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We construct quantum error-correcting codes that embed a finite-dimensional code space in the infinite-
dimensional Hilbert space of rotational states of a rigid body. These codes, which protect against both drift
in the body’s orientation and small changes in its angular momentum, may be well suited for robust storage
and coherent processing of quantum information using rotational states of a polyatomic molecule.
Extensions of such codes to rigid bodies with a symmetry axis are compatible with rotational states of
diatomic molecules as well as nuclear states of molecules and atoms. We also describe codes associated
with general non-Abelian groups and develop orthogonality relations for coset spaces, laying the
groundwork for quantum information processing with exotic configuration spaces.
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I. INTRODUCTION

Quantum systems described by continuous variables
arise in many laboratory settings. For example, a micro-
wave resonator in a superconducting circuit or the motional
degree of freedom of a trapped ion can be viewed as a
harmonic oscillator with an infinite-dimensional Hilbert
space. Such continuous-variable systems have potential
applications to quantum information processing. However,
quantum information encoded in an oscillator can be easily
damaged by ubiquitous noise sources such as dissipation
and diffusive motion in phase space.
Robustness against noise can be achieved more easily

by encoding a protected finite-dimensional system within
the infinite-dimensional Hilbert space of an oscillator.
One method for doing so was proposed some years ago
by Gottesman, Kitaev, and Preskill (GKP) [1]. A GKP code
is a quantum error-correcting code designed to protect
against noise that slightly shifts the position or momentum
of an oscillator. The ideal basis states for the code space are
“grid states” supported on periodically spaced points in
position or momentum space. By measuring the code’s
check operators, one can diagnose a shift error that may
have occurred, without disturbing the encoded quantum

information, and then correct the error (if the shift intro-
duced by noise is not too large) by performing a compen-
sating shift. These codes are expected to perform well
against realistic noise, including dissipation, which typi-
cally acts locally in phase space [2–4]. Construction of
GKP grid states has recently been demonstrated exper-
imentally [5,6].
In this paper, we develop GKP-like codes that protect

against, not noise that shifts the position and momentum
of an oscillator, but rather noise that shifts the (continuous)
orientation and (discrete) angular momentum of an asym-
metric rigid body. GKP codes for objects that rotate

FIG. 1. Rigid bodies. A molecular code protects against errors
in the orientation and angular momentum of a rigid body, which
may be (a) a planar rotor whose orientation is an element of the
two-dimensional rotation group U1, (b) a rigid rotor whose
orientation is an element of the three-dimensional rotation group
SO3, or (c) a linear rotor whose orientation is a point on the two-
sphere S2. A basis state for the code, or code word, is a
superposition of a finite number of orientations.
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about a fixed axis [Fig. 1(a)] were already discussed in
Ref. [1]. In that case, the orientation of the object
corresponds to an element of the two-dimensional rotation
group U1 ¼ SO2 ¼ C∞. New issues arise for an object that
rotates freely in three dimensions [Figs. 1(b) and 1(c)], with
orientation described as an element of the three-dimen-
sional rotation group SO3 (for an object with no sym-
metries) or a point on the two-sphere S2 ¼ SO3=U1 (for an
object with a symmetry axis).
Our work is motivated by recent progress in trapping and

coherently manipulating individual diatomic and polya-
tomic molecules [7–16]. Molecules offer long coherence
times in both their nuclear and rotational states, have built-
in long-range dipolar interactions, and can be scaled up to
large arrays without compromising on their indistinguish-
ability, coherence time, or interaction fidelity. Furthermore,
couplings between a molecule’s internal degrees of free-
dom can be readily engineered and utilized. These features
beg the question of whether it is possible to utilize the
rich yet spatially compact molecular Hilbert space for
quantum error correction; our work shows that such is
indeed the case. Since we consider only a molecule’s
rotational degrees of freedom, for our purposes a molecule
is equivalent to a rigid body. For that reason, we refer to
quantum codes embedding a protected finite-dimensional
subspace in the infinite-dimensional Hilbert space of a rigid
body as molecular codes.
The rigid-rotor Hamiltonian describing molecular rota-

tional motion is inherently anharmonic; because the energy
levels are unevenly spaced, transitions between levels can
be individually addressed using microwave fields. Hence,
proposals for storing quantum information in molecules
[17–28] (see also Refs. [29,30]) typically pick out two low-
lying long-lived energy eigenstates as basis states for a
qubit. One can also introduce an external electric field and
encode a qubit using the resulting “pendular” eigenstates
[31–33]. Other proposals advocate using vibrational or spin
degrees of freedom [34,35].
Rigid-rotor energy eigenstates, if spaced sufficiently far

apart in angular momentum, provide protection against
small jumps in angular momentum, but are unprotected
against dephasing in the angular-momentum eigenstate
basis resulting from fluctuations in the rotor’s orientation.
Our molecular codes, inspired by GKP codes, are designed
to protect against both momentum kicks and orientational
diffusion of a single molecule. Here, we develop the theory
of molecular codes and generalizations thereof. Laboratory
realizations of these coding schemes that actually improve
the coherence times of molecular qubits may still be far off,
but we propose laying the foundations for molecular
quantum error correction as a challenging goal for the
physicists and chemists of the noisy intermediate-scale
quantum (NISQ) era [36].
Though our work is partially motivated by advances in

molecular physics, the coding methods we use are best

explained in an abstract group-theoretic framework, which
we summarize in the next section. In Sec. III, we enumerate
a variety of physical settings, in molecular physics and
beyond, where our code constructions may be applicable.
The connection with rotational states of the three molecular
rotors from Figs. 1(a)–1(c) is developed in greater detail in
Secs. IV–VI, respectively. Section VII discusses extensions
to more abstract state spaces. Section VIII contains con-
clusions and ideas for future work.

II. SUMMARY OF OUR FRAMEWORK

We describe a family of codes that generalize the GKP
codes [1], which were initially formulated to encode a
finite-dimensional system in the infinite-dimensional
Hilbert space of a bosonic mode or of many bosonic
modes. Each code in our generalized GKP code family is
associated with a nested sequence of groups

H ⊂ K ⊂ G: ð1Þ

Here, G is a continuous group of shifts in the position of a
physical object. If no nontrivial subgroup of G leaves the
object invariant, and any position can be reached by
applying an element of G to a standard initial position,
then we may regard the “position eigenstates” fjgi; g ∈ Gg
as a basis for the Hilbert space of the object. The
generalized GKP code is a subspace of this Hilbert space
defined by two properties: (i) The discrete subgroup H of
the continuous group G leaves any state in the code space
invariant, and (ii) the subgroup K acts transitively on a basis
for the code space.
For the standard GKP code, G is the Abelian non-

compact group R, the group of translations in position
space of a particle in one spatial dimension. The subgroup
K is the infinite discrete group containing all translations of
the particle by an integer multiple of α, where α is a fixed
real number. The subgroup H contains all translations by an
integer multiple of dα, where d is the dimension of the code
space. In this case, we may choose the basis for the code
space to be (up to normalization)

jk̄i ∝
X
h∈Z

jq ¼ ðkþ hdÞαi; ð2Þ

where jqi is a position state of the oscillator and
k ∈ f0; 1;…; d − 1g. We refer to each such basis element
of the code as a code word. Thus, a translation of q by dα
leaves the code words invariant, and a translation of q by α
permutes the code words according to k → kþ 1 modulo
d. A shift in q due to an error can be detected by measuring
q modulo α.
In addition to errors that shift the value of q, the GKP

code also protects against errors that introduce q-dependent
phases. Phase errors which are diagonal in the q basis are
described by functions on R. Such functions can be
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Fourier-expanded using irreducible representations (irreps)
of R, labeled by the momentum p. The irreps that preserve
the code space are those with p an integer multiple of
2π=dα, and those that act trivially on the code space have p
an integer multiple of 2π=α.
For a generalized GKP code, the detectable position

shifts are labeled by elements of the coset space G/K,
and the “logical” position shift errors that preserve the
code space are labeled by elements of K/H. Undetectable
logical phase errors correspond to representations of G
which represent the subgroup H trivially but represent K
nontrivially.
In Sec. IV, we illustrate the concepts underlying gener-

alized GKP codes by discussing the example of a planar
rotor. In this case, G is U1, the infinite compact group of
rotations in a two-dimensional plane, K is the finite
subgroup of U1 containing rotations by an angle which
is an integer multiple of 2π=dN, and H is the subgroup of K
containing rotations by an angle which is an integer
multiple of 2π=N. Here, N and d are positive integers,
and d is the dimension of the code space. This code can
correct a rotation of the planar rotor by any angle less than
π=dN and can correct a shift in angular momentum by any
integer less than N=2. The structure of this code, for the
case N ¼ 3 and d ¼ 2, is depicted in Fig. 2(a).
While these planar-rotor codes were already introduced

in Ref. [1], generalized GKP codes where G is non-Abelian
have not been previously discussed to our knowledge. In
Sec. V, we introducemolecular codes, which can protect an
asymmetric rigid body from rotational shift errors and
angular-momentum kicks. In this case, G is SO3, the
infinite compact group of proper rotations in 3D space.
The finite subgroups H ⊂ K ⊂ SO3 can be chosen in
various ways. By choosing H ¼ ZN ⊂ K ¼ ZdN to be
discrete cyclic groups of rotations about one axis (for
chemists, ZN ¼ CN), we obtain codes that can correct small
rotations of the body about any axis and can also correct
momentum kicks that change the total angular momentum
of the body by δl < N=2. For a pictorial representation of
this code in the caseN ¼ 3, d ¼ 2, see Fig. 2(b). Each ideal
code word is not normalizable, a super-position of a finite
number of position eigenstates, but there are normalizable
approximate code words which maintain good error-cor-
recting properties. We also discuss examples where H and
K are finite non-Abelian subgroups of the rotation group.
We generalize the code construction further in Sec. VII,

where we allow G to be any finite group, compact Lie
group, or sufficiently well-behaved noncompact group.
Guided by the stabilizer formalism, we show that for each
molecular code there is a Hamiltonian which has the code
as its ground space. This formulation provides a unified
treatment that encompasses molecular codes (G ¼ SO3),
Calderbank-Shor-Steane (CSS) codes (G ¼ Z×n

D ), and GKP
codes for qudits (ZD), planar rotors (U1 or Z), and
oscillators (R).

FIG. 2. Code word constructions. (a) Left: Sketch of the planar-
rotor state space U1. Black and white points represent the positions
present in the two codewords (10) of the Z3 ⊂ Z6 GKP rotor code.
Correctable shifts ð−π=6; π=6� are highlighted in blue. Right: U1

angular-momentum ladder l ∈ Z. Black and white squares re-
present momentum states present in the logical-X codewords (11).
(b) Sketch of the same features of the Z3 ⊂ Z6 molecular code (45).
Left: Position space is drawn as a ball of radius π with antipodal
points identified, and each SO3 rotation by angle ω around axis
v ∈ S2 corresponds to the vector ωv on the ball. The set of
correctable rotations is in blue, but part of it is cut out to show
that it contains the origin (meaning that small rotations around any
axis are correctable). Right: Momentum space is a 3D square
pyramid with the height labeled by l and the base by jmj, jnj ≤ l.
We plot only the m ¼ n part, where the code words (49) have
support. (c) Sketch of similar features of the Z3 ⊂ Z6 linear-rotor
code (102), whose states are equal superpositions of equidistant
orientations along an equator. Left: The blue spherical lune
contains all points that are closer to the enclosed black point than
to any other black or white point. Right: Momentum space is a 2D
pyramid with base jmj ≤ l, showing states participating in the
logical-X code words (105).
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In Sec. VI, we discuss the linear rotor, a rigid body with
a symmetry axis, such as a heteronuclear diatomic mol-
ecule. For this case, the quantum codes we construct are not
generalized GKP codes as defined above, because the
position basis states of the linear rotor are indexed not
by elements of a group but rather by points in the coset
space SO3=U1 ¼ S2. Code words of a linear-rotor code are
uniform superpositions of antipodal points on S2, which lie
in the same orbit of H acting on S2, where H is a finite
subgroup of SO3. See Fig. 2(c) for the case H ¼ Z3 and
code space dimension two.
The linear-rotor codes can also correct small rotations

about any axis, and analyzing correction of momentum
kicks follows closely the corresponding discussion for
molecular codes. However, for correction of combinations
of rotations and momentum kicks, there are complications
which arise, because each SO3 rotation acting on S2 has
fixed points.
Coset spaces arise in both generalized GKP codes and

linear-rotor codes, but for different reasons. In GKP codes,
position basis states are in one-to-one correspondence with
elements of the group G, and the position shifts detected by
the code are labeled by elements of G/K. In linear-rotor
codes, the position basis states themselves are in one-to-one
correspondence with elements of the coset space SO3=U1.
Since coset spaces play a central role in both settings, we
formulate position and momentum bases, shift operators,
and orthogonality relations for general G/H in the
Appendix D. These are applicable to H-symmetric mole-
cules when G ¼ SO3 (see Sec. III C) and may be of
independent interest for general G.

III. EXPERIMENTAL REALIZATIONS

Before proceeding to discuss code constructions in more
detail, in this section, we briefly mention some of the
physical settings where these constructions might apply.
The rotational states of a molecule provide one such setting,
where the orientations of a molecule correspond to ele-
ments of SO3 (in the case of an asymmetric polyatomic
molecule) or S2 (in the case of a heteronuclear diatomic
molecule). In addition, other physical systems, including
atomic or molecular hyperfine, vibrational, and electronic
states, as well as atomic ensembles and levitated nano-
particles, realize similar configuration spaces.

A. Molecular rotors

GKP codes were realized experimentally [5,6] nearly
20 years after the initial proposal [1], and full-fledged error
correction formolecular qubitsmay still bemany years away
(see Ref. [37], Sec. V D). Nevertheless, significant steps
toward the realization of molecular codes may be feasible
during the NISQ era [36] as the technology for trapping and
controlling molecules [38–43] continues to advance.
Laser cooling and trapping techniques have recently

enabled several seminal advances for diatomic polar

molecules, namely, the creation of low-entropy arrays in
an optical lattice [44,45], trapping and imaging in tweezer
arrays [10,12] and magnetic traps [46,47], preparation of
pure quantum states [48], and the first quantum degenerate
gas of polar molecules [49]. Recent efforts have succeeded
in controlling rotational states of CaHþ [15] as well as
coupling them to a neighboring ion [16]. Coherence times
of approximately 100 ms to approximately 1 s in angular-
momentum states of diatomic polar molecules have already
been observed in several experiments [50–52].
Laser cooling and quantum control of polyatomic

molecules continues to be a rapidly progressing field
[11,37,53,54]. The possibility of angular-momentum
state-resolved detection has recently been considered
[13,37]. In addition, quantum gates of optically trapped
symmetric top molecules have recently been analyzed [26].
Symmetric top molecules also hold promise for simulating
quantum magnetism [55,56]. Moreover, specific classes of
polyatomic linear polar molecules that feature more than
one optically active metal atom have recently been pro-
posed for laser cooling and trapping [57]. Prospects for
cooling other complex polyatomic molecules have also
been analyzed [58,59].
Here, we highlight a few techniques that could help

realize aspects of our codes in real systems.

1. Rotational states

The code words for our codes can be expressed as
coherent superpositions of several different molecular
orientations. Alternatively, each code word can be
expressed as a coherent superposition of eigenstates of
angular momentum (also known as “rotational states”).
When discussing experimental realization of the codes, the
basis of rotational states is far more convenient than the
position-eigenstate basis, because rotational states can be
directly addressed using experimental tools.
For the case of a planar rotor, with configuration space

U1, the rotational basis states fjlig transform as one-
dimensional irreducible representations of U1; for the case
of a polyatomicmolecule, with configuration space SO3, the
basis states fjlmnig correspond to matrix elements of irre-
ducible representations of SO3; and for the case of a diatomic
molecule, with configuration space S2, the basis states fjlmig
correspond to spherical harmonics. In molecular physics
[60–63],l corresponds to the total angularmomentumof the
rotor,m is the z component of the angular momentum in the
lab frame, and n is the z component in the rotor frame. How
code words are expressed as linear combinations of rota-
tional states is illustrated on the right in Figs. 2(a)–2(c),
respectively, for three simple rotor codes.

2. Microwave dressing

One can try to stabilize the code words using poly-
chromatic microwave dressing. Note that we consider
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single molecules and neglect any effects due to their
interaction. The inherent rigid-rotor Hamiltonian for SO3

and S2 is diagonal in the angular-momentum basis, with
eigenvalues lðlþ 1Þ [64]. Therefore, transitions between
states with different momenta are individually addressable
(unlike, e.g., the transitions of a harmonic oscillator
Hamiltonian). Selection rules for the internal indices n,
m are dictated by the polarization of the microwave field.
Thus, the energy and polarization of a microwave field can
be tuned to couple two angular-momentum states that are
neighbors in the angular-momentum pyramid. That is, the
value of l, m, or n can change by one unit in a single-
photon transition.
However, the angular-momentum states making up each

code word are widely spaced in the internal indices. For
example, in the case of the SO3 code depicted in Fig. 2(b),
the code words have support only on fjlmnig states such that
m ¼ n is an integer multiple of 3. For S2 [Fig. 2(c)], a
similar pattern emerges, except that, for even l, the
rotational state jlmi is populated only if m is an even
multiple of 3, while, for odd l, fjlmig is populated only ifm
is an odd multiple of 3.
Because a single microwave tone couples states that

differ by just one unit of m or l, a sequence of virtual
transitions induced by multiple pulses would be needed
to couple states with more widely separated values of m
or l. For example, coupling states with jδmj ¼ 3 requires
a three-photon transition that is sufficiently detuned from
the two intermediate states, and coupling states with
δl ¼ 2 requires a two-photon transition sufficiently
detuned from the one intermediate state. We outline a
scheme to generate these states in Appendix A. This
scheme requires many pulses, but it is on par with
previously proposed molecular dressing schemes [65–67]
and may even be realized using recent experimental
advancements [15].
We neglect rotational-state-dependent trapping effects,

which are prominent in optical dipole traps [50,68–70].
These effects are negligible when considering a single
molecule in the motional ground state of the trap, whose
intensity can be robustly stabilized. In this case, the unique
Stark shift for each rotational state due to the trap simply
requires an updated microwave frequency catalog for all
transitions. However, this spread in polarizability poses a
practical problem when considering many molecules, since
one must ensure that they all experience the same optical
intensity. Accordingly, alternative trapping schemes may be
more appropriate for the applications proposed in this
work. Magnetic microtraps [46] are compatible with
electronic spin doublet or triplet molecules such as CaF,
SrF, YbF, or YO. Radio-frequency electric traps are
compatible with molecular ions [25,37]. Such trapping
potentials are substantially less dependent on the rotational
state of the molecule, since they couple to magnetic dipoles
and electric monopoles, respectively.

More generally, one can consider engineering the
desired pulses to generate states or correct errors via
established optimal-control schemes [43,71]. It has been
shown that one can control the planar [72,73], linear [74–
76], and even rigid [77] rotors, and it would be useful to
extend these and other efforts [78,79] to stabilizing the
required code subspace.

3. Crystal fields

In a class of quantum error-correcting codes called
stabilizer codes, the code space is the simultaneous eigen-
space with eigenvalue 1 of a set of commuting Pauli
operators, which are called check operators. A special
subclass of stabilizer codes are the CSS codes, for which
each check operator can be chosen to be either Z type or X

type; the Z-type operators fŜðiÞZ g are diagonal in the

computational basis, and the X-type operators fŜðjÞX g
permute the computational basis states. The code subspace
may be regarded as the degenerate ground space of the
Hamiltonian (137)

Hcode ¼ −
X
i

ŜðiÞZ −
X
j

ŜðjÞX : ð3Þ

Our molecular codes are not stabilizer codes, but, as we
explain in Sec. V, the code space is the degenerate ground
space of a Hamiltonian which is a sum of Z-type and X-
type terms. Here, the X-type check operator rotates the
molecule, while the Z-type check operator is diagonal in
the position basis but alters the total angular momentum.
Just like its oscillator counterpart (see Ref. [1], Sec. XIII),
this molecular Hamiltonian is gapless, but ground states of
an approximate gapped version would be close to the
approximate code words we introduce in Sec. V C.
The ŜZ check operators are momentum kicks which

couple well-separated angular-momentum states fjlmnig for
SO3 or fjlmig for S2. For example, ŜZ for a linear-rotor code
based on the octahedral group is a superposition of octo-
pole (l ¼ 4) spherical harmonics; see Eq. (116). Such
harmonics are, in principle, present in a general interaction
with a bath [80]. However, simple laser, dc, or microwave
fields produce only l ≤ 2 harmonics (see Ref. [61],
Chaps. 4 and 7).
One way to generate the required higher value of l is to

put the molecule into a crystal lattice. For rotor codes based
on a discrete subgroup K ⊂ SO3, one such ŜZ is the lowest-
l function that is symmetric under K. Thus, putting the
rotor into a K-symmetric lattice yields a background field
whose dominant term is exactly this ŜZ. For example,
putting a linear rotor into an octahedrally symmetric lattice
yields a background potential [81,82] that is exactly the ŜZ
(116) required for the octahedral code. This potential is
minimized at those orientations of the rotor that are
superposed to construct the code words; in fact, these
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degenerate minima were noticed earlier in an experimental
context [83]. Similarly, embedding into a two-dimensional
square lattice yields the appropriate ŜZ (114a) for a linear-
rotor version of the planar-rotor code introduced in Sec. IV.
To access subgroups of SO3 forbidden in crystals, one
could consider embedding a molecule in a quasicrystal.
Crystal symmetries can enforce only the ŜZ check

operator condition; the ŜX check operator condition must
be imposed by some other means. The ŜX operators are
trigonometric functions of the angular-momentum opera-
tors L⃖ for SO3 or L̂ for S2. These are not naturally available,
as the rigid-rotor Hamiltonian (75) and its generalizations
[64] contain terms that are at most bilinear in the angular-
momentum components. However, there are other terms in
the full rotor-in-lattice Hamiltonian [see Ref. [84],
Eq. (7.2)], and, akin to superconducting circuit schemes
[85], one might engineer the molecule’s environment (for
example, by embedding the molecule in a liquid helium
nanodroplet [86]) to provide the required ŜX terms.

4. Nuclear spin coupling

If an error causes the molecule to rotate slightly, we
recover from the error by applying a compensating small
rotation. The desired rotation can be executed by turning on
a Hamiltonian which is linear in the angular momentum.
But, since the natural rigid-rotor Hamiltonian is quadratic,
this linear term is not so easily realized in the laboratory.
One way to provide a Hamiltonian term which is linear in

the molecule’s angular momentum is to couple the rota-
tional states of the molecule to nuclear spin states via
nuclear spin-rotation interactions [see Ref. [60], Eq. (1.32)]
[48,51,87]

Hnsr ¼ I · L⃖; ð4Þ

where I is the nuclear spin. The nuclear spin can serve as a
convenient ancilla system, and the orientation of the
molecule can be controlled by manipulating the nuclear
spin. Similar approaches are applied to solid-state systems
in which electronic spins are coupled to nuclear spins [88].
This approach is roughly analogous to using a super-
conducting Josephson-junction device coupled to a bosonic
mode for manipulating the states of a bosonic error-
correcting code.
We also need to correct momentum kicks by applying

unitary operations that change the value of l. Operations
which shift the occupation number of a cavity can be
applied by coupling the cavity to a three-level atom [89] or
by using linear optics [90]. Similar schemes could shift the
value of l for a U1 rotor. Extensions of such schemes may
be helpful for controlling the rotational states of higher-
dimensional rotors.

B. Spin systems

Certain combinations of spins offer another platform for
simulating the linear-rotor space S2 and quotient spaces
SO3=H from Table I. We list three manifestations: L spin-
1=2 systems in a totally symmetric spin state, L spin-N=2
systems in a totally symmetric state, and a pair of spin-L=2
systems. In the limit of large L, each of these systems
provides a useful approximation to one of the spaces of
interest. While the first two cases are usually studied in the
context of atomic ensembles, all three cases apply equally
well to an atom or a molecule with a sufficiently large
nuclear-spin manifold (cf. Ref. [91]).

