 1
and corresponds to the time interval needed for a micro-
swimmer to swim its own size.
To understand the large-τ asymptotic behavior of C1ðτÞ,

we observe that

e−τ
Z

∞

0

dξAðξÞ2
�
sin γτξ

cos γτξ

�
∼

τ→∞
e−τ
�
τ−1

τ−5

�
; ð74Þ

where γ is a real constant. This result implies that a
trigonometric function in the integrand of Eq. (62) gen-
erates a contribution to C1ðτÞ that decays on the same
timescale as the noninteracting part C0ðτÞ and does not
contribute to the slow decay in Fig. 5. In turn, this result
restricts the integration domain to ξ ∈ ½0; ξ��, with

ξ� ¼
ffiffiffiffiffi
7

12

r
Δ
L
; ð75Þ

(a) (b) (c)

FIG. 4. The fluid velocity energy spectra EðξÞ [Eq. (71)] as a function of the dimensionless wave number ξ for various values of Δ.
(a) L ¼ 0, (b) L ¼ 5, and (c) L ¼ 25. The legend applies to all panels.
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which ensures that the arguments of the hyperbolic func-
tions in Eq. (62) are real. Introducing ζ ¼ ξ=ξ�, C1ðτÞ can
be approximated as

C1ðτÞ ∼
τ→∞

nκ2

15π2ϵ
e−τ½1−ð1=2ÞΔ�ξ�

Z
1

0

dζ
1

1 − Δþ 1
4
Δ2ζ2

×

�
2 − Δþ 1

2
Δ2ζ2

2 − Δ
cosh

�
1

2
Δτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p �

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p sinh

�
1

2
Δτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p ��
; ð76Þ

where we use Aðξ < ξ�Þ ∼ 1 for not-too-small values of L.
In the limit of large τ, this result can be further approxi-
mated by

C1ðτÞ ∼
τ→∞

nκ2

15π2ϵ
e−τð1−ΔÞ

ξ�
1 − Δ

Z
1

0

dζe−ð1=4ÞτΔζ2

¼ nκ2

15π2ϵ

ffiffiffiffiffiffiffiffiffiffi
7π

12

Δ
τ

r
1

Lð1 − ΔÞ e
−τð1−ΔÞerf

�
1

2
τΔ
�
;

ð77Þ

where erfðxÞ denotes the error function. Predictions of
Eq. (77) are plotted in Figs. 5(b) and 5(c) as dashed lines.
We find a good agreement between its prediction and the
true decay of CðτÞ as τ → ∞.
To extract the typical timescale τcorr of the fluid velocity

fluctuations on the approach to collective motion, we
combine Eqs. (66) and (77) to obtain

CðτÞ
hU2i ∼

τ→∞

e−τð1−ΔÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1 − ΔÞp ; Δ → 1; ð78Þ

which implies

τcorr ∼ ð1 − ΔÞ−1: ð79Þ

E. Enhanced diffusivity

As the final observable, we consider here the enhanced
diffusivity of a passive tracer particle embedded in a
suspension of motile microorganisms. The tracer is
assumed to be neutrally buoyant and move due to advection
by the velocity fields created by the microswimmers.
Brownian diffusion of the tracer is significantly weaker
than its enhanced counterpart and is neglected for simplic-
ity. This problem is extensively studied both experimentally
[73–75,80–83,89] and theoretically [35,76–79,84–88,90]
in the dilute regime, where Δ ≪ 1, and for arbitrary
densities of shakers [42]. Here, we consider the case of
arbitrary density Δ < 1 and L.
The position of the tracer aðTÞ obeys the following

equation of motion:

_aðTÞ ¼ U½aðTÞ; T�; ð80Þ
which implies that the tracer is pointlike and follows the
velocity of the fluid at its position. The long-time behavior
of such a tracer is diffusive [73,75,88], and the associated
diffusion coefficient can be extracted in the usual way:

D ¼ lim
T→∞

1

6T
aðTÞ · aðTÞ: ð81Þ

Here, the bar denotes the average over the history of tumble
events and has the same meaning as in Eq. (7). Solving
formally Eq. (80), aðTÞ ¼ að0Þ þ R T0 dt0U½aðt0Þ; t0�, the
diffusion coefficient can be written as [114]

(a) (b) (c)

FIG. 5. The temporal correlation function CðτÞ as a function of the dimensionless time τ for various values of Δ. (a) L ¼ 0, (b) L ¼ 5,
and (c) L ¼ 25. The solid lines are calculated by numerically evaluating Eqs. (63) and (62), while the dashed lines in (b) and (c) are the
analytic approximation of the asymptotic behavior for τ → ∞ [Eq. (77)]. The legend applies to all panels.

VIKTOR ŠKULTÉTY et al. PHYS. REV. X 10, 031059 (2020)

031059-14



D ¼ 1

3
lim
t→∞

Z
∞

0

dTU½aðtþ TÞ; tþ T� · U½aðtÞ; t�: ð82Þ

Here, t is sufficiently large so that any influence of the
initial conditions dies away. To proceed, we observe that
U½aðtþ TÞ; tþ T� can be iteratively calculated by sub-
stituting the formal solution for aðTÞ into its spatial
argument, i.e.,

U½aðtþTÞ;tþT�

¼U½aðtÞ;tþT�þ∇U½aðtÞ;tþT� ·
Z

tþT

t
dt0U½aðt0Þ;t0�þ��� :

