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The Jahn-Teller effect is one of the most fundamental phenomena important not only for physics but also
for chemistry and material science. Solving the Jahn-Teller problem and taking into account strong electron
correlations we show that quantum entanglement of the spin and orbital degrees of freedom via spin-orbit
coupling strongly affects this effect. Depending on the number of d electrons, it may quench (electronic
configurations t22g, t

4
2g, and t52g), partially suppress (t12g), or, in contrast, induce (t32g) Jahn-Teller distortions.

Moreover, in certain situations, interplay between the Jahn-Teller effect and spin-orbit coupling promotes
formation of the “Mexican hat” energy surface facilitating various quantum phenomena.
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I. INTRODUCTION

In considering transition metal compounds, one very
often meets the situation with orbital degeneracy. Classical
examples are the systems with Cu2þ or Mn3þ ions in
octahedral coordination as in high-temperature supercon-
ductors or colossal magnetoresistive manganates [1]. In this
case a plethora of very interesting and nontrivial effects
follows: the famous Jahn-Teller (JT) effect, orbital order-
ing, strong coupling between orbital and spin degrees of
freedom (e.g., the well-known Googenough-Kanamori-
Anderson rules) [2], very nontrivial quantum effects
(vibronic physics), up to the appearance of rotational
quantization, conical intersections, and even the famous
geometric (Berry) phase—which actually first appeared in
the literature in 1975 in the context of the JT effect [3,4],
long before the famous paper by Berry [5].
Yet another group of phenomena, related to spin-orbit

coupling (SOC), came to the forefront recently (although
this interaction itself has been known for more than
100 years). It is one of the most actively studied topics
in condensed matter physics at present. The SOC is the
cornerstone of such phenomena as the anomalous Hall
effect, spin Hall effect [6], Rashba coupling [7], and

skyrmion physics [8]. It also leads to Kitaev physics in
transition metal compounds [9]. Last but not least, topo-
logical insulators in most cases are due to SOC [10].
A very natural and, strangely enough, still very scarcely

touched topic is the mutual interplay of these two phenom-
ena: orbital degeneracy, specifically the JT effect, and SOC.
After the first, very old studies, see, e.g., Refs. [11–14], this
connection remained largely unexplored. One of the few
known statements in this field is that the appearance of the
jeff ¼ 1=2 state in Ir4þ ions “kills” the JT distortions:
strong SOC lifts the threefold t2g degeneracy of the t52g
levels and leads to the formation of the jeff ¼ 1=2 Kramers
doublet, without any extra degeneracy. Only rarely is the JT
physics mentioned in the present literature devoted to such
systems; notable exceptions are the discussions of the JT
effect in excited states of Ir compounds [15], the discovery
of the role of pseudo-JT effect on lattice distortions in
Sr2IrO4 and orbital order in Ca2RuO4 [16], possible
appearance of SU(4) “Kugel-Khomskii-type” interaction
in d1 systems with strong SOC on a honeycomb lattice
[17], and the experimental study of unusual type of
distortion in the 5d1 system K2TaCl6 [18]. But the general
answer to the question formulated in our title—are the JT
effect and SOC friends or foes—seems to remain unan-
swered. This question is very important, both from the
general theoretical point of view and for the discussion of
properties of many real materials, especially those with 4d
and 5d elements. The present paper is aimed at filling this
gap. Surprisingly enough, we found out that the answer to
this very simply formulated question is not at all straight-
forward, as it depends on the specific situation: for some
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cases, such as d4 and d5, but also d2 configurations, strong
SOC suppresses JT distortion, whereas in other cases,
notably d3, SOC promotes or generates the JT effect in the
configuration which is usually considered as “orbitally
dead.”

II. QUALITATIVE ARGUMENTS

We consider in this paper the case of partially filled t2g
levels (typical for the 4d and 5d ions in the usual low-
spin state), for which the orbital moment and SOC are
not quenched. It is assumed that the crystal-field split-
ting between t2g and eg levels, Δ ¼ 10 Dq, is large enough
so that one can neglect the t2g − eg mixing. The t2g
electrons in principle interact and can be split by the JT
coupling with doubly degenerate lattice distortions Eg ¼
fQ3; Q2g (i.e., this is the t ⊗ E problem) [19,20], whereQ3

is a tetragonal distortion (for concreteness we take Q3 > 0
for tetragonal elongation) and Q2 is the orthorhombic
mode.
For tetragonal distortions without SOC one has the

situations illustrated in Figs. 1(a)–1(e). Here we distribute
electrons according to the (first) Hund’s rule, i.e., forming
states with maximal possible spin, and show the corre-
sponding level scheme for the tetragonal JT distortion

