
 

Rydberg Composites

Andrew L. Hunter , Matthew T. Eiles, Alexander Eisfeld, and Jan M. Rost
Max Planck Institute for the Physics of Complex Systems, 38 Nöthnitzer Strasse, 01187 Dresden, Germany

(Received 3 September 2019; accepted 24 June 2020; published 26 August 2020)

We introduce the Rydberg composite, a new class of Rydberg matter where a single Rydberg atom is
interfaced with a dense environment of neutral ground state atoms. The properties of the composite depend
on both the Rydberg excitation, which provides the gross energetic and spatial scales, and the distribution
of ground state atoms within the volume of the Rydberg wave function, which sculpt the electronic states.
The latter range from the “trilobites,” for small numbers of scatterers, to delocalized and chaotic
eigenstates, for disordered scatterer arrays, culminating in the dense scatterer limit in symmetry-dominated
wave functions which promise good control in future experiments. We discuss one-, two-, and three-
dimensional arrangements of scatterers using different theoretical methods, enabling us to obtain scaling
behavior for the regular spectrum and measures of chaos and delocalization in the disordered regime. We
also show that analogous quantum dot composites can elucidate in particular the dense scatterer limit. Thus,
we obtain a systematic description of the composite states. The two-dimensional monolayer composite
possesses the richest spectrum with an intricate band structure in the limit of homogeneous scatterers,
experimentally accessible with pancake-shaped condensates.
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I. INTRODUCTION

Ultralong-range molecules composed of a Rydberg atom
and a ground state atom, colloquially known as trilobites,
were proposed in 2000 [1]. Soon thereafter theoretical
explorations regarding the possibility of polyatomic mol-
ecules involving several ground state atoms followed [2,3].
The experimental verification of ultralong-range Rydberg
dimers in 2009 [4] also confirmed accidentally the exist-
ence of trimers [5]. Since then, interest in Rydberg
excitations beyond isolated atoms has rapidly branched
out into quite diverse scenarios. These include the replace-
ment of the ground state atom in the original trilobite dimer
by larger and more complex systems, e.g., one or more
polar molecules [6–9], the (re)discovery of Rydberg exci-
tations in solid-state systems [10], and a large variety of
excitonic Rydberg dynamics in the gas phase [11–13], just
to name a few. For the increasingly dense gases now
achievable in experiments, one can elegantly describe this
system as a Rydberg excitation dressed by ground state
atoms from the gas. In fact, recent experiments exhibit
spectral features corresponding to polyatomic molecules

containing up to five ground state atoms [14–16], and
mean-field shifts in the spectrum reveal this polaronic
behavior involving the coupling of many hundreds of atoms
to the Rydberg electron [17]. One may wonder how many
ground state “scatterer” atoms within the volume occupied
by the Rydberg wave function can a trilobite molecule
tolerate. A recent study found that trilobites actually thrive
in a dense gas, which is counterintuitive at first glance [18].
What we lack is a systematic approach which connects the
trilobite regime with a few scatterers to the regime of very
dense scatterers, although the phenomena just described
suggest that Rydberg excitations immersed in dense and
structured media might have very interesting properties.
The present investigation opens a new venue for Rydberg
composite systems along this way, which involve many
thousands of atoms in a structured environment coupled to
a single Rydberg atom. These composites can be formed by
exciting a Rydberg atom within a one-, two-, or three-
dimensional optical lattice such that the electronic wave
function envelops many atoms on the surrounding sites, but
can also be created in other settings involving randomly
positioned scatterers within a geometrically confined vol-
ume. We present a systematic and detailed investigation of
this Rydberg composite and provide its properties as a
function of principal quantum number ν, lattice constant d,
and fill factor F of lattice sites.
With the Rydberg composite we change the perspective

from the molecular one—using chemical approaches to
characterize polyatomic trilobites via Born-Oppenheimer
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potential surfaces, rovibrational couplings, etc., [2,19]—to
a condensed matter one, emphasizing generic scaling
principles, gross structure, and properties associated with
the high density of states obtained here. This allows us to
approach systematically dense atomic environments.
Indeed, we will see that toward the limit of homogeneous
filling a bandlike structure in the spectrum emerges.
Moreover, the unique property of a Rydberg electron
bound to an isolated atom with a singular point of infinite
density of states (DOS) at the ionization threshold
limν→∞ Eν ≡ −1=ð2ν2Þ ¼ 0 and full degeneracy makes
such a Rydberg composite an interesting object to study,
as the distribution of scatterers can break the degeneracy in
a controlled, yet flexible, way. We identify nontrivial
scaling properties as a function of ν. They allow us to
connect the situation at finite ν with threshold ν → ∞.
Finally, the composite’s key properties are derived analyti-
cally in the homogeneous limit, while random matrix
theory is used for the irregular part of the spectrum.
We also explain how a planar environment breaks the

symmetry of the Rydberg composite and leads to much
richer spectral structures as compared to a wirelike (one-
dimensional) or crystal-like (three-dimensional) atomic
environment. Hence, we put emphasis on a planar sheet
of atoms arranged in a lattice containing a Rydberg
excitation as an exemplary Rydberg composite whose
experimental realization is facilitated by the routine creation
of two-dimensional optical lattices [20] and, increasingly,
the rapid progress in optical tweezer arrays [21–24]. Several
of the Rydberg composite properties we study are observ-
able in a 2D system without a regular lattice arrangement,
and could be studied in sufficiently dense pancake-shaped
condensates [25–28]. Moreover, we briefly discuss how
quantum dots can give rise to similar composite structures.
They further elucidate the dense scatterer limit, offer addi-
tional possibilities to create a composite experimentally, and
underline the generality of the excitation composite idea
beyond Rydberg composites.
More generally, excitation composites as introduced here

describe how the high degeneracy of an underlying
excitation (zeroth-order Hamiltonian) can be lifted in a
controlled way. The “generic” situation of sufficiently
many scatterers to remove all degeneracies exhibits chaotic
level dynamics. It can be smoothly tuned to the few-
scatterer limit where less degenerate polyatomic electronic
symmetries replace the highly degenerate and symmetric
underlying excitation spectrum. In the opposite limit of
very many scatterers, the latter lose their individual role.
Rather, the symmetry of their geometric support becomes
dominant. If it is planar, it turns the degenerate spectrum of
the Rydberg excitation into well-structured energy bands,
which is a manifestation of novel correlation effects.
This paper is structured as follows. Section II provides

the theoretical background. In Sec. II A, we introduce a
generic Hamiltonian for composites which can describe a

broad class of systems consisting of an excited object
coupled to localized scatterers. Section II B specifies this
Hamiltonian for our Rydberg composite in D dimensions.
Section II C details the scaling properties of the Rydberg
composite in one, two, and three dimensions. In Sec. III, we
introduce the phenomenology of the composite in the three
different lattice geometries, investigating both the DOS
(Sec. III A) and exemplary wave functions (Sec. III B). In
Sec. IV, we focus on the homogeneous density regime of
dense scatterers where the system can be studied analyti-
cally to obtain a clear intuitive picture of the system, its
band structure, and the resulting scaling laws. Section V
investigates the inhomogeneous regime, using statistical
measures derived from random matrix theory to understand
the interplay of symmetry and chaos induced spectral
features. Section VI discusses potential experimental real-
izations, and Sec. VII concludes with further perspectives
and implications. Striving for a text which is as far as
possible self-contained, we occasionally provide formulas
available in standard references. Throughout we adopt
atomic units.

II. THEORETICAL DESCRIPTION

A. Generic Hamiltonian

We begin with a generic description of our system, which
is composed of an electron with position r and momentum
p in the presence of a central potential VðrÞ and a collection
of pointlike scattering objects with positions following a
distribution ρðxÞ. This scatterer arrangement can corre-
spond to either a structured geometry or a disordered
environment, i.e., that found naturally in an optical lattice
or in an ultracold gas, respectively. Although the electron
wave function is fully three dimensional, the dimension-
ality of the scatterer geometry can be lower, for example, as
in a one-dimensional chain or a two-dimensional random
gas. The scatterers interact with the electron via the
potential Uðx; rÞ, which destroys the spherical symmetry
of the central potential VðrÞ and, in general, makes the
system classically chaotic.
We assume a frozen-gas scenario, consistent with the

ultracold temperatures of such a system, and neglect the
motion of the scatterers. The electronic Hamiltonian is
therefore

H ¼ p2

2m
þ VðrÞ þ

Z
ρðxÞUðx; rÞd3x: ð1Þ

This generic Hamiltonian has been studied in several
contexts over the past decades, with examples ranging from
two-dimensional quantum dots [29,30], quantum billiards
[31], Coulomb systems [32,33], perturbed harmonic oscil-
lators [34], and Bose-Einstein condensates (BEC) in a
dimple potential [35], to name just a few. The electronic
wave function for vanishing U separates in spherical
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coordinates: ΦðrÞ ¼ hrjνlmi ¼ uνlðrÞ=r Ylmðθ;ϕÞ, where
Ylmðθ;ϕÞ is a spherical harmonic. Therefore, mutual
eigenstates of the angular momentum operator and the
Hamiltonian satisfy L2jνlmi ¼ lðlþ 1Þjνlmi, Lzjνlmi ¼
mjνlmi, and Hjνlmi ¼ Eνljνlmi. Any central potential
possesses azimuthal symmetry and hence has 2lþ 1 degen-
erate states for a given ν and l. In the next section, we
consider theColoumbpotential,VðrÞ ¼ −1=r, which has an
additional symmetry: it conserves the Runge-Lenz vector
A ¼ p ×L − r=r, leading to a particularly large degenerate
Hilbert space in each manifold ν. Scatterers will lift this
degeneracy. Special scatterer geometries, however, may be
able to restore this degeneracy in the Rydberg composite.

B. Implementation for the Rydberg composite

The Rydberg atom is a major workhorse of modern
atomic physics; here, when embedded in an ultracold
medium of neutral atoms, it provides an ideal physical
realization of the Hamiltonian [Eq. (1)]. For an alkali atom,
typically used in an ultracold context, this means that VðrÞ
is a Coulomb potential for r larger than a few atomic units.
The deviation at small r, typically set by an empirical
model potential, includes the interactions with the other
atomic electrons. This leads to energies Eνl that are non-
degenerate for the different l values of a given principal
quantum number ν. However, as l increases, the wave
function’s overlap with this short-range region decays
rapidly and Eνl → −ð1=2ν2Þ, degenerate in l as for hydro-
gen. Typically only the states with the three or four lowest l
values deviate appreciably from the hydrogenic Rydberg
spectrum. The overwhelming majority of states behave as
in hydrogen, and therefore for simplicity we consider a
hydrogenic spectrum here. For the interaction between the
surrounding ultracold atoms—the localized scatterers—
and the electron, we use the Fermi pseudopotential [1,36],

Uðx; rÞ ¼ 2πasðkxÞδ3ðx − rÞ ¼ 2πasðkxÞjxihxj; ð2Þ

which is straightforward to implement. The strength of each
scatterer’s contribution is given by the energy-dependent s-
wave electron-atom scattering length as½kx� [37]. This
simple contact potential is a reasonable approximation since
a neutral atom in its ground state is a highly localized and
isotropic perturbation when compared to the Coulomb
potential and Rydberg wavelength. It therefore imparts only
an s-wave phase shift onto the Rydberg wave function via
elastic scattering, as characterized by the scattering length.
The energy dependence of this process is set by the semi-
classical electron momentum, k2x ¼ −ð1=ν2Þ þ ð2=jxjÞ.
We neglect contributions from higher partial waves

which could be included in Eq. (2) via the generalization
introduced in Ref. [38]. In the alkali atoms the p-wave
energy shift becomes large relative to the s-wave shift only
when the electron’s kinetic energy is resonant with the
p-wave shape resonance in the electron-atom system. In

rubidium, for example, the momentum kx reveals that this
resonance condition is met when the internuclear separation
is approximately 1000a0. For the large principal quantum
numbers we consider here, this affects only a very small
number of the participating atoms and therefore has
negligible effect. Atoms with shape resonances at higher
scattering energies (e.g., Li or Na) or those without shape
resonances (e.g., Sr) have even smaller contributions from
this term [39].
For the Rydberg composite, Eq. (1) reads