1. Many small spins

L spin-1=2 particles in a totally symmetric spin state
have a total angular momentum of L=2. The L → ∞ limit
of this large collective spin is sometimes said to be a
semiclassical limit, meaning that the spin-L=2 object
behaves like a continuous classical spin when L is large.
An intuitive way to understand this limit is to consider the
spin-coherent states

jviSC ¼
�
e−iφ=2 cos

ϑ

2

���1=2
1=2

E
þ eiφ=2 sin

ϑ

2

���1=2
−1=2

E�⊗L
ð5Þ

for v ¼ ðϑ;φÞ ∈ S2 [98,99]. These states are not orthogo-
nal; instead, they form an overcomplete frame for the
collective spin’s (Lþ 1)-dimensional Hilbert space, with
overlap jhvjv0iSCj ¼ ð1þ v · v0=2ÞL. As L → ∞, the states
become orthogonal and correspond to the position states jvi
of S2 (Table V B). For finite L, superpositions of these spin-
coherent states can be approximate code words for a linear-
rotor code.
Numerous manifestations of entangled ensembles of

many spin-1=2 atoms have recently been demonstrated

TABLE I. Quotient spaces mentioned in this work [92,93] (see
also Ref. [94], Sec. 3.8, and Refs. [95–97]). Spaces associated
with SO3 characterize rotational states of various molecules (see
Sec. III C). ZN ¼ CN is the order-N cyclic group, DN is the order-
2N dihedral group, U1 ¼ SO2 ¼ C∞ is the circle group, and
O2 ¼ SO2⋊Z2 ¼ D∞ is the group of planar rotations and
reflections. Some of these spaces are shown in Figs. 2 and 4.

Space X Group H Quotient space X/H

R Z Wigner-Seitz unit cell U1

SO3 ZN Lens space L2N;1
Dihedral DN Prism space
Tetrahedral T Octahedral space
Octahedral O Truncated cube space
Icosahedral I Poincaré dodecahedral space

U1 Two-sphere S2

O2 Projective plane RP2

S2 ZN , DN , T, O, I Spherical two-orbifold
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[100–103], and the current status of the field is summarized
in Ref. [104].

2. Many medium spins

Any pure state of a spin-1=2 system is invariant under a
continuous U1 subgroup of the rotation group SO3; each
pure state corresponds to a point on the Bloch sphere, and a
rotation about the axis aligned with that Bloch vector leaves
the state invariant. In contrast, there are pure states in
higher-spin representations for which the subgroup which
preserves the state is a nontrivial discrete subgroup H of
SO3. For example, the spin-2 state jTi ∝ j2−2i þ

ffiffiffi
2

p j21i is
invariant under the tetrahedral subgroup T. Therefore,
applying SO3 rotations to jTi generates a manifold of
states fjaiTg, where the label a is a point in the coset space
a ∈ SO3=T. The spin-coherent states fjai⊗L

T g, obtained by
taking a tensor product of many identical elements of this
manifold, approximate the position-basis states of SO3=T
in the limit of large L. This idea can be generalized: Spin-
coherent states fjai⊗L

H g approximate the position-basis
states for the coset space SO3=H, if jaiH is a higher-spin
state with invariance group H.
The above T-symmetric and similar H-symmetric states

(see Ref. [105], Table 2)—examples of Perelomov coherent
states [99]—are used as a mean-field ansatz for the ground
space of spin-N Bose-Einstein condensates [106,107]. We
use such coherent states to extract error syndrome infor-
mation for molecular codes (see Sec. V B), which requires
projectively measuring in this basis [108].

3. Two large spins

Instead of using only the symmetric subspace, one can
consider the entire space of a pair of spin-L=2 systems. Per
the addition rules (see Ref. [109], Chap. 8)

L=2 ⊗ L=2 ¼ 0 ⊕ 1 ⊕ � � � ⊕ L; ð6Þ

the ðLþ 1Þ2 orthonormal basis states for this system can be
chosen to be the angular-momentum eigenstates fjlmig,
with l ≤ L and jmj ≤ l. These are precisely the rotational
states of a linear rotor, except for the truncation l ≤ L.
Formally, then, the state space of a pair of spin-L=2 systems
matches the state space on S2 in the limit L → ∞. Since the
normalizable approximate code words of the linear-rotor
code are necessarily truncated for large L anyway, these
approximate code words can be accurately realized using a
pair of spin-L=2 systems for sufficiently large L (see
Sec. V C).
If one instead considers two different spins L=2 and

L0=2, one obtains a different band of S2 momentum states.
While developing codes for such band-limited subspaces is
outside the scope of this work, it is possible that our coding
strategies may also be useful there.

As a concrete experimental platform for large-spin
systems, we can consider nuclear spin spaces of molecules
or single atoms. Diatomic molecules such as NaCs [24]
offer exactly the band-limited subspaces mentioned above.
Concerning single atoms, lanthanide species such as
dysprosium (Dy), holmium (Ho), and erbium (Er) have
large total spin manifolds in their ground states due to their
large nuclear spins and many unpaired electrons in their f
shells. Accordingly, such atoms have already attracted
attention for the possibility of scaling up quantum comput-
ing by collectively encoding in multilevel atoms [110–
112]. Ho, in particular, has the largest hyperfine ground
space of any atom, with 128 ground states [112]. Laser
cooling and trapping techniques are well established for Dy
[113], Ho [114], and Er [115], as well as other lanthanides.
Moreover, quantum degenerate gases of Dy [116,117] and
Er [118,119] are widely used for novel quantum simula-
tions based on their large magnetic dipole moments.

C. Other systems

1. Planar rotors

Several systems have the configuration space of the
planar rotor. The system depicted in Fig. 1(a) is a diatomic
molecule confined to rotate in a two-dimensional plane, but
one can also consider a two-ion crystal [120]. Other
possibilities include the phase difference between two
superconductors on either side of a Josephson junction
[121], orbital angular momentum of light [122], or simu-
lating rotor position states using phase states of an ordinary
oscillator [123].
One can also embed the first few angular-momentum

states of the planar rotor in the linear and rigid rotors. For
fixed angular momentum L, the linear-rotor subspace fjLmig
with jmj ≤ L is equivalent to the band-limited subspace
fjli; jlj ≤ Lg of the planar rotor.

2. Symmetric molecules

A molecule with symmetry group H has an orientation
state space parameterized by SO3=H (see Table I). For
example, the methane molecule CH3 has the tetrahedral
symmetry group T, and the alkaline earth monomethoxide
(MOCH3) family—potentially useful for quantum comput-
ing [26]—has symmetry group Z3. This group is also the
relevant symmetry group of Posner molecules, postulated
to have potentially useful quantum effects [124,125]. The
symmetry group of the fullerene molecule is the icosahe-
dral group I, and the 3-manifold SO3=I has an exotic shape
that was once proposed as a model for the geometry of the
Universe [97,126]. It is interesting that such exotic spaces
are readily accessible in relatively simple molecules.
Completely asymmetric and U1-symmetric molecules cor-
respond, respectively, to rigid and linear rotors from
Sec. III A.
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More generally, if a group G acts transitively on the
states of a quantum system, and the subgroup H of G leaves
the states invariant, then the configuration space of the
system is G/H. In Appendix D, we develop mathematical
tools for parameterizing the position eigenstates and the
dual momentum states of such a system, including ortho-
gonality and completeness relations as well as a Poisson
summation formula [127].

3. Electronic states

One can consider embedding certain spaces from Table I
in the electronic eigenstates of single atoms. The eigen-
states of hydrogen offer a platform for a band-limited
subspace of the linear rotor S2 and even the space SU2

(closely related to the rigid rotor SO3; see Appendix B). Let
us label the atom’s eigenstates by jν;lmi, where 0 ≤ jmj ≤
l < ν and the energy Eν;l;m ∝ 1=ν2. For fixed energy
ν ¼ L, the manifold of states is the same subspace of S2

as that obtained by combining two large spins in Eq. (6). If
we instead consider all values of ν, l, andm, we obtain SU2

by an appropriate unitary transformation, related to writing
the hydrogen atom in parabolic coordinates [128].

4. Vibrational states

One can also consider using vibrational states of
atoms or molecules to encode quantum information [34].
As control over vibrational states improves, it may be
possible to implement bosonic error-correcting codes [3].
Position-state subspaces of harmonic oscillators also yield
the two rotational spaces of interest. For example, consid-
ering position states jx; y; zi of three oscillators with x2 þ
y2 þ z2 constant yields S2. With four oscillators, one
obtains SU2.
To simulate S2 using momentum states, one can take all

Fock states of two oscillators with an even total occupation
number. Such a simulation allows straightforward imple-
mentation of SO3 rotations via beam splitters.

5. Levitated nanoparticles

The code words of our SO3 and S2 codes are coherent
superpositions of different possible orientations for a rigid
body. Though we emphasize the potential applications to
atoms and molecules, the same ideas can be applied to any
quantized three-dimensional rigid body that can be coher-
ently manipulated. While there is a size limitation due to
decoherence, we are on the cusp of entering the quantum
regime for levitated nanoscale particles of helium [129],
vaterite [130], diamond (alone [131] or doped [132]),
and silicon [133–135], to name a few. Nanoparticles may
seem to be unlikely candidates for quantum comput-
ing, but it would be interesting nonetheless to try to
stabilize quantum superpositions of their orientational
states (cf. [136,137]).

IV. ERROR-CORRECTION BASICS
FOR THE PLANAR ROTOR

The goal of error correction is to encode quantum
information into a cleverly chosen subspace (the code)
such that it is possible to recover said information from
errors caused by physical noise. Before proceeding to
discuss codes which protect against noise acting on a
three-dimensional rigid body, we review a simpler case
which was previously considered in Ref. [1]: encoding a
finite-dimensional system in the infinite-dimensional
Hilbert space of a planar rotor. By discussing this case,
we can introduce the key concepts underlying our code
constructions in a familiar mathematical setting. The
interested reader can consult Ref. [138] and Chap. 7 in
Ref. [139] for other introductory material on quantum error
correction, as well as related work on encodings associated
with U1 [123,140].
The position-basis eigenstates for a planar rotor are in

one-to-one correspondence with the elements of the two-
dimensional rotation group U1 ¼ SO2 ¼ C∞. Equivalently,
these are the position eigenstates for a particle moving on a
circle; the basis elements may be denoted fjϕi;ϕ ∈
½0; 2πÞ ¼ U1g, with continuum normalization hϕjϕ0i ¼
δðϕ − ϕ0Þ. A dual basis is provided by the angular-
momentum eigenstates (also known as “rotational states”)
fjli;l ∈ Zg, where hϕjli ¼ ð1= ffiffiffiffiffiffi

2π
p Þeilϕ and, hence,

hljl0i ¼ δll0 .
Noise might rotate the system, applying an operator

X̂ϕ0 ¼ e−iϕ
0L̂ ¼

Z
U1

dϕjϕþ ϕ0ihϕj; ð7Þ

alternatively, noise might kick the angular momentum,
applying some power of the kick operator

Ẑ ¼ eiϕ̂ ¼
X
l∈Z

jlþ 1ihlj: ð8Þ

In fact, we can expand an arbitrary noise channel E acting
on the density operator ρ of the planar rotor in terms of a
complete basis of operators, where each element of the
basis is a product of an X̂ϕ operator and an lth power of the
Ẑ operator:

EðρÞ ¼
Z
U×2

1

dϕdϕ0 X
l;l0∈Z

Ell0
ϕϕ0X̂ϕẐ

lρẐl0†X̂†
ϕ0 : ð9Þ

Above, the expansion coefficients Ell0
ϕϕ0 are such that E is a

quantum channel. Our goal is to encode a finite-dimen-
sional logical system in the infinite-dimensional Hilbert
space of the rotor, where this logical system is protected
against any error X̂ϕẐ

l where both ϕ and l are sufficiently
small. In other words, if ρ consists of states in the logical
(also known as code) subspace, and if E is expanded using
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only such correctable X̂ϕẐ
l, then we are able recover the

original ρ from EðρÞ. Otherwise, recovery may not be
possible, and logical information stored in ρ may become
corrupted.

A. A protected qubit

For example, the two orthonormal basis states of a
protected qubit can be chosen to be [see Fig. 2(a)]

j0̄i ¼ 1ffiffiffi
3

p
�
jϕ ¼ 0iþ

����ϕ ¼ 2π

3

�
þ
����ϕ ¼ 4π

3

��
; ð10aÞ

j1̄i ¼ 1ffiffiffi
3

p
�����ϕ ¼ π

3

�
þ jϕ ¼ πiþ

����ϕ ¼ 5π

3

��
: ð10bÞ

Both basis states are eigenstates with eigenvalue 0 of ϕ̂
modulo π=3. Suppose that jψ̄i is an arbitrary state in the
code space spanned by j0̄i and j1̄i. If an error occurs which
causes ϕ to shift by δϕ ∈ ½−π=6; π=6�, we can unambig-
uously diagnose the error by measuring ϕ̂ modulo π=3.
Once δϕ is known, we can correct the error by applying a
unitary transformation that shifts ϕ by −δϕ, restoring the
state of the rotor to the initial undamaged state jψ̄i.
Alternatively, we may expand the basis states of the code

in the angular-momentum eigenstate basis, finding

1ffiffiffi
2

p ðj0̄i þ j1̄iÞ ¼
ffiffiffi
3

π

r X
s∈Z

jl ¼ 6si; ð11aÞ

1ffiffiffi
2

p ðj0̄i − j1̄iÞ ¼
ffiffiffi
3

π

r X
s∈Z

jl ¼ 6sþ 3i: ð11bÞ

Both basis states are eigenstates with eigenvalue 0 of L̂
modulo 3. Suppose an error occurs which causes the
angular momentum to shift by δl ∈ f−1; 0; 1g. We can
unambiguously diagnose the error by measuring L̂ modulo
3. Once δl is known, we can correct the error by applying a
unitary transformation that shifts l by −δl. Furthermore
(see below), ϕ̂modulo π=3 and L̂modulo 3 are compatible
observables that can be measured simultaneously.
Therefore, we can correct any combination of shifts in
ϕ and l, as long as the shift in ϕ is no larger than π=6 and
the shift in l is no larger than 1.
The code basis states in Eqs. (10) and (11) are not

normalizable and, therefore, unphysical. However, we may
replace the position eigenstates in Eq. (10) by narrow wave
packets; then, the sum over s in Eq. (11) is modulated by a
broad envelope function. In that case, the code states are
physical, and the nice error-correction properties we note
still hold, up to negligibly small corrections.
Our main task in this paper is to generalize this code

construction, in various directions. For that purpose, it is
convenient to have other ways to describe the code.

Our first alternative description uses the stabilizer
language [138,141].

1. Stabilizer formalism

A stabilizer code may be characterized as the simulta-
neous eigenspace with eigenvalue 1 of a set of commuting
unitary operators, called the stabilizer generators. For the
code specified by Eqs. (10) and (11), we may choose these
operators to be

ŜZ ≡ Ẑ6 ¼ ei6ϕ̂; ŜX ≡ X̂2π=3 ¼ e−ið2π=3ÞL̂: ð12Þ

To check that these operators commute, recall the relation
eiϕ̂L̂e−iϕ̂ ¼ L̂ − 1 and the identity X̂eαL̂X̂† ¼ eαX̂ L̂ X̂†

for
any unitary X̂ and scalar α. ŜZ and ŜX are the code’s check
operators, which we can measure to diagnose errors. Note
that measuring ŜZ is equivalent to measuring ϕ̂ modulo
π=3 and that measuring ŜX is equivalent to measuring L̂
modulo 3, as we assert earlier, and that we can perform
these measurements simultaneously because ŜZ and ŜX
commute.
Furthermore, we note that the operators

Z̄≡ Ẑ3 ¼ ei3ϕ̂; X̄ ¼ X̂π=3 ¼ e−iðπ=3ÞL̂ ð13Þ

also commute with the stabilizer generators, which means
that these are logical operators which preserve the
code space. We see also that Z̄ and X̄ anticommute and
that they square to the identity on the code space, where
ŜZ ¼ ŜX ¼ 1. Thus, Z̄ and X̄ may be regarded as the logical
Pauli operators acting on the encoded qubit, where Z̄ is
diagonal in the basis fj0̄i; j1̄ig and X̄ is diagonal in the
conjugate basis fð1= ffiffiffi

2
p Þðj0̄i � j1̄iÞg.

2. CSS construction

We may also describe our protected qubit using the
language of CSS codes [138,141]. In the CSS construction,
a quantum error-correcting code is built from a classical
error-correcting code K and a subcode H ⊂ K.
In the case of the protected qubit with basis states (10),

the code K is a six-state system embedded in the infinite-
dimensional Hilbert space of the rotor, with the six states
corresponding to six equally spaced angular positions of
the rotor, rotated byϕ ¼ ð2π=6Þk, k ∈ f0; 1;…; 5g, relative
to a standard reference orientation. This classical system is
protected against errors that shift the rotor slightly, rotating it
through an angle δϕ∈ ½−π=6;π=6�. The subcode H has three
states, with orientations ϕ ¼ ð2π=3Þk, k ∈ f0; 1; 2g, and
protects against rotations which are twice as large:
δϕ ∈ ½−π=3; π=3�. In the associated quantum code, each
of the basis states (10) is a uniform superposition of all the
elements of a coset of H in K, the trivial coset (the elements
of H) for the basis state j0̄i, and the nontrivial coset for the
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basis state j1̄i. The protection of this qubit against shifts of
the rotor is inherited from the corresponding property of the
classical code K.
There is a dual description of this quantum code, making

use of the angular-momentum basis of the rotor rather than
its position basis. The classical code H⊥, dual to H,
contains all angular-momentum eigenstates where l is
an integer multiple of 3. These two classical codes are
dual in the sense that the representations of the group U1

contained in H⊥ represent the elements of H trivially.
Similarly, the classical code K⊥ dual to K contains all
angular-momentum eigenstates where l is an integer
multiple of 6, those representations which represent K
trivially. Evidently, K⊥ is a subcode of H⊥. For the
quantum code, each basis state in Eq. (11) is a uniform
superposition of all the elements of a coset of K⊥ in H⊥,
the trivial coset for the basis state 1=

ffiffiffi
2

p ðj0̄i þ j1̄iÞ, and the
nontrivial coset for the basis state 1=

ffiffiffi
2

p ðj0̄i − j1̄iÞ. The
classical code H⊥ protects against shifts of the angular
momentum by δl ∈ f−1; 0; 1g, and the quantum code
inherits this property.
Viewed as an abstract group, the code K is the subgroup

Z6 of U1, and H is the subgroup Z3 ⊂ Z6. The construction
can be easily generalized to K ¼ ZdN and H ¼ ZN , where d
andN are positive integers, in which case the quantum code
is d-dimensional. In the stabilizer language, this more
general code has stabilizer generators

ŜZ ¼ ẐdN; ŜX ¼ X̂2π=N: ð14Þ

Its logical operators

Z̄ ¼ ẐN; X̄ ¼ X̂2π=dN ð15Þ

are generalized Pauli operators, obeying the Heisenberg-
Weyl commutation relation Z̄ X̄ ¼ eið2π=dÞX̄ Z̄. This quan-
tum code protects against position shifts by δϕ with jδϕj <
ðπ=dNÞ and momentum kicks by δlwith jδlj ≤ ðN − 1Þ=2
(for odd N). Note the trade-off: Increasing N improves the
protection against angular-momentum kicks but weakens
the protection against rotations.

3. Partial Fourier transform

There is yet another way to describe the code construc-
tion, using the notion of a partial Fourier transform, which
is helpful as we seek further generalizations. Recall that the
position and angular-momentum bases for the planar rotor
are related by Fourier transforming:

jli ¼
Z

π

−π
dϕjϕihϕjli ¼ 1ffiffiffiffiffiffi

2π
p

Z
π

−π
dϕjϕieilϕ; ð16aÞ

jϕi ¼
X
l∈Z

jlihljϕi ¼ 1ffiffiffiffiffiffi
2π

p
X
l∈Z

jlie−ilϕ: ð16bÞ

It is useful to imagine that the above integral over ϕ is
carried out in two steps. We write ϕ ¼ aþ ð2π=NÞh,
where a ∈ ð−π=N; π=N� and h ∈ f0; 1;…; N − 1g; then,
integrating ϕ from −π to π is equivalent to integrating a
from −π=N to π=N and summing H from 0 to N − 1.
Likewise, we can do the sum over l in two steps; we write
l ¼ Nsþ λ, where s ∈ Z and λ ∈ f0; 1;…; N − 1g, and
we separate the infinite sum over s from the finite sum over
λ. When we speak of a “partial Fourier transform,”we mean
performing one of these two steps without the other.
By performing the sum over H but not the integral over

a, we obtain a new orthonormal basis

ja; λi≡ 1ffiffiffiffi
N

p
X
h∈ZN

eið2π=NÞλh
����ϕ ¼ aþ 2π

N
h

�

¼ e−iλa
ffiffiffiffiffiffi
N
2π

r X
s∈Z

e−iNsajl ¼ Nsþ λi; ð17Þ

with normalization ha; λja0; λ0i ¼ δða − a0Þδλλ0 . From now
on, the presence of a semicolon inside a ket declares that ket
to be an element of this basis.
This fja; λig basis is convenient for our purposes,

because shifts in position or angular momentum affect
only one of the two indices. A shift in angular momentum
by δl acts on the basis according to

ja; λi → ja; ðλþ δlÞ mod Ni ð18Þ

(up to a phase), shifting λ → λþ δl modulo N. A shift in
position by δϕ shifts a → aþ δϕ modulo 2π=N:

ja; λi →
����ðaþ δϕÞ mod

2π

N
; λ

�
: ð19Þ

To recover our previous code construction, we choose d
basis states fjk̄ig with λ ¼ 0 and a ¼ ð2π=dNÞk, finding

jk̄i ¼
����2πdN k; 0

�
¼ 1ffiffiffiffi

N
p

X
h∈ZN

����ϕ ¼ 2π

dN
kþ 2π

N
h

�

¼
ffiffiffiffiffiffi
N
2π

r X
s∈Z

e−ið2π=dÞskjl ¼ Nsi: ð20Þ

If an error occurs in which jδlj ≤ ðN − 1Þ=2 (for odd N)
and jδϕj < ðπ=dNÞ, we diagnose the error by performing a
measurement which determines the value of λ and also the
value of a (mod 2π=dN). Then, the value of a unambig-
uously identifies the shift in ϕ, and the value of λ
unambiguously identifies the shift in l. Once known, these
shifts can be corrected to recover the initial undamaged
code states.
The orientation label ϕ of the planar rotor can be viewed

as the element of the group U1 describing the rotation
which reaches ϕ starting from a standard initial orientation.
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The basis fja; λig for the rotor’s Hilbert space reflects a
decomposition of U1 which may be written symbolically as

U1 ≅ U1=ZN × cZN: ð21Þ

That is, a labels an element of U1=ZN (a coset of ZN in U1),
and λ labels an element of cZN (an irreducible representation
of ZN). Our error-correction procedure makes use of a finer
decomposition:

U1 ≅ U1=ZdN × ZdN=ZN × cZN: ð22Þ
The correctable rotation error is an element of U1=ZdN , the
correctable angular-momentum kick is an element of cZN ,
and code basis states correspond to elements of ZdN=ZN .
We use similar decompositions in our constructions of
quantum codes for more general groups.

B. Gates, recovery, and initialization

To use the above codes for quantum computation on
multiple encoded rotors, we need to initialize in the code
subspace, execute quantum gates, and perform the meas-
urement-based error correction described above. For these
tasks, we need operators other than the Pauli-type operators
X̂ϕ (7) and Ẑl (8). As is typical of quantum codes, there is
an “easy” subset of all possible operators that aid us in the
above tasks in a reasonably fault-tolerant manner. For U1

rotors, such normalizer or symplectic operations are gen-
erated by certain quadratic functions of the rotors’ positions
and momenta [142,143].

1. Symplectic operations

Single-rotor symplectic operations include unitary
operators generated by Hamiltonians that are polynomials
in angular momentum of at most degree 2. The quadratic-
phase operator QUADφ ¼ e−iφL̂ðL̂þ1Þ=2 (with angle φ ∈ U1)
maps

Ẑ → X̂φẐ; ð23Þ

while commuting with position shifts X̂ϕ (also generated
by L̂). The analogous two-rotor “conditional-phase”
operator CPHSφ ¼ e−iφL̂⊗L̂ [cf. [123], Eq. (23)] commutes
with X̂ϕ ⊗ 1 and 1 ⊗ X̂ϕ but maps

Ẑ ⊗ 1 → Ẑ ⊗ X̂φ and 1 ⊗ Ẑ → X̂φ ⊗ Ẑ: ð24Þ

Another operation is the conditional rotation

CROT≡ e−iϕ̂⊗L̂ ¼
Z
U1

dϕjϕihϕj ⊗ X̂ϕ; ð25Þ

shifting the position of the second rotor by ϕ, conditioned
on the first rotor being at position ϕ. This maps

X̂ϕ ⊗ 1 → X̂ϕ ⊗ X̂ϕ and 1 ⊗ Ẑ → Ẑ† ⊗ Ẑ ð26Þ

while acting trivially on Ẑ ⊗ 1 and 1 ⊗ X̂ϕ.
The QUAD and CPHS operations can be realized by

turning on Hamiltonians quadratic in angular momenta
for a specified amount of time [cf. Eq. (4)]. The CROT

operation, however, cannot be obtained from the
“Hamiltonian” H ¼ ϕ̂ ⊗ L̂, because such an H would
not be invariant under 2π rotations of the first rotor and,
therefore, would not be single valued. (A similar problem
plagues the Hamiltonian ϕ̂, present in the exponent of Ẑ,
while ϕ̂2 is not single valued even when exponentiated.) To
produce such an operator in the lab, one can consider
adapting implementations of the related oscillator phase
operator to rotors [89,90] (see Sec. III A).