ð83Þ

As argued by Pushkin and Yeomans [84], for very dilute
suspensions, velocity gradients over the typical distance
traveled by the tracer particle during the microswimmer run
time are small compared to the velocity of the fluid at any
of these positions and can be neglected. Therefore, we can
approximate the diffusion coefficient as

D ≈
1

3

Z
∞

0

dTU½aðtÞ; tþ T� · U½aðtÞ; t�

¼ 1

3

Z
∞

0

dTCðTÞ: ð84Þ

As we see in Sec. III D, as Δ increases, the correlation time
increases from λ−1 (corresponding to τcorr ¼ 1) in the very
dilute regime to progressively larger values, eventually
diverging as Δ → 1, implying that the second, etc., terms in
Eq. (83) grow rapidly in this limit. However, the fluid
velocity variance, which sets the magnitude of the leading
term in Eq. (83), also diverges as Δ → 1. Further work is
required to assess the validity of the approximation above
for all values ofΔ. Here, we proceed by using Eq. (84) with
the potential caveat that it might not be accurate in the
vicinity of Δ ¼ 1.

The integral in Eq. (84) can be evaluated explicitly,
leading to D ¼ D0 þD1, where the noninteracting and
interacting contributions are given by

D0 ¼
κ2n

45π2λϵ

Z
∞

0

dξA2ðξÞψðξLÞ ð85Þ

and

D1 ¼
κ2nΔ
45π2λϵ

Z
∞

0

dξA3ðξÞ

×
2 − AðξÞΔþ 6

7
L2ξ2

ð1þ 3
7
L2ξ2Þ½1 − AðξÞΔþ 3

7
L2ξ2�2 ; ð86Þ

respectively, and ψðxÞ is defined in Eq. (58). At this point,
we comment on the shaker limit of these expressions, when
they should reduce to the ones obtained by Stenhammar
et al. [42]. Instead, we observe that the expression for D1

reported there erroneously contains A2ðξÞ instead of A3ðξÞ
under the integral. We note, however, that, since AðξÞ is a
regularized representation of a step function, this error
has almost no bearing on the numerical evaluation of D1

presented in Ref. [42].
The integral in the noninteracting part D0 cannot be

represented in terms of special functions, but its limiting
behavior can readily be obtained. Combining the asymp-
totic results for L ¼ 0 and L → ∞ results in the following
approximation:

D0 ≈
κ2n
λϵ

7

2048þ 336πL
: ð87Þ

To derive an approximate expression for D1, we set
AðξÞ ≈ 1 under the integral sign, to obtain

(a) (b)

FIG. 6. (a) The noninteracting part of the diffusivity,D0. The dashed line is the approximation [Eq. (87)] developed in the text. (b) The
interacting part of the diffusivity, D1. The dotted lines correspond to the approximate expression [Eq. (88)] evaluated at the
corresponding value of L.
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D1 ≈
κ2n

90πλϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12

7
L2

q �
2 − Δ

ð1 − ΔÞ3=2 − 2

�
: ð88Þ

In Fig. 6, we compare the numerical evaluation ofD0 and
D1 against Eqs. (87) and (88). We observe that, while the
uniform approximation Eq. (87) does not work well for
small but finite values of L ∼ 1, all other values of L are
well represented by the approximation. The interacting part
of the diffusivity is well approximated by Eq. (88).
Finally, we remark that Eq. (88) predicts that

D1 ∼ ð1 − ΔÞ−3=2; Δ → 1; ð89Þ

even though this prediction should be treated with caution,
as discussed above.

IV. DISCUSSION AND CONCLUSION

In this work, we have presented a kinetic theory for
dilute suspensions of pusher microswimmers interacting
via long-ranged dipolar fields. We have overcome a
significant technical difficulty in including particle self-
propulsion into a theory that goes beyond the mean-field
assumption and explicitly accounts for correlations
between microswimmers. This difficulty has limited pre-
vious theoretical work on this problem to either the case of
shaker microswimmers [42] or the case of swimming being
subdominant compared to the translational thermal diffu-
sion [92]. The only theory to date that has accounted for
arbitrary swimming speeds was developed by Nambiar,
Garg, and Subramanian [91], who analytically considered
pairwise correlations between microswimmers; i.e., their
results are OðΔ2Þ accurate. To deal with the problem posed
by the self-propulsion term in their equations, Nambiar,
Garg, and Subramanian [91] developed a perturbation
theory in terms of the swimmer slenderness (aspect ratio),
which is a reasonable approximation for long and slender
bacteria. In contrast, the method developed in this work
allows us to make explicit predictions for various exper-
imentally relevant observables for any strength of self-
propulsion and any density of microswimmers up to the
onset of collective motion. All of its parameters can be
independently measured or inferred from experiments, and
its predictions can be directly compared against experi-
mental data.
The results of our theory, presented in Sec. III, reveal that

all observables considered deviate from their mean-field
values, which can be recovered from our results by setting
Δ ¼ 0, indicating that the mean-field theory is incorrect
at any density below the onset of collective motion. We
have also uncovered the following interplay between the
strength of correlations between microswimmers and their
self-propulsion speed. For all observables considered, the
strongest correlations are exhibited by suspensions of

shakers, L ¼ 0. This result can be readily seen by observ-
ing that, in the absence of self-propulsion, the micro-
swimmer positions change only due to their mutual
advection. In a dilute suspension, displacements thus
accumulated over one correlation time are small compared
to the interparticle distances, and, to first approximation,
shaker suspensions perform orientational dynamics only.
In turn, this result implies that they spend the maximum
amount of time possible adjusting to the orientational fields
created by other microswimmers. In contrast, motile micro-
swimmers are aligning in a local velocity field that
constantly changes due to their self-propulsion, implying
weaker correlations in such suspensions. This effect
becomes stronger as L increases.
The degree to which correlations are suppressed by