H¼−
X
νlm

jνlmihνlmj
2ν2

þ2π

Z
d3xρðxÞasðkxÞjxihxj: ð3aÞ

The eigenstates,

jΨii ¼
X
νlm

cðiÞνlmjνlmi; ð3bÞ

and eigenvalues Ei of the Hamiltonian (3a) are parame-
trized by the distribution ρðxÞ of scatterer locations. We are
interested in scatterers in D-dimensional lattice configura-
tions, and hence choose

ρðxÞ ¼
XND

i¼1

δ3ðx −RiÞ; ð3cÞ

where the scatterer positionsRi ¼ d
P

D
j¼1 nijêj are located

at lattice positions described by unit vectors êj, the lattice
spacing d, and a set of D × ND integers nij. Here, D ¼
1; 2; 3 refers to a 1D chain, a 2D and a 3D lattice,
respectively. By excluding some values i we can implement
partial filling, defined by the fill factor F. Equation (3a)
relies on two more approximations: the scattering length is
energy independent and the basis is truncated to only a
single ν manifold. We demonstrate in Sec. IV that these
approximations are increasingly accurate at high ν. They
have only minor quantitative effects on the main conclu-
sions of our study but allow us to obtain analytical formulas
and clear scaling behavior. Note that the singular three-
dimensional δ-function potential leads to diverging energy
shifts as the number of ν manifolds included in the basis
increases, making quantitatively accurate convergence
challenging unless alternative Green’s function techniques
are used [5,40]. Reference [40] has demonstrated that the
Green’s function results for the s-wave dominated states
investigated here are quantitatively best approximated by
the results obtained using a single ν manifold in the
diagonalization. A Green’s function approach for arbitrary
number of scatterers has yet to be implemented. Since we
consider only a single ν manifold, in the following
discussion we set −ð1=2ν2Þ to zero.
Hence, the spectrum of Eq. (3a) with the distribution

from Eq. (3c) is obtained by diagonalizing the matrix
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Vlm;l0m0 ¼ 2πas
XND

i¼1

hνlmjRiihRijνl0m0i: ð4Þ

In this description of the Rydberg composite we have
neglected spin degrees of freedom, i.e., the fine and
hyperfine structure of the Rydberg and ground state atoms.
These effects are important at a quantitative level [41–43],
but are not important at the qualitative level considered
here, particularly since the fine structure of the high angular
momentum states which dominate the composite’s physics
is extremely small. As with the contributions from l ≠ 0
partial waves, spin effects can also be reduced by using
certain atomic species without hyperfine structure or by
appropriate spin polarization in the initial gas. Recently,
progress has been made in including some spin degrees of
freedom into the description of Rydberg impurities in dense
bosonic gases [44].

C. Scatterer induced properties
in D-dimensional lattices

The properties of the Rydberg composite, defined by the
Hamiltonian in Eq. (3a), depend on the properties of both
the unperturbed electronic states jνlmi and the scatterer
distribution ρðxÞ. The Rydberg atom’s size, density of
states, and wavelength are determined by its principal
quantum number ν, while ρðxÞ depends on the desired
lattice geometry, lattice spacing, and filling realization. In
this section we delineate the important quantities for one-,
two-, and three-dimensional scatterer configurations.
Although the spatial scale of the lattice can greatly exceed

the size of the Rydberg wave function, not all scatterers
perturb the Rydberg states since the electron-atom inter-
action is highly localized. Its strength, within the Fermi
approximation [Eq. (2)], is determined by the electronic
density directly at each scatterer’s position. The Rydberg

volume is finite with a radius r0ðlÞ ≈ alν2, where al
decreases from al ≈ 2 for the l ¼ 0 state to al ≈ 1 for the
l ¼ ν − 1 states. Numerically, we only consider scatterers
inside a radius r ¼ aν ¼ aν2 with a > 2, as scatterers
beyond the boundary of this volume contribute negligible
energy shift since all wave function amplitudes are expo-
nentially small there. The number ND of relevant scatterers
is then determined by the volume VD of the intersection of
the Rydberg wave function and the lattice. In this way, even
for an infinite lattice, we can truncate its effect to that from
the ND individual scattering potentials in Eq. (3a).
A 1D array of scatterers is depicted in Fig. 1(a). The

relevant 1D volume is V1 ¼ 2aν2, and N1 ¼ 2aν2=d
scatterers lie within this volume. The corresponding
volume for a 2D lattice is the area of the projection of
the Rydberg volume into the plane, V2 ¼ πa2ν4, and hence
the number of scatterers is N2 ¼ ðπa2ν4Þ=d2. In 3D we
consider a cubic lattice of scatterers, and so the relevant
volume is the entire Rydberg volume, V3 ¼ 4

3
πa3ν6, con-

taining N3 ¼ 4πa3ν6=ð3d2Þ scatterers. The values for ND
given here are valid only in the ND ≫ 1 limit, where edge
effects due to the incommensurate spherical and Cartesian
geometries are negligible.
The scatterer configuration also influences how many of

the degenerate states of the Rydberg manifold are shifted.
As a general rule, each scatterer splits away one state
from the degenerate manifold until the geometry-induced
limit BD is reached (see the Appendix F). In a generic
3D scatterer array this limit is given by all states of
the manifold, B3 ¼ ν2, while BD < ν2 in 1D and 2D. To
determine BD for each case we select a convenient
quantization axis and identify the Rydberg states not
affected by the δ-function potential [Eq. (2)].
In 1D, we set the quantization axis parallel to the

linear lattice of scatterers. When r → Rẑ, most angular

FIG. 1. Schematics of the three scenarios we consider: (a) a linear lattice (1D), (b) a monolayer (2D), and (c) a cubic lattice (3D) with
the Rydberg ion in the center, respectively. In each panel the black spheres represent scatterers sitting on lattice sites and the red lines
give the lattice spacing d. The missing scatterers in (b) represent a situation with incomplete filling. The volume of scatterers situated
within the Rydberg wave function is represented by the blue circle in (b) and by the sphere in (c). The exemplary densities shown give
different representations of the composite’s electronic wave function in these three scenarios. In (a) the strongly perturbed wave function
is shown with three surfaces of constant density, revealing the exotic nature of these wave functions. The full 3D contour is cut away in
front to reveal the interior structure. Figure 3 provides details of the plot parameters. Panel (b) shows a contour of the angular
dependence of a typical circular state, which plays a crucial role in the 2D composite’s properties (see Sec. IV). Panel (c) shows an
illustration of the Rydberg atom, illustrating that the spatially varying probability cloud spans many lattice sites of the 3D lattice.
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wave functions vanish on the quantization axis since
Ylmðθ ¼ 0;ϕÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þ=4πp

δm0. Only m ¼ 0 states
experience a shift, and hence B1 ¼ ν is the total number
of m ¼ 0 states.
For the 2D case we set the quantization axis normal

to the plane and evaluate the angular wave functions
at θ ¼ π=2. The Legendre polynomials with argument
cosðπ=2Þ ¼ 0 are

Pm
l ð0Þ ¼

� ð−1ÞðlþmÞ=2 ðlþm−1Þ!!
ðl−mÞ!! lþm ¼ even

0 lþm ¼ odd:
ð5Þ

The plane is transparent to the Rydberg states possessing a
node in the plane. Therefore,

B2 ¼
νðνþ 1Þ

2
: ð6Þ

With the help of BD we can define a third quantity, the
characteristic lattice spacing dD such that ND ≈ BD for that
geometry. This spacing heralds the onset of the density shift
regime where additional scatterers cannot split away new
states since the ν manifold is saturated. They instead
contribute linearly to a mean-field energy shift, consistent
with the conclusion drawn from the original applications of
Fermi’s pseudopotential [45,46]: the mean-field effect of
the interaction of the Rydberg electron with the scatterers is
an energy shift proportional to the electron-atom scattering
length and to the scatterer density. The values for this
characteristic length, along with the other values VD, ND,
and BD, are given in Table I. From these characteristic
properties we can assess the behavior and crude scaling
with ν of the Rydberg composite for a given scatterer
geometry. Note that dD is linear in ν for D ≤ 2, but follows
ν4=3 for the 3D case.
This analysis suggests that for sufficiently large number

of scatterers ND we will obtain BD nonzero eigenvalues
upon diagonalizing H within a ν manifold, and as a
function of decreasing d these eigenvalues will grow (on
average) linearly with the number of scatterers. In order to

remove this asymptotic shift we normalize the total energy
shift by ND. Furthermore, we measure energies in units of
ð2πjasjÞ−1 in order to remove the numerical prefactor from
the potential matrix [Eq. (4)], and hence eliminate the
material-dependent value of the scattering length from our
calculated energy shifts. Finally, since ND depends on the
arbitrary (provided it is sufficiently large) choice of a, we
scale the energy shifts of theD-dimensional lattice by aD to
eliminate this scale choice. Of course, in the limit a → ∞,
this choice removes all dependence on a and we can report
scaled energies Ẽ defined in terms of the unscaled eigen-
values E via

Ẽ ¼
�
d
ν2

�
D E

2πjasjṼD
; ð7Þ

where ṼD is the volume of a D-dimensional sphere with
unity radius.

D. Implementation for the spherical
quantum dot composite

Equation (1) has been written in a generic form, and it is
both theoretically instructive and experimentally relevant to
consider other systems with high degeneracy to form the
composite, as they open up new experimental possibilities
and provide useful theoretical comparisons. One such
system is an isotropic three-dimensional harmonic oscil-
lator. This potential is clearly of foundational importance in
quantum mechanics, but it also has physical relevance as it
can be a good approximation for many other types of
potentials, in particular for a spherical quantum dot (SQD).
Since it is one of the few potentials which, like the
Coulomb potential, has an infinite number of states, high
degeneracy, and has analytically known solutions in
spherical coordinates, it is an ideal system to study further
aspects of the composite’s properties.
As for the Coulomb potential, the wave functions

hrjμlmi of the harmonic oscillator potential VðrÞ¼1
2
mω2r2

can be written as a product of the spherical harmonic Ylmðr̂Þ
times a radial function. It is given by

TABLE I. Scaling properties for the Rydberg composite (when the principal quantum number ν is used) or the
SQD composite (when μ is used) in terms of the effective system radius, aν ¼ aν2 or aμ ¼ a½ð3þ 2μÞ=ω�1=2. Note
that Aμ ¼ Bμ ¼ μþ 1 when μ is an even integer, and Aμ ¼ μþ 1, Bμ ¼ μþ 3 when μ is odd. Where unspecified,
the corresponding expressions for a SQD composite with principal quantum number μ are obtained by replacing
ν → μ; see Sec. II D.