2. Logical gates

The above symplectic operations, for certain φ, perform
logical Clifford operations on the encoded qudits. The gate
QUAD2π=dN2 performs a logical qudit rotation mapping Z̄ →
XZ (up to a phase), while CPHS2π=dN2 and CROT act as
entangling gates.
In the case of a logical qubit (d ¼ 2) with logical

operators Z̄ ¼ ẐN and X̄ ¼ X̂π=N (15), the symplectic
operations producing the above logical transformations
act on the rotor positions ϕ1;2 and momenta l1;2 as follows:

QUADπ=N2∶ ϕ → ϕ −
π

N2
lþ c; l → l;

CPHSπ=N2∶ ϕ1 → ϕ1 −
π

N2
l2; l1 → l1;

ϕ2 → ϕ2 −
π

N2
l1; l2 → l2;

CROT∶ ϕ1 → ϕ1 l1 → l1 − l2;

ϕ2 → ϕ2 þ ϕ1; l2 → l2; ð27Þ

with constant c ¼ ðπ=2ÞðN − 1=N2Þ (cf. Sec. IX in
Ref. [1]). We assume in Eq. (27) that ϕ and l simulta-
neously have definite values, which makes sense for an
encoded state assuming that ϕ and l are sufficiently small.
These transformations do not amplify correctable position
and momentum shifts into uncorrectable ones, and a small
overrotation or underrotation in the implementation of one
of the logical gates introduces only correctable errors, not
logical errors. In this sense, the logical gates are fault
tolerant.
The above symplectic operations do not provide a

universal set of logical operations. One way to upgrade
to such a set is to include unitaries generated by the logical
operators fX̄; Z̄g themselves. The gates eiφðX̄þH:c:Þ and
eiφ

0ðZ̄þH:c:Þ allow for arbitrary single-qudit rotations, while
eiφ

00ðX̄⊗X̄þH:c:Þ allows for arbitrary logical XX rotations.
Such gates are, however, not fault tolerant, as fluctuations
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in the φ’s produce undetectable errors. One can also
consider using Hamiltonians that are cubic (or higher) in
angular momenta.

3. Diagnosis and recovery

A shift in the position by δϕ and momentum by δl maps
logical states jk̄i → jð2π=dNÞkþ δϕ; δli (up to a phase).
To diagnose the errors, we need to measure ϕ̂ mod 2π=dN
and L̂ mod N. Once this error syndrome is known, we can
undo the damage by applying X̂†

δϕ (7) and Ẑδl† (8) to the
corrupted logical states.
To measure ϕ̂ mod 2π=dN, we need an ancilla that can

resolve all possible values of this syndrome while revealing
no information about the protected encoded state. One way
to extract the syndrome is to encode the ancilla using the
same code that protects the data [144]. Specifically, we
may prepare an ancillary rotor in the logical-X eigenstate
j0̄Xi, a uniform superposition of the position eigenstates
fjϕ ¼ ð2π=dNÞk0i; k0 ¼ 0; 1;…; dN − 1g, which is, there-
fore, invariant under the rotation ϕ → ϕþ ð2π=dNÞ.
Applying the CROT gate (25) to a noisy logical state and
a noiseless ancilla yields

CROT

���� 2πdN kþ δϕ; δl
�

⊗ j0̄Xi

¼
���� 2πdN kþ δϕ; δl

�
⊗ X̂δϕj0̄Xi: ð28Þ

The ancilla can then be measured in the fjϕig basis, and the
measured value modulo 2π=dN determines the shift δϕ. If
the ancilla is noisy or the measurement is imperfect, then
the extracted value of δϕ is likewise noisy; nevertheless, if a
fresh supply of ancilla rotors is continuously available, this
recovery procedure with high likelihood prevents small
displacements of the data rotor from accumulating to
produce an uncorrectable logical error.
To measure L̂modN, we need an ancilla that can resolve

the N values of the syndrome. In this case, we could
initialize an ancilla rotor in the state jϕ ¼ 0i and apply
CPHS2π=N to the data and ancilla rotors. This gate rotates the
ancilla by ð2π=NÞδl, and the value of δl can, therefore, be
extracted by measuring the ancilla in the position basis.
Since the syndrome takes discrete values, some noise
resilience is built into the procedure—δl is determined
by rounding off the measured value of ϕ to the nearest
multiple of 2π=N.
Since we need only to resolve a discrete number of

momentum syndrome values, a discretized version of the
above scheme using a qunit ancilla works just as well. Let
fjhzi; h ∈ ZNg be the position states of the qunit, and
initialize the qunit in the state j0zi. Then apply the
entangling gate

CPHS0 ≡X
l∈Z

jlihlj ⊗ Xl; ð29Þ

where X satisfies X jhzi ¼ jhþ 1zi (modulo N) and XN is
the identity. This process yields

CPHS0
����2πdNkþδϕ;δl

�
⊗ j0zi¼

����2πdNkþδϕ;δl
�
⊗ jδlzi;

ð30Þ

and measuring the qunit in the position basis then reveals
the syndrome.

4. Initialization

The above error-correction procedures can equivalently
be used to initialize in certain logical states. For example,
consider one rotor initialized in jϕ ¼ 0i, coupled to an
ancillary qunit initially in j0zi. Applying CPHS0 yields

CPHS0jϕ ¼ 0i ⊗ j0zi ∝
X
λ∈ZN

j0; λi ⊗ jλzi: ð31Þ

Measuring the ancilla in the jhzi basis to obtain a particular
λ ¼ λ⋆ collapses the rotor state to j0; λ⋆i. Applying a
momentum kick Ẑλ⋆† then produces the logical state
j0̄i ¼ j0; 0i (20), thereby completing the initialization.
Analogous initialization schemes use the position syn-
drome measurement.

V. MOLECULAR CODES

By a “molecular code,” we mean a finite-dimensional
subspace of the infinite-dimensional Hilbert space of a
rigid body in three dimensions (also known as a “rigid
rotor”). To define a basis for this infinite-dimensional
Hilbert space, we imagine fixing a coordinate system in
the laboratory, pinning the body’s center of mass, and
specifying the orientation of the body relative to a standard
initial configuration in this fixed coordinate system. For a
molecule with no symmetries, the possible orientations
are in one-to-one correspondence with the elements of the
3D special orthogonal group SO3; thus, we may choose
the “position” basis fjRi; R ∈ SO3g. This correspondence
between group elements and orientations of the body
follows the same logic as in our discussion of the planar
rotor in Sec. IV, where we identify position-basis eigen-
states with elements of U1.
If the body has symmetries, using a group element to

specify the orientation becomes redundant, and the position
basis should be refined accordingly. For example, if there is
an axis of symmetry (as for a diatomic molecule composed
of two distinct nuclei), the body is invariant under the U1

subgroup of rotations about the symmetry axis, and the
possible orientations are in one-to-one correspondence
with the coset space SO3=U1, which is equivalent to the
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two-sphere S2. If, in addition, the axis of symmetry has no
preferred direction, so the body is invariant under reflec-
tions that invert the axis (as for a diatomic molecule
composed of two identical nuclei), then the position
eigenstates are labeled by the elements of the real projective
space SO3=O2 ¼ RP2. In this section, we assume the body
has no symmetries; the case of a body with a symmetry axis
(also known as a “linear rotor”) is discussed in Sec. VI.
An active rotation of the body described by SO3 element

S alters the orientation of the body according to R → SR;
that is, the group element describing the orientation of the
body is left multiplied by S. This rotation is represented by
the unitary operator X⃗S, which acts on the Hilbert space
according to

X⃗S∶ jRi → jSRi: ð32Þ
We also consider passive rotations, rotations of the coor-
dinate system in the laboratory, which act on the position
basis according to

X⃖S∶ jRi → jRS−1i: ð33Þ

As in our discussion of the U1 case, there is a Fourier-
conjugate basis of angular-momentum states (also known
as “rotational states”), defined for SO3 by

jlmni ¼
Z
SO3

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

8π2

r
Dl

mnðRÞjRi; ð34aÞ

jRi ¼
X
l≥0

X
jmj;jnj≤l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

8π2

r
Dl⋆

mnðRÞjlmni: ð34bÞ

The fDl
mng denote matrix elements of the angular momen-

tum l irreducible representation of SO3, obeying

Dl
mnðSRÞ ¼

X
p

Dl
mpðSÞDl

pnðRÞ ð35Þ

and Dl
mnðR−1Þ ¼ Dl⋆

nmðRÞ, with normalization [145]Z
SO3

dRDl⋆
mnðRÞDl0

m0n0 ðRÞ ¼
8π2

2lþ 1
δll0δmm0δnn0 : ð36Þ

The integral is with respect to the invariant Haar measure
dR on SO3, here normalized so that the volume of the
group

R
SO3

dR ¼ 8π2.
The elements of the conjugate basis transform under

active and passive rotations according to

X⃗Rjlmni ¼
X
p

Dl⋆
pmðRÞjlpni; ð37aÞ

X⃖Rjlmni ¼
X
p

Dl
pnðRÞjlmpi: ð37bÞ

These and other useful properties of the Dl
mn matrices are

summarized in Table IV.
The functions Dl

mnðRÞ are a complete basis for functions
which map the group to complex numbers. Hence, an
arbitrary function fðRÞ on the group can be Fourier
expanded in this basis:

fðRÞ ¼
X
l≥0

X
jmj;jnj≤l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

8π2

r
flmnDl

mnðRÞ; ð38aÞ

flmn ¼
Z
SO3

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

8π2

r
Dl⋆

mnðRÞfðRÞ: ð38bÞ

We use the notation f̂ for the operator associated with the
function fðRÞ that is diagonal in the fjRig basis:

f̂ ¼
Z
SO3

dRjRifðRÞhRj: ð39Þ

Fourier expanding this operator, we obtain

f̂ ¼
X
l≥0

X
jmj;jnj≤l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

8π2

r
flmnD̂

l
mn: ð40Þ

An arbitrary operator E acting on the Hilbert space of the
rotor can be expanded in terms of an operator basis, in
which each element of the basis is a diagonal operator
followed by an active rotation. After Fourier expanding the
diagonal operator, E has the expansion

E ¼
Z
SO3

dS
X
l≥0

X
jmj;jnj≤l

El
mnðSÞX⃗SD̂

l
mn; ð41Þ

where we absorb an l-dependent numerical factor into the
coefficient El

mnðSÞ. This result is the analog of the
expansion of an operator acting on a qudit in terms of
the Pauli operator basis. Therefore, a completely positive
noise channel E acting on a state ρ of the rigid rotor has an
expansion of the form

EðρÞ ¼
Z
SO3

dS
Z
SO3

dS0
X
l;m;n

X
l0;m0;n0

El
mn

l0
m0n0 ðS; S0Þ

× X⃗SD̂
l
mnρD̂

l0†
m0n0X⃗

†
S0 : ð42Þ

Our goal is to construct a code that allows us to recover
successfully from any error of the form

ρ → X⃗SD̂
l
mnρD̂

l0†
m0n0X⃗

†
S0 ; ð43Þ

where the position shifts S and S0 and momentum kicks l
and l0 are sufficiently small. Using this code, we can
recover from the noise channel E with high fidelity if
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X⃗SD̂
l
mnρD̂

l0†
m0n0X⃗

†
S0 has most of its support on small values of

S, S0, l, and l0.
To determine how well these codes protect against

physical rigid-rotor noise models [146–152], one expands
the noise operators E from Eq. (41) in terms of position and
momentum shifts and estimates the probability of an
uncorrectable error. A similar analysis for code states of
harmonic oscillators rather than rotors (see Ref. [3],
Sec. VII) shows that physically relevant noise is typically
correctable with high probability. If the noise acts locally in
phase space, our rotor codes should perform well.

A. ZN ⊂ Z2N codes

We want to construct a finite-dimensional code sub-
space for the rigid rotor which is protected against
small shifts in position and in angular momentum. For
this purpose, we specify a discrete subgroup H ⊂ G ¼
SO3 and consider the basis defined by the correspond-
ing partial Fourier transform. In this section, we assume
H is ZN , an Abelian group of rotations about the z
axis; the case where H is non-Abelian is discussed in
Secs. V D and V E.
As for the case of G ¼ U1 from Sec. IVA, our code

construction makes use of a basis defined by a partial
Fourier transform associated with the subgroup ZN . The
elements of this basis are

jSZN ; λi≡ 1ffiffiffiffi
N

p
X
h∈ZN

eið2π=NÞλhX⃗S

���� 2πN h; z

�
; ð44Þ

here, jω; zi denotes the position eigenstate jRi, where R≡
Rω;z is a rotation by angle ω ∈ ½0; 2πÞ about the z axis.
Note that the index λ ∈ f0; 1;…; N − 1g indicates the
irreducible representation of ZN according to which the
state jSZN ; λi transforms. From now on, the presence of a
semicolon inside a ket declares that ket to be an element of
this basis.
The rotation S is a representative of a coset in the lens

space SO3=ZN . Coset representatives are not unique
because of the freedom to multiply S on the right by an
element of ZN without modifying the coset. We label each
coset using the representative S that is as close as possible
to the identity rotation. We call the set of such represent-
atives the fundamental Voronoi cell, denoting it by FSO3=ZN

(see Appendix B). It is shown in blue in Fig. 2(b)
for N ¼ 6.
More generally, theN images of FSO3=ZN

under the action
of passive rotations R ∈ ZN are called Voronoi cells of R.
These cells are disjoint, and together they cover SO3 in
what is known as a Voronoi tiling. The six cells for N ¼ 6
are shown in groups of three in Fig. 3(c), right and left.
Voronoi tilings exist for all discrete subgroups H ⊂ SO3;
fundamental cells FSO3=H for various H are bounded in
orange and blue in Fig. 4.

1. Code words

As in Sec. IVA, code basis states are associated with the
elements of the coset space ZdN=ZN , where ZdN is a larger
group of rotations about the z axis that contains ZN . Here,
for simplicity, we assume that d ¼ 2, but the generalization
to other values of d is straightforward. Then, the code
words are

j0̄i ¼ 1ffiffiffiffi
N

p
X
h∈ZN

����2πN h; z
�
; ð45aÞ

j1̄i ¼ 1ffiffiffiffi
N

p
X
h∈ZN

����2πN hþ π

N
; z

�
: ð45bÞ

The state j0̄i is the uniform superposition of elements of
ZN , while j1̄i is the uniform superposition of the elements
of the nontrivial coset of ZN in Z2N , elements displaced
from ZN by Rðπ=NÞ;z, the π=N rotation about the z axis. In
terms of the partially Fourier-transformed basis Eq. (44),
we may express the code words as

FIG. 3. Error and recovery. (a) Effect of a representative
position shift on the code word group elements. The group
SO3 is represented as a 3-ball with antipodal points identified.
The three group elements which are superposed in the code word
j0̄i (j1̄i) (45) are indicated as black (white) balls. Upon the
indicated representative position shift, each group element is
mapped to a group element corresponding to the red ball linked
by a red arrow. (b) Sketch of the jlmmi angular-momentum
pyramid for 0 ≤ jmj ≤ l, where nonzero components of the
logical-X eigenstates j0̄iX and j1̄iX (49) are marked in black for
the case N ¼ 3. Under the momentum kick D̂1

11 (54), these code
words are mapped to error states j00iX and j10iX, whose
components are marked in red. (c) Voronoi cells of group
elements corresponding to code word j0̄i (left) and j1̄i (right)
are indicated as a red, blue, or green region.
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j0̄i ¼ jZN ; 0i and j1̄i ¼ jRðπ=NÞ;zZN ; 0i: ð46Þ

Using Eq. (34), we can also express these code words
in the angular-momentum eigenstate basis. Since Dl

mnðRÞ
is a diagonal matrix for any rotation R about the
z axis, [145],

Dl
mnðω; zÞ ¼ δmneimω; ð47Þ

we easily compute (for r ∈ f0; 1g)

jr̄i ¼
X
l≥0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð2lþ 1Þ

8π2

r X
jpNj≤l

ð−1ÞprjlpN;pNi: ð48Þ

We see that, when expanded in the jlmni basis, the only
states that occur with nonzero coefficients are those for
which m ¼ n is an integer multiple of N. This property
ensures that the code words are well protected against
sufficiently small angular-momentum kicks.
It is also useful to express the code words in the logical-X

basis, defining jr̄iX ¼ ð1= ffiffiffi
2

p Þ½j0̄i þ ð−1Þrj1̄i� and finding

j0̄iX ¼
X
l≥0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð2lþ1Þ

4π2

r X
j2pNj≤l

���l
2pN;2pN

E
;

j1̄iX ¼
X
l≥N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð2lþ1Þ

4π2

r X
jð2pþ1ÞNj≤l

���l
ð2pþ1ÞN;ð2pþ1ÞN

E
: ð49Þ

The code word j0̄iX, expanded in the jlmni basis, includes
only basis states in which m ¼ n is an even multiple of N,
and the code word j1̄iX includes only basis states withm an

odd multiple of N. The jlmni’s which occur with nonzero
coefficients are indicated schematically in Fig. 2(b) for
N ¼ 3, with black squares indicating basis states in the
expansion of j0̄iX and white squares indicating basis states
in the expansion of j1̄iX.

2. Position shifts

We correct an error of the form Eq. (43) in two steps. In
the first step, we diagnose and reverse the shift in the
position basis X⃗S∶jRi → jSRi. After the position shift is
corrected, we can proceed to correct the momentum
kick D̂l

mn.
For any coset space G/H, we can label the cosets using

coset representatives chosen from the fundamental Voronoi
cell FG=H. Then, the action of G on the cosets is described
by the induced representation [153–155]

X⃗RjSH; 0i ¼ jRSTH; 0i; ð50Þ

where T is a compensating element of H chosen to ensure
that RST ∈ FG=H. (If RS ∈ FG=H, then no compensating
element of H is needed.)
The effect of a representative rotation on the group

elements making up the code words is shown in Fig. 3(a).
For correcting position shifts acting on the code words, the
relevant coset space is SO3=Z2N . We quotient out Z2N

rather than ZN , because both j0̄i and j1̄i are superpositions
of elements of Z2N ; hence, an element of SO3=Z2N
characterizes the shift away from the code space induced
by X⃗R in Eq. (50), without revealing any information that
distinguishes j0̄i from j1̄i. We divide the basis elements
fjSZN ; λig (44) into two disjoint subsets, where each subset
is parametrized by an element of FSO3=Z2N

rather than an
element of FSO3=ZN

, as follows:

jS̃ZN ; λi ¼ X⃗S̃jZN ; λi and

jS̃Rðπ=NÞ;zZN ; λi ¼ X⃗S̃jRðπ=NÞ;zZN ; λi; ð51Þ

where λ∈ f0;1;…;N−1g as before, but now S̃ ∈ FSO3=Z2N
.

Since each element of S ∈ FSO3=ZN
can be uniquely

expressed as either S¼ S̃ or S¼ S̃Rðπ=NÞ;z, for S̃∈FSO3=Z2N
,

this basis is the same basis as described earlier, just with
a different labeling than before. The first set is the set
of all states obtained by acting with a rotation S̃ ∈ FSO3=F2N
on the logical zero code word; the second set is obtained
similarly from logical one. (If we wish to construct a d-
dimensional code space, we would divide the basis into d
disjoint subsets, with each subset parametrized by an
element of FSO3=ZdN

.)
To diagnose the error, we measure the value of S̃ and then

apply X⃗†
S̃
to attempt to correct the effect of the position

shift. If the actual shift error is X⃗R, where R is contained in

FIG. 4. Non-Abelian subgroup codes. (a) Sketch of the prism
spaces SO3=D3 (orange), SO3=D6 (blue), and group elements
representing the two logical code words within SO3=D3 for the
D3 ⊂ D6 dihedral code from Sec. V D. Similar sketches for the
quotient spaces (see Table I) and code words of (b) the T ⊂ O and
(c) the T ⊂ I codes from Sec. V E.
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the FSO3=Z2N
, this recovery procedure successfully corrects

the position-shift error, mapping

X⃗RjZN ; λi → jZN ; λi; ð52aÞ

X⃗RjRðπ=NÞ;zZN ; λi → jRðπ=NÞ;zZN ; λi: ð52bÞ

A subsequent momentum-kick correction, described below,
then completes the recovery, correctly mapping the cor-
rupted states back to their respective code words (46).
However, if R is not contained in FSO3=Z2N

, then there may
be an uncorrected logical error which interchanges jZN ; λi
and jRðπ=NÞ;zZN ; λi on the right-hand side of Eq. (52).
Thus, the code protects against any position-shift error

X⃗R for R ∈ FSO3=Z2N
. This set of correctable rotations is

indicated by the blue region in Fig. 2(b). How large an
angular rotation can be tolerated depends on the axis of
rotation and can be determined by analyzing the geometry
of the fundamental cell FSO3=Z2N

(see Appendix B). We find
that a rotation by angle ω about an axis with polar angle Θ
is contained within FSO3=Z2N

for

jωj < ωmaxðΘÞ≡
����2cot−1�cosΘ cot

π

4N

�����: ð53Þ

The maximum correctable rotation angle ωmaxðΘÞ is
smallest for rotations about the z axis, where ωmaxð0Þ ¼
ðπ=2NÞ, as for the planar-rotor code discussed in
Sec. IVA. The largest correctable rotation angles occur
when the rotation axis is in the equatorial plane, where
ωmaxðπ=2Þ ¼ π. Thus, any rotation about such an axis
is correctable, unless the rotation angle is precisely π.
The relative volume occupied by correctable rotations in
SO3 is 1=2N.

3. Momentum kicks

We have now described how to correct the position shift
X⃗R in Eq. (43). Next, we need to understand how to contend
with a momentum kick

D̂l
mn ≡

Z
SO3

dRjRiDl
mnðRÞhRj ð54Þ

acting on the code space.
We can compute the action of D̂l

mn on the code words
using Eq. (47), finding

D̂l
mnj0̄i ¼ δmnjZN ; λ ¼ mðmodNÞi; ð55aÞ

D̂l
mnj1̄i ¼ δmneiðπ=NÞmjRðπ=NÞ;zZN ; λ ¼ mðmodNÞi: ð55bÞ

After the noise acts on the encoded state, and the position-
shift error is corrected, we measure the value of λ, the
syndrome for the momentum-shift error. The key thing to

notice is that, while λ determines the value of m (mod N),
the code-word-dependent phase eiðπ=NÞm in Eq. (55)
depends on the value of m (mod 2N). In fact, for any
value of l ≥ N, the operator D̂l

NN is a nontrivial logical
operator that preserves the code space and flips the relative
phase of j0̄i and j1̄i.
Once the value of λ is known, we attempt recovery by

applying the unitary operator Um with the action

Um∶jZN ;mi → jZN ; 0i;
jRðπ=NÞ;zZN ;mi → e−iðπ=NÞmjRðπ=NÞ;zZN ; 0i; ð56Þ

wherem is chosen to be the integer with a minimal absolute
value such that m ¼ λ (mod N). For example, we can
choose Um to have the same action as D̂N†

mm on the position
eigenstates jRω;zi, namely,

UmjRω;zi ¼ e−imωjRω;zi: ð57Þ

How Um acts on jRi when R is not a rotation about the z
axis can be chosen arbitrarily. We note, though, that this
extended operator can be diagonal in the fjRig basis. That
is, the recovery operation after a momentum kick can be a
phase shift that depends on the orientation of the rotor and
has the action Eq. (57) when the rotor’s orientation differs
from the standard reference orientation by a rotation about
the z axis.
Notice that m (mod 2N) is unambiguously determined

by λ ¼ m (mod N) for any m satisfying jmj < N=2.
Therefore, the damage to the code words caused by the
action of D̂l

mn is corrected successfully when jmj < N=2.
Since jmj ≤ l, we conclude that the code protects against
any momentum kick D̂l

mn such that

l < N=2: ð58Þ

For l ≥ m > N=2, however, a logical error may occur.
It is also instructive to consider how the momentum kick

D̂l
mn acts on the basis of angular-momentum eigenstates.