self-propulsion depends on the nature of the observable.
Spatial-like observables (the fluid velocity variance, the
energy spectrum, and the spatial correlation function) are
significantly reduced as L increases but do not reach their
mean-field values even in the limit L → ∞. For instance, as
can be seen from Fig. 1, the fluid velocity variance is
significantly larger than its mean-field value at any density
Δ, even in the limit of fast swimming. In a similar fashion,
as L → ∞, the spatial correlation function in Fig. 3 does
not reduce to its mean-field behavior, which is given by the
Δ → 0 limit in Fig. 2. Instead, it recovers the strongly
correlated shaker behavior at sufficiently large distances.
This result can be understood by employing the same
argument as above. For any value of L, there are such
separations ρ that the typical distance traveled by a
microswimmer during one correlation time of the suspen-
sion is small compared to ρ. For such separations, the
difference between swimmers and shakers vanishes, and
CðρÞ recovers its shaker behavior.
On the other hand, temporal-like observables (the

temporal correlation function and the enhanced diffusivity
of tracer particles) are almost completely suppressed as
L → ∞ for Δ < 1, though they still diverge in the limit of
Δ → 1. This behavior mirrors the dependence of their
mean-field values on L, which vanish in the limit of fast
swimming below the onset of collective motion. An
intuitive argument for this behavior has been put forward
by Dunkel et al. [76], who demonstrated that the total
displacement of a tracer by a single motile particle vanishes
as the length of a straight path covered by the swimmer
diverges. This behavior is fundamentally related to the time
reversibility of Stokesian flows. The presence of correla-
tions between microswimmers breaks this time reversibil-
ity: Although the pathway between two states in phase
space is still reversible, the probabilities of finding the
suspension in those states are a priori different. Strong
swimming introduces effective phase-space mixing and
recovers equal a priori probabilities for the phase-space
states. Again, this argument holds forΔ < 1 only when L is
large, yet finite.
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Previous studies have already reported measurements of
the spatial [22,72] and temporal [20,24] correlation functions
in dilute bacterial suspensions for a wide range of bacterial
concentrations. While these observations qualitatively agree
with our predictions and the results of previous simulations
[39,41,45], quantitative comparison is problematic, as the
corresponding values of Δ in those experiments remain
unknown. The enhanced diffusivity, on the other hand, has
been studied only in the regime whereD scales linearly with
the bacterial number density n [74,81–83,87,89], with the
highest density of Kasyap, Koch, andWu [87] being the only
exception. Those measurements are well described by a
noninteracting theory [79,83,84,86], i.e., D0 in our analysis,
and, to test our theory, they will need to be extended to
higher concentrations. Therefore, to verify our predictions
experimentally, it is necessary to measure any of these
observables across a wide range of bacterial density while
carefully controlling the distance to the threshold of collec-
tive motion Δ. Although the latter can, in principle, be
calculated from Δ ¼ nBκ=5λ, it requires the knowledge
of the bacterial dipolar strength, tumble rate, and effective
aspect ratio and a precise control of the number density n.
A significantly easier approach would be to determine ncrit
experimentally. This determination can be achieved, for
instance, by measuring the apparent shear viscosity of
bacterial suspensions at various densities, as was recently
done by Martinez et al. [72]. In sufficiently wide geometries,
the ratio of the apparent shear viscosity to the viscosity
of the solvent decreases linearly withΔ [71,72] and vanishes
precisely at the onset of collective motion [52]. Simultaneous
measurement of one of the observables discussed above and
the apparent shear viscosity would, thus, allow for a direct
comparison with our theory. The remaining parameters ϵ
and λ used to rescale space and time, respectively, and the
dimensionless persistence length L should be treated as
fitting parameters. They can be fixed, for instance, by fitting
the data for very low bacterial number densities, where the
normalized correlation functions CðρÞ=hU2i and CðτÞ=hU2i
are well approximated by their noninteracting (i.e.,
Δ ¼ 0) components [see Eqs. (65), (67), and (73) and
Refs. [45,99] ]. While the swimming speed vs and the
tumbling rate λ can be directly measured by either tracking
individual bacteria or by differential dynamic microscopy
[115], the hydrodynamic size of an E. coli bacterium ϵ is
somewhat open to interpretation, as discussed in Sec. III.
Therefore, L should be seen as a fitting parameter.
Direct verification of our prediction that increasing L

suppresses correlations and brings the system closer to the
mean-field predictions would require the ability to perform
experiments at different values of L at a fixed distance to
the threshold Δ. An obvious realization of this protocol
would involve the ability to control the tumbling rate λ
while keeping the swimming speed and the dipolar strength
constant. We are currently not aware of a bacterial strain
with such an ability. An interesting alternative would be to

employ the recently created E. coli mutants that swim only
in the presence of light [116–118]. In such bacteria, the
swimming speed can be increased by increasing the light
intensity, while the tumbling rate seems to stay constant for
upward sweeps in light intensity [118]. Performing light
intensity sweeps at various bacterial densities would, thus,
trace a set of straight lines in theΔ-L parameter space, since
vs is expected to be proportional to the bacterial dipolar
strength and, thus, toΔ. Such data can then be used for how
the transition is approached at various values of L.
To gain further insight into the nature of the transition to