appropriate for each electronic configuration. One can see
that indeed the situations shown in Fig. 1 are optimal from
the point of view of both the Hund’s coupling and the JT
effect (crystal-field splitting).
The JT effect tends to stabilize electrons on real (cubic)

harmonics, xy, xz, yz, while SOC would favor occupation
of very different states, described by complex (spherical)
harmonics, which are actually eigenstates of the effective
orbital moment of the t2g triplet, leff ¼ 1 (in what follows
we omit the subscript eff, but one has to remember that it is
an effective moment) [21]:

jlz0i ¼ jxyi; ð1Þ

jlz�1i ¼ −
1ffiffiffi
2

p ðijxzi � jyziÞ: ð2Þ

This is the essence of the physical effects considered in our
paper: Transformation of the electronic wave functions due
to SOC results in modification of the JT distortions, since
the system aims to gain maximal total energy from both
terms.

III. MODEL

We want to stress that the strategy chosen in the present
paper is very different from theoretical approaches used
previously. We do not use any perturbation theory and do
not consider the formalism of double groups (see, e.g.,
Ref. [13]), but we solve the many-electron problem numeri-
cally exactly with the chosen form of the electron–lattice
coupling. This allows us to take into account all many-
particle effects such as strong on-site Hubbard repulsion,
intra-atomic Hund’s exchange, and spin-orbit coupling.
Thus, we treat numerically exactly the simplest (but
physically very rich) situation of an isolated JT center
with partially filled t2g orbitals and consider the following
Hamiltonian:

Ĥ ¼ ĤSOC þ ĤJT þ ĤU: ð3Þ

The SOC must be treated in a full vector form as

ĤSOC ¼ −ζ
X
α

l̂α · ŝα ð4Þ

to preserve full rotational invariance. Here, l̂α and ŝα are
orbital and spin moments of the αth electron, ζ is the SOC
constant, and the minus sign is due to the fact that we are
working with the t2g orbitals having effective orbital
moment leff ¼ 1 [22]. In the LS coupling scheme (for
SOC weaker than the Hund’s interaction) one can also write
this part of the Hamiltonian as HSOC ¼ −λL̂ · Ŝ, where
L̂ ¼ P

α l̂α, Ŝ ¼ P
α ŝα are the total orbital and spin

moments of a particular configuration, and λ ¼ ζ=2S.

FIG. 1. Diagrams of crystal-field splitting due to the Jahn-Teller
effect without spin-orbit coupling for different number of
electrons: (a) d1, (b) d2, (c) d3, (d) d4, and (e) d5.
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The JT term includes the elastic energy and linear
coupling of the electronic subsystem, described by projec-
tions of the angular moments lα, with the two lattice dis-
tortions, characterized by normal coordinates Q2 and Q3

with respective coefficients g and B [23]:

ĤJT ¼ −
gffiffiffi
3

p
X
α

½ðl̂xαÞ2 − ðl̂yαÞ2�Q2

− g
X
α

�
ðl̂zαÞ2 −

2

3

�
Q3 þ

B
2
ðQ2

2 þQ2
3Þ: ð5Þ

The generalized Kanamori parametrization [24] was used
to take into account correlation effects:

ĤU ¼ ðU − 3JHÞ
N̂ðN̂ − 1Þ

2
− 2JHŜ

2 −
JH
2
L̂2 þ 5

2
N̂: ð6Þ

Here JH is the intra-atomic Hund’s exchange, U is the
Hubbard intraorbital Coulomb interaction, and N̂ is the
total number of electrons operator. Note that the Hund’s
exchange interaction is written in a rotationally invariant
form. Since we are dealing with an isolated ion case with
fixed electron number, one can safely put U ¼ 0.
Some limits such as the case of extremely strong SOC

can be considered analytically, but for the general case of
arbitrary electron filling and arbitrary ratio between differ-
ent parameters—most importantly λ, g2=B, and JH—one
has to resort to numerical calculations, which were per-
formed using exact diagonalization of Eq. (3).

IV. RESULTS

A. Configuration: d1

We start with the simplest situation of a single d electron
on triply degenerate t2g levels. Here one does not have to
care about the Hund’s coupling, and the treatment becomes
rather straightforward. For λ ¼ 0, the maximal gain due to
the JT effect is achieved if the electron occupies the low-
lying xy orbital, as shown in Fig. 1(a). This corresponds to
a compression of ligand octahedra surrounding the tran-
sition metal, c=a < 1. The total energy surface dependence
on distortions can be readily obtained by diagonalizing
Eq. (3) and is presented in Figs. 2(a)–2(c). For λ ¼ 0, it has
three equivalent minima with energies E0

JT ¼ − 4
9
ðg2=2BÞ,

corresponding to compressions along x, y, or z directions
[20]. The amplitude of the JT distortion in each of these
minima is u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2

2 þQ2
3Þ

p
¼ 2

3
ðg=BÞ.