Dimension (D) 1 2 3

Effective lattice volume (VD) 2aν πa2ν 4
3
πa3ν

Number of scatterers (ND) 2ðaν=dÞ πðaν=dÞ2 4
3
πðaν=dÞ3

Number of shifted states (BD) ν νðνþ 1Þ=2 ν2

μ AμBμ=4 ðμþ 1Þðμþ 2Þ=2
Maximum lattice spacing (dD) such that ND ¼ BD aν=ð2νÞ

ffiffiffiffiffi
2π

p ðaν=νÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffið4πÞ=33

p ðaν=ν2=3Þ
aμ=ð2μÞ

ffiffiffiffiffi
2π

p ð2aμÞ=μ
ffiffiffiffiffiffiffiffi
π=33

p ð2aμÞ=μ2=3
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uHOμl ðrÞ ¼ N μlrlþ1e−ωr
2=2Llþ1=2

ðμ−lÞ=2ðωr2Þ; ð8Þ

with the normalization constant

N μl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω3

4π

r
2μ=2−3l=2þ3ðμ−l

2
Þ!ðω=2Þl

ðμþ lþ 1Þ!!

s
: ð9Þ

The SQD’s principal quantum number μ is analogous
to the Rydberg principal quantum number ν. It defines
the energy via

Eμ ¼ ωðμþ 3=2Þ: ð10Þ

All eigenstates with jmj ≤ l, 0 ≤ l ≤ μ, and nr ¼ ðμ − lÞ=2
are degenerate, where nr is the number of radial nodes. In
total there are 1

2
ðμþ 2Þðμþ 1Þ degenerate levels in a given

manifold for a 3D composite, and due to the same parity
selection rule for lþm as in the Rydberg composite,
about half of these states are shifted in the 2D composite.
The size of the system—the equivalent to aν used in the
Coulomb case—is given by aμ ¼ a½ω−1ð3þ 2μÞ�1=2, where
we choose a > 1 to ensure exponential decay of all wave
functions within this volume. The parameters for the
excitation composite are given in Table I.

III. PHENOMENOLOGY OF THE
RYDBERG COMPOSITE

The spectrum of a Rydberg atom immersed in a
structured neutral medium depends on both the Rydberg
principal quantum number and the different realizations of
the lattice. We parametrize the latter by the filling factor F,
the percentage of filled lattice sites, and by the lattice
spacing d. We focus first on unity filling factor so that we
can introduce the essential quantities useful in character-
izing the composite’s properties. In Sec. V we remove this
restriction and study fractional filling.
We first study the density of states. It reveals more about

the global spectral properties than individual energy levels,
and provides a useful guide to regions of interest to focus
on in finer detail. In a second step, guided by the features
seen in these DOS, we study the wave functions corre-
sponding to various paradigmatic states. The structure
present in these wave functions provides additional inves-
tigative tools to understand the spectra. Since the 2D
monolayer leads to the richest structure in the dense lattice
limit, we focus on that geometry.

A. Density of states

We show DOS in Fig. 2 for the lattice geometries
depicted in Fig. 1. We observe that all BD shifted
eigenenergies converge to constant limits for d → 0,
as anticipated. Intriguingly, we find that the asymptotic
value differs remarkably across the three geometries.

For the 1D and 3D scatterer geometries the shifted
eigenenergies become degenerate again as ND → ∞, albeit
at a large overall energy shift relative to the zero-scatterer
degenerate manifold. In contrast, eigenenergies in the 2D
geometry remain nondegenerate even in the infinite density
limit, instead developing three main features (see also the
spectrum, Fig. 5): a nearly continuous and quasiuniformly
spaced distribution of energy levels within a few “bands,”
the formation of a large “band gap” that persists even up to
relatively large lattice constants, and the formation of a
large peak in the DOS in the upper part of the spectrum.
As d increases the DOS becomes challenging to interpret

due to the increasing number of nondegenerate energies in
all three lattice geometries. In general, the spectrum
diffuses. In 1D, the degenerate band is depleted as
individual states split away with increasing d. This process
does not occur symmetrically with respect to the degenerate
band. In 3D, all states begin to split apart at approximately
the same value of d and the perturbed band dissipates far
more rapidly than in 1D; this process occurs symmetrically
about the homogeneous energy asymptote. In 2D, the states
are not degenerate in the d → 0 limit. For increasing d,
states higher in the energy band begin to disperse linearly in
d, revealing a clear energy-dependent transition between
the indistinguishable (d ≈ 0) and distinguishable scatterer

FIG. 2. Density of states dN=dẼ for a ν ¼ 30 composite in 1D
(a), 2D (b), and 3D (c) as a function of scaled lattice spacing d=ν.
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case. In all three geometries, oscillations in the energy
levels mimic the oscillatory nature of the Rydberg wave
function, which is imposed quite directly onto the energy
levels via the contact potential. The “spaghetti” nature of
the energy levels in the large d regime reveals the presence
of both real and avoided level crossings if d is taken as an
adiabatic parameter. Real crossings are possible since the
electronic states mirror the lattice symmetry, and therefore
can be grouped according to the irreducible representations
of the nuclear point group for that lattice. We have
confirmed that, in the 2D lattice case, the DOS can be
computed independently for each of the five irreducible
representations of the C4v point group, following the
description of Refs. [2,19]. This is discussed in more detail
in Appendix C. Finally, as d grows further, the DOS (not
pictured) collapses gradually back into a highly degenerate
peak at zero energy as the number of scatterers falls
below BD.

B. Wave function characteristics

We now present a representative sample of the wave
functions giving rise to these DOS in 1D and 2D, which are
particularly amenable to this treatment since all relevant
information can be gleaned and easily visualized with three-
dimensional contour plots (1D) or the z ¼ 0 slice through
the electron density (2D). From these wave functions we
begin to see the underlying structure of the Rydberg
composite and how it might lead to the emergence of the
structured nondegenerate bands in 2D rather than a single,
fully degenerate band in 1D and 3D. Although our focus
now is descriptive, merely commenting on the appearance
and classification of these wave functions, we use these
observations in the following section to develop quantita-
tively accurate approximations which lead to a full inter-
pretation of the Rydberg composite’s properties.

1. 1D lattice wave functions

In Fig. 3 we present, for four different lattice spacings,
two representative wave functions for the ν ¼ 30 1D
Rydberg composite. On the left we show the state with
the largest energy shift, while on the right we choose a state
slightly higher in energy than the degenerate band limit,
i.e., one of the states visible in Fig. 2(a) just above the
middle band. These wave functions visually forge the
connection between Rydberg composites and “trilobite”
molecules [2,3,19,47]. At large d, shown in the bottom row,
the wave function is a mixture of many l states, leading to
strong localization on scatterer positions. In scenarios such
as this where scatterers are separated by distances greatly
exceeding dD, the wave function tends to localize on only a
subset of the scatterers and effectively ignore the rest. In
this way it maximizes the overlap between the Rydberg
electron and the lattice, and ensures orthogonal wave
functions. As d decreases these states eventually begin
to resemble the hydrogenic basis states and localize less

severely on a symmetry-imposed collection of scatterers,
as the Rydberg wave function increasingly cannot distin-
guish scatterers lying closer together than its wavelength.
Unfortunately, these wave functions do not as yet reveal
with any clarity why the infinite density limit of this 1D
composite is again an energetically degenerate system. A
key reason for this uncertainty is, in fact, their degeneracy:
degenerate eigenstates obtained via a numerical diagonal-
ization will in general be arbitrary superpositions of the
linearly independent states. It is thus impossible to identify
any possible good quantum numbers or selection rules from
these wave functions without investigating some other
observable. In principle, this could be done by applying
a magnetic field to break apart the degeneracy at large
scatterer density. For our present purposes we can turn
instead to the 2D composite, which is fundamentally
nondegenerate in this limit and may reveal through its
wave functions the underlying structure of the 1D case.

2. 2D lattice wave functions

Since only the electronic density in the z ¼ 0 plane
contributes to the energy shifts, it suffices to examine
jΨðx; y; 0Þj for the 2D composite. We first consider the

FIG. 3. Electronic densities of a 1D lattice of scatterers for
ν ¼ 30 and different lattice spacings d in atomic units. The
yellow, green, and blue surfaces correspond to contours at
wave function densities spanning factors of 10. The full three-
dimensional surfaces are cut away in front to reveal the interior
structure. The left-hand column gives the density for the most
deeply perturbed state, while the right-hand column gives the
density just above the degenerate band.
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wave functions of the 2D composite with a fully filled 2D
lattice and vary the lattice constant. In Fig. 4 (bottom) we
show the wave functions corresponding to the first three
odd-numbered eigenenergies starting from the lowest one.
For large enough d the electron density obeys one of the
discrete symmetries permissible by theC4v point group, and
partially localizes on only a subset of the available scatterers.
The behavior of this localization and its effect on the energy-
level structure likely warrants future study. As d shrinks
further, the electron density evolves into a distinctly circular
shape. By the lowest d shown (d ¼ 20), these three
eigenstates have seemingly converged into “circular” states.
By a strict definition, a circular Rydberg state has
l ¼ m ¼ ν − 1; here we employ a broader definition mean-
ing a state with high l and jmj, but with only a small
difference l − jmj. The second and fourth eigenstates iden-
tically resemble the first and third, respectively, showing that
the �m states are equivalent and degenerate in this limit.
To confirm that these eigenstates do not arise due to

some coincidence in the symmetry-adapted wave functions
or fortuitous overlap with the lattice grid, we next consider
a lattice with a small lattice constant d ≪ dD but with
varying fill factor F. At extremely low F [first column of
Fig. 4 (top)], having only a few scatterers, we see that the
nondegenerate eigenstates are basically independent trilo-
bite dimers between the Rydberg core and each individual
scatterer. As F increases, the number of scatterers increases

rapidly and the wave function becomes rather chaotic in
appearance, exhibiting no clear structure. In some instances
it localizes asymmetrically about statistical fluctuations in
the random scatterer distribution where small clusters form
spontaneously.
As before, when the series progresses toward complete

filling, the density resembles more and more a circular
state, thus confirming that the appearance of such states
depends more on the total density of scatterers relative to
the number fluctuations caused by random fill factors than
on the underlying lattice symmetry. Once fluctuations and
correlations in the scatterer density are unresolved by the
Rydberg wave function, any choice of random fill factor is
essentially indistinguishable and the result from the F ¼ 1
case is reached.

