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A self-correcting quantum memory can store and protect quantum information for a time that increases
without bound with the system size and without the need for active error correction. We demonstrate that
symmetry can lead to self-correction in 3D spin-lattice models. In particular, we investigate codes given by
2D symmetry-enriched topological (SET) phases that appear naturally on the boundary of 3D symmetry-
protected topological (SPT) phases. We find that while conventional on-site symmetries are not sufficient to
allow for self-correction in commuting Hamiltonian models of this form, a generalized type of symmetry
known as a 1-form symmetry is enough to guarantee self-correction. We illustrate this fact with the 3D
“cluster-state” model from the theory of quantum computing. This model is a self-correcting memory,
where information is encoded in a 2D SET-ordered phase on the boundary that is protected by the thermally
stable SPT ordering of the bulk. We also investigate the gauge color code in this context. Finally, noting that
a 1-form symmetry is a very strong constraint, we argue that topologically ordered systems can possess
emergent 1-form symmetries, i.e., models where the symmetry appears naturally, without needing to be

enforced externally.
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I. INTRODUCTION

Quantum-error-correcting codes can be used to protect
information in a noisy quantum computer. While most
quantum codes require complex active error correction
procedures to be performed at regular intervals, it is
theoretically possible for a code to be self-correcting [1-3].
That is, the energetics of a self-correcting quantum memory
(SCQM) can suppress errors for a time that increases
without bound in the system size, without the need for
active control. Such a memory is typically envisioned as a
many-body spin system with a degenerate ground space.
Quantum information can then be stored in its degenerate
ground space for an arbitrarily long time provided that the
system is large enough and the temperature is below some
critical value.

In seeking candidate models for self-correction, inspira-
tion has been drawn from recent advances in our under-
standing of topologically ordered spin-lattice models. The
simplest example of a two-dimensional topologically
ordered model is Kitaev’s toric code [4], one of the most
studied and pursued quantum-error-correcting codes. With
active error correction, the toric code has a lifetime that
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grows exponentially with the number of qubits. However, it
is not self-correcting, as without active error correction the
lifetime of encoded information is independent of the
number of qubits. On the other hand, the four-dimensional
generalization of the toric code [1] provides a canonical
example of a self-correcting quantum memory.

Encouraged by the capabilities of the 4D toric code,
there has been a substantial effort to find self-correcting
quantum memories that meet more physically realistic
constraints and, in particular, exist in three or fewer spatial
dimensions. A number of no-go results make this search
very challenging [5—11]. While there has been considerable
progress with proposals that attempt to circumvent these
constraints in various ways [6,10,12-18], none have yet
provided a complete answer to the problem.

Symmetry can provide new directions in the search for
self-correcting quantum memories, as the landscape of
ordered spin-lattice models becomes even richer when one
considers the interplay of symmetry and topology. If a
global symmetry is imposed on a model, a system can
develop new quantum phases under the protection of this
symmetry. The properties that distinguish such symmetry-
protected phases from more conventional phases persist
only when these symmetries are not broken. This perspec-
tive has led to new types of phases protected by symmetry,
including symmetry-protected topological (SPT) phases
[19-24] (phases with no intrinsic topological order)
and symmetry-enriched topological (SET) [25-38] phases
(those including both intrinsic topological order and
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symmetry). These phases have found many applications in
quantum computing [39-60].