We observe that

hLMN jD̂l
mnjl0

m0n0 i ¼
Z
SO3

dRhLMN jRiDl
mnðRÞhRjl0m0n0 i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Lþ1Þð2l0 þ1Þp

8π2

Z
SO3

dRDL⋆
MNðRÞDl

mnðRÞDl0
m0n0 ðRÞ:

ð59Þ

The group integral (59) can be expressed in terms of
Clebsch-Gordan coefficients (see Table IVG). For our
purposes, what is noteworthy is that selection rules for
addition of angular momenta require the integral to vanish
unless
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jl0−lj≤L≤l0 þl; M¼m0 þm; N¼ n0 þn: ð60Þ

As indicated in Eq. (48), if the code words are expanded in
the fjl0m0n0 ig basis, then m0 ¼ n0 is an integer multiple of N
for all states that occur with nonzero coefficients. For
l < N=2, the momentum kick D̂l

mn changes the value ofm0
and n0 by less than half the spacing between successive
multiples of N. Therefore, these shifts in m0 and n0 can be
unambiguously identified and corrected. However, it is
simpler to understand how the recovery procedure works in
detail using the expansion of the code words in the position
basis fjRig [as in Eq. (56)] rather than the angular-
momentum basis (detailed in Appendix C).
The effect of an angular-momentum kick D̂1

1;1 is visu-
alized in Fig. 3(b) for the case N ¼ 3. Recalling Eq. (55),
this kick shifts the code space to a subspace with λ ¼ 1, and
D̂1

−1;−1 shifts the code space to a subspace with λ ¼ 2. In
either case, measuring λ points to a unique error with l ≤ 1

which can then be corrected. However, D̂2
2;2 also maps the

code space to the same subspace with λ ¼ 2 as D̂1
−1;−1,

imparting a different code-word-dependent phase; accord-
ing to Eq. (55), the code word j1̄i acquires the relative
phase exp½−iðπ=3Þ� when D̂1

−1;−1 acts on the code space
and the relative phase exp½ið2π=3Þ� when D̂2

2;2 acts on
the code space. Therefore, if the D̂2

2;2 error occurs and is
misdiagnosed as a D̂1

−1;−1 error, a nontrivial logical error
results when recovery is attempted.

4. Logical operators

The unitary active rotation X⃗ðπ=NÞ;z, acting on the code
words in Eq. (45), has the effect of interchanging j0̄i
and j1̄i. It can be regarded as the logical Pauli operator X̄
acting on the code space. This operation can similarly be
performed by the passive rotation X⃖ðπ=NÞ;z [since the code
words (45) consist of position states forming an Abelian
group]. In other words, we can rotate the molecular frame
or the lab frame to perform this operation. Active and
passive rotations always commute: X⃗RX⃖S ¼ X⃖SX⃗R. We
use this fact to infer the momentum-kick syndrome λ
using passive rotations, without interfering with position
shifts X⃗R.
We have already noted that D̂l

NN (for any l ≥ N), acting
on the code words, preserves j0̄i and flips the phase of j1̄i.
Thus, its action on the code space is equivalent to the
logical Pauli operator Z̄. However, D̂l

NN is not unitary as an
operator acting on the full Hilbert space of the rotor. Why is
D̂l

NN not unitary? Recall that D̂l
mn is diagonal in the fjRig

basis, with eigenvalues fDl
mnðRÞg. The trouble is that, for

rotations that are not about the z axis, fDl
mnðRÞg does not

have modulus 1 and, therefore, cannot be an eigenvalue of a
unitary operator. Specifically, if we parametrize Rαβγ using

Euler angles in the ZYZ convention, where α ∈ ½0; 2πÞ,
β ∈ ½0; π�, and γ ∈ ½0; 2πÞ,

DN
NNðα; β; γÞ ¼ eiNðαþγÞ cos2Nðβ=2Þ; ð61Þ

which has modulus less than 1 for nonzero β.
To formulate an implementation of Z̄ that is achievable in

the laboratory, we should find a unitary extension of its
logical action to the full Hilbert space. As for the recovery
operation described earlier, we can choose this logical Z̄ to
be a phase shift that depends appropriately on the ori-
entation of the rotor.
One way to produce logical gates involves turning on the

Hamiltonian D̂N
NN þ H:c: to perform a logical Z-axis rota-

tion with an angle proportional to the time the Hamiltonian
is turned on. This rotation provides unitary logical Z gates,
and analogous two-qubit ZZ gates can be performed via the
Hamiltonian D̂N

NN ⊗ D̂N
NN þ H:c: However, such gates are

subject to over- or underrotation errors.

5. Check operators

Once we have operators whose action on the code space
matches that of the logical Pauli operators X̄ and Z̄, we can
square these operators to define the check operators for the
code. Then, the code space can be said to be the simulta-
neous eigenspace with eigenvalue 1 of these operators.
Recall that X̄ is a position shift defined as either left or

right multiplication by Rðπ=NÞ;z, corresponding to either an
active or a passive rotation, respectively. We choose our
“X-type” stabilizer to be a passive rotation, yielding the
unitary operator

ŜX ¼ ðX⃖ðπ=NÞ;zÞ2 ¼ X⃖ð2π=NÞ;z: ð62Þ

The condition ŜX ¼ 1 requires the code words to be
invariant under a position shift by Rð2π=NÞ;z. The additional
benefit of using a passive rotation is that all of the partial
Fourier-transformed states (44) are eigenstates of ŜX:

X⃖ð2π=NÞ;zjSZN ; λi ¼ eið2π=NÞλjSZN ; λi: ð63Þ

This way, the syndrome λ can be extracted via a projective
measurement onto eigenspaces of ŜX.
As we note, D̂N

NN is not unitary, but nevertheless we
may square it to obtain a (nonunitary) Z-type check
operator

ŜZ ¼ ðD̂N
N;NÞ2 ¼ D̂2N

2N;2N

¼
Z

sin βdαdβdγjRαβγiei2NðαþγÞcos4Nðβ=2ÞhRαβγj:

ð64Þ
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The eigenspace of ŜZ with eigenvalue 1 contains rotations
about the z axis (β ¼ 0), by angle ω ¼ αþ γ ¼ ðπ=NÞh,
where h ∈ f0; 1;…; 2N − 1g. The only states that satisfy
these conditions and that are also invariant under ŜX are the
states in the code space.
To check that ŜX and ŜZ are really commuting operators,

we observe that

X⃖SD̂
l
mnX⃖

†
S ¼

Z
SO3

dRjRS−1iDl
mnðRÞhRS−1j ð65aÞ

¼
Z
SO3

dRjRiDl
mnðRSÞhRj; ð65bÞ

where we use the invariance of the Haar measure to obtain
the second equality. Furthermore, if S is a rotation about the
z axis, then, recalling the ZYZ Euler-angle convention used
here, right multiplication by S merely changes the third
angle:

Rα;β;γRω;0;0 ¼ Rα;β;γþω: ð66Þ
Using this result and Eq. (61),

DN
NN

�
α; β; γ þ π

N

�
¼ −DN

NNðα; β; γÞ; ð67Þ

we see that D̂N
NN and X⃖ðπ=NÞ;z anticommute, not only acting

on the code space, but also acting on the whole Hilbert
space of the rotor. Correspondingly, ŜZ ¼ ðD̂N

NNÞ2 and
ŜX ¼ ðX⃖ðπ=NÞ;zÞ2 commute and, thus, can be simultane-
ously diagonalized.

B. Measurement and initialization

Generalizing our discussion for the U1 rotor from
Sec. IV B, we outline procedures for extracting the
momentum (λ ∈ ZN) and position (S̃ ∈ FSO3=Z2N

) shift
values using ancilla systems. These procedures also allow
us to perform logical state initialization.

1. Momentum syndromes

There are N different possible values of λ, so a one-shot
measurement requires an ancilla with at least N orthogonal
states. We use a qunit ancilla with Z eigenstates jhzi, X
eigenstates jhxi (h ∈ ZN), and Pauli operator X satisfying
X jhzi ¼ jhþ 1zi (modulo N).
To measure λ, we initialize the qunit in j0zi and entangle

it with the rigid rotor by applying the gate

CPHS ¼
X
l≤0

X
jmj;jnj≤l

jlmnihlmnj ⊗ Xn ð68aÞ

¼
X
h∈ZN

X⃖†
ð2π=NÞh;z ⊗ jhxihhxj; ð68bÞ

where the second line is obtained using Eqs. (37b) and (47).
This gate shifts the “position” of the qunit by n, conditioned
on the rotor having angular-momentum z component n in
the rotor frame. Applying this result to a partially Fourier-
transformed basis state (44) and using Eq. (63) yields

CPHSjSZN ; λi ⊗ j0zi ¼ jSZN ; λi ⊗ jλzi: ð69Þ

The value of λ is thus mapped onto the ancilla, and a
subsequent Z-basis measurement of the ancilla allows us to
extract λ.

2. Position syndromes

To diagnose position shifts without disturbing the logical
information, we have to use an ancilla to measure the
syndrome S̃ ∈ FSO3=Z2N

—“an SO3 rotation modulo Z2N .” In
order to perfectly resolve all possible S̃ in one shot, the
ancilla needs to admit an orthonormal set of position states
parameterized by FSO3=Z2N

. Such a set is exactly the set of
orientations of a Z2N-symmetric rigid body (see Sec. III C).
However, coupling an asymmetric molecule to a symmetric
one is difficult. Below, we show how to approximate the
required position states using generalized spin-coherent
states of a finite-dimensional spin (see Sec. III B).
We use a spin-L ancilla fjLs i; jsj ≤ Lg, which admits an

irrep of SO3 with corresponding rotation matrices DLðRÞ.
In order to “mod out” the Z2N rotation, we initialize the
ancilla in any state jZ2Ni whose maximal invariant sub-
group is Z2N , i.e.,

jhZ2N jDLðTÞjZ2Nij
�¼ 1 T ∈ Z2N;

< 1 otherwise:
ð70Þ

Such states exist for any L ≥ N (Table 10.1 in Ref. [156]);
(see also Refs. [107,157]). For example, the L ¼ N family
of states cos ηjNNi þ sin ηjN−Ni satisfies the above for
any η ∈ ð0; π=4Þ.
Any rotation R ∈ SO3 can be written as R ¼ S̃T, with

S̃ ∈ FSO3=Z2N
and T ∈ Z2N . Therefore, applying rotations to

jZ2Ni and using Eq. (35) yields the following set of
generalized spin-coherent states jS̃iZ2N

:

DLðRÞjZ2Ni ¼ DLðS̃ÞDLðTÞjZ2Ni
∝ DLðS̃ÞjZ2Ni≡ jS̃iZ2N

ð71Þ
parameterized by S̃ ∈ FSO3=Z2N

.
To map the syndrome onto the ancilla, we use the

conditional rotation [cf. Eq. (4) in Ref. [158] ]

CROT ¼
Z
SO3

dRjRihRj ⊗ DLðRÞ: ð72Þ

This gate applies a rotation DðRÞ on the ancilla, condi-
tioned on the rotor being in the state jRi. When applied to
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the specified ancillary state, this gate maps S̃ ∈ FSO3=Z2N

onto the ancilla while ignoring the logical state index.
Applying it to the two sets of basis states from Eq. (51),
we have

CROTjS̃ZN ;λi⊗ jZ2Ni¼ jS̃ZN ;λi⊗ jS̃iZ2N
;

CROTjS̃Rðπ=NÞ;zZN ;λi⊗ jZ2Ni¼ jS̃Rðπ=NÞ;zZN ;λi⊗ jS̃iZ2N
:

ð73Þ

Unfortunately, a projective measurement in the over-
complete jS̃iZ2N

set of the states does not yield S̃ exactly,
since the spin-coherent states are not orthogonal for any
finite L (see Sec. II. 3 in Ref. [99]). However, they approach
orthogonality in the limit L → ∞, meaning that a suffi-
ciently large spin should be able to resolve points in
FSO3=Z2N

to desired accuracy.

3. Initialization

The CROT gate can also be used to initialize in the
logical-X state j0̄iX∝

P
T∈Z2N

jTi (49). Say the rotor instead
starts in the lowest-momentum state j000i—a state outside of
the code space. Then, application of the gate yields (up to
normalization)

CROTj000i⊗ jZ2Ni∝
Z
FSO3=Z2N

dS̃
X
T∈Z2N

jS̃Ti⊗ jS̃iZ2N
: ð74Þ

A projective measurement obtaining some S̃ followed by a
rotation X⃗†

S̃
yields the desired logical state.

C. Normalizable code words

Our logical code words are not normalizable and,
therefore, unphysical. To obtain normalizable states, we
may regulate the sum over the angular momentum l in
Eq. (48) by introducing a broad envelope function which
decays sufficiently rapidly for large l. In position space,
this regulation corresponds to replacing the position eigen-
state jω; zi by a sharply peaked normalizable wave packet
which approximates jω; zi. The protection against position
shifts is mildly impaired due to this spreading of the code
words in position space. On the other hand, these approxi-
mate code words still have support on angular-momentum
states such that l is an integer multiple of N, and, therefore,
the code continues to detect momentum-kick operators
D̂l

mm with l < N and jmj > 0. However, the kicks D̂l
00 no

longer leave the code words invariant [as in Eq. (55)],
inducing a slight l-dependent distortion that can cause a
logical error.
The oscillator GKP codes can be regulated [1] by

applying the damping function expð− 1
2
Δ2n̂Þ to the ideal

code words, where n̂ is the number operator and Δ > 0 is
the damping strength [see Eq. (7.12) in Refs. [3] and

Ref. [4]]. For molecular codes with configuration space
SO3, we analogously use the damping function
expð− 1

2
Δ2L̂2Þ, where L̂2 is the total angular-momentum

operator which satisfies

L̂2jlmni ¼ lðlþ 1Þjlmni ð75Þ
and generates orientational diffusion (see Sec. 16.6 in
Ref. [154]). The approximate code words are thus (for
r ∈ f0; 1g)

jr̃i¼e−ð1=2ÞΔ2L̂2 jr̄i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr̄je−Δ2L̂2 jr̄i

q
¼
X
l≥0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð2lþ1Þe−Δ2lðlþ1Þ

8π2hr̄je−Δ2L̂2 jr̄i

s X
jpNj≤l

ð−1ÞprjlpN;pNi: ð76Þ

Asymmetric diffusion is also possible, yielding an addi-
tional p-dependent damping term.

1. Average momentum

The expectation value of the total angular momentum is
infinite for ideal code words but finite for approximate code
words. The square root of the expectation value of L̂2,

l̄≡ hr̃jL̂2jr̃i1=2 ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2Δ2
−
1

4

r
; ð77Þ

determines the average momentum of the approximate code
words jr̃i. In Appendix C, we detail the calculation that
obtains the above r-independent result, valid in the Δ → 0
limit. While the average photon number is proportional to
the total oscillator energy, energy for the rigid rotor is
proportional to l̄2. For our normalizable code words, the
energy scales identically withΔ as that for the normalizable
GKP states [1]. The variance of l̄, σ2l̄ ¼ hr̃jL̂4jr̃i1=2 − l̄2 ¼
Oðl̄2Þ, is also similar to GKP states (for the latter, photon
number moments satisfy a geometric distribution [3]).

2. Approximate correctability

The spreading of the basis states in position space gives
rise to an intrinsic error in the approximate code; the basis
states j0̃i and j1̃i are imperfectly distinguishable even in the
absence of noise. To quantify the probability of intrinsic
memory error, we estimate Pleak—the probability that the
approximate logical zero state leaks into the union of
Voronoi cells associated with the other logical code word
[for N ¼ 3, these are the three cells in the right in Fig. 3(c)].
In Appendix C, we find, in the Δ → 0 limit,

Pleak ∼ csc

�
π

2N

�
Δffiffiffi
π

p exp

�
−
�

π

2NΔ

�
2
	
: ð78Þ

The right-hand side is exponentially suppressed with 1=Δ2:
Similar to GKP codes [1], a gentle smearing in position
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space does not significantly affect the codes’ performance.
More concretely, Pleak ≈ 10−3 requires an average momen-
tum of ≈ 5.4, with 99% of the approximate code words
supported on the l ≤ 10 momentum subspace. A more
stringent Pleak ≈ 10−6 corresponds to ≈ 8.1 and requires
l ≤ 15 to support 99% of the code words. These are
reasonable numbers for the angular momentum, with recent
experiments accessing l ≤ 6 [15], albeit for a diatomic
molecule.
As we note, the approximate code words are supported

on values of l which are integer multiples of N; therefore,
angular-momentum kicks with l < N and jmj > 0 are
detectable. However, the kicks D̂l

00 slightly distort the
code words, leading to the potential for a logical-X error.
To quantify this distortion, we calculate the matrix element
h0̃jD̂l

00j1̃i for l < N in Appendix C. Numerically, as
Δ → 0, this element is suppressed exponentially with
1=Δ2 for all cases tested. An estimate of its asymptotic
behavior reveals that its dependence on Δ is similar to
Pleak (78):

h0̃jD̂l
00j1̃i ≈ 2ð2lþ 1Þ exp

�
−
�

π

2NΔ

�
2
	
: ð79Þ

The “≈” indicates that this asymptotic estimate is sup-
ported, to some extent, by numerical evidence.

D. Dihedral molecular codes

For molecular codes, G is the rotation group SO3, and up
until now we have considered the case where H, K are
Abelian, namely, H ¼ ZN and K ¼ ZdN (for a code space of
dimension d). We may also construct codes for which K,
and perhaps also H, are non-Abelian subgroups of SO3.
Position correction proceeds similarly as for the Abelian
molecular codes: One measures values in the coset space
SO3=K and applies a rotation to map back into the code
space. Picking non-Abelian subgroups allows for more
uniform correctable rotation sets FSO3=K than the saucerlike
FSO3=Z2N

from Fig. 2(b). Detectable and correctable momen-
tum kicks l can be read off by successive use of branching
formulas, i.e., restricting SO3 irreps Dl to K and decom-
posing the resulting matrix into irreps of K, and then further
restricting and decomposing into H irreps. Here, we
describe DN ⊂ D2N molecular codes, where DN is the
dihedral group.

1. Code words

The group ZN , containing rotations about the z axis by
angle ω ¼ ð2π=NÞh with h ∈ f0; 1;…; N − 1g, can be
extended to the dihedral group DN by adding the ω ¼ π
rotation around the x axis. The dihedral group has 2N
elements, the original N rotations contained in ZN and
also N “reflections”—rotations by π about N equally
spaced axes on the equator. In terms of Euler angles, the

rotations in DN are the elements fð2π=NÞh; 0; 0g of SO3,
and the reflections are the elements fð2π=NÞh; π; 0g,
for h ∈ f0; 1;…; N − 1g.
Here, we consider an extension of the ZN ⊂ ZdN codes to

DN ⊂ DdN . For the d ¼ 2 case, the coset space D2N=DN
contains two cosets: the trivial coset (the DN subgroup
of D2N) and the nontrivial coset, which is obtained by
multiplying all elements of DN by the rotation with Euler
angles fðπ=NÞ; 0; 0g. The logical code words are

j0̄i ¼ 1ffiffiffiffiffiffiffi
2N

p
X
T∈DN

jTi; ð80aÞ

j1̄i ¼ 1ffiffiffiffiffiffiffi
2N

p
X
T∈DN

jRðπ=NÞ00Ti: ð80bÞ

This code family has much in common with the ZN ⊂ Z2N
code; in particular, it can correct momentum kicks with
l < N=2. The space of correctable position shifts—the
prism space SO3=D2N [Table I and Fig. 4(a)]—gets flatter
with increasingN. Thus, as for the ZN ⊂ Z2N codes, there is
a trade-off: As N increases, the code protects against larger
momentum kicks, but at the cost of weakened performance
against rotation errors.

2. Partial Fourier transform

For the DN ⊂ D2N code, the partially Fourier-trans-
formed basis generalizing Eq. (44) consists of pairs of
basis states of the form

jSDN ;
λ
μνi ¼

1ffiffiffiffiffiffiffi
2N

p
X
T∈DN

�Zλ
μνðTÞjSTi; ð81aÞ

jSRðπ=NÞ00DN ;
λ
μνi ¼

1ffiffiffiffiffiffiffi
2N

p
X
T∈DN

�Zλ
μνðTÞjSRðπ=NÞ00Ti: ð81bÞ

Now S is an element of the fundamental Voronoi cell
S ∈ FSO3=D2N

, λ labels an irreducible representation (irrep)
of DN , and �Zλ

μνðTÞ denotes the matrix elements of that
representation, evaluated for the DN element T. (The non-
Abelian group DN has both one-dimensional and two-
dimensional irreps.) The code words Eq. (80) correspond to
j0̄i ¼ jDN ;

1
00i and j1̄i ¼ jRðπ=NÞ00DN ;

1
00i, where λ ¼ 1 is

the trivial irrep. The basis states jSDN ;
λ
μνi span all

states that can be reached when a correctable error acts
on the code word j0̄i; S is the rotation error, and λ

μν

indexes the momentum kick. Similarly, the basis states
jSRðπ=NÞ00DN ;

λ
μνi span all states that can be reached when a

correctable error acts on the code word j1̄i.
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3. Position shifts

Our recovery consists of first correcting position shifts
by measuring S and applying X⃗†

S to map all error states
into the subspace fjDN ;

λ
μνi; jRðπ=NÞ00DN ;

λ
μνig for all λ

μν. To
extract S, we can readily adapt the procedure described in
Sec. V B. This adaptation entails initializing an ancillary
system in a D2N-invariant state, performing the CROT gate
(72), and measuring the ancilla in a basis of generalized
spin-coherent states parameterized by FSO3=D2N

. A similar
scheme can be used for state initialization.

4. Momentum kicks

To see how the momentum-kick operators D̂l
mn affect the

code words, we need to understand how the irrep of SO3

with angular momentum l decomposes into irreps of D2N
and DN . When N is odd, the group DN has two one-
dimensional irreps: the trivial representation (which we
denote by 1) and a nontrivial representation (denoted by 10)
which represents rotations by þ1 and reflections by −1. In
addition, there are ðN − 1Þ=2 two-dimensional irreps,
which we denote by 2k with k ∈ f1; 2;…; ðN − 1Þ=2g.
We can characterize a representation according to how the
generators of DN , the rotation Rð2π=NÞ00 and the reflection
Rð2π=NÞπ0, are represented. All 2k irreps represent the
reflection by the 2 × 2 matrix

�Z2kðRð2π=NÞπ0Þ ¼
�
0 1

1 0

�
; ð82Þ

while the rotation is represented by the diagonal matrix

�Z2kðRð2π=NÞ00Þ ¼
�
eið2π=NÞk 0

0 e−ið2π=NÞk

�
: ð83Þ

Thus, the two-dimensional irrep of DN decomposes as two
one-dimensional irreps of ZN which are interchanged by
the reflection. When N is even, there are N=2 − 1 two-
dimensional irreps described by Eqs. (82) and (83) and also
two additional one-dimensional irreps (denoted by 1�),
representing the rotation by −1 and the reflection by �1,
respectively.
The irrep Dl of SO3 decomposes into 2lþ 1 one-

dimensional irreps of U1; these represent the rotation by
angle ϕ about the z axis by feimϕ; m ¼ −l;−lþ 1;…;lg.
For l < N=2 and m ≠ 0, the �m irreps of U1 pair up to
form a two-dimensional irrep of DN , while the m ¼ 0 irrep
of U1 provides a one-dimensional irrep, either 10 if l is odd
or 1 if l is even. From Eq. (83), we can infer the “branching
rules” specifying how the irreps of D2N transform under the
DN subgroup, namely, 1 → 1, 10 → 10, and

2k → 2k; for k < N=2: ð84Þ

This result means that, of the irreps of DN that arise in the
decomposition of Dl for l < N=2, each is descended from
a unique irrep of D2N .
Suppose, now, that the momentum-kick operator D̂l

mn
acts on the code words Eq. (80) of the code associated with
DN ⊂ D2N , where l < N=2, and we are able to diagnose
the irrep of DN according to which the damaged states
transform. Because this irrep of DN points to a unique irrep
of D2N , the action of the rotation Rðπ=NÞ00 on the states is
unambiguously determined. This result means it is possible
to recover, mapping D̂l

mnj0̄i back to j0̄i and D̂l
mnj1̄i back to

j1̄i, without any logical error.
However, for l ≥ N=2, the situation is different; the D2N

irrep from which the DN irrep arises is no longer unique.
Correspondingly, projecting onto an irrep of DN after D̂l

mn

acts does not fix the relative phase of j0̄i and j1̄i; therefore,
perfect recovery is not possible.
To be concrete, consider the case D3 ⊂ D6 ⊂ SO3. Here,

D3 has just one two-dimensional irrep, which we call 2. The
l ¼ 1 irrep of SO3 decomposes as

Dl¼1 → 10 ⊕ 21 → 10 ⊕ 2 ð85Þ

under D6 and D3, respectively. The four matrix elements
D1

mn, form; n ∈ f�1g, constitute the two-dimensional irrep
2 of D3 and 21 of D6; therefore, using the pairs of basis
states (81), we have

D̂1
mnj0̄i ¼ jD3;

2
μ¼m;ν¼ni; ð86aÞ

D̂1
mnj1̄i ¼ exp

�
i
π

3
m

�
jRðπ=3Þ00D3;

2
μ¼m;ν¼ni; ð86bÞ

for m; n ∈ f�1g. The damage inflicted on the code words
by D̂1

mn can be reversed by applying D̂1†
mn. (The error

operator D̂1
00, realizing the representation 10 of D3 and D6,

is also easily reversed.) Though D̂1†
mn are not unitary

operators acting on the full SO3 Hilbert space, a completely
positive recovery map can be constructed which consists of
projections onto D3 irreps followed by appropriate momen-
tum kicks. This map successfully recovers from any noise
channel that can be expanded in fD̂l

mng for l ≤ 1.
The SO3 irrep l ¼ 2, on the other hand, branches as

Dl¼2 → 1 ⊕ 21 ⊕ 22 → 1 ⊕ 2 ⊕ 2 ð87Þ

under D6 and D3 respectively. Now D2
mn constitutes the 22

irrep of D6 for m; n ∈ f�2g and the 21 irrep of D6 for
m; n ∈ f�1g; however, these two distinct irreps of D6

cannot be distinguished as irreps of D3. Therefore, diag-
nosing the irrep of D3 according to which the damaged
code words transform does not suffice to determine the
relative phase of the two code basis states; now,
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D̂2
mnj0̄i ¼ jD3;

2
μ¼m;ν¼ni; ð88aÞ

D̂2
mnj1̄i ¼ exp

�
i
2π

3
m

�
jRðπ=3Þ00D3;

2
μ¼m;ν¼ni; ð88bÞ

for m; n ∈ f�2g, in contrast to Eq. (86). If, say, a D̂2
22 error

were to occur, it could be mistaken for a D̂1
−1;−1 error. An

attempt to recover by applying D̂1†
−1;−1 results in a logical

phase error, with j0̄i → j0̄i and j1̄i → −j1̄i. Thus, while the
D3 ⊂ D6 code can protect against angular-momentum
kicks with l ≤ 1, it does not protect against arbitrary
kicks with l ≤ 2. In general, the observation (84) implies
that the DN ⊂ D2N code protects against all kicks
with l < N=2.
An undetectable error corresponds to a nontrivial rep-

resentation of D6 that branches to the trivial representation
of D3. The lowest angular momentum at which this
branching occurs is l ¼ 3, with branching rules

Dl¼3 → 1þ ⊕ 1− ⊕ 10 ⊕ 21 ⊕ 22

→ 1 ⊕ 10 ⊕ 10 ⊕ 2 ⊕ 2: ð89Þ

Here, the nontrivial irrep 1þ of D6 reduces to the trivial
irrep 1 of D3. Diagnosing this trivial irrep yields no
information about its parent irrep of D6, meaning that
l ¼ 3 momentum kicks produce undetectable errors.
For N ¼ 3, the only nontrivial correction one needs

while mapping the states back into the code space is the
correction of the μ-dependent phase (86b) for λ ¼ 2.
Therefore, only knowledge of λ and μ is required, and
the error syndrome can be obtained by performing a
projective measurement onto a basis that resolves these
indices without extracting the logical information. One
such basis is the joint eigenbasis of the two commuting
rotations from Table II. Such a measurement projects the
corrupted code words onto eigenstates of these operators. A
successful recovery operation, then, maps the resulting
states back into the code space, applying (in the case of
λ ¼ 2) a μ-dependent phase that undoes the action of the
l ¼ 1 momentum kick from Eq. (86b).