collective motion exhibited by our model, we extracted the
scaling behavior of the observables considered in this work
upon the approach to the onset, Δ ¼ 1. All of these
quantities diverge at Δ ¼ 1, and the values of the critical
exponents predicted by our theory are summarized in
Table I. We stress that these exponents rely on the approxi-
mation introduced in Sec. II F, and, while we are confident
that it semiquantitatively captures the spatial and temporal
behavior of the generalized correlation function Cðρ; τÞ for
Δ < 1, its quality in the close vicinity of Δ ¼ 1 is untested.
The values presented in Table I should, thus, be seen as a first
step in understanding the nature of this transition. Currently,
neither the order of the mean-field transition nor the
influence of strong pretransitional correlations on the tran-
sition are understood, and more work is needed to assess
whether collective motion in dilute suspensions of hydro-
dynamically interacting microswimmers defines a new
universality subclass of wet active matter models.
In this work, we have considered only pusher micro-

swimmers below the onset of collective motion. Recent
simulations suggest [42,45] that suspensions of pullers also
exhibit strong correlations, although their effect is opposite
to what is observed for pushers. The results presented in
this work cannot be used to study this effect, i.e., by
replacingΔ with −Δ in the relevant expressions. Instead, to
extend our theory to pullers, one would have to reevaluate
the long-term behavior of the approximate double inverse
Laplace transform in Sec. II F for negative values of Δ.
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TABLE I. Critical exponents.

Observable Scaling law for Δ → 1

Fluid velocity variance ð1 − ΔÞ−1=2
(Pseudo)correlation length ð1 − ΔÞ−1=2
Correlation time ð1 − ΔÞ−1
Enhanced diffusivity ð1 − ΔÞ−3=2
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APPENDIX A: DOUBLE INVERSE LAPLACE
TRANSFORM OF AN ARCHETYPAL TERM

Here, we show how to calculate the double inverse
Laplace transform of Eq. (55). The derivation of Eq. (62) is
similar, though lengthy, and we do not present it here.
We start by observing that the double inverse Laplace

transform in Eq. (55), given in terms of two Bromwich
integrals [111], can be written as

lim
t→∞

Z
Γ1

ds1
2πi

es1t

λþ s1 þ ivskðk̂ · pÞ
Jðs1Þ; ðA1Þ

where

Jðs1Þ ¼
Z
Γ2

ds2
2πi

1

s1 þ s2

es2ðtþTÞ

λþ s2 − ivskðk̂ · pÞ
: ðA2Þ

By the definition of the inverse Laplace transform [111],
the contours defining the integrals above have to be
chosen such that Γ2 passes on the right of −s1 and of
−λþ ivskðk̂ · pÞ, while Γ1 should pass on the right of all the
poles of Jðs1Þ and of −λ − ivskðk̂ · pÞ. Observe that the first
condition implies that Γ2 should be chosen on the right
of −Γ1.
Next, we observe that, again from the definition of the

inverse Laplace transform, Jðs1Þ is defined only for
Reðs1Þ > 0. To proceed, we follow the method often
utilized in plasma physics to describe the Landau damping
[100]. We perform the analytic continuation of Jðs1Þ to
purely imaginary values of s1 [recall that the analytic
continuation of a complex function defined on an open set
is the only function Ĵðs1Þ that is analytic, defined on a
larger set, and equals Jðs1Þ on the original set] and replace
Jðs1Þ with Ĵðs1Þ in Eq. (A1). Since λ > 0, the difficulty in
performing the analytic continuation of Jðs1Þ lies in the
pole at s2 ¼ −s1 of the integrand from Eq. (A2). We,
therefore, define

Ĵðs1Þ ¼
Z � ds2

2πi
es2ðtþTÞ

s2 þ λ − ivskðk̂ · pÞ

þ 1

2
lð−s1Þ

es2ðtþTÞ

s2 þ λ − ivskðk̂ · pÞ

����
s2¼−s1

; ðA3Þ

where

lðs1Þ ¼

8>><
>>:

0; Reðs1Þ > 0;

1; Reðs1Þ ¼ 0;

2; Reðs1Þ < 0:

ðA4Þ

The meaning of the integral denoted by
R � ds1 above

depends on the sign of Reðs1Þ: If Reðs1Þ > 0, it is just a
standard complex integral over a contour passing on the

right of −s1 and of −λþ ivskðk̂ · pÞ; if Reðs1Þ ¼ 0,
R � ds1

stands for a principal value integral; finally, if Reðs1Þ < 0,R � ds1 stands for a standard complex integral over a contour
passing on the left of−s1 but on the right of−λþ ivskðk̂ · pÞ.
With the definitions above, it is easy to show that Ĵðs1Þ is
holomorphic in an infinitesimal stripe around s1 ∈ R.
Hence, it is the analytic continuation of Jðs1Þ.
Replacing Jðs1Þ by Ĵðs1Þ in Eq. (A1), we obtain two

terms. The first term, containing
R � ds2, vanishes for

t → ∞, since we are now free to choose the integration
contours Γ1 and Γ2 such that Reðs1 þ s2Þ < 0. The other
term reads

lim
t→∞

1

2

Z
Γ1

ds1
2πi

1

s1 þ λþ ivskðk̂ · pÞ

×
lð−s1Þe−s1T

−s1 þ λ − ivskðk̂ · pÞ
: ðA5Þ

Closing the contour at þ∞, the only pole contributing to
the integral is at s1 ¼ λ − ivskðk̂ · pÞ, and we obtain

lim
t→∞

Z
Γ1

ds1
2πi

es1t

s1 þ λþ ivskðk̂ · pÞ
Jðs1Þ

¼ e−λTþivskTðk̂·pÞ

2λ
:

This result completes the proof of the equality in Eq. (55).