C. Role of wave function character in the 2D spectrum

Both ways of increasing the scatterer density described
above lead to the following conclusion in the high-density
limit: the wave functions become increasingly circular in
character, implying that they become approximate eigen-
states of L̂z. This is to be expected in the limit of a totally
homogeneous lattice, where H commutes with L̂z due to
the cylindrical symmetry. Of greater interest is the fact that
the energies of these states are also apparently sorted by the
level of circularity, as states with the most circular character

FIG. 4. The electron density jΨðrÞj1=2 of selected eigenstates of a ν ¼ 30 2D composite. Both panels display from bottom to top the
first, third, and fifth eigenstates. Top: Probability densities for a dense lattice (d ¼ 20) increasing in fill factor from left to right in steps of
0.1 excluding the first panel where only five scatterers are present. Bottom: Probability densities for a full lattice with
d ¼ f1000; 500; 300; 200; 100; 90; 80; 70; 60; 54; 20g, respectively.
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fall to the bottom of the energy bands. A useful diagnostic
to analyze the evolution of the composite as d or F changes
is to monitor the participation ratio PPR of degenerate �m
manifolds in each eigenfunction Ψi expanded in the basis
jνlmi [see Eq. (3b)]

PPR ¼
Xν−1
m¼0

�Xν−1
l¼m

jcðiÞνlmj2 þ jcðiÞνl−mj2
1þ δ0m

�2

: ð11Þ

This quantity ranges from 1, for a state where m is a good
quantum number, to 1=ν, for a state mixed uniformly
among m manifolds. In Fig. 5 we show the 2D composite’s
eigenspectrum as a function of d. Although this conveys
very similar information as the DOS plot in Fig. 2, coloring
the eigenstates by PPR reveals additional structure in these
energy levels that can be linked to the wave function.
The PPR distinguishes many self-similar and repeating
substructures that were not evident in Fig. 2(b). Several
“bands” of states with a similar functional dependence on d
and pattern of PPR are visible, separated by the large energy
gap that was clear in the DOS as well. These bands become
indistinguishable toward high energy and converge into the
region of high degeneracy seen in Fig. 2. The clear transition
between states with PPR ≈ 1, which have m as a good
quantum number, and those which are strongly mixed helps
differentiate these bands even when they start to overlap.
This transition is well predicted by a critical lattice spacing
(dc) defined in Sec. Vand shown for the first three bands in
Fig. 5 as black curves. Figure 5 shows that the trend toward
circular states in the few eigenstates presented in Fig. 4 is
emblematic of a more general behavior: in the d=ν ≪ 1

limit, H commutes with L̂z and hence all wave functions
have m as a good quantum number, of which the circular
states are a small subset. From the wave functions in Fig. 4

we see also that the lowest states of the energy bands
approximately conserve l as well, with maximal or nearly
maximal values of both quantum numbers.
We devote much of the remainder of this paper to the 2D

composite, since embedding the Rydberg excitation in a
planar environment constitutes a new scheme in ultracold
Rydberg physics with a rich and intricate behavior. In
particular, we explicate the physics underlying these (so-far
phenomenological) observations: the formation of energy
bands separated by a single dominant band gap and the
relatively simple character of the underlying wave func-
tions. We elucidate the link between this structure and
the structure underlying the Hamiltonian matrix. The
mathematical tools used for this task also enable us to
understand why all states become degenerate in a homo-
geneous 1D or 3D environment but not in a planar one.
Furthermore, these tools prove useful as a launching point
for our later investigation of disorder in dilute lattices with
random filling and lattices with larger d.

IV. RYDBERG COMPOSITE PROPERTIES
IN THE HOMOGENEOUS DENSITY LIMIT

Our investigation of the 2D composite’s spectrum starts
with the observation that, below a certain lattice constant
d < dc, the Rydberg wave function can no longer resolve
individual scatterers. The lattice then appears homo-
geneous, and the phenomenology of previous sections
has shown that the spectrum becomes constant. In the
present section, we take it as fact that this coarse graining is
physically relevant and use it to approximate the discrete
lattice of scatterers with a continuous plane of homo-
geneous density. In this way we characterize the system’s
properties for the d ≪ ν region of Figs. 2 and 5, which is
then crucial to properly situate our analysis for intermediate
cases with d > dc or F < 1.

A. 2D monolayer: Emergence of a band structure

The replacement of the discrete lattice with a homo-
geneous distribution coincides mathematically with the
replacement of the summation in Eq. (4) with an integral.
In the scaled energy units this replacement must include
also a factor V−1

2 , and the matrix elements become

lim
d→0

Ṽlm;l0m0 ¼ a2ν
R
Φ�

νlmðR; π2 ;φÞΦνl0m0 ðR; π
2
;φÞdA

V2

; ð12Þ

with integration over the entire plane. Using the spherical
coordinate representation of these wave functions, the
integral over φ gives the standard orthogonality relation
δmm0 . Two additional contributions to the matrix elements
emerge, a radial overlap integral,

RðjÞ
νl;νl0 ¼

Z
∞

0

uνlðRÞuνl0 ðRÞ
Rj dR; ð13Þ

FIG. 5. Spectra for a ν ¼ 30 2D Rydberg composite as a
function of lattice spacing. The line color shows PPR for
each state as defined by Eq. (11). The black line marks the
border between homogeneous and inhomogeneous regimes [see
Eq. (34)].
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and the projection of the spherical harmonics into the plane,
Plm;l0m0 ¼ NlmPm

l ð0ÞNl0m0Pm0
l0 ð0Þ, where

Nlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
lþ 1

2

� ðl −mÞ!
ðlþmÞ!

s
; ð14Þ

and Pm
l ðcos θÞ was given in Eq. (5). As expected, integra-

tion over φ imposes a block-diagonal structure in m on this
matrix, since the homogeneous scatterer limit is isotropic.
Equation (12) therefore yields

lim
d→0

Ṽlm;l0m0 ¼ δmm0

πν4
Plm;l0mR

ð1Þ
νl;νl0 : ð15Þ

Figure 6 displays the eigenvalues of this block-diagonal
matrix, plotted as a function ofm to emphasize the parallels
with a band structure. We see that the resulting eigenvalues
can be sorted into energy bands which are linear in the
wings at high jmj and quartic near jmj ¼ 0. We label these
with a band index β, thereby characterizing each eigene-
nergy by a ðβ; mÞ label. As β increases, the wings of upper
bands begin to overlap the flat low-jmj regions, and we find
in this overlapping region that each band begins along the
essentially continuous line Ẽ ¼ −ðm=

ffiffiffiffiffiffiffiffiffiffi
2πν3

p
Þ.

To understand the formation of these bands as well as to
obtain analytic results for the eigenspectrum, we study the
matrix elements of each m-level block of the Hamiltonian.
As one might surmise from the wave function study in the
previous section, these sub-blocks appear to be diagonal

dominated for moderate to high l and m. This can stem
from two influences. First, the off-diagonal couplings tend
to be around one order of magnitude smaller than the
diagonal matrix elements. This is because, although the
radial overlap integral does not have a rapid dependence on
l, the uνl−2ðRÞ wave function has a node nearly at the
maximum antinode of the uνlðRÞ function, and hence the

integrand of off-diagonal elements Rð1Þ
νl;νl0 is small com-

pared to their diagonal counterparts Rð1Þ
νl;νl. An additional

and more critical contribution stems from the spherical
harmonic projections onto the plane, which are illustrated
with surface contour plots in Fig. 7 for these circular states.
Each column of this figure contains all the states within a
single m block, starting with m ¼ ν − 1 ¼ l on the left and
decreasing by 2 [because of the selection rule of Eq. (5)]
with each step to the right. The orbital angular momentum l
decreases by 2 with each vertical step up from its maximal
value, l ¼ ν − 1, in the bottom row. Since l cannot be less
than jmj, the size of each sub-block increases with
decreasing m. There is no coupling between columns,
which come from different m blocks. Clearly, the states
within each column have dramatically different overlap
with the z ¼ 0 plane since each drop in l pushes an
additional lobe out of the plane. These contribute nothing
to the total energy shift and are essentially “wasted”
probability. In contrast, along the diagonals marked by
red the wave functions are nearly identical. Moving up the
diagonal swaps an angular lobe into a (not pictured) radial

–0.15

–0.10

–0.05

0.00

E

– 1.0 –0.5 0.0 0.5 1.0
m/ν

FIG. 6. The 2D Rydberg composite’s spectrum displayed as a
dispersion relation, emphasizing the formation of energy bands.
The black curves show Ẽðm=νÞ for ν ¼ 100. The dashed red lines
are the asymptotic linearization of Eq. (17).

FIG. 7. Dependence of the band structure of a 2D Rydberg
composite on the projection of Ylmðθ;φÞ into the plane. Shown
are a few spherical harmonics, starting in the bottom left-hand
corner with the maximally circular state. Horizontal black
(vertical black) arrows represent a decrease in m (l). States in
the same column therefore are from the same block diagonal. Red
diagonal arrows represent increases in k ¼ ν − l, starting from
k ¼ 1 in the bottom row. The inset shows the projection P as a
function of l for ν ¼ 30 for several b bands. Notice how much
larger the drop in energy is between bands compared to the gaps
between k states within a band.
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lobe, which has a negligible impact on the overlap with the
plane compared to the loss of pushing an entire set of lobes
out of the plane. Within each m block, therefore, the
diagonal elements will have large energy separations, and
hence effectively decouple. The resulting states that share
similar qualities are spread over many blocks and corre-
spond to the series along the diagonal in Fig. 7. We label
elements in these series with the values b ¼ 1;…; ν − 1
and k ¼ 1;…; ν − b. These numbers label the diagonals
and the states in a given diagonal, respectively. Note that
from the construction in Fig. 7 we have l ¼ 2b − 2þm
and k ¼ ν − l. The Fig. 7 inset displays the overlap Plm;lm

for various b as a function of l. Each b band smoothly
changes with l, but the difference between b bands is large,
especially so for the lowest b values.
The appearance of bands in the eigenspectrum (see

Fig. 6) is essentially a consequence of the approximate
b bands of similar states described in Fig. 7. The identity
b ¼ β holds exactly when the m-block matrices are
diagonal, i.e., in the asymptotic wings of these bands
where the dispersion becomes approximately linear (see
Fig. 6) and where l ≈m ≈ ν. Since in this limit the
eigenenergies are obtained analytically and the real bands
β coincide with the approximate bands b, we focus now on
the behavior of these linear wings. If we consider only the
diagonal matrix elements of Eq. (15),

lim
d→0

Ṽlm;lm ¼ 1

πν4
½NlmPm

l ð0Þ�2Rð1Þ
νl;νl

¼ 1

πν4
2lþ 1

22lþ1ν2
ðl −mÞ!ðlþmÞ!
½ðlþm

2
Þ!ðl−m

2
Þ!�2 ; ð16Þ

we obtain the energy levels for the∼10 lowest energy levels
in each band of states to a few percent accuracy, confirming
that the diagonal approximation is appropriate. More
importantly, by switching to the band numbers b and k,
we can gain further intuition into the true bands, labeled by
β, seen in Fig. 6. In the high ν limit we obtain the linear
dispersion relation,

Ẽ2D
bk ≈

½8νþ 4ðb − kÞ − 1�Γðb − 1=2Þ
8π2ν13=2ΓðbÞ : ð17Þ

In particular, band b ≈ β starts at the energy

Ẽ2D
b1 ¼ Γðb − 1=2Þ

ΓðbÞ
1

π2ν11=2
: ð18Þ

For b ≪ ν the energies scale as ν−11=2. In particular, the
lowest energy lies at Ẽ ¼ ν−11=2π−3=2. At higher b we use
the limiting form of the Γ functions,

lim
b→∞

Γðb − 1=2Þ
ΓðbÞ ¼ 1ffiffiffi

b
p ; ð19Þ

to obtain

lim
b→∞

Ẽ2D
bk ¼ 1

π2
ffiffiffiffiffiffiffiffiffi
bν11

p : ð20Þ

The band’s lower edges become more closely spaced in
energy due to this 1=

ffiffiffi
b

p
dependence. The level spacing

within a band is given approximately by

lim
b→∞

Δk ¼
Γðb − 1=2Þ
2ν13=2π2ΓðbÞ ¼

ffiffiffi
1

b

r
1

2π2ν13=2
: ð21Þ

Taking this width as approximately constant over an entire
band and taking the number of states per band to be ∼ν, we
find that the width of each band is approximately

Δ ≈
1

2π2
1ffiffiffi

b
p

ν11=2
: ð22Þ

On the other hand, the spacing between band minima is
approximately

Δb ≈
d
db

1ffiffiffiffiffiffiffiffiffi
bν11

p ∼
1ffiffiffiffiffi

b3
p

ν11=2
: ð23Þ

Within this crude series of approximations we find that
ðΔb=ΔÞ ∝ ð1=bÞ. Because of this decreasing gap between
bands relative to their own widths the bands begin to
overlap, leading to the region of high-energy density seen
in Figs. 2(b) and 5. As the bands overlap with increasing b,
the expression for the band minimum, Eq. (18), tends
toward ν−6, since b ∼ ν. As the energy-level structure
transitions from the “band” type into this denser structure
of many overlapping bands, the functional form of the
energy scaling changes from ν−11=2 to ν−12=2.