In this paper, we show that such phases can support self-
correcting quantum memories in three dimensions, pro-
vided an appropriate symmetry is enforced. We argue that
the generic presence of pointlike excitations in commuting
Hamiltonian models protected by an on-site symmetry
precludes thermal stability (mirroring the instability of
the 2D toric code), and so we are naturally led to consider
higher-form symmetries. Models with higher-form sym-
metries have excitations that are higher-dimensional
objects, such as strings or membranes, rather than pointlike
excitations that are typical in models with on-site sym-
metries. With such exotic excitations, we can seek models
with the type of energetics believed to be needed for self-
correction. Focusing on models with symmetries that are
not spontaneously broken, we consider models that have a
SPT-ordered bulk. We then give two examples of 3D
models that are self-correcting when a 1-form symmetry
is enforced. The first example is based on the 3D “cluster-
state” model of Raussendorf, Bravyi, and Harrington
(RBH) [61]; this model with a 1-form symmetry has a
bulk that remains SPT ordered at nonzero temperature [57].
We show that a self-correcting quantum memory can be
encoded in a 2D SET boundary of this 3D model, and it is
protected by the thermally stable SPT ordering of the bulk.
The second example is based on the 3D gauge color code
[62], which is conjectured to be self-correcting; we show
that a commuting variant of this model is self-correcting
when subject to a 1-form symmetry.

Finally, we consider whether 1-form symmetries that
lead to self-correction can be emergent, rather than
enforced. We say that a symmetry is emergent if the
low-energy effective theory of a model strictly obeys this
symmetry, rather than being required explicitly in the
microscopic model. The analogy here is to the charge-
parity symmetry that emerges in the effective anyon theory
that describes the low-energy theory of many topologically
ordered models, such as the toric code; such symmetries
need not be externally enforced, as they are intrinsic to the
model and stable under perturbations. We give evidence
that the 1-form symmetry used in the 3D gauge color
code example may be emergent, arising as a result of
emergent charge-parity symmetries on topologically
ordered codimension-one submanifolds of the 3D bulk.
In the gauge color code, this symmetry is the “color flux
conservation” identified by Bombin [63].

We like to emphasize up front an important subtlety in
defining a symmetry-protected self-correcting quantum
memory. Enforcing symmetries can be extremely powerful,
and along with potentially providing protection against
errors, a poor choice in symmetry may be so strong as
to render the system useless as a quantum memory.
In particular, one must be careful that the symmetry still
allows for the encoding of logical information and

implementation of logical operators using “local moves,”
i.e., sequences of local, symmetric operators. This require-
ment of a symmetry-protected SCQM will rule out some
choices of strong symmetries. For example, in the case of
topological stabilizer codes, this requirement removes the
possibility of enforcing the entire stabilizer group as the
symmetry (or for example, all of the vertex terms of a 3D
toric code). We revisit this subtle issue along with other
rules in more detail in Sec. 11 C.

The paper is structured as follows. In Sec. II, we review
self-correction and the conditions required for it, as well as
phases of matter protected by symmetry. We analyze the
effect of coupling symmetry-protected models to a thermal
bath in Sec. IIC and argue that on-site symmetries are
insufficient to offer thermal stability of a symmetry-
protected phase. In Sec. III, we present our first example
of a self-correcting quantum memory protected by a higher
(1-form) symmetry: a thermally stable 3D SPT-ordered
model with a protected 2D SET-ordered boundary. A
second example based on the 3D gauge color code is
analyzed in Sec. IV. We discuss the possibility of such
I-form symmetries being emergent in 3D topological
models in Sec. V based around the gauge color code.
We discuss some implications of these results and open
questions in Sec. VL.

II. BACKGROUND

In this section, we briefly review self-correcting
quantum memories, topological phases with symmetry,
and finally discuss how symmetries may play a role in self-
correction.