E. Other non-Abelian molecular codes

Other interesting codes can be constructed using the
tetrahedral, octahedral, and icosahedral subgroups of the
rotation group. All are finite non-Abelian groups, denoted
T, O, and I, respectively, with order jTj ¼ 12, jOj ¼ 24, and
jIj ¼ 60. T is isomorphic to the alternating group A4, O is
isomorphic to the permutation group S4, and I is isomor-
phic to A5. Since T is a subgroup of both O and I, codes can
be constructed based on the embedding T ⊂ O, with code
dimension 2, or based on T ⊂ I, with code dimension 5.
The logical code words for T ⊂ O are uniform super-

positions of SO3 elements, indicated as black and white
balls in Fig. 4(b). That code can correct rotation errors in
the fundamental Voronoi cell FSO3=O, the cubelike region
bounded in blue in the figure. The T ⊂ I code can correct
rotation errors in FSO3=I, the dodecahedron bounded in blue
in Fig. 4(c). In that figure, the balls of five different colors
correspond to the SO3 elements making up this code’s five
logical code words.
To investigate how well these codes protect against

momentum kicks, we examine the branching rules for
SO3 → K → H, as in Sec. V D, but where now H ¼ T and
K is either O or I. The group T has four irreps labeled
as f1; 10; 100; 3g (with the number denoting dimension),
O has five irreps f1; 10; 2; 3; 30g, and I has five irreps
f1; 3; 30; 4; 5g. We note that Dl¼1, the defining three-
dimensional irrep of SO3, also provides defining irreps
of the subgroups T, O, and I; therefore, the branching rule

Dl¼1 → 3 → 3 ð90Þ
applies to both the T ⊂ O and T ⊂ I codes. This result
means that projecting onto the basis of irreps of T
unambiguously identifies the error D̂l≤1

mn , which can, there-
fore, be corrected. Hence, both codes protect against kicks
with l ≤ 1.
Focusing on T ⊂ O (the T ⊂ I code behaves similarly),

the l ¼ 2 irrep of SO3 has branching rules [159]

Dl¼2 → 2 ⊕ 30 → 10 ⊕ 100 ⊕ 3: ð91Þ
Here, the T-irrep 3 is the same 3D irrep that appears in
Eq. (90), but the irrep 30 of O is different than the irrep 3 in
Eq. (90). Therefore, the projection onto the basis of irreps
of T does not unambiguously identify the irrep of O, and we
conclude that the T ⊂ O codes do not protect against
arbitrary momentum kicks with l ≤ 2.
Undetectable errors are associated with nontrivial irreps

of O which branch to trivial irreps of T. This branching
occurs at l ¼ 3, due to the branching rules

Dl¼3 → 10 ⊕ 3 ⊕ 30 → 1 ⊕ 3 ⊕ 3: ð92Þ

Interestingly, the T ⊂ O code can also detect all momentum
kicks with l ¼ 4, 5, because, for these irreps of SO3, the

TABLE II. Dihedral codes. Check operators for the D3 ⊂ D6

codes and their corresponding eigenvalues and eigenstates
within the 12-dimensional subspace jRi for R ∈ D6, where
a ∈ fI; Rðπ=NÞ00g.

X⃖0;π;0 X⃗ð2π=3Þ;0;0

jaD3;
1
00i þ1 þ1

jaD3;
10
00i −1 þ1

ð1= ffiffiffi
2

p ÞðjaD3;
2
þ1;þ1i � jaD3;

2
þ1;−1iÞ �1 e−ið2π=3Þ

ð1= ffiffiffi
2

p ÞðjaD3;
2
−1;þ1i � jaD3;

2
−1;−1iÞ �1 eið2π=3Þ
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trivial irrep of T appears only as a descendant of the trivial
irrep of O.
Momentum-kick correction for the more general codes

proceeds by measuring a combination of left and right
rotations that distinguishes the error spaces sufficiently
well for one to correct successfully. As with the dihedral
codes in Eq. (86), momentum kicks produce μ-dependent
relative phases between corrupted code words, which need
to be corrected upon recovery. Using T ⊂ O as an example,
successful recovery requires determining the irrep label λ ∈
f1; 10; 100; 3g and the μ label for λ ¼ 3. After correcting
position shifts, the corrupted states lie in the subspace
fjRi; R ∈ Og. The three check operators X⃖ðπ=2Þðπ=2Þπ , X⃗0π0,

and X⃗π00 commute on this space, and measuring in their
joint eigenbasis resolves λ and μ.
Just like SO3 rotations permute cosets in the lens space

SO3=ZN in an induced representation (50), elements
fX⃗SgS∈K permute cosets in K/H, providing logical X-type
operators. For T ⊂ O, there are only two cosets, so fX⃗SgS∈O
either act trivially or exchange the two code words. For
T ⊂ I, the 60 rotations fX⃗SgS∈I form a five-dimensional
permutation representation of I when acting on the five
code words. Since I ¼ A5 (the alternating group), any
permutations of the code words in A5 are realized by the
unitary X⃗R’s. Moreover, these gates are fault tolerant. If
there is a slight over- or underrotation S0 ≠ S and the
rotated state X⃗S0 jr̄i is close to (but not quite equal to) the
code word X⃗Sjr̄i, then the error-correction procedure fixes
this fault by mapping X⃗S0 jr̄i to the closest code word.

VI. LINEAR-ROTOR CODES

By a linear rotor,we mean a rigid body with a symmetry
axis, such that rotations about that axis leave the orienta-
tion of the body invariant. The paradigmatic example is a
diatomic molecule containing two distinct atoms; we
discuss other manifestations in Sec. III C. In contrast to
an asymmetric body, for which orientations of the body are
in one-to-one correspondence with elements of the rotation
group SO3, the configuration space of the linear rotor is the
coset space SO3=U1 ¼ S2, because the U1 rotations about
the symmetry axis do not alter the orientation. This
example is equivalent to the configuration space of a
particle moving on a two-sphere.
The position eigenstates fjvig provide an orthogonal

basis for the Hilbert space of the linear rotor, with
continuum normalization, where v denotes a point on S2

(equivalently, a unit 3-vector). It is convenient to para-
metrize points on the sphere using spherical coordinates
v ¼ ðθ;ϕÞ, where θ denotes the polar angle and ϕ is the
azimuthal angle; thus, θ ∈ ½0; π� and ϕ ∈ ½0; 2πÞ.
A rotation R ∈ SO3 rotates the linear rotor with ori-

entation v to a new orientation Rv. It is represented by the
unitary operator X̂R, with action

X̂Rjvi ¼ jRvi: ð93Þ

A rotation acting on S2, in contrast to a rotation acting on
states of an asymmetric rigid rotor, has fixed points; the
position eigenstate jvi is left invariant by a rotation R ¼
ðω;�vÞ about the axis v or the axis −v:

X̂ω;�vjvi ¼ jvi: ð94Þ

Another relevant operation is inversion or parity, map-
ping v to its antipode −v. Rotations together with inver-
sions generate the groupO3 of proper and improper rotations
in three dimensions, isomorphic to SO3 × Z2. In Hilbert
space, P is represented by X̂P, with action

X̂Pjvi ¼ j − vi; ð95Þ

which commutes with X̂R for any R.
Dual to the continuous position basis is the discrete

Fourier-conjugate basis, defined on S2 by

jvi ¼
X
l≥0

X
jmj≤l

Yl⋆
m ðvÞjlmi; ð96aÞ

jlmi ¼
Z
S2
dvYl

mðvÞjvi; ð96bÞ

where Yl
mðvÞ is a spherical harmonic. The momentum

states satisfy the normalization

hlmjl0m0 i ¼
Z
S2
dvYl⋆

m ðvÞYl0
m0 ðvÞ ¼ δll0δmm0 ; ð97Þ

where dv is the surface area element on the two-sphere. In
the momentum basis,

X̂R ¼
X
l≥0

X
jmj≤l

Dl⋆
mnðRÞjlmihlnj; ð98aÞ

X̂P ¼
X
l≥0

X
jmj≤l

ð−1Þljlmihlmj: ð98bÞ

Other relevant features of S2 are listed in the third column
in Table V.
The spherical harmonics form a basis for functions on

the sphere, meaning that any operator on S2 that is diagonal
in the position basis can be expanded in Z-type operators

Ŷl
m ¼

Z
S2
dvjviYl

mðvÞhvj: ð99Þ

However, since there are more rotations than molecular
orientations, products of rotations and the above diagonal
Z-type operators do not form an orthonormal basis for
operators on S2. They instead form an overcomplete frame,
satisfying the completeness relation in Eqs. (123):
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1

2π

Z
SO3

dR
X
l;m

hvjX̂RŶ
l
mjwihw0jŶl†

m X̂†
Rjv0i ¼ δS

2

vv0δ
S2
ww0 :

ð100Þ

A similar relation holds for more general quotient spaces,
described in Appendix D. Overcompleteness complicates
the analysis of recovery from errors of the form

ρ → X̂RŶ
l
mρŶ

l†
m X̂†

R; ð101Þ

in which a momentum kick by l, m is combined with a
rotation R.

A. Simplest linear-rotor codes

Here, we embed the ZN ⊂ Z2N code (20) for general N
into the linear rotor. While their SO3 counterparts allow
protection against small momentum and position shifts,
these codes can correct either against rotations around any
axis by sufficiently small angles or against OðN=2Þ
angular-momentum kicks.

1. Code words

Constructing the simplest linear-rotor codes is similar to
that for SO3 in Sec. VA. Code words are equal super-
positions of equatorial states jðπ=2Þ;ϕi, whose azimuthal
angle ϕ is every even or odd multiple of π=N:

j0̄i ¼ 1ffiffiffiffi
N

p
X
h∈ZN

����π2 ; 2πN h

�
; ð102aÞ

j1̄i ¼ 1ffiffiffiffi
N

p
X
h∈ZN

����π2 ; 2πN hþ π

N

�
: ð102bÞ

For the caseN ¼ 3, these codewords are shown in Fig. 2(c).
These code words are not normalizable, but normalizable
approximate versions can be obtained by introducing
a damping factor, just as we discuss for SO3 codes (see
Sec. V C and Appendix A).
Expressing the code words in terms of angular-

momentum states jlmi (96b) yields, for r ∈ f0; 1g,

jr̄i ¼
ffiffiffiffi
N

p X
l≥0

X
jpNj≤l

ð−1ÞprYl
pN

�
π

2
; 0

�
jlpNi: ð103Þ

To derive Eq. (103), it suffices to observe that

Yl
m

�
π

2
;ϕ

�
¼ Yl

m

�
π

2
; 0

�
eimϕ: ð104Þ

Therefore, the only terms that survive when we do the sum
over h ∈ ZN in Eq. (103) are those in which m is an integer
multiple of N.

The logical-X code words are

j0̄iX ¼
ffiffiffiffiffiffiffi
2N

p X
l≥0

X
j2pNj≤l

Yl
2pN

�
π

2
; 0

�
jl2pNi;

j1̄iX ¼
ffiffiffiffiffiffiffi
2N

p X
l≥0

X
jð2pþ1ÞNj≤l

Yl
ð2pþ1ÞN

�
π

2
; 0

�
jlð2pþ1ÞNi;

ð105Þ

that is, j0̄iX is a superposition of angular-momentum
eigenstates with m an even multiple of N, and j1̄iX is a
superposition of states with m an odd multiple of N. In
addition, because Yl

m½ðπ=2Þ;ϕ� ¼ 0whenever l −m is odd
[109], only every other value of l appears in the super-
position for each fixed value of m [see Fig. 2(c)].

2. Position shifts

We use the error-correction conditions [160,161] (see
also Ref. [162], Theorem 10.1) to determine which errors
can be handled by our code. To be able to correct against
some subset of rotations, one should satisfy for all such
correctable rotations R, R0:

h0̄jX̂†
RX̂R0 j0̄i ¼ h1̄jX̂†

RX̂R0 j1̄i; ð106aÞ

h0̄jX̂†
RX̂R0 j1̄i ¼ 0: ð106bÞ

This product of rotations is just another SO3 rotation,
X̂†
RX̂R0 , rotating the equatorial “necklace” of constituent

orientations of our code words to another great circle.
To satisfy Eq. (106a), notice that, if N is odd, the code

word j1̄i consists of superpositions of all points antipodal to
those of the code word j0̄i:

j1̄i ¼ X̂Pj0̄i: ð107Þ

Therefore, assuming odd N from now on and remembering
that inversion commutes with all rotations,

h1̄jX̂†
RX̂R0 j1̄i ¼ h0̄jX̂PX̂

†
RX̂R0X̂Pj0̄i ¼ h0̄jX̂†

RX̂R0 j0̄i: ð108Þ

With the antipodal assumption (107), the first condition
(106a) is satisfied for all R ∈ SO3.
The second condition (106b) puts restrictions on where

the rotations can map the code words. To be concrete,
consider the case N ¼ 3, depicted in Fig. 2(c). The code
word j0̄i is a uniform superposition of three “constituent”
points on the equator of S2, which are marked by black
balls in the figure. The code word j1̄i is likewise a uniform
superposition of three constituent points, marked by white
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balls. For each constituent point, there is a corresponding
Voronoi cell, containing all points on S2 which are closer
to that point than to any other constituent point (see
Appendix B). Each such Voronoi cell is a spherical lune,
a sliver of the sphere bounded by two lines of longitude
separated by angle π=3; one of these cells is colored blue in
Fig. 2(c). The condition Eq. (106b) surely is satisfied as
long as the rotation R−1R0 maps each constituent point to a
point in its Voronoi cell.

3. Momentum kicks

Just like rigid-rotor codes, linear-rotor codes protect
against sufficiently small momentum kicks. Selection rules
for addition of angular momenta dictate that a momentum-
kick operator Ŷl

m maps a momentum state jl0
m0 i to states jLMi

that satisfy

jl − l0j ≤ L ≤ jlþ l0j; M ¼ mþm0: ð109Þ

Because the code words have support on states such that m
is an integer multiple of N, the code can detect momentum
kicks with l ≤ N − 1 and correct shifts with l < N=2. The
procedure for diagnosing and correcting momentum kicks
follows closely the corresponding discussion for rigid-
rotor codes.

4. Combined shifts

We have now seen that the code with basis states
Eq. (102) can protect against both small rotations and
small angular-momentum kicks. But problems arise when
we consider errors that combine a rotation and a kick.
Suppose, for example, that v is a constituent point of the
code word j0̄i, and, hence, −v is a constituent point of j1̄i,
and consider a rotation Rω;v about the axis v by a small
nonzero angle ω. Then, because one and only one con-
stituent point of each code word is preserved by the
rotation, we have

h0̄jŶl
mX̂Rj0̄i ¼

1

N
Yl
mðvÞ;

h1̄jŶl
mX̂Rj1̄i ¼

1

N
Yl
mð−vÞ ¼

1

N
ð−1ÞlYl

mðvÞ: ð110Þ

To be specific, Y1
1ðθ;ϕÞ∝eiϕsinθ is nonzero for θ ¼ π=2,

and we therefore conclude that h0̄jŶ1
1X̂Rj0̄i ≠ h1̄jŶ1

1X̂Rj1̄i.
This conclusion means that the error-correction condition is
not satisfied by this code for this error.
More generally, suppose that v1 is a constituent point of

j0̄i and that R, R0 are two rotations, both of which map v1 to
another point v2. (There is a one-parameter family of such
rotations.) Suppose, in addition, that Ru ≠ Ru0, where u
and u0 are any other constituent points of j0̄i. Then,

h0̄jX̂†
RŶ

l
mX̂R0 j0̄i ¼ 1

N
Yl
mðv2Þ;

h1̄jX̂RŶ
l
mX̂Rj1̄i ¼

1

N
Yl
mð−v2Þ ¼

1

N
ð−1ÞlYl

mðv2Þ: ð111Þ

Again, because for odd l and nonzero Yl
mðv2Þ we find that

h0̄jX̂†
RŶ

l
mX̂R0 j0̄i ≠ h1̄jX̂†

RŶ
l
mX̂R0 j1̄i, the error-correction

conditions are not satisfied.
Given the above limitations, this code can protect against

either (I) all rotations R ∈ SO3 that keep each constituent
orientation in its corresponding Voronoi cell, or (II) all
momentum kicks Ŷl

m with 0 ≤ m ≤ l < N=2. In addition,
if we exclude from set (I) all rotations around axes
corresponding to constituent points of our logical states,
then the code can correct both the rotations remaining in (I)
and momentum kicks (II). However, the code still cannot
correct products of such rotations and kicks due to
Eq. (111). This result is in contrast to rigid-rotor codes,
which protect against any product of a sufficiently small
rotation and momentum kick.
The above diminished performance begs the question of

whether such codes are of any use against realistic noise
[146–152]. Since the rotations themselves are overcom-
plete, and since these codes protect against (virtually) all
small rotations, such codes may be applicable to certain
environments, especially ones where the noise is biased
[163]. These codes can also be concatenated with other
codes, whose purpose is to provide a layer of protection
against momentum kicks. It is likely that the formalism of
approximate error correction [3,164,165] may be required
to study their applicability.
In a sense, the continuous U1 symmetry of the linear

rotor is too much symmetry for such GKP-type codes to
perform well. However, the framework presented here can
serve as a springboard to designing codes for the many
molecules with discrete symmetries—less symmetric than
the linear rotor but not completely asymmetric like the rigid
rotor (see Sec. III C). Configuration spaces of less sym-
metric molecules should make it possible for codes of this
type to perform better (see Sec. VIII).

5. Partial Fourier transform

To construct a recovery for the above error sets, we
can once again develop a partially Fourier-transformed
basis. As before, we use subgroups H ⊂ K to split up our
underlying space X ¼ S2 into various pieces as

S2 ¼ ⋃
w∈S2=K

Kw ¼ ⋃
w∈S2=K

⋃
r∈K=H

rHw: ð112Þ

But, because S2 is not a group, the first quotient space does
not consist of cosets but instead consists of orbits in S2

under K. The orbit Kw of a point w≡ ðθ;ϕÞ under K is the
set of points to which one obtains by applying rotations in
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K to ðθ;ϕÞ. Identifying points in S2 belonging to the same
orbit, one comes up with the orbit manifold (i.e., orbifold)
S2=K (see Table I). We construct the partially Fourier-
transformed basis on S2 and its corresponding recovery for
the codes discussed above in Appendix E.

6. Gates and check operators

Check operators for the ZN code on S2 are similar to their
counterpart on SO3: The Z-type check operator ŜZ selects
the 2N orientations fjðπ=2Þ;ðπ=NÞhþμπigh∈ZN;μ∈Z2

, while

the X-type check operator ŜX has a maximal eigenvalue
only at the two particular superpositions of these orienta-
tions [corresponding to the two code words (102)].
The momentum shift Ŷ2N

2N (99) acts as the identity on the
code space, while the shift ŶN

N acts as a logical-Z operator.
As with the rigid rotor, neither of these are unitary on the
full Hilbert space. We can obtain simpler versions by using
operators of the form [166–168]

ðv̂ · wÞp ≡
Z
S2
dvðv · wÞpjvihvj; ð113Þ

where w ∈ S2 and p is a non-negative integer. Expressing
the “position operator” v̂ in spherical coordinates yields the
ŜZ below:

ŜZ ¼ cosð2Nϕ̂Þ sin2N θ̂; ð114aÞ

ŜX ¼ cos

�
2π

N
L̂z

�
: ð114bÞ

X-type check operators include powers of the z-axis
rotation X̂ð2π=NÞ;z ¼ e−ið2π=NÞz·L̂, where h ∈ ZN , L̂ ¼
ðL̂x; L̂y; L̂zÞ is the angular-momentum operator, and
L̂zjlmi ¼ mjlmi. A combination of such powers yields
Eq. (114b) above. Inversion X̂P is a logical-X operator.

B. Non-Abelian subgroup codes

Mimicking Sec. V E, we briefly discuss more general
codes based on non-Abelian H ⊂ K. A simple example is
H ¼ T and K ¼ T × ZP

2 , where ZP
2 is the group generated

by inversion P. Its code word constituents lie on two
antipodal tetrahedra that are invariant under T (black and
white points in Fig. 5, respectively). Taken together, these
tetrahedra make up a cube. Letting wcube be one of the
vertices of the cube, we can express the code words in terms
of the orbit of wcube under T:

j0̄i ¼ 1

6

X
R∈T

jRwcubei; ð115aÞ

j1̄i ¼ 1

6

X
R∈T

j − Rwcubei: ð115bÞ

The normalization factor 1=6 arises here because the 12
elements of T map wcube to only four distinct constituents
for each code word. As before, these code words are part of
a partially Fourier-transformed basis associated with T,
formulated in Appendix E. These T codes correct against
momentum shifts fD̂l

mng with l ≤ 1 and detect momentum
shifts with l ≤ 2, like their counterparts on SO3 (see
Sec. V E).

1. Check operators

The Z-type check operators ŜZ have the same eigenvalue
at each of the constituent points of the code, which in the T
casemeans the corners of the cube in Fig. 5. This condition is
clearly satisfied by harmonics that are symmetric under K,
since that group leaves the cube invariant. InAppendixE,we
describe how to obtain such harmonics by “averaging” or
“twirling” the spherical harmonics over K. Using this
procedure, we obtain the Z-type check operator

ŜZ ¼ 3

16
ð30 cos2 θ̂ − 35 cos4 θ̂ − 5 sin4 θ̂ cos 4ϕ̂ − 3Þ;

ð116Þ
corresponding to the K-symmetric harmonic Y4

0. Shown in
the left in Fig. 5, the above is normalized such that the
constituent states fj � RwcubeigR∈K of the code words are
eigenstates with eigenvalue þ1.
Naturally, T-symmetric harmonics can act as logical

Z-type operators within the code space. The smallest-l
logical-Z operator is shown in the right in Fig. 5, corre-
sponding to the harmonic Y3

2 averaged over T,

Z̄ ¼ 3
ffiffiffi
3

p

2
sin2 θ̂ cos θ̂ sin 2ϕ̂: ð117Þ

FIG. 5. Linear-rotor codes. Sketch of two polyhedral harmonics
for the T code on S2, whose two code words are equal super-
positions of the white and black points, respectively. The left
harmonic is the code’s check operator ŜZ (116), and the right is
the logical-Z operator (117). Positive (negative) values are in
yellow (blue), and the outlined spheres have radius 1.