B. Scaling laws for scatterers in D dimensions

1. 2D scatterers

The preceding analysis showed that the energy spectrum
of the 2D composite exhibits two different scaling beha-
viors as a function of band number. The energies in the lower
bands scale as ν−5.5, but they scale as ν−6 in the upper bands
due to a mixture of overlapping bands and deviations from
the diagonal approximation for small values of l and m.

2. 1D scatterers

Applying this same analysis to our 1D and 3D configu-
rations leads quickly to the result that all states experience
an identical energy shift. In 1D, the expression equivalent
to Eq. (12) is
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lim
d→0

Ṽlm;l0m0 ¼ aν
V1

2

Z
∞

0

Φ�
ν×lmðR; 0; 0ÞΦνl0m0 ðR; 0; 0ÞdR

¼ aν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þð2l0 þ 1Þp

2πV1

Rð2Þ
νl;νl0 δm0δm00: ð24Þ

Curiously, this radial matrix element vanishes when
l ≠ l0 [48]:

Rð2Þ
nl;nl0 ¼

1

ν3ðlþ 1=2Þ δll0 : ð25Þ

This leads to a simple expression for the energy shifts:

lim
d→0

Ṽlm;l0m0 ¼ aν
V1πν

3
: ð26Þ

The Rydberg levels are identically affected by the scatterers
and remain degenerate. Explicitly inserting the volume,
we have

Ẽ1D
lm ¼ 1

2πν5
: ð27Þ

The energies scale as ν−5, decreasing slower with increa-
sing ν than the 2D composite’s energies.

3. 3D scatterers

For a homogeneous structure in 3D the matrix elements
are even simpler:

lim
d→0

Ṽlm;l0m0 ¼ a3ν
V3

Z
V
Φ�

νlmðR; θ;φÞΦνl0m0 ðR; θ;φÞd3R: ð28Þ

This is the normalization integral, and thus all Rydberg
states are again degenerate, but with a global shift,

Ẽ3D
lm ¼ 3

4πν6
: ð29Þ

These scale as ν−6. The Rydberg composite’s spectrum thus
obeys a power-law scaling behavior νf, where f ¼ −5 in
1D, f ¼ −11=2 in 2D, and f ¼ −6 in 3D. Despite the fact
that the monolayer gives an energy scaling intermediate
between the other geometries, it leads to a nondegenerate,
highly structured dense limit which is totally distinct from
the 1D and 3D composites.

4. Interpolation of low and high band
edge scaling for 2D scatterers

We now explore the DOS scaling in the 2D case in
further detail to arrive at a universal DOS for 2D Rydberg
composites in the homogeneous limit. We compute a
smooth density of states,

δN

δẼ
¼

XN
i¼1

FðẼ; σ; eEiÞ; ð30Þ

where F is a convolution function for the discrete data, i.e.,
a Gaussian or a box function centered at eEi and having
width σ. We focus first on the “band” region, where the
eigenfunctions are to a good approximation labeled by
integers b and k, and which scale as ν−11=2. Since the
number of states in the bands increases approximately
linearly with ν, we rescale the widths also so that they
decrease linearly in ν. Figure 8(a) shows the resulting DOS
for three ν values using a Gaussian distribution for F. The
agreement between different ν is excellent in this band
region, breaking down as energy increases. In gray scale we
overlay each band separately, showing how the total DOS is
built up from these, and in particular how the overlapping

102

103

d
/d
E

– 0.15 – 0.10 – 0.05
E E E

– 0.15 – 0.10 – 0.05 – 0.15 – 0.10 –0.05

(a) (b) (c)

FIG. 8. Density of states computed by convolving the spectrum using a Gaussian distribution for three ν values: 40 (yellow), 70
(green), and 100 (blue). (a) The energies are scaled with ν5.5, the “band” scaling. Individual band contributions for ν ¼ 100, obtained
from the dispersion curves in Fig. 6, are shown in gray scale. (b) The energies are scaled with ν6, the “overlap” scaling. (c) The energies
and densities of states are scaled via the “universal” scaling connecting the band and overlap regions. The interpolating tanh function
connecting the two regimes is overlayed. The FWHM of the convolving Gaussian distribution is approximately 0.0235; for details, see
Appendix D.
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bands create the saturation point in the DOS and the
eventual onset of the ν−6 scaling law. Figure 8(b) shows a
DOS with the ν−6 scaling, appropriate to the “overlap
region” where the diagonal approximation breaks down.
The widths now decrease as σ=

ffiffiffi
ν

p
to obtain a smooth

function. Some technical details involved in these figures
are discussed in Appendix D.
Figure 8(c) presents a scaling that smoothly interpolates

between these two regimes as a function of Ẽ. It allows us
to construct a “universal” density of states for the 2D
composite, independent of ν. Details of this process, which
uses a hyperbolic tangent to map the relevant scale factors,
widths, and normalizations between these two regions as a
function of Ẽ, are provided in Appendix D. The DOS
shown in Fig. 8(c) confirm that this scaling is indeed
universal, as the DOS for the three different ν levels are
essentially indistinguishable.

C. Spectrum of the spherical quantum dot composite

We return now to the SQD composite, introduced in
Sec. II D, and study the spectrum of the 2D SQD composite
in both the homogeneous limit and as a function of lattice
spacing d. This illustrates the generic aspects of the
Hamiltonian of Eq. (1) beyond the Rydberg composite,
while also clarifying the presence and effects of the near
separability of the Coulomb potential, which led to the
bandlike structure exhibited by the 2D Rydberg composite.
Since the SQD differs from the Rydberg system only in the
radial wave functions and in the arrangement of nodal
numbers within the degenerate manifold, we can rapidly
adapt the preceding material to this system. For simplicity,
we set the oscillator frequency to unity.
The matrix elements equivalent to Eq. (12) are

lim
d→0

Ṽμlm;μl0m0

¼ δm;m0

πð2μþ 3Þ
2lþ 1

22lþ1

ðl −mÞ!ðlþmÞ!
½ðlþm

2
Þ!ðl−m

2
Þ!�2 Rð−1Þ

μl;μl0 ; ð31Þ

which vanishes still when lþm is odd since the spherical
harmonics determine if there is a node at the monolayer.
The radial matrix elements differ from those of Eq. (12), but
are also analytically known [49]. As in the Rydberg
composite, the resulting Hamiltonian is not diagonal.
Nevertheless, upon numerical diagonalization we find that
the eigenvalues are highly degenerate, as seen in Fig. 9.
Rather than forming curving bands as a function of m like
the Rydberg composite, they condense into flat bands as a
function of m.
This implies that the system is exactly, rather than just

approximately, separable. In the Rydberg composite, there
were no additional degeneracies beyond the trivial one
connecting states with equal jmj, since the Coulomb
potential does not separate in any coordinate system
compatible with the 2D lattice, i.e., Cartesian or cylindrical

coordinates. For the SQD, however, we can write the
harmonic potential as VðrÞ ¼ 1

2
mω2ðx2 þ y2 þ z2Þ, com-

patible with the symmetry of the monolayer of scatterers in
the z ¼ 0 plane. The matrix elements of the SQD compo-
site’s potential in Cartesian coordinates are easily obtained,

Vnxnynz;n0xn0yn0z ¼
δnx;n0xδny;n0yδnz;n0z

πð2νþ 3Þ jΦnzð0Þj2; ð32Þ

where ΦnzðzÞ is the standard one-dimensional hydrogen
wave function. They are diagonal in the x, y nodal numbers
due to the integration over the entire monolayer, and
furthermore are diagonal in nz, n0z because of the constraint
μ ¼ nx þ ny þ nz. The resulting energy levels are simply

ẼHOðnzÞ ¼
1

πð2μþ 3Þ
2nz

ffiffiffi
π

p

nz!ðΓ½1−nz2
�Þ2 : ð33Þ

The degeneracy of the nzth level is μ − nz þ 1, and the
deepest shift −π−1=2 is at nz ¼ 0. By comparing Fig. 6 with
Fig. 9, it becomes clear how the band structure of the
Rydberg composite emerges from the near separability of
the monolayer potential. In the fully separable SQD case,
the degenerate levels are determined by the single
Cartesian nodal number nz. Since no such quantity exists
in the nonseparable Rydberg case, the energy levels,
degenerate for the SQD, spread into bands, characterized
by the band labels b and k.
We can see a similar phenomenon in the SQD case by

going to lattice spacings d which are too big to result in a
monolayer with homogenous scatterers to a homogenous
monolayer—in such a case the separability is no longer

FIG. 9. The μ ¼ 100 eigenspectrum for a 2D SQD composite in
the d → 0 limit. The oscillator frequency is set to ω ¼ 1.
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perfect. In Fig. 10 we show a density of states analogous to
Fig. 2(b). This spectrum qualitatively resembles the 2D
Rydberg composite spectrum at large lattice spacings,
exhibiting all the real and avoided crossings, oscillating
level shifts, and dense features visible there. At small
spacings it shows a very similar limit as well, except with
bands of essentially zero width compared to the large bands
present in the Rydberg composite.

V. EVOLUTION OF THE SPECTRUM FOR
DECREASING DENSITY OF SCATTERERS

We have thus investigated the nature of the spectrum in
the limit where the lattice cannot be resolved by the
Rydberg wave function. For the 2D composite this led
to a nontrivial spectral density with bandlike structures,
scaling laws, and Rydberg wave functions quite different
from the ones known from atoms or molecules. In this
section, we study the characteristics of this system at lattice
spacings large enough to be resolved by the Rydberg wave
function. To this end, we define a threshold lattice spacing
dc, below which the Rydberg wave function can no longer
resolve the scatterers and which therefore replicates the
homogeneous limit of scatterers, formally only reached
for d ¼ 0.

A. Transition to the homogeneous scatterer density

Several circumstances complicate a rigorous definition
of dc. First, the electron’s wavelength varies spatially: in the
radial direction it increases quadratically, while in the
angular degree of freedom it is strongly l dependent.
Second, since the potential depends nonlinearly on the
wave function amplitude at the locations of the scatterers, it
is not clear from the onset at what length scales scatterers
can be resolved.

We have already seen that the homogeneous limit in
the 2D case is heralded by wave functions which are
diagonal in m. Near the bottom of each band these states
are also approximately diagonal in l. Such a wave
function has 2m angular nodes in the plane correspond-
ing to an angular resolution π=m. The quadratic scaling
of the radial nodes implies that their density decreases
from the inner to the outer classical turning point.
Therefore, the wave function can detect the smallest
spatial features on a circle given by the inner classical
turning point Rmin. The (angular) resolution corresponds
to the distance separating two adjacent nodes on this
circle, w ¼ Rmin sin ðπ=mÞ. Adapting w to a square lattice
gives a critical lattice spacing equal to w=

ffiffiffi
2

p
. Dropping

terms of order ν−2 and assuming the angular resolution is
smaller than any radial wave function feature, we arrive
at a critical lattice spacing:

dcðl; mÞ ≈ sin ðπ=mÞν2ffiffiffi
2

p
"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

lðlþ 1Þ
ν2

r #
: ð34Þ

The black curves in Fig. 5 are lines through the points
ðdβ;m; Eβ;mÞ, where the connection between β and l is made
with the approximate relation l ¼ 2ðβ − 1Þ −m, as dis-
cussed in Sec. IVA. These fit well with the qualitative
transitions seen in the spectrum for the lower bands where
the approximations are more accurate. The transition can
therefore be interpreted as the minimal spacing of scatterers
which still can be resolved by the wave function. This
spacing dc should not be confused with dD from Table I,
which is the maximal spacing for breaking the degeneracy
of all levels in the manifold ν. To keep the number of
shifted states constant at BD ¼ ND, considerations for the
remainder of this section refer to d ≤ dD for D ¼ 2
and a ¼ 2.5.