A. Self-correcting quantum memories

The requirements of a self-correcting quantum memory
have been formalized in the so-called “Caltech rules”
[10,17] (also see Ref. [3] for a review). Specifically,
a SCQM in d spatial dimensions is a quantum-many-
body spin system with the following four properties:
(i) The Hilbert space consists of a finite density of
finite-dimensional spins in d spatial dimensions; (ii) the
Hamiltonian H has local terms with bounded strength and
range, such that each spin is in the support of only a
constant number of terms; (iii) the ground space of H is
degenerate (in the large-size limit) such that a qubit can be
encoded in the ground space and that this ground space is
perturbatively stable; (iv) the lifetime of the stored infor-
mation after coupling the system to a thermal bath must
grow without bound in the system size. Typically, it is
required that the lifetime grows exponentially in the system
size; however, there are situations where polynomial
growth may be sufficient. Another desirable feature for a
practical SCQM is the existence of an efficient decoder: a
classical algorithm that corrects for errors in the system that
have accrued over time.
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While the four-dimensional toric code meets all of the
above requirements, there is currently no model that has
been shown to meet these conditions in three dimensions or
fewer. The search for such a model has been encumbered by
an assortment of no-go results for models consisting of
commuting Pauli terms known as stabilizer models [5—-10].
These no-go results are typically centered around the idea
that a SCQM must have a macroscopic energy barrier,
meaning any sequence of errors that are locally implemented
must incur an energy cost that diverges with the size of the
system. (Note we define the energy barrier more concretely
in the following subsection.) If a code has a macroscopic
energy barrier then, naively, one may expect that logical
faults can be (Boltzmann) suppressed by increasing the
system size. This is indeed part of the puzzle, as it has been
shown that a diverging energy barrier is necessary but
not sufficient for self-correction for commuting Pauli
Hamiltonians [64,65] and Abelian quantum doubles [11].
(In particular, this requirement rules out any codes based on
entropic error suppression such as that of Brown et al. [18].)

As such, any self-correcting quantum memory should be
free of stringlike (one-dimensional) logical operators, as
these codes have a constant energy barrier. This property
holds since the restriction of a stringlike logical to some
region will commute with all terms in that region, and
potentially violate only local terms near the boundary of the
string. Therefore, to build up a logical fault (i.e., a logical
string operator), one needs only to violate a constant
number of terms costing a constant amount of energy.
This immediately rules out all 2D stabilizer codes [5], and
3D stabilizer Hamiltonians that have translationally invari-
ant terms and a ground-space degeneracy that is indepen-
dent of system size (the so called STS models (stabilizer
codes with translation and continuous scale symmetries) of
Yoshida [8]). Quantum codes in 3D that are free of
stringlike logicals have been investigated by Haah [6,12]
and Michnicki [13,14]; however, they do not achieve a
memory time that is unbounded (with the size of the
system) for a fixed temperature.

One class of proposals seeks to couple a 2D topologi-
cally ordered model, such as the toric code, to a 3D theory
with long-range interactions with the goal of confining the
anyonic excitations. For example, excitations in the toric
code can be coupled to the modes of a 3D bosonic bath
[10,15,16] such that anyonic excitations experience long-
range interactions. This coupling can result in a strong
suppression of anyon pair production via a diverging
chemical potential, and a confinement in excitation pairs
leading to self-correcting behavior. A complication with
this approach is that the bulk generically requires fine-
tuning, and the chemical potential can become finite upon
a generic perturbation [10]. Such models are not self-
correcting under generic perturbations.

Finally, while the search for self-correcting quantum
memories has primarily focused on stabilizer codes, sub-
system codes [66,67] are a promising direction because

many of the no-go theorems described above do not
directly apply. Briefly, a subsystem code is a stabilizer
code where some of the logical qubits are chosen not to be
used for encoding, and instead are left as redundant gauge
degrees of freedom. For the purposes of quantum memo-
ries, the use of subsystem codes and gauge qubits offers
much more flexibility in selecting a Hamiltonian for the
code, and the spectral requirements of the model for self-
correction are potentially more relaxed. The 3D gauge color
code [62] is an example of a topological subsystem code
with a variety of remarkable properties, including a fault-
tolerant universal set of gates via a technique known as
gauge fixing, and the ability to perform error correction
with only a single round of measurements. This latter
property is known as single-shot error correction [63] and
arises from a special type of confinement of errors during
the measurement step. It is conjectured in Ref. [62] that the
3D gauge color code is self-correcting.