ALBERT, COVEY, and PRESKILL PHYS. REV. X 10, 031050 (2020)

031050-26



The X-type check operators ŜX consist of rotations
fX̂ω;w; ðω;wÞ ∈ Tg, commuting with all ŜZ but not nec-
essarily with each other outside of the code space. The
group T is generated by the rotations ½ð2π=3Þ;ðxþyþzÞ=ffiffiffi
3

p � and ðπ; zÞ, so

Ŝð1ÞX ¼ cos

�
2π

3
ffiffiffi
3

p ðL̂x þ L̂y þ L̂zÞ
	
; ð118aÞ

Ŝð2ÞX ¼ ð−1ÞL̂z ; ð118bÞ

together with the ŜZ check operator, are sufficient to
identify the code space.

2. Relation to spherical designs

There is a one-way connection between designs and
momentum-kick detection. An L design is a set of points
P ⊂ S2 satisfyingZ

S2
dvfðvÞ ¼ 1

jPj
X
p∈P

fðpÞ≡ fðPÞ ð119Þ

for all polynomials f of degree l ≤ L. An L design satisfies
fðPÞ ¼ fðRPÞ for any rotation R ∈ SO3 (see Theorem
5.6.1 in Ref. [169]). Because of this property and because
spherical harmonics fYl

mg are degree-l polynomials
restricted to the sphere, the states jPi ∝Pp∈P jpi and

X̂RjPi form a code detecting ≤ L momentum kicks, where
R is any nontrivial rotation.
Designs often arise as orbits of a group H acting on a

particular point w, P ¼ Hw. For example, the constituent
orientations of each of the code words of our T ⊂ T × ZP

2

code form a two design, and theþ1 logical-X state consists
of all points on a cube and forms a three design. (Not all of
our codes are designs: The equatorial sets of points making
up our ZN code words detect momentum kicks but do not
form N − 1 designs.)
The connection to designs suggests a way to obtain other

design-based codes, whose code words are not based on a
single orbit or whose code words make up more compli-
cated polyhedra [170]. There is also a potentially interest-
ing extension of oscillator-based error-correcting codes
based on designs [171] to molecular state spaces.

VII. A QUBIT ON A GROUP

In Sec. V, we describe a family of quantum codes based
on the nested subgroups H ⊂ K ⊂ SO3. In this section, we
generalize this construction. The basic framework is
already discussed in Sec. V D. We formulate quantum
codes based on H ⊂ K ⊂ G using a symbolic decomposi-
tion of G defined by a partial Fourier transform:

G ≅ G=K × K=H × Ĥ: ð120Þ

We interpret elements of G/K as correctable rotation errors
and elements of Ĥ as correctable momentum-kick errors,
while elements of K/H correspond to basis states which
span the code space. Data for these codes are summarized
in Table III.
We consider error-correcting codes for quantum systems

whose canonical position basis fjgig corresponds to
elements of a group, g ∈ G. Such spaces admit generalized
versions of many of the features of standard quantum
mechanical spaces such as qubits or oscillators: position
and momentum bases, their corresponding shifts, ortho-
gonality relations, a Weyl-type relation, etc. We collect
these in Table IV, intending it to be an extension of an
analogous table (Table 1 in Ref. [172]) for the standard
spaces.
The position (momentum) bases for general G can be

discrete (discrete) (e.g., for qudit spaces G ¼ Z×n
D ), con-

tinuous (discrete) (for rotors G ∈ fU1; SO3g), or continu-
ous (continuous) (for oscillators G ¼ R). These differences
obscure the intuition we are trying to convey, so we keep G
finite for clarity here. The caption of Table IV adapts these
discussions to other G, and Ref. [127] rigorously formu-
lates many of the required tools for type-I unimodular
second-countable groups.
Most of the structure for general G is already present for

G ¼ SO3, which we outline in Sec. V. Position shifts X⃗ for
general G are represented by left multiplication, X⃗hjgi ¼
jhgi, and analogous shifts X⃖ exist for right multiplication.
“Momentum” kick operators are diagonal in position space,
acting as [175–177]

Ẑl
mnjgi ¼ Zl

mnðgÞjgi; ð121Þ

where Zl
mnðgÞ is the m, nth matrix element of the group

element G in the irrep l. These matrix elements are part of
the momentum basis for G:

TABLE III. List of elements of a H ⊂ K code on G from
Sec. VA. The set Ĥ consists of (equivalence classes of) all irreps
of H, FG=K is the Voronoi cell of the identity (see Appendix B),
and K0 ⊂ K consists of all elements of K that map to identity
when projected onto the logical subspace.

Code H ⊂ K ⊂ G

Part. Fourier basis (124) fjaH;λμν i; a ∈ FG=H;λμν ∈ Ĥg
Logicals (126) fjrH;100 i; r ∈ FK=Hg
Correctable position shifts FG=K
Correctable momentum kicks Use branching formulas
Check operators ŜZ (135) Ẑl

mn (K)
Z-type logicals Ẑl

mn (H)
Check operators ŜX fX⃗kX⃖h; k ∈ K0; h ∈ Hg
X-type logicals fX⃗k; k ∈ Kg
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jlmni ¼
X
g∈G

ffiffiffiffiffiffiffi
dl
jGj

s
Zl
mnðgÞjgi ¼

ffiffiffiffiffi
dl

p
Ẑl
mnj100i: ð122Þ

We collect all l
mn into Ĝ, the “dual space” of G, and denote

the trivial irrep as λ ¼ 1.
Products of position shifts and momentum kicks,

B̂lmn
g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdl=jGjÞ

p
Ẑl
mnX⃗g, form an orthonormal and com-

plete basis for operators on G:

TrðB̂lmn†
g B̂l0m0n0

g0 Þ ¼ δGgg0δll0δmm0δnn0 ; ð123aÞ
X
g∈G

X
lmn∈Ĝ

hhjB̂lmn
g jkihk0jB̂lmn†

g jh0i ¼ δGhh0δ
G
kk0 ; ð123bÞ

where Trð·Þ ¼Pg∈Ghgjð·Þjgi and h, h0, k, k0 ∈ G. Thus,
any physical noise channel E acting on this space can be
expanded in terms of this operator basis, as before [Eqs. (9)

and (42)]. The purpose of our codes is to protect against
“small” position shifts as well as certain momentum shifts.

A. Partial Fourier transform

Our code constructions make use of the partial Fourier
transform on G, whose states are parameterized by cosets in
G/H and H irreps:

jaH;λμν i ¼
ffiffiffiffiffiffiffi
dλ
jHj

s X
h∈H

�Zλ
μνðhÞjahi: ð124Þ

Above, a belongs to the coset space G/H, which we
parameterize using FG=H, the Voronoi cell of the identity
(see Appendix B). The coefficient �Zλ

μνðhÞ is the μ, νth
matrix element of the dλ-dimensional irrep λ of H,
evaluated for the element h ∈ H. We use the Greek letters
λ, μ, and ν to label matrix elements of irreps of H and save

TABLE IV. Summary of relations for L2ðGÞ—the space of L2-normalizable functions on a group G—extending analogous summaries
for ordinary qudit and oscillator state spaces (see Table 1 in Ref. [172]). The CLM

lml0m0 are Clebsch-Gordan coefficients [109,153]. When
G ¼ Z×n

D , the state space is that of n qudits, and the position states and their corresponding momentum states are both discrete
orthonormal bases. The rotor state spaces U1 and SO3 and, more generally, any continuous compact G admit bases of position states in
the continuous or Dirac sense (see Sec. VI. 6 in Ref. [173]). In those cases, ð1=jGjÞPg∈G is replaced by ð1=jGjÞ RG dg, where jGj is the
volume of G as a manifold and dg is the Haar measure [154]. However, since such spaces are compact, their corresponding momentum
bases are still discrete. The oscillator G ¼ R is continuous and noncompact, meaning that both its position and momentum bases are
continuous. For this group and others like it, 1=jGj is omitted, and the sum over l turns into an integral with respect to the Plancherel
measure dl [174] (see also Sec. 8.3.3 in Ref. [154]).

Finite group L2ðGÞ Rigid rotor L2ðSO3Þ
A. “Phase space” ðg;lmnÞ ∈ G × Ĝ ðR;lmnÞ ∈ SO3 × dSO3

B. Conjugate bases jgi ¼Plmn∈Ĝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdl=jGjÞ
p

Zl⋆
mnðgÞjlmni jRi ¼Pl≥0

P
jmj;jnj≤l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1=8π2Þ

p
Dl⋆

mnðRÞjlmni
jlmni ¼

P
g∈G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdl=jGjÞ
p

Zl
mnðgÞjgi jlmni ¼

R
SO3

dR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1=8π2Þ

p
Dl

mnðRÞjRi
C. Overlap hgjlmni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdl=jGjÞ
p

Zl
mnðgÞ hRjlmni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1=8π2Þ

p
Dl

mnðRÞ
D. “Resolution”

P
g∈G jgihgj ¼Plmn∈Ĝ jlmnihlmnj ¼ 1G

R
SO3

dRjRihRj ¼Pl≥0
P

jmj;jnj≤l jlmnihlmnj ¼ 1SO3

E. “Orthocompleteness”
P

g∈G Zl⋆
mnðgÞZl0

m0n0 ðgÞ
¼ ðjGj=dlÞδll0δmm0δnn0

R
SO3

dRDl⋆
mnðRÞDl0

m0n0 ðRÞ
¼ ð8π2=2lþ 1Þδll0δmm0δnn0P

lmn∈Ĝðdl=jGjÞZl⋆
mnðgÞZl

mnðg0Þ ¼ δGgg0
P

l≥0
P

jmj;jnj≤lð2lþ 1=8π2Þ
Dl⋆

mnðRÞDl
mnðR0Þ ¼ δSO3

RR0

F. Position shifts X⃗hjgi ¼ jhgi X⃗SjRi ¼ jSRi
X⃖hjgi ¼ jgh−1i X⃖SjRi ¼ jRS−1i

X⃗hjlmni ¼
P

p Z
l⋆
pmðhÞjlpni X⃗Rjlmni ¼

P
p D

l⋆
pmðRÞjlpni

X⃖hjlmni ¼
P

p Z
l
pnðhÞjlmpi X⃖Rjlmni ¼

P
p D

l
pnðRÞjlmpi

G. Momentum kicks Ẑl
mnjgi ¼ Zl

mnðgÞjgi D̂l
mnjRi ¼ Dl

mnðRÞjRi
Ẑl
mnjl0

m0n0 i ¼
P

LMN∈Ĝ cLMN
lmn;l0m0n0 jLMNi D̂l

mnjl0m0n0 i ¼
P

L≥0
P

jMj;jNj≤L cLMN
lmn;l0m0n0 jLMNi

cLMN
lmn;l0m0n0 ¼ ð ffiffiffiffiffiffiffiffiffiffiffi

dl0dL
p

=jGjÞP
g∈G ZL⋆

MNðgÞZl
mnðgÞZl0

m0n0 ðgÞ
cLMN
lmn;l0m0n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2l0 þ 1Þ=ð2Lþ 1Þp
CLM
lml0m0CLN

lnl0n0

H. “Weyl relation” X⃗gẐ
l
mnX⃗

†
g ¼

P
p Z

l⋆
pmðgÞẐl

pn X⃗RD̂
l
mnX⃗

†
R ¼Pp D

l⋆
pmðRÞD̂l

pn

X⃖gẐ
l
mnX⃖

†
g ¼

P
p Z

l
pnðgÞẐl

mp X⃖RD̂
l
mnX⃖

†
R ¼Pp D

l
pnðRÞD̂l

mp
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the letters l, m, and n for labeling matrix elements of
irreps of G.
The above basis interpolates between the group’s posi-

tion states (H ¼ f1g) and momentum states (H ¼ G). One
can show that it is orthonormal and complete [178]:

haH;λμν ja0H;λ0μ0ν i ¼ δG=Haa0 δλλ0δμμ0δνν0 ; ð125aÞX
a∈G=H

X
λμν∈Ĥ

hgjaH;λμν ihaH;λμν jg0i ¼ δGgg0 : ð125bÞ

This basis arises in several other contexts in science and
engineering, which we discuss in Appendix F.

B. Code words

Our code words correspond to cosets of H in K.
For r ∈ FK=H,

jr̄i≡ jrH;100 i ¼
1ffiffiffiffiffiffiffijHjp X

h∈H
jrhi: ð126Þ

Expressing the G position states (126) in terms of momen-
tum states yields

jr̄i ¼
X

lmn∈Ĝ

ffiffiffiffiffiffiffiffiffiffiffiffi
dl

jG=Hj

s
Zl⋆
mnðrHÞjlmni: ð127Þ

Here, we introduce the notation fðHÞ for the H average
(also called H twirl) of a function f on G over the subgroup
H, defined by

fðHÞ≡ 1

jHj
X
h∈H

fðhÞ: ð128Þ

Observing that Zl⋆
mnðrHÞ ¼ ½Zl⋆ðrÞZl⋆ðHÞ�mn, we see

that the momentum state jlmni “participates” in the expan-
sion of jr̄i (occurs with a nonzero coefficient) only if
ZlðHÞ ≠ 0. Irreps with this property make up the recip-
rocal space of H in G:

H⊥ ≡ fl ∈ Ĝ; ZlðHÞ ≠ 0g: ð129Þ

For each l, we also have to determine the participating
m, n indices; these depend on the basis used for Zl (see
Appendix D).
Denoting the set of participating momentum-state indi-

ces l
mn by dG=H, Eq. (127) becomes

jr̄i ¼
X

lmn∈cG=H
ffiffiffiffiffiffiffiffiffiffiffiffi
dl

jG=Hj

s
Zl⋆
mnðrHÞjlmni: ð130Þ

We thus map the position degree of freedom r from the
ket jrhi of the position-basis expansion (126) into the

coefficient Zl⋆
mnðrHÞ of the momentum-basis expansion

(130). This mapping can be done for any coset state
jaH;100 i with a ∈ G=H—a manifestation of the Fourier
transform on G/H (see Appendix D). Analogously, one can
develop a Fourier transform on the code space K/H.

C. Position shifts

Position shifts acting from the left realize an induced
representation for each λ in Eq. (124), meaning that
fX⃗ggg∈G do not connect different λ’s. The difference
from the Abelian case (50) is the behavior of the internal
indices μν:

X⃗gjaH;λμν i ¼
X
ρ

�Zλ⋆
ρμðkgÞjgak−1g H;λρνi: ð131Þ

Above, the compensating element kg ∈ H is picked such
that gak−1g ∈ FG=H.
Let us determine the set of correctable position shifts X⃗g.

First, consider g ∈ FG=K, in which case there is no com-
pensating element. Then, the error state obtained from
applying a momentum kick and position shift to the code
word jr̄i consists of a superposition of the basis elements
(124) with a ¼ gr. By measuring a rotation in FG=K and
applying the corresponding position shift, the recovery
maps each gr to the element r0 ∈ K=H whose Voronoi cell
contains gr. (The partitioning into cosets ensures that the
Voronoi cell of each r0 ∈ K=H contains only one gr.) Since
g ∈ FG=K, gr are in the Voronoi cell of r, and so r0 ¼ r.
After recovery, each r returns to its original location.
Now, consider g ∉ FG=K. Now, the corrupted position

label corresponding to code word r can stray into the
Voronoi cell of some other element r0 ≠ r. The above
recovery snaps such error words to the wrong code words,
leading to logical errors. In the case of non-Abelian codes,
there may be additional errors due to the effect of the
compensating element on μν (131).

D. Momentum kicks

Assuming we exactly correct a position shift, the
resulting state lies in the span of fjrH;λμν ig for all r ∈
K=H and λ

μν ∈ Ĥ. Below, we show how to use the branching
formulas for G restricted to K, and then K restricted to H, to
determine detectable and correctable momentum kicks
Ẑl
mn. We leave the precise formulation of a momentum-

kick recovery for general G to future work.
Let l ∈ Ĝ, κ ∈ K̂, and λ ∈ Ĥ, so that l → κ → λ means

that l contains at least one copy of the K irrep κ when
restricted to K, which, in turn, contains at least one copy of
λ when restricted to H. We denote the trivial irrep by 1. For
convenience, we assume that Zl are written in a K-
admissible basis (see Appendix D), meaning that ZlðkÞ
for k ∈ K are block diagonal with respect to the K irreps.
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Similarly, we assume that those ZlðkÞ are, in turn, in an H-
admissible basis.
First, consider detectable errors. Let l be such that one of

its branches is l → κ → 1 with κ ≠ 1. Then, there exists a
momentum kick Ẑl

mn for some m, n that is undetectable.
To prove this statement, consider matrix-valued versions
of the error-correction criteria, projecting the matrix of
G-momentum shifts Ẑl into the code space (126):

hr̄jẐljr̄i ¼ ZlðrHÞ ¼ ZlðrÞZlðHÞ: ð132Þ
We show that the above depends on r.
Since ZlðhÞ is in an H-admissible basis, we can express

each ZlðhÞ in ZlðHÞ ∝Ph∈H ZlðhÞ as a direct sum of
irreps of H. By the group orthogonality relations on H,
Zl
mnðHÞ ¼ δmn only for those nwhich correspond to matrix

elements of H in the trivial H irrep. We assume that l
branches to at least one trivial irrep of H, so there exists
such an n, which we call n⋆. [This assumption implies that
l ∈ H⊥ (129), a necessary but not sufficient condition for
undetectability.] Now, consider the column Zl

mn⋆ðrHÞ, with
m ∈ f1; 2;…; dκg and dκ being the dimension of the κ irrep
that contains the trivial irrep λ ¼ 1. When r ¼ 1 (the
identity), Zl

mnðrHÞ ¼ δmn. But, since κ ≠ 1, there exists
another r0 ≠ 1 that is represented differently. Thus,
Zl
mnðr0HÞ ≠ δmn, and Eq. (132) depends on r.
Now, consider correctable errors. Let l ≠ l0 be such that

they branch to the same nontrivial H irrep via different
nontrivial K irreps κ ≠ κ0, i.e., l → κ → λ and l0 → κ0 → λ,
respectively. Then, momentum kicks Ẑl and Ẑl0 are not
simultaneously correctable. To prove this result, let m, n be
the matrix elements of the copy of λ contained in κ and m0,
n0 be those for the copy of λ contained in κ0. Then,

Ẑl
mnjr̄i ¼

1ffiffiffiffiffiffiffijHjp X
h∈H

Xdλ
p¼1

�Zκ
mpðrÞ�Zλ

pnðhÞjrhi ð133aÞ

¼ 1ffiffiffiffiffi
dλ

p
Xdλ
p¼1

�Zκ
mpðrÞjrH;λpn i; ð133bÞ

where we use the basis (124) in the second line. Using
orthogonality of this basis,

hr̄jẐl0†
m0;n0 Ẑ

l
m;njr̄i ¼

δnn0

dλ

Xdλ
p¼1

�Zκ
mpðrÞ�Zκ0

pm0 ðr−1Þ: ð134Þ

When r ¼ 1, the sum over p reduces to δmm0 . But, since
κ ≠ κ0, there exists an r0 ≠ 1 such that the above yields a
different result. Therefore, one cannot correct both l and l0
momentum kicks.

E. Gates and check operators

Logical X-type gates include all fX⃗kgk∈K, which realize
an induced representation on the logical subspace K/H. A

subset of those, which we call K0 ⊂ K, acts as the identity in
this induced representation; such operators can be used as
check operators for momentum-kick syndrome measure-
ment. Examples of such representations are discussed in
Sec. V E.
The position shifts fX⃖hgh∈H also act trivially on the code

words. These do not commute with each other for non-
Abelian H but do commute with X⃗k (since left and right
multiplication commute). These can also be used as check
operators, and the resulting combined set of X-type check
operators is listed in Table III.
If H is a normal subgroup of K, then the shifts fX⃗kgk∈K

also realize logical gates; otherwise, such shifts may not
preserve the code subspace (since left and right coset
spaces, K/H and H\K, are not equal). For G ¼ SO3, such
cases include ZN ⊂ Z2N and T ⊂ O but not T ⊂ I.
Twirling momentum-kick operators over K,

Ẑl
mnðKÞ≡ 1

jKj
X
k∈K

X⃖kẐ
l
mnX⃖

†
k; ð135Þ

offers a convenient method for generating Z-type check
operators ŜZ. The above operators are functions on G=K:

Ẑl
mnðKÞjwrH;λμνi ¼ Zl

mnðwKÞjwrH;λμνi ð136Þ

for w ∈ G=K and r ∈ K=H. Thus, measuring them
does not spoil the logical information. A projective meas-
urement onto the basis of the joint eigenstates of these
mutually commuting operators can be used to determine
the syndrome w. (The scheme outlined below implicitly
performs such a measurement.) Such ŜZ commute with
each other and all fX⃖kgk∈K but commute with fX⃗kgk∈K
only on the subspace fjrH;λμν ig with r ∈ K=H and λ

μν ∈ Ĥ.
Since they can be nonunitary, they do not, in general, form
a group.
Twirling momentum kicks over H produces logical Z-

type operators. A similar procedure yields Z-type check
and logical operators for codes on S2 (see Appendix E).
To construct a code Hamiltonian, recall that the code

states (126) are equal superpositions of elements of cosets
of H in K. In other words, a Hamiltonian (3) whose ground
states form the code space can be a projection onto those
cosets of H in G which consist of elements in K. Such a
Hamiltonian is then

Hcode ¼ −
X
k∈K

jkihkj −
X

a∈G=H
jaHihaHj; ð137Þ

where jaHi≡ jaH;100 i. The second term projects onto G/H,
while the first picks out only the coset states with elements
in K. Using twirled momentum kicks and the group
orthogonality relations, one can construct the projection
onto the subgroup as
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X
k∈K

jkihkj ¼
X
l;m∈Ĝ

dl
jG=Kj Ẑ

l
mmðKÞ: ð138Þ

The position shifts can be used to construct the projection
onto G/H (see Sec. VII C in Ref. [179]):X

a∈G=H
jaHihaHj ¼ 1

jHj
X
h∈H

X⃖h: ð139Þ

F. Measurements

Recall that, given a subgroup K, each group element
g ∈ G can be written as g ¼ ak for a ∈ FG=K and k ∈ K. In
order to diagnose which position shift occurs without
destroying the logical information, one needs to read off
the coset label a without obtaining information about K.
Since there are only jG=Kj different values one needs to
distinguish, we can pick the ancillary space to be G/K
(instead of the larger G) and still measure in one shot.
Letting X̂g be the induced representation of G on G/K,

we apply the generalized CROT gate (cf. [175])

CROTG=K ¼
X
g∈G

jgihgj ⊗ X̂g ð140Þ

onto the G space housing our logical information and an
ancilla initialized in some state jKi (assumed invariant
under fX̂kgk∈K). Since X̂g ¼ X̂aX̂k and since the initial
state is K invariant, the ancilla obtains only the coset label
a, without destroying coherences between elements of the
coset. This procedure can also be used for logical state
initialization.
The space G/K can be “simulated” by a finite-dimen-

sional space spanned by generalized spin-coherent states
[99], similar to our construction from Sec. V B.

VIII. CONCLUSION AND FUTURE WORK

We have developed error-correcting codes that protect
against small shifts in the position and momentum of a rigid
body and, more generally, of a state space fjgi; g ∈ Gg
where G is a group. Our treatment unifies CSS codes
(G ¼ Z×n

D ) with GKP codes for qudits (G ¼ ZN ¼ CN),
oscillators (G ¼ R), and planar rotors (G¼U1¼SO2¼C∞
or G ¼ Z). We propose using our rigid-body codes, for
which G is the three-dimensional proper rotation group
SO3, to robustly encode quantum information in the rota-
tional states of asymmetric molecules.
We also constructed related codes that protect a linear

rotor, whose configuration space S2 is a coset space rather
than a group, and we formulated position and momentum
bases, their associated shifts, and orthogonality relations for
general coset spaces.
A basis may be chosen for a rigid-body code space such

that each basis state is a uniform superposition of a finite
number of possible orientations for the body. Because

position eigenstates in a continuous-variable system are not
normalizable, the ideal code words are likewise not normal-
izable and have infinite energy. But we may instead choose
normalizable, finite-energy approximate code words which
retain good error-correction properties.
Our coding scheme has potential applications to polar

molecules, certain spin systems, atomic ensembles, single
atoms, and levitated nanoparticles. We nowmention several
possible topics for future investigation.