APPENDIX B: APPROXIMATING ψðzÞ
Here, we develop an approximation to ψðzÞ from

Eq. (58). Our goal is to find a rational function with a
pole structure that is similar to the original ψðzÞ. As
discussed in Sec. II F, the relevant domain is set by the
values of z given by z ¼ β=ð1þ s=λÞ, with β ¼ vsk=λ
varying from 0 to L ¼ vs=ðλϵÞ ¼ 0–25, and by the real part
of s ranging from −λ to 0.
Our starting point is the observations that, as z → 0,

ψðzÞ → 1 − 3z2=7, while, for z → ∞, ψðzÞ → 0. Both
asymptotic behaviors can be combined into ψaðzÞ ¼
7=ð7þ 3z2Þ. Now, we show that this result is a surprisingly
good approximation to ψðzÞ, both reproducing its global
shape and having a similar pole structure.
In Fig. 7, we compare ψðzÞ and ψaðzÞ for real values

of s. We observe a good agreement between the two
functions for various values of β. A similar, semiquanti-
tative, degree of agreement is observed for larger values of
β and also for complex values s.
To demonstrate that ψaðzÞ also reproduces the pole

structure of ψðzÞ, we consider a typical term from the
analysis in Sec. II E:

1

sþ λ − λΔAðkϵÞψðzÞ ¼
1

λΔAðkϵÞ
z

ω − zψðzÞ : ðB1Þ

We compute its inverse Laplace transform numerically,
using the original function ψðzÞ, and compare the result
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with the analytic expression, which we obtain by replacing
ψðzÞ with ψaðzÞ in the expression above. The latter is
straightforward: Factorizing ωð7þ3z2Þ−7z¼3ωðz−zþÞ
ðz−z−Þ, where z� are given in Eq. (61), we obtain

1

λΔAðkϵÞ
z

ω − zψaðzÞ

¼ 1

7

1

sþ λ

7ðsþ λÞ2 þ 3ðvskÞ2
ðsþ λ − vsk

zþ
Þðsþ λ − vsk

z−
Þ : ðB2Þ

Performing the inverse Laplace transform of this expression
and introducing the dimensionless time τ ¼ λt yields

e−τ
"
1þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 12β2

7Δ2

q exp

�
τΔ
2

�
× sinh

 
τΔ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12β2

7Δ2

r !�
:

ðB3Þ

Since both AðkϵÞ andΔ take values between 0 and 1, for the
purpose of comparing to its numerical counterpart, we set

AðkϵÞ ¼ 1 in the expression above, without the loss of
generality.
The inverse Laplace transform of the original function

Eq. (B1) written in terms of the same parameters is given by
the Bromwich integral

1

2πi

Z
γþi∞

γ−i∞
ds̃

es̃τ

s̃þ 1 − Δψ ½β=ðs̃þ 1Þ� ; ðB4Þ

where γ is a real number, chosen to be greater than the real
part of any singularity of the integrand [111]. We perform
this integral numerically, using the Gaver-Wynn-Rho algo-
rithm as presented by Valko and Abate [119]. Valko and
Abate provide an explicit Mathematica function GWR
[120], which we use here. A Mathematica notebook with
the details of this calculation can be found in Ref. [121].
In Fig. 8(a), we compare Eq. (B3) against the numerical

Laplace transform of Eq. (B4) for Δ ¼ 0.1 and β ¼ 0.1, 1,
and 10. We observe a very good agreement, which is not
surprising: At small microswimmer densities, the hydro-
dynamic interactions between particles affect their dynam-
ics only weakly, and correlations decay as e−τ. This regime
does not test the quality of our approximation. A more
stringent test is provided, on the other hand, in Fig. 8(b),
where we compare the two Laplace transforms for Δ ¼ 0.9.
For β < 1, we observe a very good agreement even at such
high values of Δ (close to the mean-field transition). This
regime is the most interesting, corresponding to large-scale
motion in the suspension, and it is encouraging that our
approximation shows quantitative agreement with the
numerical data. Note that the black line and the black
circles, corresponding to β ¼ 0.1, do not follow e−τ; i.e.,
our approximation is capable of capturing a nontrivial
decay rate. At higher values of β, corresponding to scales
comparable to individual microswimmers, the agreement is
semiquantitative, but the overall decay is again close to the
tumbling-dominated decay e−τ.

FIG. 7. Comparison between ψðzÞ (solid lines) and ψaðzÞ
(dotted lines) for z ¼ β=ð1þ s=λÞ for real values of s and various
values of β.

(a) (b)

FIG. 8. Numerical inverse Laplace transform (ILT) of Eq. (B4) (circles) and the analytical approximation [Eq. (B3)] (solid lines) as
functions of time. (a) Δ ¼ 0.1. (b) Δ ¼ 0.9. Inset: The same data on the linear-linear scale.
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In Appendix C, we assess the quality of our approxi-
mation, when used in Eq. (57), which is its ultimate
purpose.