The electronic wave function corresponding to the
paraboloid centered at ð0;−uλ¼0Þ at the Q2Q3 plane has
the jxyi ¼ jlz0i character. The increase of SOC leads to
gradual admixture to this state (for which the SOC energy is
zero) of the states jlz�1i and to a gradual suppression of the
JT distortion, which, however, remains finite even for
λ → ∞. For very large λ the amplitude of the JT distortion

is reduced by a factor of 2, u∞ ¼ 1
3
ðg=BÞ. More impor-

tantly, for very large λ the distortions of both signs—
tetragonal compression c=a < 1 and tetragonal elongation
c=a > 1—turn out to be equivalent. This becomes clear if
we recall that for large λ the electron would occupy one of
the states of the j3=2 quartet, Fig. 3(a). These states are

jj3=2; jz3=2i ¼ jlz1;↑i ¼ −
1ffiffiffi
2

p ðijxz;↑i þ jyz;↑iÞ;

jj3=2; jz−3=2i ¼ jlz−1;↓i ¼ −
1ffiffiffi
2

p ðijxz;↓i − jyz;↓iÞ;

jj3=2; jz1=2i ¼
ffiffiffi
2

3

r
jlz0;↑i þ

1ffiffiffi
3

p jlz1;↓i

¼
ffiffiffi
2

3

r
jxy;↑i − 1ffiffiffi

6
p jixzþ yz;↓i;

jj3=2; jz−1=2i ¼
ffiffiffi
2

3

r
jlz0;↓i þ

1ffiffiffi
3

p jlz−1;↑i

¼
ffiffiffi
2

3

r
jxy;↓i − 1ffiffiffi

6
p jixz − yz;↑i: ð7Þ

From Eq. (7) one sees that the state of Kramers doublet
jj3=2; jz�3=2i is made from lz ¼ �1 orbitals, i.e., only from
the xz and yz orbitals. Using Eq. (5) one can readily
find that the amplitude of the JT distortion for this doublet
is 1

3
ðg=BÞ and E�3=2

JT ¼ − 1
9
ðg2=2BÞ ¼ 1

4
E0
JT. The states

jj3=2; jz�1=2i consist predominantly of the jlz0i state, i.e.,
they contain a large fraction of the xy orbital, for which the
JT distortions (of opposite sign) are larger and the energy is

FIG. 2. Results for the t12g configuration (g ¼ B ¼ 1). (a)–(c)
Evolution of the energy surface dependence onQ2 andQ3 modes
as a function of the spin-orbit coupling constant λ. (d) Amplitude
of distortion u as a function of λ at the ð0;�uÞ points in theQ2Q3

plane. (e) Energies of compressed and elongated octahedra as
function of λ.
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lower. But there is also contribution coming from the lz�1

orbitals in this doublet, see Eq. (7), which causes the
opposite distortion, and in effect the total distortion for the
doublets jj3=2; jz�1=2i turns out to be the same by magnitude
but of opposite sign as compared to jj3=2; jz�3=2i. That is,
for the d1 configuration strong SOC suppresses the JT
distortion (by a factor of 2) and reduces the JT energy gain,
Eλ→∞
JT ¼ E0

JT=4, and makes both tetragonal compression
and tetragonal elongation equivalent. For intermediate
values of λ one expects that “by continuity” the state with
c=a < 1 would still lie lower than for c=a > 1, but with
increasing λ they gradually approach each other.
Our exact diagonalization calculation confirms this

analysis: with increase of SOC three paraboloids corre-
sponding to compressed octahedra join together, the edges
formed by their crossings disappear, so that the energies of
compressed and elongated octahedra turn out to be the
same at λ → ∞, Fig. 2(c). The distortion amplitudes
(position of parabaloids) of compressed octahedra shown
by the dotted line in Fig. 2(d), reduce smoothly down
to u∞.
Two extra points should be mentioned here. The first one

is that in our treatment, leading to Fig. 2, we took into
account the lowest-order JT coupling and considered the
lattice in the harmonic approximation; see Eq. (5). It has
been shown that the inclusion of lattice anharmonicity and
of higher-order JT coupling leads to extra stabilization of
the elongated octahedra, c=a > 1 [25,26]. In effect, the
energy curve for c=a > 1 in Fig. 2(e), the black solid line,
would shift somewhat down and may cross the c=a < 1
curve. That is, depending on the parameters of the system
such as SOC λ and lattice anharmonicity, one may expect
for d1 with strong SOC both the JT contraction and JT
elongation. This is nearly unthinkable for the JT effect in
the case of t12g configuration without SOC, but apparently
this is exactly what is observed experimentally for systems