B. Between the homogeneous and the few-scatterer
limit: Chaotic spectra

Random matrix theory (RMT) is an appropriate
framework to analyze chaotic spectra. Although the
Rydberg composite’s spectra are in principle chaotic,
the application of RMT to the present problem is
hindered by the fact that for d > dc the system obeys
several symmetry constraints when F ¼ 1. Moreover,
toward the “trilobite limit” of only a few scatterers
(F ≈ 0 and or d ≫ dc), the spectrum becomes regular.
Both properties strongly affect the mean density of
states. Hence, standard tools [50] from RMT to describe
properties of a classically chaotic system are cumber-
some to implement as they require knowledge of the
mean DOS for unfolding. The unfolded DOS has
uniform mean density [51,52] and can be used to
extract the eigenvalue correlations in the spectrum.

FIG. 10. Density of states for a μ ¼ 30 SQD composite as a
function of lattice spacing d in atomic units. The oscillator
frequency is set to ω ¼ 1 and the color is the same as in Fig. 2.
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1. Adjacent gap ratio (AGR)

To avoid unfolding, we resort to the so-called adjacent
gap ratio (AGR) [51,53],

R ¼
�
minðsn; sn−1Þ
maxðsn; sn−1Þ

�
; ð35Þ

with sn ¼ En − En−1 and the average hi taken over the
whole spectrum. When F ≠ 1, we also average over many
lattice realizations. Since the AGR only depends on local
fluctuations, it does not require unfolding [51]. The AGR
can also deal with a “mixed” chaotic and regular spectrum,
i.e., it can differentiate Poisson statistics, marking uncorre-
lated energies typically from preserved subspaces due to
symmetries, from Gaussian orthogonal ensemble (GOE)
statistics which occur for chaotic dynamics [50] without
additional symmetries, when level repulsion is present [52].
The numerical AGR values corresponding to Poisson and
GOE statistics are RP ¼ 0.386 and RGOE ¼ 0.530, respec-
tively. For further details, see Appendix E.

2. Evolution of AGR with the fill factor
for different fixed lattice spacings

One can see in Fig. 11(a) that toward small fill factors,
but compatible with N > ND where the spectrum looks
chaotic, the AGR function gdðFÞ indeed approaches g0 ≡
RGOE for all d shown; see Appendix E. However, gdðFÞ
breaks off g0 for increasing F, to reach eventually the value
gdð1Þ ¼ 0 due to geometry-induced degeneracy. For larger
d, the breakoff occurs at larger F. For large d, the AGR
function gdðFÞ approaches a boxlike shape with a sudden
transition to gdð1Þ ¼ 0. We note here in passing that to a
good approximation the family of functions gdðFÞ shown
follow the form

½gdðFÞ=g0�γ þ Fγ ¼ 1; γ ¼ 1þ d=2; ð36Þ

an interesting relation revealing a self-similar property,
whose deeper analysis is beyond the scope of this work.

3. Evolution of AGR for a filled lattice
with decreasing lattice spacing

For a filled lattice F ¼ 1, Fig. 11(b) reveals that neither
GOE nor Poisson values match with the statistics observed
for any lattice spacing d. For small d toward the homo-
geneous limit (d2 − d large), the AGR approaches zero
again due to the geometrically induced degeneracies.
However, for d → d2 in the chaotic regime the AGR settles
to a value different from the GOE one due to the inherent
symmetries of our system. We have simulated a chaotic
system obeying the inherent “crystal” symmetries by a
block-diagonal GOE matrix with each block representing
one irreducible representation of the C4v point group (see
Appendix E). This synthetically obtained AGR [black line

in Fig. 11(b)] agrees well with the AGR of the true
spectrum for d → d2.
We may conclude that the spectral fluctuations in the

DOS are indicative of a chaotic system with symmetries
separating states into none interacting blocks in the F ¼ 1
limit, while for F ≠ 1 these symmetries gradually break
until the spectrum is purely chaotic.

VI. EXPERIMENTAL REALIZATION

A. Isolation of Rydberg manifolds
in the presence of scatterers

Rydberg composites live in the Hilbert space of a single
Rydberg manifold ν. This implies that the excitation must be
high enough such that interactions with adjacent manifolds is
negligible. We have shown that the normalized energy levels
of Rydberg composites in the dense lattice limit scale as ν−5,
ν−11=2, and ν−6 in 1D, 2D, and 3D, respectively. These
energiesmust be compared, as a function of ν, with the overall
spacing between Rydberg manifolds in order to ascertain the
isolation of theRydberg composite’smanifold. In general, the
coupling between energy levels increases inversely to their
energetic separation, as can be seen with the Hellmann-
Feynman theorem. Hence, we must confirm that the compo-
site’s spectrum does not overlap, or even approach, an
adjacent Rydberg manifold. The spacing between Rydberg
manifolds decreases as ν−3, and hence the scaling of the
unnormalized Rydberg composite’s spectra must fall faster
than this value. In 1D, the unnormalized spectrum is

E1 ∼ 2πjasjṼ1

ν2

d
1

2πν5
∝
jasj
ν4

; ð37Þ

since d ∝ ν. In 2D, we have (for the strongest scaling, ν−11=2)

(a) (b)

FIG. 11. (a) Average AGR of 2000 realizations of a lattice of
scatterers as a function of F for d ¼ 5, 10, 30, and 70 in sequence
from dark to lighter line color, ν ¼ 30. (b) AGR for a filled lattice
as a function of ðd2 − dÞ=ν with d2 from dD in Table I for D ¼ 2.
The arrow marks dcðl; mÞ from Eq. (34) with m ¼ l ¼ ν − 1,
while the horizontal line shows the RMT prediction for AGR
incorporating the appropriate symmetries of the scatterers on the
lattice; see text. Note that in both plots increasing values of the
abscissa mean higher density of scatterers.
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E2 ∼ 2πjasjṼ2

ν4

d2
1

π3=2ν11=2
∝

2jasjffiffiffi
π

p
ν7=2

; ð38Þ

again, using d ∝ ν. Finally, in 3D, d ∝ ν4=3, and so

E3 ∼ 2πjasjṼ3

ν6

d4
3

4πν6
∝
3

2

jasj
ν16=3

: ð39Þ

In all three cases the Rydberg composite’s energies decrease
faster than the splitting between manifolds as a function of ν,
and hence at sufficiently high ν only the states of a single
manifold contribute and the Rydberg composite exists as
described.

B. Experimental choice of ν

Because of the scaling laws obtained in Sec. IV B, we
have been able to focus our detailed numerical studies on
rather moderate principal quantum numbers, ν ∼ 30, which
are much simpler to calculate and analyze. However, we
anticipate that both the true novelty of the Rydberg
composite concept and the experimental study of its
properties are aided by considering large ν values. From
the conceptual side, as ν → ∞ a description of the system
in terms of global features such as energy bands, level
statistics, and scaling relations is more appropriate since the
system becomes essentially continuous, possessing infi-
nitely many levels. As the typical methods and perspectives
of Rydberg atoms and molecules focus on the properties of
individual states, the alternative scheme we have developed
here clearly becomes essential at high ν. In addition to this
conceptual reason, large ν values provide better justifica-
tion for the various approximations we have employed,
such as the use of a constant scattering length, neglect of
interatomic potentials, neglect of higher partial wave
scattering, restriction to a single ν manifold, etc. All of
these approximations become more accurate at higher ν,
but the rate at which they become valid as a function of ν
can be accelerated by optimal choice of the atomic species.
To ensure that the scatterer-shifted energy levels lie well
between adjacent ν manifolds to prevent ν mixing, it might
be desirable to choose a scatterer species with a smaller
scattering length than Rb or Cs, the current standards. For
example, sodium ðasð0Þ ∼ −5Þand lithium ðasð0Þ ∼ −7Þ
have smaller scattering lengths than Rb ðasð0Þ ∼ −16Þ [39].
The resonance energies of these atoms are also higher than
in Rb or Cs, and hence p-wave scattering is even less
relevant. Finally, as the next section shows, higher ν values
are more favorable for the experimental construction of a
Rydberg composite as they make it far easier to achieve the
high particle number and increase the interatomic distances
required to observe many of the key properties of the
composite.

C. Experimental construction of the Rydberg
composite with scatterers on a lattice

The most serious obstacle to the creation of a Rydberg
composite with a lattice of scatterers is probably the current
experimental capability in creating small lattice spacings. If
the experiment was performed in an optical lattice this
would require quite a large principal quantum number, as
the current minimum lattice spacing is around d ¼ λ=6 ∼
2500a0 [54]. A feature which should be possible to observe
experimentally even at large lattice spacings is the onset of
the chaotic behavior of the Rydberg composite’s spectrum
as discussed in Sec. V B. This chaotic behavior, heralded
by the AGR value, is visible at large lattice spacings as seen
in Fig. 12. The accessible d=ν values amenable to this AGR
analysis increase with ν since more states are available,
which reduces statistical fluctuations. Therefore, the AGR
for ν ¼ 100 can be extended to well beyond d=ν ¼ 10
while the ν ¼ 30 AGR cannot. To reach an experimentally
convenient range of lattice spacings one therefore benefits
from larger Rydberg states, which is feasible given that
Rydberg states with ν ∼ 300–500 have been produced
[55–57].

D. Experimental realization of the Rydberg
composite in a BEC

The interesting findings aswe approach the homogeneous
scatterer limit—in particular, features in the density of states
such as its band structure and overall scaling behavior—do
not require this lattice geometry, but only a large enough
density of atoms within the Rydberg orbit. The critical
constraint for an experimental realization is therefore simply
that the atoms are densely spaced, but not necessarily in a
regular pattern, rendering a lattice unnecessary. A random
composite will have different energy level statistics (as seen
in Sec. V), but, at least at high enough densities, the overall

FIG. 12. Numerically obtained AGR for a Rydberg composite
with ν ¼ 30 (blue) and ν ¼ 100 (gray) for a filled lattice (F ¼ 1)
as a function of d=ν.
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features of the DOS will survive. To achieve the 2D
composite and its characteristic band structure without an
optical lattice, we rely on the possibility of strongly
anisotropic trapping potentials which tightly confine the
dense gas into a quasi-2D pancake shape. For sufficiently
small width δz such a pancake geometry provides a physical
realization of the 2D composite attainable with current
experimental capabilities.
Sufficiently small in this context means that the Rydberg

wave function cannot distinguish the quasi-2D scatterer
geometry from the true 2D case. The out-of-plane resolving
power is highest for the circular state ν ¼ lþ 1 ¼ mþ 1.
For large ν, Yl¼ν;m¼νðθÞ ∝ exp½−νθ2=2� [58], and we take
the standard deviation of this Gaussian to be the θ resolution
of the state. Hence the resolving width is δz ∼ ν3=2.
This means that for the pancake, as for the lattice, all of

the Rydberg composite’s properties scale favorably for an
experimental realization with increasing ν. To provide an
illustrative example we calculate the DOS of a pancake
composite at a density ∼1015 cm−3, which requires ν ≈ 200
and a pancake width δz ≈ 0.15 μm. The density and
thickness are both on the edge of what is immediately

possible in experiments [59,60]. Of course, even larger ν
[55–57] would increase the resolving width and allow the
density to be decreased further.
Our calculations show [see Fig. 13(a)] that for the

parameters specified, a band gap is indeed clearly visible.
Since we have modeled the cloud after a realistic atomic
vapor with nonuniform density, the density quoted
(ρ ¼ 4 × 1015 cm−3) is the peak density at the center of
the cloud. As the density increases the band gap gets
sharper and deeper (not shown).
If the cloud is thicker there is no longer a band gap, but the

band structure can still be observed, as shown in Fig. 13(b),
where the thickness is δz ¼ 0.3 μm and the peak density
ρ ¼ 8 × 1015. Because of this higher thickness, the second
band is no longer the m ¼ l − 2, as is the case in the 2D
composite, but instead the m ¼ l − 1 band, as it is more
tightly confined to the xy plane and thus experiences a larger
overall energy shift once the atom cloud is thick enough to
saturate thewave function’s lobes that sit on either side of the
plane. Figure 13 confirms that the gross features of the 2D
composite studied here are observable under experimental
conditions which can presently be attained.