APPENDIX C: DOUBLE INVERSE LAPLACE
TRANSFORM

In Sec. II F, we perform the double inverse Laplace
transform in Eq. (57) analytically by replacing ψðzÞ with
ψaðzÞ, which leads to Eq. (62). Here, we assess the quality
of that approximation by performing the double inverse
Laplace transform in Eq. (57) numerically. The relevant
part of Eq. (57) reads

2L−1
s̃1;t̃

L−1
s̃2;t̃þτ

1

1þ s̃1

1

1þ s̃2

1

s̃1 þ s̃2

z̃1ψðz̃1Þ þ z̃2ψðz̃2Þ
z̃1 þ z̃2

×

�
z̃1ψðz̃1Þ

ω̃ − z̃1ψðz̃1Þ
þ z̃2ψðz̃2Þ
ω̃ − z̃2ψðz̃2Þ

þ z̃1z̃2ψðz̃1Þψðz̃2Þ
½ω̃ − z̃1ψðz̃1Þ�½ω̃ − z̃2ψðz̃2Þ�

�
; ðC1Þ

where, in anticipation of performing numerical calcula-
tions, we introduce the dimensionless times τ ¼ λT and
t̃¼ λt, Laplace frequencies s̃1;2¼s1;2=λ, z̃1;2¼β=ð1þ s̃1;2Þ,
and ω̃ ¼ β=Δ, where we absorb AðkϵÞ into Δ, as in
Appendix B. In what follows, we set t̃ ¼ 20 to imitate
the limit t̃ → ∞. The calculations are performed in
Mathematica using the combined fixed-Talbot and
Gaver-Wynn-Rho algorithm described by Valko and
Abate [119]. A Mathematica notebook with the details
of this calculation can be found in Ref. [121]. The results
are compared to the relevant part of Eq. (62), recast in the
same dimensionless variables

e−τ

2
64− cos

 ffiffiffi
3

7

r
βτ

!
þ eð1=2ÞΔτ

1 − Δþ 3
7
β2

×

8<
:2 − Δþ 6

7
β2

2 − Δ
cosh

�
1

2
Δτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12β2

7Δ2

r �

þ
sinh



1
2
Δτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12β2

7Δ2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12β2

7Δ2

q
9=
;
3
75: ðC2Þ

The results of the numerical double inverse Laplace
transform and its analytical counterpart are shown in Fig. 9.
As in Appendix B, we focus on high values of Δ, which
provide the most stringent test of our results. For β ≤ 1, the
analytic approximation agrees quite well with the numeri-
cal data, capturing not only the decay rate, but also the
oscillatory behavior, as can be seen from the β ¼ 1 case.
These calculations require a very high number of terms,
Oð100Þ, in the combined fixed-Talbot and Gaver-Wynn-
Rho algorithm [119]. For β > 1, we are unable to obtain
converged results for the numerical Laplace transform for
any viable number of terms in the numerical algorithm.
Nevertheless, the results of Appendix B and the degree of
agreement exhibited in Fig. 9 for the physically most
relevant case of β < 1 make us confident that Eq. (62)
faithfully reproduces the long-time behavior of Eq. (57).
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[14] H. Chaté, Dry Aligning Dilute Active Matter, Annu. Rev.
Condens. Matter Phys. 11, 189 (2020).

[15] J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R.
Vafabakhsh, and R. Golestanian, Self-Motile Colloidal
Particles: From Directed Propulsion to Random Walk,
Phys. Rev. Lett. 99, 048102 (2007).

[16] P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L.
Schimansky-Geier, Active Brownian Particles, Eur. Phys.
J. Special Topics 202, 1 (2012).

[17] M. J. Schnitzer, Theory of Continuum Random Walks and
Application to Chemotaxis, Phys. Rev. E 48, 2553 (1993).

[18] D. L. Koch and G. Subramanian, Collective Hydrodynam-
ics of Swimming Microorganisms: Living Fluids, Annu.
Rev. Fluid Mech. 43, 637 (2011).

[19] D. Saintillan and M. J. Shelley, Active Suspensions and
Their Nonlinear Models, C. R. Phys. 14, 497 (2013).

[20] G. Soni, B. J. Ali, Y. Hatwalne, and G. Shivashankar,
Single Particle Tracking of Correlated Bacterial Dynam-
ics, Biophys. J. 84, 2634 (2003).

[21] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein,
and J. O. Kessler, Self-Concentration and Large-Scale
Coherence in Bacterial Dynamics, Phys. Rev. Lett. 93,
098103 (2004).

[22] J. Gachelin, A. Rousselet, A. Lindner, and E. Clement,
Collective Motion in an Active Suspension of Escherichia
coli Bacteria, New J. Phys. 16, 025003 (2014).

[23] N. H. Mendelson, A. Bourque, K. Wilkening, K. R.
Anderson, and J. C. Watkins, Organized Cell Swimming
Motions in Bacillus Subtilis Colonies: Patterns of Short-
Lived Whirls and Jets, J. Bacteriol. 181, 600 (1999).

[24] M. Wu, J. W. Roberts, S. Kim, D. L. Koch, and M. P.
DeLisa, Collective Bacterial Dynamics Revealed Using a
Three-Dimensional Population-Scale Defocused Particle
Tracking Technique, Appl. Environ. Microbiol. 72, 4987
(2006).

[25] A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E.
Goldstein, Concentration Dependence of the Collective
Dynamics of Swimming Bacteria, Phys. Rev. Lett. 98,
158102 (2007).

[26] A. Sokolov, R. E. Goldstein, F. I. Feldchtein, and I. S.
Aranson, Enhanced Mixing and Spatial Instability in
Concentrated Bacterial Suspensions, Phys. Rev. E 80,
031903 (2009).

[27] L. H. Cisneros, J. O. Kessler, S. Ganguly, and R. E.
Goldstein, Dynamics of Swimming Bacteria: Transition
to Directional Order at High Concentration, Phys. Rev. E
83, 061907 (2011).

[28] A. Sokolov and I. S. Aranson, Physical Properties of
Collective Motion in Suspensions of Bacteria, Phys.
Rev. Lett. 109, 248109 (2012).