A2TaCl6, with A ¼ K, Rb, Cs [18]. The JT distortion of the
“usual” sign, c=a < 1, was observed for larger ions Rb, Cs,
but the opposite distortion was found for the smaller A ion
K. First, in these results we see that indeed the JT
distortions are preserved even for the 5d ion Ta4þ (d1)
with strong SOC. Second, anharmonicity is stronger for the
smaller ion K (which corresponds to a smaller tolerance
factor [27]) and this can lead to the opposite JT distortions
in K2TaCl6.
The second extra conclusion is potentially more impor-

tant. As mentioned above, for doubly degenerate eg orbitals
(e ⊗ E problem) there exist important quantum effects,
connected to the “Mexican hat” form of the energy surface,
Fig. 2(c), with (in the linear approximation) degenerate
states [the trough in Fig. 2(c)] for all mixing angles θ in
jθi ¼ cos θjQ3i þ sin θjQ2i and especially with its conical
intersection at the origin [19].
As discussed above, the energy surface of the t ⊗ E

problem without SOC has the form shown in Fig. 2(a):
there are no strong quantum effects in this case. However,
for λ → ∞ we would deal with the j3=2 quartet, Fig. 3(a),
which is actually two Kramers doublets, analogous to the
doubly degenerate eg electrons; thus it has, besides the
Kramers degeneracy, an extra double degeneracy, naturally
leading to the JT effect. The Mexican hat form of the energy
surface for eg electrons, with the concomitant quantum
effects, is well known; see, e.g., Refs. [20,27]. The question
arises whether we would recover in our case for strong SOC
all the quantum effects typical for eg systems. And indeed
this is what really happens. As is seen from Figs. 2(a)–2(c),
with increasing λ the energy surface gradually transforms
from three paraboloids to the one of the Mexican hat. Thus,
we see that for the d1 configuration the increase of SOC,
preserving the (weakened) JT effect, generates a novel
situation with strong quantum effects.
However, actually the situation here, in many respects

resembling that of eg electrons, is even richer and more
interesting. Whereas in the usual JT problem (without SOC
which is quenched for eg electrons) orbitals and spins are
completely decoupled and the Mexican hat describes
purely orbital degrees of freedom, in our case, because
of strong entanglement of spins and orbitals, when we
move along the trough in the Mexican hat of Fig. 2(c), the
spin state and the total magnetic moment (its z projection)
also change. This can lead to novel effects deserving
special consideration. It would be very interesting to probe
the corresponding effects experimentally.
The experimental situation for 4d and 5d systems is not

quite clear. For systems M2TaCl6, where M ¼ K, Rb, Cs
(which can be viewed as double perovskites with ordered
vacancies, e.g., K2½vacancy�TaCl6), one indeed observes
cubic–tetragonal structural transitions [18], apparently
driven by the JT effect. In some other cases the average
bulk structure remains cubic, but local probes such as
nuclear magnetic resonance or nuclear quadrupole

FIG. 3. Level splitting diagrams due to spin-orbit coupling for
different number of electrons, the case of the jj coupling scheme
(very large λ).

SERGEY V. STRELTSOV and DANIEL I. KHOMSKII PHYS. REV. X 10, 031043 (2020)

031043-4



resonance detect a definite symmetry reduction of the same
nature [28]. The problem is also that it is often not easy to
check the nature of distortions experimentally, since in
addition to the JT distortions discussed in the present paper,
in real materials there may be other types of distortions,
such as rotations and tiltings of transition metal octahedra
due to chemical pressure, characterized by the tolerance
factor [2]. As a result most materials having these structures
turn out to be not cubic or tetragonal, but in most cases
orthorhombic. In this sense it is better to work with systems
with larger nonmagnetic ions (such as Rb, Cs in A2MCl6),
and the use of the local probes such as the one used in
Ref. [28] to study these effects might be more promising.

B. Configuration: d2

For the d2 configuration and strong SOC one should in
principle expect the JT effect still to be present—as seen
from Fig. 3(b), for strong SOC we would have two
electrons at fourfold degenerate j ¼ 3