E. Photoabsorption spectroscopy
of the Rydberg composite

Of course, the DOS is not directly observable due to the
selection rules governing laser excitation of the 2D
composite. In the homogeneous limit these are quite strong
due to the near separability of the system, and detection of

(a)

(b)

FIG. 13. The DOS for a ν ¼ 200 Rydberg composite formed
with scatterers in a quasi-2D BEC in pancake geometry. The
scatterers are randomly positioned with a uniform distribution in
the xy plane and a Gaussian profile in the z direction. The cloud’s
peak density and width (standard deviation) in the z direction are,
respectively, ρ ¼ 4 × 1015 cm−3 and δz ¼ 0.15 μm in (a) and
ρ ¼ 8 × 1015 cm−3 and δz ¼ 0.3 μmin (b).Wehave convolved the
line spectrawith aGaussian distribution of 1MHzwidth and use the
zero-energy electron-rubidium scattering length as ¼ −16.1a0.
The DOS is normalized by multiplying by a factor of 1=ν as in
Fig. 2(a).

(a)

(b)

FIG. 14. Absorption spectra in arbitrary units from absorbing
two circularly polarized photons (see text) for the pancake
Rydberg composite of Fig. 13 (black line) and the corresponding
DOS from Fig. 13 shown as blue shaded area. All parameters are
as in Fig. 13.
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the DOS would require either the breakdown of selection
rules due to intense laser pulses or applied external fields or
an alternative scheme altogether. In the case of the pancake
BEC introduced above, the selection rules are not as strong
and photoabsorption could indeed probe the DOS over a
wide range of energies with nonzero oscillator strength.
The available spectrum is therefore obtained by modulating
the DOS with the transition strength to each state. As an
example of what could be observed using a straightforward
two-photon excitation scheme with circularly polarized
light to access the l ¼ 2, m ¼ 2 component of the
Rydberg composite states, we show in Fig. 14 exemplary
spectra as black lines superimposed over the DOS from
Fig. 13. The spectra feature similarly strong drops in
strength at the band edges as the DOS and, particularly
in the higher density example in Figs. 13(b) and 14(b), also
show some of the band structure of the underlying DOS.
The absorption spectrum of the latter is heavily suppressed
in the second, fourth, etc., bands since they are formed from
states dominated by odd l −m values. The mixing of these
states with l ¼ m − 2 is negligible.

VII. CONCLUSIONS AND FUTURE WORK

In this article we introduced Rydberg composites built
by coupling a Rydberg atom to a dense distribution of
many neutral atoms immersed within the Rydberg wave
function. Rydberg composites provide a systematic inter-
polation from the trilobite and polyatomic few-body regime
to a dense environment with a homogeneous density of
scatterers as the asymptotic limit. Rydberg composites,
particularly the 2D monolayer case emphasized here, are a
new form of matter intersecting few-body atomic Rydberg
physics, quantum dynamics involving optical lattices, and
few-body quasiparticle examples from solid-state physics.
One can imagine many immediate possibilities to extend

this concept. These include more refined geometries of the
embedding environment to tune the Rydberg composite
spectrum, a goal which is traditionally reached by applying
external electric or magnetic fields. Also, localization and
decoherence studies are feasible by removing the frozen
gas restriction and either shaking the lattice explicitly or
allowing it to move randomly at some finite temperature.
Although the main focus of this work is on the Rydberg

composite, we stress that many of the qualitative features
and behavior exhibited here can be found generically in a
variety of systems which could form composites. In
Secs. II D and IV C we showed that a quantum dot
realization of a composite based on a harmonic potential
exhibits a similar spectrum. However, the energy bands
characteristic for the Rydberg composite in the homo-
geneous limit of scatterers collapse for the spherical
quantum dot composite to degenerate levels since the
harmonic potential commutes with the homogenous 2D
scatterer array. Any system which exhibits a spectrum of

high degeneracy is in principle suitable as a building block
for a composite when interfaced with scatterers.
Moreover, the Rydberg composite itself could materialize

outside of an ultracold atomic vapor. One possibility is the
solid-state domain, e.g., a Rydberg exciton in cuprous oxide
or similar semiconductor materials. These excitons are
directly analogous to hydrogenlike atomic states except
for the screening of the Coulomb interaction by the material.
This variance in the Rydberg constant between materials
implies that, at a comparable ν to a Rydberg atom, the
exciton is several orders of magnitude larger (exceeding the
micrometer scale) than the Rydberg electronic wave function
and has much smaller binding energies. Since these excitons
exist in a lattice which could in principle be regularly doped
by impurity atoms, they could be an excellent system to
realize a Rydberg composite. However, fundamental ques-
tions must be addressed first due to the much lighter center of
mass of the Rydberg exciton, the effect of the lattice
symmetries and dopant materials on the initial unperturbed
states, and detection possibilities. Another class of systems
which could realize the very high density limit are excita-
tions in nanodroplets, which contain many very closely
spaced atoms in a small volume.
To summarize, Rydberg or more generally excitation

composites define a class of quantum systems with highly
degenerate eigenfunctions whose volume is large enough to
encompass arrangements of scatterers, sizable in extension
and number. They can break the degeneracy such that
unusual energy spectra and properties of the composite
emerge which can be tuned by the arrangement of the
scatterers.
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APPENDIX A: MATRIX REPRESENTATION
IN THE “TRILOBITE BASIS”

In the context of polyatomic Rydberg molecules, it has
previously proven useful to perform a change of basis from
the manifold of Rydberg states jνlmi to the basis of trilobite
dimer states jii [61]. Each element of this nonorthogonal
basis is a trilobite wave function extending from the
Rydberg core to the ith scatterer:

ϒðRi; rÞ ¼
X
lm

Φ�
νlmðRiÞΦνlmðrÞ: ðA1Þ

This basis is ideal when ν2 ≫ M ≫ 1, as it greatly reduces
the numerical challenges associated with the large
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ν2-dimensioned Rydberg basis. It furthermore provides
significant qualitative insight into the structure and possible
geometries of polyatomic molecules since the basis states
give directly the contribution of each scatterer to the
eigenstate. From this one can define alternative localization
measures utilizing the information immediately available
from these eigenvectors, or classify the states within this
basis using the known symmetries of the scatterer con-
figurations, as we do in Appendix C.
In this Appendix, we extend this method to the Rydberg

composite. Since this system typically has M ≫ ν2, the
trilobite basis is no longer numerically beneficial. It can still
provide useful qualitative insight, and in the infinite
scatterer limit it leads to an alternative method, solving
an integral equation, to obtain the spectrum.
Within our stated approximations, the representation ofH

in the trilobite basis is theM ×MmatrixHii0 ¼ ϒðRi;Ri0 Þ.
One numerical advantage of this approach is that the matrix
elementHii0 can be expressed using only un0ðRÞ andu0n0ðRÞ,
eliminating the need to evaluate many high-lwave functions
when ν ≫ 1 [19]. IfM > BD, the diagonalization of Hii0 in
this representation yieldsM − BD vanishing eigenvalues in
addition to the BD shifted eigenvalues, and one numerical
disadvantage lies in distinguishing these from real, but
small, eigenvalues. As M → ∞, the dimension of Hii0

becomes infinite, and hence the eigenvalue equation
becomes an integral equation,

ΨðrÞ ¼ 1

Ẽ

Z
V
ϒðR; rÞΨðRÞdV; ðA2Þ

where V is the scatterer volume in dimension D. Since
ϒðR; rÞ is separable, Eq. (A2) has solutions with eigen-
functions Ψ corresponding to eigenvalues Ẽ when Ẽ is
obtained from the determinantal equation (in the matrix
representation of Rydberg states):

0 ¼ det

����δll0δmm0 −
1

Ẽ

Z
V
Φ�

νlmðRÞΦνl0m0 ðRÞdV
����: ðA3Þ

This equation can be solved via a numerical root finder.

APPENDIX B: PARABOLIC COORDINATES

The hydrogen atom separates in many coordinate sys-
tems, and one should choose a coordinate system that is, if
possible, adapted to the geometry of the scatterer distri-
bution. For example, the eigenstate for a single scatterer is
nearly proportional to a Rydberg basis wave function in
ellipsoidal coordinates [62], and the scatterer operator in
the dense lattice limit for 1D and 3D composites commutes
with the Hamiltonian in spherical coordinates. In the 2D
case, the spherical wave functions are clearly not well
adapted to the scatterer distribution. Although cylindrical
coordinates are well suited to the 2D composite’s scatterer
distribution, the Coulomb potential does not separate in

these coordinates. It does, however, separate in parabolic
coordinates:

x ¼
ffiffiffiffiffi
ξη

p
cosϕ; y ¼

ffiffiffiffiffi
ξη

p
sinϕ; z ¼ 1

2
ðξ − ηÞ:

ðB1Þ
These treat parabolas ξ and η on either side of the z ¼ 0
plane democratically, and therefore could be more closely
adapted to the 2D composite. As the following shows, the
Hamiltonian in this coordinate system still must be numeri-
cally diagonalized, although it does have closed-form
analytic matrix elements. We therefore present this calcu-
lation not for its direct usefulness to the problem at hand,
but to define a potentially useful yet uncommonly
employed starting point that could benefit future calcu-
lations of the properties of Rydberg composites.
The hydrogenic wave functions in these coordinates are

Φn1;n2;mðξ;η;ϕÞ ¼
eimϕffiffiffiffiffiffi
nπ

p e−ð1=2ÞβðηþξÞðηξÞjmj=2

× ðn1þjmjÞ!ðn2þjmjÞ!Ljmj
n1 ðβξÞLjmj

n2 ðβηÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!n2!

½ðn1þ jmjÞ!ðn2þjmjÞ!�3
s

βjmjþ3;

ðB2Þ

where ν ¼ n1 þ n2 þ jmj þ 1 and β ¼ ð1=nÞ. This is
normalized with respect to the volume element,
ðξþ ηÞ=4dξdηdϕ. The matrix elements of the scatterer
potential are

Vn1n2m;n1 0n2 0m0 ¼ 2

Z
∞

0

Z
∞

0

Z
2π

0

δðη − ξÞ

×Φn1n2mðξ; η;φÞΦn1 0n2 0m0 ðξ; η;φÞ

×
ξþ η

4
dηdξdφ; ðB3Þ

using

δðzÞ ¼ δ(
1

2
ðξ − ηÞ) ¼ 2δðξ − ηÞ: ðB4Þ

Integration over φ again requiresm ¼ m0, while integration
of ξ sets ξ ¼ η. The resulting expression involves only an
integral over η:

hn1n2mjVjn10n20m0i

¼ 2πδmm0

Z
ηΦn1;n2;mðη;η;0ÞΦn1 0n2 0m0 ðη;η;0Þdη: ðB5Þ

The allowed quantum numbers are also restricted such that
n1 þ n2 ¼ n01 þ n02 since m is conserved. The general
integral of this form has a closed-form solution,
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Z
∞

0

e−2x=nx2mþ1Lm
n1ðx=nÞLm

n2ðx=nÞLm
n1 0
ðx=nÞLm

n2 0
ðx=nÞdx

¼ 1

ð−1Þ4mðn1 þmÞ!ðn2 þmÞ!ðn10 þmÞ!ðn20 þmÞ!