A. Physical noise

Our codes are designed to protect against noise that acts
“locally in phase space.” For CSS codes, the correctable
errors are low-weight Pauli operators acting on a few qubits.
For GKP oscillator codes, the correctable errors are small
shifts in the position or momentum of the oscillator. For
rigid-rotor codes, the correctable errors are small shifts in the
rotor’s orientation or small kicks in its angular momentum.
Physical noise may act nonlocally in phase space. But it

has recently been shown that the dominant noise in micro-
wave cavities is sufficiently local for GKP codes to work
effectively [3,4]. It remains to be seen whether the noise in
realistic rigid rotors [146–152] has similarly benign
properties.

B. Metrology

The geometry of SO3—the configuration space of
molecular orientations—is uniquely suited for sensing
three-dimensional rotations. Moreover, since such rotations
are parameterized by an axis and an angle, the ability to
measure them corresponds to the ability to resolve the
direction andmagnitude of three-dimensional vectors. Thus,
one can sense three-dimensional vectors using one mol-
ecule, which is less resource intensive than, e.g., using three
harmonic oscillators.
Encoding one “logical” SO3 space into several physical

spaces provides an additional layer of protection, main-
taining a delicate balance between noise resilience and the
ability to extract the signal. Combined with recent work (by
some of us) studying such encodings [180], our framework
may pave the way for schemes using entangled molecular
rotational or nuclear states for noise-resilient sensing. It
would also be interesting to extend Ref. [181] and develop
codes protecting a generalized continuous space against
continuous errors.

C. Symmetric molecules

For a molecule with a symmetry group H ⊂ SO3, the
configuration space of molecular orientations is the coset
space SO3=H. A larger symmetry group means a smaller
configuration space and, thus, less room for diagnosing
rotation errors. In the extreme case of a perfect sphere,
invariant under any SO3 rotation, there is no room in the one-
dimensional space SO3=SO3 for any logical information at
all. It would be interesting to investigate further how the
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performance of our codes depends on the symmetry group.
Of particular interest are Z3-symmetric molecules (such as
monomethoxides [26] or Posner molecules [124,125]),
which are invariant under rotations by �120°.

D. Nuclear motion

Instead of considering rigid molecules that are assumed
to be in a fixed vibrational state, one can also consider
“floppy” molecules for which there is no clear separation
between rotational and vibrational motion. Such motion
ranges from small nuclear vibrations around equilibrium
positions [60] to larger-scale bending motion [182] and
even nuclear permutations [183]. To devise codes that
protect quantum information carried by (for example)
floppy molecules, we need to consider different configu-
ration spaces than for the rigid-body codes described here.
Nevertheless, some of the mathematical tools we have
developed may be applicable in this broader context.

E. General groups

We focus on groups applicable to molecular physics, but
our general framework for a group G yields codes for any
physically reasonable groups. One could consider G ¼ Sn,
the permutation group of n distinct objects; such codes
could be used to store quantum information in distinguish-
able particles or to generalize classical codes for trans-
position errors [184]. Another example is G ¼ E2, the
Euclidean group of two-dimensional translations and
proper rotations; this group may be applicable to a U1

rotor moving in a plane.
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APPENDIX A: BUILDING CODES VIA
MICROWAVE DRESSING

As discussed in Sec. III, the most versatile approach to
generating the approximate code words is to build a linear

combination of angular-momentum eigenstates with the
proper weights using an array of microwave couplings. For
this preliminary scheme, we neglect hyperfine structure and
mixing of momentum states with nuclear quadrupole
moments [87]. As a concrete physical platform, we focus
on molecules composed of bosonic isotopes of alkaline-
earth(-like) atoms [185] as well as 12C and 16O, which have
zero nuclear spin. A small electric field lifts the degeneracy
of all jljmj;jnji ↔ jl0jm0j;jn0ji transitions but does not signifi-

cantly mix eigenstates. Similarly, a magnetic field can split
the �m and �n degeneracies. Recall that the eigenenergies
for a given l are proportional to lðlþ 1Þ [64]. Hence, any
transition l − l0 ¼ �1 has a unique energy.
Since B ∼ 1 GHz for most molecules, jljmj;jnji ↔ jl0jm0j;jn0ji

transitions can conveniently be driven with microwave
fields. Note also that the dipole matrix elements of such
transitions are relatively large for polar molecules, often
μ ≈ 1 atomic unit (a.u.). Therefore, multiphoton processes
which are off resonant from intermediate states can still
achieve sufficient couplings. Figure 6 shows the code
words for U1 (a), SO3 (b), and S2 (c) in the angular-
momentum basis, where the opacity qualitatively indicates
the fractional population of the normalized state. Recall
that, for SO3, we require only the n ¼ m states, so no
explicit discussion of n is necessary in any of these cases.
Consider, for example, 1Σ-type molecules, such as

bialkalis. Their orientations correspond to the state space
S2, and we consider realizing the code words (103) with
N ¼ 3. We apply the damping function e−ð1=2ÞΔ2L̂2

from
Sec. V C to normalize the code words. The parameter Δ >
0 depends on how many momentum states lmax we want to
consider, while L̂2 is the total angular-momentum operator.
The resulting logical zero approximate code word, up to
normalization, is

j0̃i ∝
Xlmax

l¼0

X
j3pj≤l

e−ð1=2ÞΔ2lðlþ1ÞYl
3p

�
π

2
; 0

�
jl3pi: ðA1Þ

We assume the molecule is initially in the rigid-rotor
ground state jlmi ¼ j00i and assemble the state (A1) using
microwave tones. All couplings “cascade” down from j00i as
shown in Fig. 6(c). Control over the frequency, power,
polarization, and phase of a microwave tone can readily be
achieved in the laboratory and is essential to build the state
(A1). The microwave couplings are all adiabatic with
respect to the timescales of molecular rotation, and we
expect that continuous-wave microwave pulses are possible
to build the code words as the steady state solution of the
Hamiltonian with the microwave driving terms of the form

Ωl0m0
lm exp ½−iðδl0m0

lm tþ ϕl0m0
lm Þ�jl0m0 ihlmj; ðA2Þ

with Rabi frequency Ωl0m0
lm , detuning δl

0m0
lm , and phase

ϕl0m0
lm in the rotating frame of the original rigid-rotor

Hamiltonian BL̂2.
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In the perturbative limitΩ=δ ≪ 1, where we suppress the
decorations on Ω and δ for clarity, the population Pl0m0 can
be expressed as Pl0m0 ¼ ðΩ=δÞ2Plm, where Plm is the
population in jlmi. We ignore the Stark shift of jl0

m0 i, given by
δS ¼ Ω2=δ, since δS ≪ δ. Applying the same analysis
to multiphoton processes, now consider the three-photon
pulses jl0m0

i → jl1m1
i → jl2m2

i → jl3m3
i. Assuming vastly off-

resonant drives for the intermediate states, we can adia-
batically eliminate said states. The population in jl3m3

i is
given by

Pl3;m3
¼
 
Ωl1m1

l0m0
Ωl2m2

l1m1
Ωl3m3

l2m2

δl1m1

l0m0
δl2m2

l1m1
δl3m3

l2m2

!
2

Pl0m0
: ðA3Þ

Thus, jl3m3
i can effectively be attained from jl0m0

i using the
above combination of tones.
The above scheme can be used to transfer population in

each momentum state present in the approximate state (A1)
to neighboring states. That way, the population in j00i
cascades down the angular-momentum pyramid. The
required tones are shown in Fig. 6. Curved lines with
arrows illustrate couplings with a finite population of the
state. For the S2 state (A1) with lmax ¼ 6, we require 22
unique microwave tones. Similar schemes for U1 and SO3,
shown in Figs. 6(a) and 6(b), require 12 and 24 tones,
respectively.
The above is just a sketch. A detailed analysis based on,

e.g., exact diagonalization of the coupling Hamiltonian or a
master equation is required to choose the frequency, power,

polarization, and phase of each microwave tone (A2).
One must be aware of the formation of dark states as
well as potentially dynamic evolution of the populations.
Advanced modeling is particularly important outside the
perturbative limit when Ωl0m0

lm =δl
0m0

lm ∼ 1, for which popu-
lation dynamics must be addressed. Time-dependent pulses
can also be employed for which the power and phase can be
adjusted on timescales comparable to the Rabi frequencies
(but still slow compared to rotational timescales). Such an
analysis is outside the scope of this work.
An electric field may be helpful for building the code

words and could potentially reduce the number of required
microwave tones. In our notation, an electric field is
represented by operator cos ϕ̂ for U1, D̂

1
00 for SO3, and

Ŷ1
0 for S2. For the latter two spaces, a large electric field

mixes l states with the same m [see Eq. (60)]. This point is
particularly salient in the case of SO3, where couplings
down the columns for jmj ¼ 0, 3, 6 are required. A large
electric field naturally creates these couplings down each
column in Fig. 6(b).

APPENDIX B: VORONOI CELLS

We determine the Voronoi-Dirichlet cells of the quotient
spaces SO3=H from Table I. This determination is strictly
an adaptation of the work of Postnikov [92] (see also [95]).
Let X be a metric space with distance function d and

distinguished origin point x0. Let H be a discrete group
whose elements R ∈ H map points x ∈ X as x → Rx. This
group maps the origin to the orbit fRx0gR∈H. Each such
point Rx0 has its own Voronoi cell—a region consisting of
points that are closer (or as close) to Rx0 than to R0x0 for
any R0 ≠ R. When R is the identity, we call the correspond-
ing cell the fundamental Voronoi cell,

FX=H¼fx∈Xj ∀ R∈H;dðx;x0Þ≤dðx;Rx0Þg: ðB1Þ

When the space is a group (X ¼ G), x0 is the identity, and
the above is the Voronoi cell of the identity.
To properly account for distances in SO3, we recall that it

is equivalent to the 3-sphere S3 ¼ SU2 with opposite points
identified, SO3 ¼ S3=Z2 [153]. The 3-sphere can be para-
meterized by either a four-dimensional unit vector or by a
quaternion. Just like a semicircle parameterizes a circle
with opposite points identified, hemispherical quanternions

ηðω; vÞ ¼
�
cos

ω

2
; v sin

ω

2

�
ðB2Þ

are an equivalent way to parameterize R ¼ ðω; vÞ ∈ SO3.
The distance function d we use is the dot product of the
above 4-vectors.
The Voronoi cell of a point p is bounded by the

mediatrices of p and all q that are in the orbit of p under
H. A mediatrix of points p and q is the set of all points that
lie the same distance from p and q. For a 2D square lattice,

FIG. 6. Microwave dressing. Sketch of the microwave tones
required to build the approximate code words out of angular-
momentum eigenstates up to jlmaxj ¼ 3 for U1 (a) and lmax ¼ 6

for SO3 (b) and S2 (c). We assume the molecule is initialized in
jl ¼ 0i for U1, j000i for SO3, and j00i for S2. An array of
microwave tones is applied to construct the code words. Any
transition allowed by dipole selection rules can be driven with a
Rabi frequency Ωl0m0

lm , phase ϕl0m0
lm , and detuning δl

0m0
lm . (For SO3,

we utilize only the n ¼ m states, so no explicit mention of n is
necessary for those cases. For U1, there are only states with
integer l.) Curved lines without arrows illustrate vastly off-
resonant coupling to a state for which the population is effectively
zero, and the state can be adiabatically eliminated. Curved lines
with arrows illustrate couplings with a finite population of the
state. To prepare approximate code words in the subspaces
shown, at most 12, 24, and 22 unique microwave tones are
required for U1, SO3, and S2, respectively.
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the boundary of FR×2=Z×2 consists of segments that bisect
lines that connect the center of the cell with centers of
neighboring cells. The boundaries of FSO3=H are hyper-
planes that go through the midpoint ðΩ=2;wÞ of the
geodesic connecting the center with each group element
ðΩ;wÞ ∈ H. Points η on such hyperplanes satisfy

_ηðΩ=2;wÞ · ηðω; vÞ ¼ 0; ðB3Þ

where _η≡ ∂η=∂ω. Solving for ω yields

ω ¼
����2cot−1�v · w cot

Ω
4

�����: ðB4Þ

We use this to plot the various manifolds in Figs. 2–4.
Letting H be a z-axis rotation subgroup yields Eq. (53).

APPENDIX C: NORMALIZABLE CODE WORDS

1. Observables

For the calculation of l̄ (77), in the Δ → 0 limit

hr̃jL̂2jr̃i ¼ hr̄jL̂2e−Δ
2L̂2 jr̄i

hr̄je−Δ2L̂2 jr̄i ∼
hIjL̂2e−Δ

2L̂2 jIi
hIje−Δ2L̂2 jIi ; ðC1Þ

where I is the identity rotation. To obtain the
above, recall that each jr̄i is a superposition of
position states jRð2π=NÞhþðπ=NÞr;zi for h ∈ ZN. The state

e−Δ
2L̂2 jRð2π=NÞhþðπ=NÞr;zi can be thought of as a Gaussian

distribution of orientations centered at jRð2π=NÞhþðπ=NÞr;zi,
overlapping with other states for different h. However,
since the overlap is exponentially suppressed with h, we
ignore such contributions. We then use the fact that all
rotations commute with L̂2, allowing us to remove h, r
dependence:

hRω;vjfðL̂2ÞjRω;vi ¼ hIjfðL̂2ÞjIi ðC2Þ

for any ðω; vÞ and function fðL̂2Þ.
Having used SO3 symmetry to remove dependence of

ðω; vÞ, we now express the identity state in the momentum
basis, yielding

hIjfðL̂2ÞjIi ¼ 1

8π2
X
l≥0

ð2lþ 1Þ2f½lðlþ 1Þ�: ðC3Þ

The identity state is supported only on momentum states
jlmmi with amplitude ð2lþ 1Þ=8π2, and we perform the
sum over m to obtain the extra 2lþ 1 factor. The function
fðL̂2Þ becomes as such due to Eq. (75). We then rearrange
the above sum to obtain a sum over integers, which can then
be approximated using Poisson summation (D22) for the
relevant f:

hIjfðL̂2ÞjIi ¼ 1

16π2
X
l∈Z

ð2lþ 1Þ2f½lðlþ 1Þ�

∼
1

16π2

Z
R
dxð2xþ 1Þ2f½xðxþ 1Þ�: ðC4Þ

Plugging in explicit forms for f yields Eq. (77).

2. Leakage error

To evaluate Pleak, we first start with its complement
Pok ¼ 1 − Pleak, the projection of j0̃i onto its own Voronoi
cells [for N ¼ 3, those in the left in Fig. 3(c)]:

Pok ¼
X
h∈ZN

Z
FSO3=Z2N

dSω;vjhSω;vRð2π=NÞh;zj0̃ij2: ðC5Þ

Recall that j0̃i is a superposition of smeared group elements
jRð2π=NÞk;zi for k ∈ ZN. Inserting this expansion for j0̃i, we
estimate Pok in the Δ → 0 limit by ignoring contributions
from elements leaking outside of their own Voronoi cells:

Pok ∼
X
h∈ZN

Z
FSO3=Z2N

dSω;v

×
jhSω;vRð2π=NÞh;zje−ð1=2ÞΔ2L̂2 jRð2π=NÞh;zij2

Nh0̄je−Δ2L̂2 j0̄i : ðC6Þ

Inserting the asymptotic expression for h0̄je−Δ2L̂2 j0̄i and
using invariance under rotations (C2) brings us to

Pok ∼
8ð ffiffiffi

π
p

ΔÞ3
eΔ

2=4

Z
FSO3=Z2N

dSω;vjhSω;vje−ð1=2ÞΔ2L̂2 jIij2: ðC7Þ

Now we get rid of the v dependence of the absolute
value. Recall that rotations conjugate each other as

RΩ;wRω;vR
†
Ω;w ¼ Rω;RΩ;wv: ðC8Þ

For each v, we pick ðΩ;wÞ such that RΩ;wv ¼ z. We then
“create” that rotation inside the ket and commute it through
to the bra:

hSω;vjfðL̂2ÞjIi ¼ hSω;vjfðL̂2ÞjR†
Ω;wRΩ;wi ðC9aÞ

¼ hRΩ;wSω;vR
†
Ω;wjfðL̂2ÞjIi ðC9bÞ

¼ hSω;zjfðL̂2ÞjIi: ðC9cÞ

We further estimate this matrix element via the same
procedure as that for the average angular momentum:
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hSω;zje−ð1=2ÞΔ2L̂2 jIi ∼
Z
R
dx

2xþ 1

eðΔ2=2Þxðxþ1Þ
sin ½ð2xþ 1Þω=2�
16π2 sin ðω=2Þ

¼
ffiffiffi
2

p

8

ωeðΔ2=8Þ−ðω2=2Δ2Þ

ð ffiffiffi
π

p
ΔÞ3 sin ðω=2Þ : ðC10Þ

Plugging all of the above into Pleak ¼ 1 − Pok yields

Pleak ∼ 1 −
1

4ð ffiffiffi
π

p
ΔÞ3

Z
FSO3=Z2N

dSω;v
ω2e−ω

2=Δ2

sin2ðω=2Þ : ðC11Þ

The integration measure (see Sec. 4.5.4 in Ref. [109]) is

dSω;v ¼ 4 sinΘsin2ðω=2ÞdΘdΦdω; ðC12Þ

and, for FSO3=Z2N
, the integration of ðΘ;ΦÞ ¼ v is over

S2 and ω ∈ ½0;ωmaxðΘÞ� [see Eq. (53)]. To absorb the “1−”
part, we integrate over the complementary region, for
which ω ∈ ½ωmaxðΘÞ; π�. Trivially integrating over the
azimuthal angle and simplifying yields

Pleak ∼
2ffiffiffi
π

p
Δ3

Z
π

0

sinΘβΘ
Z

π

ωmaxðΘÞ
dωω2e−ω

2=Δ2

:

To simplify the integral further, we first use invariance
under Θ → π − Θ to write

Pleak ∼
4ffiffiffi
π

p
Δ3

Z
π=2

0

sinΘdΘ
Z

π

ω⋆
dωω2e−ω

2=Δ2

; ðC13Þ

where, due to the new integration domain, we
can remove the absolute value in ωmax and define
ω⋆ ≡ 2cot−1½cosΘ cotðπ=4NÞ�. Now we apply Laplace’s
method [186]: In the Δ → 0 limit, the leading-order
contribution to the ω integral is around ω ¼ ω⋆, since
the exponential ω2=Δ2 is minimized there. Thus, we can
increase the upper ω bound to infinity without losing
accuracy and perform the resulting Gaussian-type integral.
Plugging the result into the remaining integral yields

Pleak ∼
2ffiffiffi
π

p
Δ

Z
π=2

0

dΘω⋆ sinΘe−ω
2⋆=Δ2

: ðC14Þ

Now the dominant contribution is around Θ ¼ 0.
Expressing ω⋆ in terms of Θ, we expand both ω⋆ sinΘ
and the exponential around zero:

ω2⋆ ≈
�

π

2N

�
2

þ π

2N
sin

�
π

2N

�
Θ2; ðC15aÞ

ω⋆ sinΘ ≈
π

2N
Θ: ðC15bÞ

Plugging this result in, extending the upper bound to
infinity, evaluating the resulting Gaussian-type integral,
and simplifying yields the result (78).

3. Momentum-kick distortion

A way of understanding why detection of l < N
momentum kicks implies correction of l < N=2 kicks
stems from the fact that products ofDl

mnðRÞDl0
m0n0 ðRÞ can be

expanded in terms of a sum of single D matrices (see
Sec. 4.6.1 in Ref. [109]). Upgrading this expansion to
operators and using selection rules (60) yields

D̂l
mnD̂

l0
m0n0 ¼

Xl0þl

L¼jl0−lj
CL;m0þm
lml0m0 CL;n0þn

lnl0n0 D̂
L
m0þm;n0þn; ðC16Þ

where the Clebsch-Gordan coefficients CL;m0þm
lml0m0 ¼ 0 when

jm0 þmj, jn0 þ nj > L. Per the Knill-Laflamme conditions,
in order to correct against kicks by angular momentum
l < N=2, we need to detect products of kicks ðD̂l

mnÞ†D̂l0
m0n0

with l, l0 < N=2. Using the above equation and

ðD̂l
mnÞ† ¼ ð−1ÞmþnD̂l

−m;−n ðC17Þ

(see Sec. 4.5 in Ref. [109]), such products can be expanded
in terms of single kicks with momentum < N. Detection of
such single kicks thus implies correction of kicks
with l < N=2.
For the normalizable code words, the problem comes

from violations of the Knill-Laflamme conditions stem-
ming from D̂l

00, namely, h0̃jD̂l
00j1̃i ≠ 0. Using Eq. (C16),

this problem translates to not being able to perfectly resolve
kicks D̂l

mm with fixed m but different l, as the distortion
caused by such kicks depends on l. Working in the Δ → 0
limit, plugging in the approximate code word normaliza-
tion, using Table IVG, and using selection rules (60),

h0̃jD̂l
00j1̃i ∼

Δ3N

eΔ
2=4 ffiffiffi

π
p
X
l0≥0

ð2l0 þ 1Þe−ðΔ2=2Þl0ðl0þ1Þ

×
X

jl0−lj≤L≤l0þl

e−ðΔ2=2ÞLðLþ1Þ

×
X

jPNj≤L
ð−1ÞPðCL;PN

l;0;l0;PNÞ2: ðC18Þ

Numerically, this sum is exponentially suppressed with
1=Δ2 for all l < N that we test. Below, we estimate its
asymptotic behavior, showing that its dependence on Δ is
surprisingly similar to Pleak (78).
As Δ → 0, ever-increasing values of L, l0 contribute to

the sums (C18). For l ≪ L, l0, the Clebsch-Gordan
coefficients CL;PN

l;0;l0;PN approach their semiclassical limit—
a particularD-matrix element (see Sec. 8.9.1 in Ref. [109]).
Since D matrices are unitary, this element is bounded by
one. Setting allC’s to one and evaluating the innermost sum
over P yields
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h0̃jD̂l
00j1̃i≈

Δ3N

eΔ
2=4 ffiffiffi

π
p
X
l0≥0

ð2l0 þ1Þe−ðΔ2=2Þl0ðl0þ1Þ

×
X

jl0−lj≤L≤l0þl

e−ðΔ2=2ÞLðLþ1Þð−1ÞbL=Nc: ðC19Þ

For all l0 > l, there are 2lþ 1 different values of L. For
each value, we approximate the resulting sum over l0 by the
sum associated with L ¼ l0. This approximation yields

h0̃jD̂l
00j1̃i ≈

ð2lþ 1ÞΔ3N

eΔ
2=4 ffiffiffi

π
p

×
X
l0≥0

ð2l0 þ 1Þe−Δ2l0ðl0þ1Þð−1Þbl0=Nc: ðC20Þ

The sign of the summand oscillates with l0, with perio-
dicity N. Numerically, we observe that this expression
scales as the quoted estimate (79).

APPENDIX D: COSET SPACES L2ðG=HÞ
In close analogy to group spaces G, here we construct

Table V—an analog to Table IV for coset spaces G/H with
H ⊆ G. The key idea is to treat these spaces as subspaces of
the group space G, which allows us to develop shift
operators and orthogonality relations. This treatment is
intended for molecular state spaces SO3=H, but it also
provides a framework for qudit-type spaces G/H for finite

G as well as symmetric spaces for G a Lie group. However,
as with Sec. VII, we consider finite G to better flesh out the
key intuition.
Mathematically, our result is a “coordinates statement”

of the Peter-Weyl theorem for homogeneous spaces [see
Corollary 9.14 in Ref. [187], Ref. [188], Eq. (116) in
Ref. [179], and Sec. II. 3.9 in Ref. [189] ]. The ability to
make such a statement stems from a particular choice of the
“coordinates,” namely, bases for the irreps of G that are
block diagonal when restricted to H.
Recalling that a space G consists of states fjgi; g ∈ Gg,

the defining position states of the space G/H are equal
superpositions of elements of cosets of H in G:

jaHi≡ 1ffiffiffiffiffiffiffijHjp X
h∈H

jahi; ðD1Þ

where a is any element of the coset aH. In effect, projecting
into the subspace spanned by the above states is equivalent
to performing the quotient map on the level of the group.
Some applications require unique choices of coset repre-
sentatives, so we pick a ∈ FG=H—the Voronoi cell of the
identity (see Appendix B). We abuse notation and use G/H
and FG=H interchangeably throughout the paper.
Expressing these in terms of the momentum states of G

from Table IV B, switching sums, and using definition
(128) yields a generalization of Eq. (127) to all G/H:

TABLE V. Summary of relations for coset spacesL2ðG=HÞ, treated as subspaces of group spacesL2ðGÞ; see Appendix D. The CLM
lml0m0

are Clebsch-Gordan coefficients [109,153]. The operator X̂h is X⃗h projected onto the quotient space.