2
levels. In this case,

however, we have to take into account the Hund’s rule
interaction of two electrons. Then with increasing SOC for
λ < JH one would first have the situation with the LS
coupling (we first form the total spin S ¼ 1, which couples
with the orbital moment L ¼ 1 to form the total moment
J ¼ 2, 1, 0), with the quintet J ¼ 2 lying lower. This state is
still JT active. Such a state, with S ¼ 1, optimizes the
Hund’s exchange, but is still not optimal for SOC.
For λ > JH we should use the jj coupling scheme, now

with two electrons on the j3=2 quartet [Fig. 3(b)]—again, it
seems, the typical JT situation. If these two electrons would
be, e.g., in jj3=2; jz�3=2i states, both with “elongated”
[Eq. (2)] orbitals, this would result in a JT distortion (local
elongation, c=a > 1). Similarly if both these electrons
would occupy the states of the jj3=2; jz�1=2i doublet, these
would also be JT active, with, as argued above, the JT
distortion equal in magnitude but opposite in sign (com-
pression, c=a < 1). But, as is clear from the form of these
wave functions (7), both these states are against the Hund’s
coupling; e.g., in the state jj3=2; jz3=2; j3=2; jz−3=2i the two
electrons have opposite spin projections. But typically
JH ≫ EJT; thus one has, even for λ > JH, to satisfy as
much as possible the Hund’s coupling, and such states,
described above, turn out to be rather unfavorable. In the jj
scheme one can do better by putting one electron, e.g., at
the state jj3=2; jz3=2i, and another one at jj3=2; jz1=2i (or both
at the states jj3=2; jz−3=2i and jj3=2; jz−1=2i). In this case we
would gain the maximum Hund’s energy possible in the jj
scheme. However, this electron occupation would lead to
the opposite JT distortions for two electrons, so that in the
limit of large λ they would cancel one another and the total
JT distortion would asymptotically disappear.
Our numerical calculations shown in Fig. S1 of

Supplemental Material [29] indeed confirm this qualitative
conclusion. Again, as in the d1 case, for intermediate λ the

JT distortion would still be present, but (strongly) reduced;
and again, “by continuity,” the sign of it would be the same
as for λ ¼ 0, i.e., local elongation c=a > 1. (In this case, in
contrast to the d1 situation, the anharmonicity would only
support this distortion.) But in contrast to the d1 situation,
in the case of d2 the JT distortions will be completely
suppressed at sufficiently strong SOC.
As mentioned above, the experimental situation is often

complicated by the presence of other types of distortions
(besides the JT distortions). One of the materials with the
transition metal having a d2 configuration and which stays
tetragonal down to very low temperatures is Sr2MgOsO6

[30,31]. The OsO6 octahedra are elongated in accordance
with our analysis. In order to study the effect of SOC we
performed GGAþU calculations for this material and
found that taking SOC into account suppresses the ampli-
tude of the distortions by a factor of ∼2–3 (depending on
the choice of interaction parameters and the type of the
Hubbard correction) [32]. These calculations support our
results that SOC reduces the JT distortions in the case of d2

configuration, but for λ not too large they still remain finite.

C. Configuration: d3

The situation with d3 ions is especially interesting. In the
limit of weak SOC we have a nondegenerate state t32g
(S ¼ 3=2) without any orbital degeneracy and conse-
quently without JT instability, Fig. 1(c); but also with a
completely quenched orbital moment, i.e., in this state we
do not gain any SOC energy. This is the classical situation
with such ions as, e.g., Cr3þ, Ru5þ, or Re4þ.
In the opposite limit, for very strong SOC, we would

have three electrons, or one hole on the j3=2 quartet
[Fig. 3(c)], so that the situation seems to be similar to
the d1 case in the large λ limit. Correspondingly, one might
expect that in this limit the d3 configuration would develop
JT distortions. Our numerical results presented in Fig. 4
show that this is indeed the case: in the limit of λ → ∞ the
amplitude of the JT distortions is finite, u → 1

3
ðg=BÞ. This

is a rather unexpected and potentially very important
conclusion.
Detailed analysis shows that for small and intermediate λ

the compressed geometry is stabilized. Indeed, in order to
gain maximum Hund’s energy, it is better to put two
electrons on the spin-orbitals with jz ¼ � 1

2
and the third

electron on the state with jz ¼ þ 3
2
(or jz ¼ − 3

2
). But this

state would immediately lead to a particular lattice
distortion—a compression of ML6 octahedra (along z, x,
or y axes). However, with increasing λ such an “effective
anharmonicity” induced by the Hund’s coupling becomes
less and less important [cf. Figs. 5(a) and 5(b)] and for
λ=JH ¼ 3 the corrugation of the energy surface becomes
practically indistinguishable and we restore the situation
with the conical point and the Mexican hat; see Fig. 5(b).
That is, in this limit the system with one hole in the j3=2
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quartet behaves in the same way as the system with one
electron, cf. Fig. 2, although a priori this is not evident
because of the possible role of the Hund’s coupling in the
d3 case versus d1.
A good system on which one could study the situation

with d3 configuration is, for example, K2ReCl6. Structural,
thermodynamic, and magnetic measurements demonstrate
that there exist in this system not one but three structural
transitions [33–35]. Their origin is not yet clear. Some of
them could be mainly connected with the rotation and
tilting of ReCl6 octahedra as explained above. But we
suppose that the eventual JT character of Re4þ (d3) ions,
activated by strong SOC, could also be involved in at least
one of these transitions. It would be very interesting to
check our conclusions on similar materials with Rb, Cs
instead of K, for which there are less chances to have
rotation and tilting of ReCl6 octahedra.