[29] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher,
R. E. Goldstein, H. Löwen, and J. M. Yeomans, Meso-
scale Turbulence in Living Fluids, Proc. Natl. Acad. Sci.
U.S.A. 109, 14308 (2012).

[30] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M.
Bär, and R. E. Goldstein, Fluid Dynamics of Bacterial
Turbulence, Phys. Rev. Lett. 110, 228102 (2013).

[31] S. D. Ryan, A. Sokolov, L. Berlyand, and I. S. Aranson,
Correlation Properties of Collective Motion in Bacterial
Suspensions, New J. Phys. 15, 105021 (2013).

[32] J. P. Hernandez-Ortiz, C. G. Stoltz, and M. D. Graham,
Transport and Collective Dynamics in Suspensions of
Confined Swimming Particles, Phys. Rev. Lett. 95,
204501 (2005).

[33] D. Saintillan and M. J. Shelley, Orientational Order and
Instabilities in Suspensions of Self-Locomoting Rods,
Phys. Rev. Lett. 99, 058102 (2007).

[34] C. W. Wolgemuth, Collective Swimming and the Dynamics
of Bacterial Turbulence, Biophys. J. 95, 1564 (2008).

[35] P. T. Underhill, J. P. Hernandez-Ortiz, and M. D. Graham,
Diffusion and Spatial Correlations in Suspensions of
Swimming Particles, Phys. Rev. Lett. 100, 248101
(2008).

[36] J. P. Hernandez-Ortiz, P. T. Underhill, and M. D. Graham,
Dynamics of Confined Suspensions of Swimming Particles,
J. Phys. Condens. Matter 21, 204107 (2009).

[37] E. Lushi and C. P. Peskin, Modeling and Simulation of
Active Suspensions Containing Large Numbers of Inter-
acting Micro-Swimmers, Comput. Struct. 122, 239 (2013).

[38] E. Lushi, H. Wioland, and R. E. Goldstein, Fluid Flows
Created by Swimming Bacteria Drive Self-Organization in
Confined Suspensions, Proc. Natl. Acad. Sci. U.S.A. 111,
9733 (2014).

[39] D. Krishnamurthy and G. Subramanian, Collective Motion
in a Suspension of Micro-Swimmers That Run-and-Tumble
and Rotary Diffuse, J. Fluid Mech. 781, 422 (2015).

SWIMMING SUPPRESSES CORRELATIONS IN DILUTE … PHYS. REV. X 10, 031059 (2020)

031059-21

https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1103/PhysRevE.77.046113
https://doi.org/10.1038/nature11591
https://doi.org/10.1126/science.1230020
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1103/PhysRevLett.123.208002
https://doi.org/10.1103/PhysRevLett.123.208002
https://doi.org/10.1073/pnas.1001651107
https://doi.org/10.1103/PhysRevE.92.032722
https://doi.org/10.1103/PhysRevE.92.032722
https://doi.org/10.1126/science.1125142
https://doi.org/10.1146/annurev-conmatphys-031119-050752
https://doi.org/10.1146/annurev-conmatphys-031119-050752
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1103/PhysRevE.48.2553
https://doi.org/10.1146/annurev-fluid-121108-145434
https://doi.org/10.1146/annurev-fluid-121108-145434
https://doi.org/10.1016/j.crhy.2013.04.001
https://doi.org/10.1016/S0006-3495(03)75068-1
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1103/PhysRevLett.93.098103
https://doi.org/10.1088/1367-2630/16/2/025003
https://doi.org/10.1128/JB.181.2.600-609.1999
https://doi.org/10.1128/AEM.00158-06
https://doi.org/10.1128/AEM.00158-06
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1103/PhysRevE.80.031903
https://doi.org/10.1103/PhysRevE.80.031903
https://doi.org/10.1103/PhysRevE.83.061907
https://doi.org/10.1103/PhysRevE.83.061907
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1088/1367-2630/15/10/105021
https://doi.org/10.1103/PhysRevLett.95.204501
https://doi.org/10.1103/PhysRevLett.95.204501
https://doi.org/10.1103/PhysRevLett.99.058102
https://doi.org/10.1529/biophysj.107.118257
https://doi.org/10.1103/PhysRevLett.100.248101
https://doi.org/10.1103/PhysRevLett.100.248101
https://doi.org/10.1088/0953-8984/21/20/204107
https://doi.org/10.1016/j.compstruc.2013.03.007
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1017/jfm.2015.473


[40] H. Wioland, E. Lushi, and R. E. Goldstein, Directed
Collective Motion of Bacteria under Channel Confine-
ment, New J. Phys. 18, 075002 (2016).

[41] D. Saintillan and M. J. Shelley, Emergence of Coherent
Structures and Large-Scale Flows in Motile Suspensions,
J. R. Soc. Interface 9, 571 (2012).

[42] J. Stenhammar, C. Nardini, R. W. Nash, D. Marenduzzo,
and A. Morozov, Role of Correlations in the Collective
Behavior of Microswimmer Suspensions, Phys. Rev. Lett.
119, 028005 (2017).

[43] M. Theillard, R. Alonso-Matilla, and D. Saintillan, Geo-
metric Control of Active Collective Motion, Soft Matter 13,
363 (2017).

[44] F. J. Schwarzendahl and M. G. Mazza, Maximum in
Density Heterogeneities of Active Swimmers, Soft Matter
14, 4666 (2018).