Coset space L2ðG=HÞ ⊂ L2ðGÞ Linear rotor L2ðS2Þ ⊂ L2ðSO3Þ
A. Phase space ða;lmn Þ ∈ G=H × dG=H ðv;lm Þ ∈ S2 × bS2
B. Conjugate bases jaHi ¼P

lmn∈cG=H ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdl=jG=HjÞ
p

Zl⋆
mnðaHÞjlmni jvi ¼Pl≥0

P
jmj≤l Yl⋆

m ðvÞjlmi
jlmni ¼

P
a∈G=H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdl=jG=HjÞ
p

Zl
mnðaHÞjaHi jlmi ¼

R
S2 dvY

l
mðvÞjvi

C. Overlap haHjlmni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdl=jG=HjÞ

p
Zl
mnðaHÞ hvjlmi ¼ Yl

mðvÞ
D. Resolution

P
a∈G=H jaHihaHj

¼P
lmn∈cG=H jlmnihlmnj ¼ 1G=H

R
S2 dvjvihvj ¼

P
l≥0
P

jmj≤l jlmihlmj ¼ 1S2

E. Orthocompleteness
P

a∈G=H Zl⋆
mnðaHÞZl0

m0n0 ðaHÞ
¼ ðjG=Hj=dlÞδll0δmm0δnn0

R
S2 dvY

l⋆
m ðvÞYl0

m0 ðvÞ ¼ δll0δmm0

P
lmn∈cG=Hðdl=jG=HjÞZl⋆

mnðaHÞZl
mnða0HÞ ¼ δG=Haa0

P
l≥0
P

jmj≤l Yl⋆
m ðvÞYl

mðv0Þ ¼ δS
2

vv0

F. Position shifts X̂hjaHi ¼ jhaHi X̂Rjvi ¼ jRvi
X̂hjlmni ¼

P
p Z

l⋆
pmðhÞjlpni X̂Rjlmi ¼

P
jpj≤l Dl⋆

pmðRÞjlpi
G. Phase shifts Ẑl

mnðHÞjaHi ¼ Zl
mnðaHÞjaHi Ŷl

mjvi ¼ Yl
mðvÞjvi

Ẑl
mnðHÞjl0m0n0 i ¼

P
LMN∈cG=H cLMN

lmn;l0m0n0 jLMNi Ŷl
mjl0m0 i ¼PL≥0

P
jMj≤L cLMlm;l0m0 jLMi

cLMN
lmn;l0m0n0 ¼ ð ffiffiffiffiffiffiffiffiffiffiffi

dl0dL
p

=jG=HjÞP
a∈G=H ZL⋆

MNðaHÞZl0
m0n0 ðaHÞZl

mnðaHÞ
cLMlm;l0m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð2lþ 1Þð2l0 þ 1Þ=4πð2Lþ 1Þ�p
CLM
lml0m0CL0

l0l000

H. Weyl relation X̂hẐ
l
mnðHÞX̂†

h ¼
P

p Z
l⋆
pmðhÞẐl

pnðHÞ X̂RŶ
l
mX̂

†
R¼

P
jpj≤l Dl⋆

pmðRÞŶl
p
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jaHi ¼
X

lmn∈Ĝ

ffiffiffiffiffiffiffiffiffiffiffiffi
dl

jG=Hj

s
Zl⋆
mnðaHÞjlmni: ðD2Þ

We observe that this equation is zero unless ZlðHÞ ≠ 0.
The participating l thus form the reciprocal space [127]

H⊥ ¼ fl ∈ Ĝ; ZlðHÞ ≠ 0g; ðD3Þ

a notion that generalizes the dual or reciprocal lattice for
H ¼ Z×d [190] and the dual code for CSS codes H ¼ Z×n

2

(see Lemma 7.1 in Ref. [141]).
The reciprocal space depends significantly on G and H.

For example, the Z3 ⊂ Z6 ⊂ U1 code words (45) contain
every third l, Z⊥

3 ¼ fl ∈ Z; eið2π=3Þl ¼ 1g. For the T ⊂
O ⊂ SO3 code from Sec. V E, l ∈ f1; 2; 5g do not par-
ticipate. For Z3 ⊂ Z6 ⊂ SO3 (48), all l ∈ dSO3 participate,
but the internal indices m and n are restricted.
While the surviving l are established by H⊥, survivingm

and n depend on the choice of basis used for the irreps Zl.
We pick an H-admissible basis [188], for which each Zl

decomposes into blocks of some irreps λðlÞ ∈ Ĥ when
restricted to h ∈ H:

ZlðhÞ ¼ ⨁
λðlÞ∈Ĥ

�ZλðlÞðhÞ: ðD4Þ

Picking a particular matrix element p, n selects one of
three cases:
(1) a matrix element that is outside of the above block

decomposition and, hence, zero;
(2) a matrix element of a nontrivial irrep λðlÞ ≠ 1; or
(3) a matrix element of the trivial irrep λðlÞ ¼ 1.

In case (2), the group orthogonality relations (Table IV E)
for H tell us that such a matrix element averaged over H is
zero [since we assume the irrep is nontrivial and
�Z1

00ðhÞ ¼ 1]. Thus, only case (3) survives, and we see that
H⊥ consists of only those irreps l that contain a trivial irrep
of H. Since the trivial irrep is one dimensional, since we are
using an H-admissible basis, and since our average has a
1=jHj factor, one must have Zl

pnðHÞ ¼ δpn for all n
corresponding to trivial λðlÞ ¼ 1 in decomposition (D4).
Plugging this result in yields

jaHi ¼
X

lmn∈Ĝ

ffiffiffiffiffiffiffiffiffiffiffiffi
dl

jG=Hj

s Xdl
p¼1

Zl⋆
mpðaÞZl⋆

pnðHÞjlmni ðD5aÞ

¼
X
l∈H⊥

Xdl
n¼1

Xdl
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
dl

jG=Hj

s
Zl⋆
mnðaÞZl⋆

nnðHÞjlmni ðD5bÞ

¼
X

lmn∈cG=H
ffiffiffiffiffiffiffiffiffiffiffiffi
dl

jG=Hj

s
Zl⋆
mnðaHÞjlmni; ðD5cÞ

where we collect the surviving l ∈ H⊥, the surviving n
designated by our H-admissible basis, and all m ∈
f1;…; dlg into dG=H. This set determines the G-momen-
tum states jlmni that form the momentum basis for G/H.
Since the position states jaHi each consist of different

group elements, they are orthogonal. Inserting a resolution
of identity in terms of G-momentum states into haHja0Hi
yields completeness relations

δG=Haa0 ¼ haHja0Hi ðD6aÞ

¼
X

lmn∈Ĝ

haHjlmnihlmnja0Hi ðD6bÞ

¼
X

lmn∈cG=H
dl

jG=HjZ
l
mnðaHÞZl⋆

mnða0HÞ: ðD6cÞ

Taking two triples from dG=H and inserting the position-
state identity resolution on G/H yields the orthogonality
relation

δll0δmm0δnn0 ¼ hlmnjl0m0n0 i ðD7aÞ

¼
X

a∈G=H
hlmnjaHihaHjl0m0n0 i ðD7bÞ

¼ dl
jG=Hj

X
a∈G=H

Zl⋆
mnðaHÞZl0

m0n0 ðaHÞ: ðD7cÞ

Using Eq. (D5c) and applying the completeness relation
yields the Fourier transform on G/H:

X
a∈G=H

ffiffiffiffiffiffiffiffiffiffiffiffi
dl

jG=Hj

s
Zl
mnðaHÞjaHi ¼ jlmni: ðD8Þ

All position shifts X⃗g act in an induced representation
(131), but only H-twirled momentum kicks (135) keep one
inside G/H:

Ẑl
mnðHÞjaHi ¼ Zl

mnðaHÞjaHi: ðD9Þ

The remaining identities in the second column in Table V
are determined from the above and Table IV.
Denoting X⃗g projected onto G/H as X̂g, the products

B̂lmn
g ¼

ffiffiffiffiffiffiffi
dl
jGj

s
Ẑl
mnðHÞX̂g ðD10Þ

for g ∈ G and l
mn ∈ dG=H form an overcomplete frame for

operators acting on G/H:
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X
g∈G

X
lmn∈cG=HhaHjB̂

lmn
g jbHihb0HjB̂lmn†

g ja0Hi ¼ δG=Haa0 δ
G=H
bb0 ;

ðD11Þ

for all a, a0, b, b0 ∈ FG=H. This formula can be obtained by
using the group orthogonality relations and noting thatX
g∈G

X̂gjaHihaHjX̂†
g ¼ X̂a

X
g∈G

jgHihgHjX̂†
a ¼ jHj1G=H:

ðD12Þ

Some of the other position shifts X⃖g remain unitary when
projected onto G/H, as we shortly see in the exam-
ples below.

1. Example: Rigid rotor

Recall from Appendix B that the rigid rotor is itself a
quotient space, SO3 ¼ SU2=Z2, where Z2 ¼ fI;−Ig. We
can interpret it as a subspace of SU2, with position states

jRi ¼ 1ffiffiffi
2

p ðj þ RiSU2
þ j − RiSU2

Þ; ðD13Þ

where R ∈ SO3 and j � RiSU2
are position states in SU2. To

determine the SU2 momentum states jlmni (with l ∈ Z=2
now being integer or half-integer) participating in the
momentum basis of SO3, we can expand j � RiSU2

in
terms of momentum states and simplify the sum (i.e., Z2

twirl). The irreps of SU2 are also expressible in terms of
Wigner D matrices, and such Z2 twirls are simple:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dl
jSU2j=jZ2j

s
DlðRZ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

8π2

r
1

2
½DlðRÞ þDlð−RÞ�

¼ δl∈Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

8π2

r
DlðRÞ; ðD14Þ

since Dlð−RÞ ¼ −DlðRÞ for the half-integer irreps. This
result shows that only the integer SU2 irreps participate in
SO3. The momentum states of SO3 are, thus, jlmni with
0 ≤ jmj, jnj ≤ l.
The X⃗R, X⃖R, and D̂l

mn of the rigid rotor (see Sec. V) are
inherited directly from their analogs on SU2. The X⃗R and
X⃖R operators together form the group SO3 × SO3, the joint
group of lab-frame and molecule-frame transformations for
an asymmetric molecule.

2. Example: Linear rotor

A canonical example of a coset space is the two-sphere,
where G ¼ SO3 and H ¼ U1. Here, we show that this space
is equivalent to an appropriately chosen subspace of the
rigid rotor SO3. Picking U1 to be z-axis SO3 rotations R00γ

(in the Euler angle ϕθγ parameterization), v ¼ ðθ;ϕÞ ∈ S2,
and the Wigner D matrices [145] are already in a U1-
admissible basis. The position states are then

jvi≡ 1ffiffiffiffiffiffi
2π

p
Z
U1

dγjRϕθγi: ðD15Þ

To determine the momentum states jlmni participating in the
momentum basis of S2, we can expand jRϕθγi in terms of
momentum states and perform the U1 integral (i.e., twirl) of
the corresponding coefficients Dl

mn. Using Sec. 5.2.7 in
Ref. [109] yieldsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dl
jSO3j=jU1j

s
Dl

mnðvU1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
1

2π

Z
U1

dγDl
mnðϕ; θ; γÞ

¼ δn0Yl
mðθ;ϕÞ: ðD16Þ

Thus, the S2 momentum states are jlmi≡ jlm0i. Further
applying this machinery works out the rest of the third
column in Table V.
In this framework, the X- (98) and Z-type (99) operators

of S2 can be viewed as projections of the X- and Z-type
operators of SO3 onto S2. From Table IV F, we see that all
X⃗R for R ∈ SO3 are also operators on S2, acting on the m
indices of the S2 momentum states and yielding the
position shifts X̂R. Projecting the X⃖R operators, on the
other hand, retains only certain matrix elements:

hlmjX⃖αβγjl0m0 i ¼ δll0δmm0Dl
00ð0β0Þ: ðD17Þ

Only two values β ∈ f0; πg yield unitary operators on S2,
with β ¼ 0 being the identity and β ¼ π being the S2

inversion operation X̂P. These form the group ZP
2 , which

together with the projected X⃗R’s forms the group SO3 ×
ZP
2 ¼ O3 of proper and improper rotations on S2.

3. Example: ZN-symmetric rotor

Another space of interest is SO3=ZN , the orientation
space of a ZN-symmetric molecule. Using z-axis rotations
for ZN, this space is a subspace of SO3 with position states

jai ¼ 1ffiffiffiffi
N

p
X
h∈ZN

jRϕ;θ;ξþð2π=NÞhi; ðD18Þ

where a¼ðϕ;θ;ξÞ∈FSO3=ZN
, ðθ;ϕÞ∈S2, and ξ∈ ½0;2π=NÞ.

To determine the participating momentum states, we
perform the ZN twirlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dl
jSO3j=jZN j

s
Dl

mnðaZNÞ ¼ δZN
n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

8π2=N

s
Dl

mnðaÞ; ðD19Þ

ALBERT, COVEY, and PRESKILL PHYS. REV. X 10, 031050 (2020)

031050-38



where δZN
nm ¼ 1 if m ¼ n modulo N. Thus, the set of

momentum states is

fjlm;Npi; 0 ≤ jNpj; jmj ≤ lg: ðD20Þ

As with the linear rotor, this space inherits all X⃗R

rotations. However, projecting the X⃖R rotations yields

hlm;NpjX⃖αβγjl0
m0;Np0 i ¼ δll0δmm0Dl

Np;Np0 ðαβγÞ: ðD21Þ

As opposed to the case of the linear rotor, X⃖R is not
diagonal in the momentum basis, and so there are more
unitary operators inherited from such rotations. For exam-
ple, all triples ðα0γÞ and ðαπγÞ yield unitary operators. For
jpj; jp0j ¼ 1, these form the group O2=ZN . Together with
all X⃗R’s, these form the group SO3 × O2=ZN .
As N → ∞, ξ → 0 and this space approaches S2. In

pictures, the saucerlike space [see Fig. 2(b)] compresses to
a flat pancake with all of its boundary points identified,
which is equivalent to the two-sphere.

4. Poisson summation

A final interesting note is the presence of a Poisson
summation formula on these spaces. Recall the standard
formula for functions f ∈ L2ðRÞ:X

h∈Z
fðhÞ ¼

X
l∈Z

Z
R
dxeilxfðxÞ: ðD22Þ

Oftentimes, the first term in the sum over l is sufficient
asymptotically with some parameter (see Sec. V C), so this
formula is useful to approximate sums with integrals. A
closer inspection reveals that this formula is a special case
(H ¼ Z and G ¼ R) of the more general formula for
evaluating the sum of a function f ∈ L2ðGÞ over H [127]:

1

jHj
X
h∈H

fðhÞ ¼ 1ffiffiffiffiffiffiffijHjp hHjfi ðD23aÞ

¼
X

lm∈cG=H
ffiffiffiffiffiffiffi
dl
jGj

s X
g∈G

hlmmjgihgjfi ðD23bÞ

¼
X

lm∈cG=H
dl
jGj
X
g∈G

Zl⋆
mmðgÞfðgÞ: ðD23cÞ

This formula can be generalized to sums over cosets aH.

APPENDIX E: PARTIAL FOURIER
TRANSFORM ON S2

Our focus here is on protection against small rotations,
which necessitates the use of coherences between antipodal

orientations to store the logical information [i.e., satisfac-
tion of Eq. (107)]. Given this condition, it is convenient to
let the subgroup K ⊃ H be H × ZP

2 , where Z
P
2 is the group

generated by inversion P. Since there are only two cosets
fH; PHg of H in K, our choice of K restricts us to only
qubit codes. (Other choices for K are, of course, possible,
but we do not expound on them here.)

1. Abelian subgroup codes

Let us pick H ¼ ZN (for odd N) and K ¼ ZN × ZP
2 ,

where ZN corresponds to the group of z-axis rotations. The
orbit of a point ðϑ;φÞ (with ϑ ∉ f0; πg) under K consists of
the 2N points ½ϑ;φþ ðπ=NÞh� and ½π − ϑ;φþ ðπ=NÞhþ
π� with h ∈ f0; 1;…; N − 1g. To form our basis, these
points are then split up into two sets of N points, each set
corresponding to one of the two cosets labeled by
r ∈ f0; 1g. The two cosets are then Fourier transformed
to construct the respective basis states fr; λg (with
λ ∈ f0; 1;…; N − 1g) for each orbit ðϑ;φÞ, yielding the
basis

j0ZNðϑ;φÞ; λi ¼
1ffiffiffiffi
N

p
X
h∈ZN

eið2π=NÞλh
����ϑ;φþ 2π

N
h

�
; ðE1aÞ

j1ZNðϑ;φÞ; λi ¼
1ffiffiffiffi
N

p
X
h∈ZN

eið2π=NÞλh
����π − ϑ;φþ 2π

N
hþ π

�
:

ðE1bÞ

These states are defined for all ðϑ;φÞ belonging to the
Voronoi cell of jðπ=2Þ; 0i:

FS2=ðZN×ZP
2
Þ ¼
�
ðϑ;φÞjϑ∈ ½0;π�;φ∈

�
−

π

2N
;
π

2N

	

; ðE2Þ

except at the points ϑ ∉ f0; πg. This cell is depicted
by the blue spherical line in Fig. 2(c). The code words
(102) correspond to j0ZNðπ=2; 0Þ; 0i and j1ZNðπ=2; 0Þ; 0i,
respectively. The cone points ϑ ∈ f0; πg are special in
that they are invariant under any ZN rotations around
the z axis. For such points, λ ¼ 0, and their orbits under
ZN are simply the points themselves, j0ZNð0; 0Þ; λi ¼
j0; 0i and j1ZNðπ; 0Þ; λi ¼ jπ; 0i.
The above basis is orthonormal and complete due to

Eq. (112), and, with this basis at hand, we can devise a
recovery map for our code. A simple map consists of
isometries mapping the subspace fjrZNðϑ;φÞ; λigr∈f0;1g
for each ðϑ;φÞ and λ (with ϑ ∉ f0; πg) into the code space
fjr̄igr∈f0;1g. The remaining cone points ϑ ¼ 0, π can be
mapped to any state in the code space, and we choose to
map them to ð1= ffiffiffi

2
p Þðj0̄i þ j1̄iÞ.

Because it preserves coherences between antipodal
points, this recovery protects from all rotations R that keep
each orientation in its Voronoi cell. To see this protection,
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consider N ¼ 3 and write a general code state (with
jc0j2 þ jc1j2 ¼ 1) as

jψi ¼ c0j0̄i þ c1j1̄i ¼
1ffiffiffi
3

p ðjψ0i þ jψ1i þ jψ2iÞ; ðE3Þ

where, for h ∈ f0; 1; 2g, the states

jψhi ¼ c0

����π2 ; 2πN h

�
þ c1

����π2 ; 2πN hþ π

�
ðE4Þ

are superpositions of a pair of antipodal points. These states
are mapped to X̂RjψhihψhjX̂†

R upon a rotation X̂R, with each
constituent orientation jðπ=2Þ; ð2π=NÞhi being mapped to
some point jvhi and its antipode to j − vhi. Each jvhi is
supported on j0ZNðϑh;φhÞ; λi for all λ and some ϑh;φh,
and similarly j − vhi overlaps with j1ZNðϑh;φhÞ; λi for all
λ. Our recovery maps each X̂RjψhihψhjX̂†

R back into the
code space, preserving the logical information. Coherences
jψhihψh0≠hj are not preserved, but this result is not
detrimental, since the logical information is already inside
each jψhi.

2. Non-Abelian subgroups

Here, we construct the partial Fourier-transformed basis
for H ⊂ K, where, for simplicity, we assume H to be the
maximal subgroup of K. By identifying points connected
by actions of rotations in K, S2 can be partitioned into orbits
Kw ¼ fjkwigk∈K with w ∈ S2=K.
Since S2 is not a group, the number of points in an orbit

Kw depends on the starting point w ∈ S2. Generically, each
rotation R ∈ K maps w to a distinct point Rw, but there
exist special points (e.g., the aforementioned cone points),
invariant under some (or even all) R, for which the size of
the orbit is < jKj. We have to consider such complications
when designing the partial Fourier-transformed basis on S2.
We now further partition each Kw into one or more parts,

corresponding to cosets of H in K. To do so, we apply the
orbit-stabilizer theorem for each orbit. Consider the subset
Hw for each orbit Kw, whose maximal invariant group is
either H or K (as there are no subgroups in between). If this
group is H, then by the theorem there is a one-to-one
correspondence between elements of the orbit of Hw under
K and cosets a ∈ K=H. If the group is K, then Hw ¼ Kw.
Applying the H Fourier transform on each subset aHw ¼

fjaRwigR∈H yields (cf. [127])

jaHw;λðwÞμν i ¼
ffiffiffiffiffiffiffiffiffiffijHwjp
jHj

X
R∈H

�ZλðwÞ
μν ðRÞjaRwi; ðE5Þ

indexed by orbits w ∈ S2=K, cosets a ∈ K=H, and irrep
elements λ

μν ðwÞ ∈ Ĥ. The irrep elements depend onw, since
the size jHwj of each orbit, and, therefore, the number of
states in the subspace fjRwigR∈H, depends on w. Likewise,

the coset index a is used onlywhen jKwj ≠ jHwj; otherwise,
Hw is invariant under K, and no a index is needed.
A simple example is H ¼ T and K ¼ T × ZP

2 . A generic
orbit aTw is a tetrahedrally symmetric set of 12 points, and
Kw is an octahedrally symmetric set of 24 points. At a
special point wcube, Twcube form the vertices of a tetrahe-
dron, and Kwcube is a cube (Fig. 5). We pick the corre-
sponding two states fjaTwcube;

1
00 iga∈ZP

2
to be the code

words (where 1 is the trivial irrep of T).

3. Symmetric harmonics

A simple way to obtain K-symmetric harmonics from the
spherical harmonics is to average or twirl them over K:

Ŷl
mðKÞ≡ 1

jKj
X
k∈K

X̂kŶ
l
mX̂

†
k ¼

X
jpj≤l

Dl⋆
pmðKÞŶl

p: ðE6Þ

Above, we use Eq. (128), the Weyl relation (Table V H),
and Sec. 5.5.2, Eq. (1), in Ref. [109] to express the twirl in
terms of Wigner D matrices [145]. The above is nonzero
only for those l admitting K-symmetric harmonics.

APPENDIX F: BROADER CONTEXT

The partially Fourier-transformed basis (20) for Z3 ⊂ U1

and its generalization (124) for subgroups H ⊂ G are
prominent in many areas of science and engineering. We
list notable examples and three interpretations below.

1. Notable examples

A particularly famous example is lattice systems
fG;Hg ¼ fR×d;Z×dg, where

R×d ≅ ðR=ZÞ×d ×dZ×d ≅ U×d
1 × U×d

1 : ðF1Þ

The corresponding basis (124) is called the Weil-Brezin
transform [see Eq. (1.112) in Ref. [191] ] or, in the solid-
state context, the Zak or kq basis [192]: The first U×d

1 factor
is parameterized by angles replacing the discrete band
index n in the standard Bloch functions, while the second
factor is simply k space. This basis sees applications in
signal processing [193], where it is useful for resolving
signals from noise. This basis is also studied in quantum
foundations [194], and its constituent states can be grouped
to form a code space and error spaces for GKP codes [1] (a
motivation for this work).
Another interesting example is fSO3;U1g. Its corre-

sponding decomposition

SO3 ≅ SO3=U1 ×cU1 ≅ S2 × Z ðF2Þ

is useful for expressing vector fields on the sphere (see
Sec. 12.3 in Ref. [195]).
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2. Symmetry-adapted bases

Such bases are used to block-diagonalize H-symmetric
Hamiltonians acting on a space X into blocks correspond-
ing to irreps λ ∈ Ĥ. For the fU1;Z3g example, a Z3-
symmetric Hamiltonian written in the basis (20) does
not have any matrix elements connecting different values
of λ. This diagonalization procedure is ubiquitous in
physics and chemistry (see Secs. 3–8 in Ref. [190]) (see
also Ref. [127]).

3. Coherent states

The states fjaZ3; λiga∈U1=Z3
for fixed λ can then be

obtained by applying position shifts on the fiducial state
j0Z3; λi, making them similar to Perelomov coherent states
(see Sec. II. 1 in Ref. [99]) (with the caveat that the
representation of the group of shifts is reducible). A key
difference between such states for fR;Zg and the conven-
tional oscillator coherent states is the choice of fiducial
state: a GKP state for the former and the vacuum Fock state
for the latter.

4. Fiber bundles

If we instead take a look at fjaZ3; λigλ∈Z3
, we have a 3D

space for each a ∈ U1=Z3. For this and any fG;Hg case
where G is a Lie group, the states form a fiber bundle with
base space G/H, fiber Ĥ, and cross section fag [99].
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