D. Configurations: d4 and d5

The situation for d4, and also for d5, configurations is in
some sense simpler. Without SOC there should exist in both
of them the JT distortions of opposite signs; see Figs. 1(d)

and 1(e). On the other hand, for strong SOC, d4 ions would
become J ¼ 0 singlets, both in the LS (λ < JH) and jj
(λ > JH) coupling schemes [Fig. 3(d)]; i.e., there would be
of course no JT distortion in this state.
The same is true also for the d5 case (to which the

popular Ir4þ belongs): for strong SOC it is a Kramers
doublet J ¼ 1

2
, of course without JT instability; see Fig. 3(e).

The question is only how the JT effect disappears with
increasing λ.
Our calculations, the results of which are presented in

Fig. 6 herein and Fig. S2 of Supplemental Material [29],
show that in both cases the JT effect disappears above some
critical value λc in an almost abrupt way. Thus, in contrast
to the d2 case, for which the JT distortions gradually
subside with increasing λ and disappear at large λ only
asymptotically, Fig. S1 [29], for both d4 and d5 configu-
rations the JT effect is strictly absent for λ > λc.

V. INTERSITE JAHN-TELLER COUPLING
AND SPIN-ORBIT INTERACTION

When one deals not with isolated JT centers (as was done
in Sec. IV) but with solids, various additional factors may
affect the result of interplay between JT effect and spin-
orbit coupling. First, there are effects related to the
formation of electronic bands [36]; second, the JT centers
may interact via the field of phonons [37]; and last but not
least, there is an exchange mechanism, which couples
transition metal ions whose d levels are not filled com-
pletely [23]. The result also strongly depends on the
geometry. Thus, this is a rather general and complicated
problem to take into account all these factors, and its
treatment lies far beyond the scope of the present paper. But
we would like to demonstrate on a particular example that

FIG. 4. The amplitude of the Jahn-Teller distortions for t32g
configuration as a function of the ratio of the spin-orbit coupling
strength λ and Hund’s exchange JH , the results of the exact
diagonalization calculations for g ¼ B ¼ 1 and JH ¼ 0.5.

FIG. 5. Configuration d3. Energy surfaces for different ratios of
λ and JH , g ¼ B ¼ 1. One may note three JT minima for λ ¼ JH
(corresponding to compressed octahedra), but already for λ ¼
3JH they become nearly indistinguishable and the energy surface
resembles the Mexican hat.

FIG. 6. The amplitude of the Jahn-Teller distortions for t52g
configuration as a function of spin-orbit coupling strength λ.
Results of the exact diagonalization calculations for g ¼ B ¼ 1.
Insets demonstrate how the total energy surface as a function of
the Q2 and Q3 distortions evolves with λ.
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the effects found in previous sections can survive even in
concentrated systems.
We consider two JT ions having, for simplicity, just a

single electron in the t2g shell. Let these ions have
octahedral surroundings and share a common corner lying
along the z direction; see Fig. 7(b). Because of the presence
of a common middle ligand in such geometry the Q3 mode
for the bottom ion, Qb

3 , turns out to be coupled with the
mode of the same symmetry, Qt

3, of the upper (top) ion.
Thus, when we fix the volume, i.e., the distance between
the top and bottom JT ions, the elongation of the bottom
octahedron will automatically result in the compression of
the upper octahedron (and vice versa). Therefore, we would
have Q3 distortions of the two octahedra which are the
same in magnitude but opposite in sign, and in the
expressions for ĤJT this distortion must enter with opposite
signs for upper and lower ions [the second term in Eq. (5)].
Thus, in this geometry one should take Qt

3 ¼ −Qb
3 ¼ Q3,

while we do not apply any restrictions on Qb
2 and Qt

2 and
they can be different. (Note, however, that in a crystal
having a lattice of such centers all distortions must of
course be “consistent” with each other.)
The resulting Hamiltonian for such a cluster with two

electrons and two JT centers interacting only via elastic
coupling can again be solved numerically by the exact
diagonalization technique (in these calculations we neglect
Hund’s coupling, but include large U ≫ fg; B; λg to avoid
the situation with double occupancy). While each noninter-
acting JT center has three minima in the adiabatic potential
energy surface without spin-orbit coupling (Fig. 2(a)), two
coupled octahedra have four minima. These minima are at
½0;�ð1= ffiffiffi