×
Xn1
i¼m

Xn2
j¼m

Xn1 0
k¼m

Xn2 0
l¼m

bin1þm;mbjn2þm;mbkn1 0þm;mbln2 0þm;m
ðiþ jþ kþ lþ κ − 4mÞ!λiþjþkþl−4m

αiþjþkþlþκ−4mþ1
; ðB6Þ

where

bλinm ¼ λi−mð−1Þiðn!Þ2
ðn − iÞ!ði −mÞ!i! ; ðB7Þ

and κ ¼ 2mþ 1, α ¼ 2=ðn1 þ n2 þmþ 1Þ, and λ ¼ α=2.
Thus we obtain ð2mþ 1Þ × ð2mþ 1Þ block-diagonal ma-
trices since n1, n2 are related to ν andm. Diagonalization of
these matrices yields the spectrum computed in the text.
Since the basis was not restricted to reject wave functions
with no amplitude in the plane from the beginning, as we
did in spherical coordinates, νðν − 1Þ=2 of these eigenval-
ues vanish.

APPENDIX C: SYMMETRY-ADAPTED
ORBITALS

In this Appendix, we briefly review the use of the
projection operator method which, in conjunction with the
trilobite basis representation developed in Appendix A, can
be used to obtain theRydberg composite’s spectrumwhen the
scatterer configuration is a member of a molecular point
group.The particular utility of this approach is that it leads to a
classification of the resulting degeneracies and level crossings
in the spectrum in the finite lattice-size regime. The descrip-
tion here follows Ref. [19] and is valid only for the s-wave
(contact potential) interactions used here; generalization to
p-wave interactions requires additional complications [19].
We obtained the symmetry-adapted eigenstates via the
following process: (i) Identify the relevant molecular point
group. For example, the planar square lattice satisfies theC4v
molecular point group. (ii) Construct the labeled basis of
trilobite functions v, where vk ¼ ϒðRk; rÞ. (iii) Every sym-
metry operator in the point group corresponds to a rotation or
reflection matrix, denoted ri. This operator acts on the
position vector Rk of each trilobite function in v, changing
it to a different position vector, i.e., riRk ¼ Rj. (iv)With this
information, define an operator Ri which acts not on the
position vectors Rk but rather on the basis vector v. Its
elements are ðRiÞjj0 ¼ δjkδj0k0 , where k and k0 are related by
riRk0 ¼ Rk. (v) Equation 20 ofRef. [19], in conjunctionwith
the point group’s character table, yields the projection
operators P̂j. These are (when properly rank reduced)
(Mj ×M)-dimensioned matrices, where Mj ¼ TrðP̂jÞ.
These traces satisfy

P
j Mj ¼ M, and thus describe how

the total number of eigenstates are partitioned into the
irreducible representations. (vi) These projection operators
are then used to partition the Hamiltonian Hii0 into block-
diagonal form, where each block Hj

kk0 is the reduced
Hamiltonian for the jth irreducible representation. This is
done via the transformation

Hj
kk0 ¼

XM
i¼1

XM
i0¼1

Pj
kiHii0 ðPjÞ†i0k0 : ðC1Þ

Finally, eachHj
kk0 is diagonalized. The eigenstates of a given j

exhibit avoided crossings when a parameter, such as d,
changes, while the eigenstates corresponding to different
irreducible representations (different j values) exhibit real
crossings.Tomake this concrete,we see for theC4v symmetry
of the plane that exactly half (neglecting “round-off” errors
due to the mismatch between lattice points in the square and
the circular Rydberg orbit) of the eigenstates are in the 2D E
irreducible representation, while the remaining 50% of the
eigenstates are approximately evenly split among the remain-
ing A1, A2, B1, and B2 irreducible representations.

APPENDIX D: FURTHER DETAILS
ON THE SMOOTH DOS

This Appendix describes additional technical details
regarding the density of states calculated in Sec. IV. We
begin with the full expression for the density of states used
to make Fig. 8.

δN

δẼ
¼ 1

ν1=gb2
XBD

i¼1

F

�
Ẽ;

σb
νg

; Ẽibνf
�
: ðD1Þ

In this formula, Fðx; σ; xiÞ is a function to convolve the
discrete line spectra with a finite width distribution. In
Fig. 8 a Gaussian function,

Fðx; σG; xGÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2G

p e−ðx−xGÞ2=2σ2G; ðD2Þ

was used. Other functions, e.g., box functions, could be
chosen as well. As discussed in Sec. IV B 4, there are
different scaling laws for the width σG and energy levels xG
for the different regions—“band” and “overlap”—of the
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density of states. Specifically, in the band region this is
handled by setting f ¼ 11=2, g ¼ 1, and b ¼ 1. We found
that σ ¼ 0.1 sufficed to achieve the smooth resolution of
Fig. 8(a). The integrated density of states is

Nband ¼
BD

ν
: ðD3Þ

In the overlap region we set f ¼ 6 and g ¼ 1=2; this
rescaling of the widths is necessary since the overlap states
are denser. The integrated DOS in this case is

Noverlap ¼
BD

ν2b2
: ðD4Þ

One inelegant technical detail stems from the fact that the
band and overlap regions span very different energy ranges
due to the difference between the ν6 and ν11=2 scale factors.
As a result, we must apply a global compression of the
overlap energies by multiplying by a somewhat arbitrary
factor, b, and afterward normalize the amplitude of the
overall expression with a factor b−2. We find that b ¼ 0.1
sets, for this range of ν, the two scaled DOS to lie between
the same ordinate and abscissa limits.
The fully universal scaling of the whole DOS is

accomplished by making b, f, and g functions of Ẽ:

δN

δẼ
¼ 1

ν1=gðẼÞbðẼÞ2
XN
i¼1

F

�
Ẽ;

σbðẼÞ
νgðẼÞ

; eEibðẼÞνfðẼÞ
�
: ðD5Þ

For each of these fit functions we have found that a tanh
function is sufficient to interpolate between band and
overlap regions. Spanning the range from v1 to v2 with
a width w and center x0 provides a smooth interpolating
function to transition between these two regions once these
parameters are fit to the data.

fðxÞ ¼ v1 þ
v2 − v1

2

	
1þ tanh

�
x − x0
w

�

: ðD6Þ

For the case shown in Fig. 8, x0 ¼ −0.011 and w ¼ 0.0028.

APPENDIX E: AGR

The random matrix AGR values were all calculated by
diagonalizing 2000 realizations of real symmetric matrices
whose matrix elements were randomly sampled from a
normal distribution. The AGR values have a weak depend-
ence on matrix size.
The AGR value for the GOE case was found to be

RGOE ¼ 0.5304� 0.0003 using dense random matrices.
The Poisson value was found to beRP ¼ 0.3864� 0.0003
using a random matrix with elements only down the
diagonal. These values were calculated on matrices of size
465 × 465, corresponding to B2 for the ν ¼ 30 2D
composite.

In the case of F ≈ 1, the symmetries of the system
need to be taken into account. There are two limiting
cases, the homogeneous and large d case. The AGR value
in the homogeneous case is trivially zero since each
eigenenergy is doubly degenerate due to the�m symmetry.
The system in the large d case belongs to the C4v symmetry
group. The C4v character table has five different types
of irreducible representation in it and only states in the
same irreducible representation can interact with one
another. One of the irreducible representations is two
dimensional, meaning that each state belonging to it is
doubly degenerate.
The AGR value for the large d case is calculated

using matrices constructed of six GOE matrices in a
block-diagonal format. The size of each block is chosen
to match the number of states in each symmetry irreducible
representation found in Appendix C. Four of the blocks
are of size 56 (to account for the one-dimensional irre-
ducible representations) while the last two are identical (to
account for the two-dimensional irreducible representation)
and of size 120 each. From this we obtain a value of
Rdlarge ¼ 0.1894� 0.0002.
In the homogeneous limit the AGR value is exactly zero

due to the (trivial) degeneracy in m. The latter can be
removed, either by ignoring every second state or only
including states with positivem in the basis. Calculating the
AGR for the remaining states producesRm≥0 ¼ 0.5279 for
ν ¼ 30, which is in good agreement with the RGOE value.
The small difference can partially be attributed the band
gap in the DOS.

APPENDIX F: RANK OF THE
POTENTIAL MATRIX

To determine the rank of the potential matrix Eq. (4), we
note that its form implies that every additional zero-range
potential from a new scatterer shifts one more state out of
the degenerate Rydberg manifold until the number of
scatterers exceeds the size of the degenerate manifold.
Hence, we can rewrite Eq. (4) as a sum over separable
matrices,

Vlm;l0m0 ¼ 2πas
XND

i

ϕiϕi
†; ðF1Þ

where ϕi ¼ fϕνlmðRiÞg is a vector of the degenerate
hydrogen wave functions evaluated at the position of the
ith scatterer. Since each term of this sum has rank 1, the
total matrix has rank ND. Therefore, each additional
scatterer splits away an additional nonzero eigenstate,
provided the vector ϕi is nonzero and linearly independent
of the previous ϕi. Once ND > BD, additional scatterers
have no effect on the number of nonzero states as the rank
of the matrix is limited by the dimension BD of the
subspace interacting with scatterers.

RYDBERG COMPOSITES PHYS. REV. X 10, 031046 (2020)

031046-21



[1] C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour,
Creation of Polar and Nonpolar Ultra-Long-Range
Rydberg Molecules, Phys. Rev. Lett. 85, 2458 (2000).

[2] I. C. H. Liu and J. M. Rost, Polyatomic Molecules Formed
with a Rydberg Atom in an Ultracold Environment,
Eur. Phys. J. D 40, 65 (2006).

[3] I. C. H. Liu, J. Stanojevic, and J. M. Rost, Ultra-Long-
Range Rydberg Trimers with a Repulsive Two-Body
Interaction, Phys. Rev. Lett. 102, 173001 (2009).

[4] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R.
Löw, and T. Pfau, Observation of Ultralong-Range Rydberg
Molecules, Nature (London) 458, 1005 (2009).

[5] V. Bendkowsky, B. Butscher, J. Nipper, J. B. Balewski, J. P.
Shaffer, R. Löw, T. Pfau, W. Li, J. Stanojevic, T. Pohl, and
J. M. Rost, Rydberg Trimers and Excited Dimers Bound by
Internal Quantum Reflection, Phys. Rev. Lett. 105, 163201
(2010).

[6] S. T. Rittenhouse, M. Mayle, P. Schmelcher, and H. R.
Sadeghpour, Ultralong-Range Polyatomic Rydberg Mole-
cules Formed by a Polar Perturber, J. Phys. B 44, 184005
(2011).

[7] S. T. Rittenhouse and H. R. Sadeghpour, Ultracold Giant
Polyatomic Rydberg Molecules: Coherent Control of
Molecular Orientation, Phys. Rev. Lett. 104, 243002
(2010).

[8] J. Aguilera-Fernández, H. R. Sadeghpour, P. Schmelcher,
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