[45] D. Bárdfalvy, H. Nordanger, C. Nardini, A. Morozov, and
J. Stenhammar, Particle-Resolved Lattice Boltzmann Sim-
ulations of 3-Dimensional Active Turbulence, Soft Matter
15, 7747 (2019).

[46] M. Theillard and D. Saintillan, Computational Mean-Field
Modeling of Confined Active Fluids, J. Comput. Phys. 397,
108841 (2019).

[47] E. Lauga and T. R. Powers, The Hydrodynamics of Swim-
ming Microorganisms, Rep. Prog. Phys. 72, 096601 (2009).

[48] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and
R. E. Goldstein, Fluid Dynamics and Noise in Bacterial
Cell-Cell and Cell-Surface Scattering, Proc. Natl. Acad.
Sci. U.S.A. 108, 10940 (2011).

[49] R. A. Simha and S. Ramaswamy, Hydrodynamic Fluctua-
tions and Instabilities in Ordered Suspensions of Self-
Propelled Particles, Phys. Rev. Lett. 89, 058101 (2002).

[50] D. Saintillan and M. J. Shelley, Instabilities and Pattern
Formation in Active Particle Suspensions: Kinetic Theory
and Continuum Simulations, Phys. Rev. Lett. 100, 178103
(2008).

[51] D. Saintillan and M. J. Shelley, Instabilities, Pattern
Formation, and Mixing in Active Suspensions, Phys.
Fluids 20, 123304 (2008).

[52] G. Subramanian and D. L. Koch, Critical Bacterial Con-
centration for the Onset of Collective Swimming, J. Fluid
Mech. 632, 359 (2009).

[53] C. Hohenegger and M. J. Shelley, Stability of Active
Suspensions, Phys. Rev. E 81, 046311 (2010).

[54] B. Ezhilan, M. J. Shelley, and D. Saintillan, Instabilities
and Nonlinear Dynamics of Concentrated Active Suspen-
sions, Phys. Fluids 25, 070607 (2013).

[55] S. Heidenreich, J. Dunkel, S. H. L. Klapp, and M. Bär,
Hydrodynamic Length-Scale Selection in Microswimmer
Suspensions, Phys. Rev. E 94, 020601(R) (2016).

[56] H. Reinken, S. H. L. Klapp, M. Bär, and S. Heidenreich,
Derivation of a Hydrodynamic Theory for Mesoscale
Dynamics in Microswimmer Suspensions, Phys. Rev. E
97, 022613 (2018).

[57] Y. Bozorgi and P. T. Underhill, Role of Linear Viscoelas-
ticity and Rotational Diffusivity on the Collective Behavior
of Active Particles, J. Rheol. 57, 511 (2013).

[58] Y. Bozorgi and P. T. Underhill, Effects of Elasticity on
the Nonlinear Collective Dynamics of Self-Propelled
Particles, J. Non-Newtonian Fluid Mech. 214, 69 (2014).

[59] G. Li and A. M. Ardekani, Collective Motion of Micro-
organisms in a Viscoelastic Fluid, Phys. Rev. Lett. 117,
118001 (2016).

[60] Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha,
Rheology of Active-Particle Suspensions, Phys. Rev. Lett.
92, 118101 (2004).

[61] D. T. N. Chen, A.W. C. Lau, L. A. Hough, M. F. Islam, M.
Goulian, T. C. Lubensky, and A. G. Yodh, Fluctuations
and Rheology in Active Bacterial Suspensions, Phys. Rev.
Lett. 99, 148302 (2007).

[62] A. Sokolov and I. S. Aranson, Reduction of Viscosity in
Suspension of Swimming Bacteria, Phys. Rev. Lett. 103,
148101 (2009).

[63] D. Saintillan, The Dilute Rheology of Swimming Suspen-
sions: A Simple Kinetic Model, Exp.Mech. 50, 1275 (2010).

[64] P. T. Underhill and M. D. Graham, Correlations and Fluc-
tuations of Stress and Velocity in Suspensions of Swimming
Microorganisms, Phys. Fluids 23, 121902 (2011).

[65] H. M. López, J. Gachelin, C. Douarche, H. Auradou, and
E. Clément, Turning Bacteria Suspensions into Super-
fluids, Phys. Rev. Lett. 115, 028301 (2015).

[66] R. Alonso-Matilla, B. Ezhilan, and D. Saintillan, Micro-
fluidic Rheology of Active Particle Suspensions: Kinetic
Theory, Biomicrofluidics 10, 043505 (2016).

[67] S. Nambiar, P. R. Nott, and G. Subramanian, Stress
Relaxation in a Dilute Bacterial Suspension, J. Fluid
Mech. 812, 41 (2017).

[68] S. Guo, D. Samanta, Y. Peng, X. Xu, and X. Cheng,
Symmetric Shear Banding and Swarming Vortices in Bac-
terial Superfluids, Proc. Natl. Acad. Sci. U.S.A. 115, 7212
(2018).

[69] S. Nambiar, S. Phanikanth, P. R. Nott, and G. Subrama-
nian, Stress Relaxation in a Dilute Bacterial Suspension:
The Active-Passive Transition, J. Fluid Mech. 870, 1072
(2019).

[70] Z. Liu, K. Zhang, and X. Cheng, Rheology of Bacterial
Suspensions under Confinement, Rheol. Acta 58, 439 (2019).

[71] D. Saintillan, Rheology of Active Fluids, Annu. Rev. Fluid
Mech. 50, 563 (2018).

[72] V. A. Martinez, E. Clément, J. Arlt, C. Douarche, A.
Dawson, J. Schwarz-Linek, A. K. Creppy, V. Škultéty,
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