3
p Þ; 1

2
� and ½�ð1= ffiffiffi

3
p Þ; 0;− 1

2
� points in theQt

2, Q
b
2 ,

Q3 space; see Fig. 7(a). These points correspond to the
situation when, e.g., at the lower site the octahedron is
compressed in the z direction and the electron occupies the

xy orbital, while at the upper site we have the octahedron
compressed along the x direction with the electron on the yz
orbital [as shown in Fig. 7(b)], or compressed along the y
directionwith the electron on the xz orbital. Or, vice versa, the
xy orbital is occupied at the upper site, and at the lower onewe
have the electron sitting on the yz or xz orbitals; this gives in
effect four minima. Such local distortions allow us to gain as
much local JT energy as possible at each site, which for one
electron prefer compressed octahedra (in the z, x, or y
directions), see Fig. 1(a), and at the same time to minimize
the total strain in the crystal, cf. Refs. [38,39]. Still, the
coupling between sites in this regime leads to a deviation
from the absolute energy minima of isolated JT centers:
the energy of two coupled JT centers Ecoupled

JT ¼ − 5
6
ðg2=2BÞ

is larger than the energy of two isolated such centers
E2−isol
JT ¼ − 8

9
ðg2=2BÞ. Thus, the coupling shifts us from

the minima of paraboloids of Fig. 2(a); i.e., the interaction
between sites partially competes with the local JT effect.
As has been discussed in Sec. IVA, spin-orbit coupling

suppresses any difference between compressed and elon-
gated octahedra, so that one expects that the competition
between the on-site and intersite effects mentioned above
should disappear. Indeed, in the limit of λ → ∞ the
Mexican hat geometry of the energy surface appears, but
now we have degenerate solutions both in the Q3Qb

2 and
Q3Qt

2 planes (in Supplemental Material, Fig. S3, we show
the resulting energy surface inQ3Qb

2 for λ ¼ 5 takingQt
2 as

a constant [29]).
The dependences of the amplitude of JT distortion for

both JT centers (top and bottom) is presented in Fig. 8. One
may see that spin-orbit coupling still partially suppresses
the Jahn-Teller effect even if we take into account elastic

FIG. 7. (a) Four solutions corresponding to the total energy
minimum of a pair of Jahn-Teller centers in a common corner
geometry (t12g configuration, λ ¼ 0). Q3, Qb

2 , and Qt
2 are given in

units of g=B. (b) Distortions (and orbitals) corresponding to one
of these minima.

FIG. 8. The amplitude of the distortion for a pair of Jahn-Teller
centers as a function of λ (g ¼ B ¼ 1). There are four equivalent
distortions of two octahedra for λ ¼ 0, see Fig. 7(a). Top and
bottom octahedra are distorted differently in each case (due to
competition between local JT and coupling between them).
Increase of the SOC strength reduces this difference.
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coupling between octahedra [though one might notice that
this effect turns out to be somewhat weaker, cf. Figs. 2(d)
and 8]. Note that one sees here the effect mentioned above:
for strong spin-orbit coupling the local and intersite JT
distortions do not compete anymore, the magnitude of JT
distortions at each site approaches the same value as for
isolated sites, ∼ 1

3
ðg=BÞ, cf. Figs. 2(d) and 8, and the

corresponding minimum energy of coupled sites is close to
twice the energy of a single isolated site in this limit,
i.e., Eλ→∞

2 ≈ −λ − 2
9
ðg2=2BÞ.

VI. CONCLUSIONS

First, we want to reiterate that the approach used in the
paper is rather different from a “classical” way of treating
the Jahn-Teller effect in the presence of the spin-orbit
coupling. Typically one starts with a one-electron descrip-
tion neglecting strong electron correlations, but treating
both the vibronic coupling and the spin-orbit coupling
perturbatively [20]. The present approach is very different:
it is based on numerically exact solution of the many-
electron problem taking into account the spin-orbit cou-
pling with the chosen form of the vibronic coupling; see
Eqs. (3)–(6). This allows us to treat within the same
calculation scheme correlation effects, spin-orbit and
vibronic coupling.
In the present paper we demonstrate that there exists a

very nontrivial interplay between spin-orbit coupling and the
Jahn-Teller effect already at the single-site level. In most
cases (d1, d2, d4, d5 configurations in the low-spin state
typical for 4d and 5d ions) spin-orbit coupling counteracts
and suppresses Jahn-Teller distortions—gradually for d1 and
d2 cases, but almost abruptly for d4 and d5. It still survives
for the d1 occupation, though it is reduced by a factor of 2,
whereas for the d2 case it completely disappears for large
SOC. However, there exists also the opposite effect: for the
d3 configuration, which does not have orbital degeneracy for
λ ¼ 0, the spin-orbit coupling activates the Jahn-Teller effect
and these Jahn-Teller distortions may become substantial for
strong spin-orbit coupling. This could make the behavior of
4d and 5d systems with d3 occupation much richer than
those based on 3d elements.
Also, whereas the Jahn-Teller effect “survives” for the d1

configuration at strong spin-orbit coupling, different types
of Jahn-Teller distortions, elongation and compression of
metal-ligand octahedra, become almost degenerate, so that
the relatively weak extra factors, such as lattice anharmo-
nicity, can finally determine the detailed type of the Jahn-
Teller distortions. Moreover, in this paper we considered
the JT coupling of degenerate t2g electrons only with the Eg

distortions (tetragonal and orthorhombic). However, the t2g
levels can also be split by trigonal distortions, triply
degenerate T2g vibrations (the t ⊗ T problem). The
vibronic coupling constants for T2g modes can be even
larger than for Eg [40]. This t ⊗ T problem in the presence

of the spin-orbit coupling for different electron number is
much more complicated and less transparent (e.g., one
cannot easily draw the energy surface in four-dimensional
space). Still, in the Jahn-Teller physics there are some
methods developed for the treatment of the t ⊗ T problem.
Our preliminary results demonstrate that the mutual influ-
ence of the Jahn-Teller effect and spin-orbit coupling is
qualitatively similar for the coupling to trigonal distortions
to that for tetragonal and orthorhombic case considered in
this paper. We are planning to address this situation in more
detail in the future. And of course generally one needs to
solve the full t ⊗ ðEþ TÞ problem.
In considering the coupled Jahn-Teller and spin-orbit

interactions we paid main attention to the modification of
the Jahn-Teller distortions by the spin-orbit coupling. But
of course there exists also the opposite, inverse effect: the
suppression of the spin-orbit coupling by the Jahn-Teller
distortions and by vibronic effects. This is already clear
from Fig. 1: unquenched orbital moments existing, e.g., for
one or two electrons per site without Jahn-Teller distortions
(for triply degenerate t2g levels), leading to finite spin-orbit
coupling, are quenched due to the Jahn-Teller distortions,
Figs. 1(a) ad 1(b). That is, in this limit the Jahn-Teller
distortions strongly suppress the spin-orbit coupling. This
effect persists also for larger values of the spin-orbit
coupling. It can be thought of as a result of the suppression
of nondiagonal matrix elements by vibronic effects, the so-
called Ham reduction factor [41]. The reduction of effective
spin-orbit splitting due to the conventional or pseudo-Jahn-
Teller effect was indeed seen in some experiments and
calculations, e.g., very recently in defects in diamond [42].
Besides the very existence of the Jahn-Teller effect in the

case of strong spin-orbit coupling, we have shown that
significant quantum effects, absent for triple t2g degenerate
states without spin-orbit coupling, would appear at finite
spin-orbit coupling. In that sense this situation becomes
very similar to that of the doubly degenerate eg case: the
energy surface of the Mexican hat type is formed, with the
real singularity—conical intersection, which is known to
lead to many important physical consequences in spectros-
copy, in dynamics, etc. Actually, here the situation is even
richer because of the spin-orbit entangled character of
electronic states for strong spin-orbit coupling.
When going to concentrated systems, also intersite

effects—notably coupling via phonons and superexchange
interaction—start to play an important role. We have seen
that in the case of a single t2g electron the coupling via
elastic terms does not change the situation for strong spin-
orbit coupling qualitatively: as was the case for isolated
sites, the Jahn-Teller distortion survives, albeit weakened
for strong spin-orbit coupling. Nevertheless, some interest-
ing changes occur in this case: whereas for weak spin-orbit
coupling the local and intersite Jahn-Teller effects partially
compete, strong spin-orbit coupling “relieves” this com-
petition, and the Jahn-Teller effect can work at full force (of
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course weakened by spin-orbit coupling but not by intersite
coupling). However, generally the intersite effects can
significantly influence the behavior of the system. Thus
intersite effects can lead to a more complicated form of
exchange interaction [43,44] or can give a magnetic state
for d4 systems with the nominally singlet J ¼ 0 ions
(singlet magnetism); see Sec. 5.5 of Ref. [28] and
Ref. [45]. Consequently, the question of Jahn-Teller activ-
ity of such ions could again become relevant (due to the
effective admixture to the J ¼ 0 state of the other, poten-
tially Jahn-Teller active configurations). But in any case,
even for concentrated systems the effects considered in this
paper should be included and should serve as a back-
ground, the foundation on which the building of bulk solids
should be based.
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