1. Thermalization and memory time

The central question for a candidate self-correcting
quantum memory is how long the encoded information
can undergo thermal evolution while still being recover-
able. For a self-correcting quantum memory, this time
should grow with the system size provided the temperature
is sufficiently low. In this section, we briefly review
thermalization and motivate the energy barrier as a useful
tool to diagnose the memory time.

The standard approach to modeling thermalization of a
many-body system is to couple the system to a thermal
bosonic bath. Let Hyys be the Hamiltonian describing the
quantum memory of interest, and let Hy,,4, be a Hamiltonian
for the bosonic bath. Thermalization is modeled by
evolution under the following Hamiltonian

Hey = Hsys + Hpg + /IZS(I ® B,. (1)
a

where S, ® B, describe the system-bath interactions, S,, is
a local operator acting on the system side, B, is an operator
acting on the bath side, and « is an arbitrary index. It is
assumed that the coupling parameter is small, 1] < 1.

Suppose that the state is initialized in a ground state p(0)
of Hyy,. As the system is coupled to the thermal bath, after
some time 7 the system evolves into a noisy state p(r).
Because of the nature of the coupling described by local
coupling operators S, ® B,, errors are introduced to the
system in a local way, and so the time evolution of the state
p(7) must be described by a local sequence of operations.
One can give a precise description of this process using a
perturbation theory analysis, such as a master equation
approach like the well-known Davies formalism [68,69],
which we review in the Appendix A.

For a self-correcting quantum memory, we wish to be able
to recover the state p(0) from p(¢) after some time 7 using a
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single final round of error correction. Error correction
consists of two steps: First, a sequence of measurements
is performed on the noisy state p(¢) to obtain an error
syndrome, then a recovery map is performed that depends on
the syndrome (the measurement outcomes). The net action
of the syndrome measurement and recovery map can be
condensed into a map ®gc:'H — H, where H is the Hilbert
space of the memory system. For a fixed error rate ¢, we can
define the memory time 7., as the maximum ¢ for which
the inequality

[Pec(p(2) =p0)]l; < e (2)

is satisfied.

An upper bound to the memory time is the mixing time
Tmix» Which is the time taken for p(7) to be € close to the
Gibbs state (for some fixed €). This bound holds since once
the system has thermalized to the Gibbs state, the system
retains no information about the initial state. However, the
memory time can be substantially less than the mixing time
(as, for example, with the 3D toric code) [64], and so this
mixing time does not in general give us a tight bound on the
memory time. Instead, a useful proxy for determining the
memory lifetime of a SCQM is the energy barrier, since a
growing energy barrier is necessary in many cases to
achieve self-correction. In the following subsection, we
define this quantity.

2. Energy barrier

If we cannot recover the logical information after some
time #, then we say that a logical fault has occurred. The
coupling to the bath can lead to alogical faultif a sequence of
local errors from the system-bath coupling results in a
logical operator (or an operator near a logical operator).
Because of the locality of the coupling between the system
and bath [in Eq. (1)], errors are introduced to the memory in a
local way. There is an energy cost associated with any such
process, which is directly related to the probability of such a
process occurring when coupled to a bath at temperature 7.
We now define this energy barrier precisely.

We first define a local decomposition of a logical operator.
In this paper, we restrict to stabilizer Hamiltonians; however,
the energy barrier can similarly be defined for any commut-
ing projector Hamiltonian. Let Hg = — ) _; h; be a stabilizer
Hamiltonian (i.e., each local term is a Pauli operator, and all
terms mutually commute), and / a Pauli logical operator. A
local decomposition of [ is a sequence of Pauli operators
D(I) = {I{®|k = 1,...,N} such that [V = and V) =1,
and [®) and [**1 differ only by a local (constant range)
operator.

For any ground state |y) of Hg, the state {(¥)|y) is also
an eigenstate of Hg (for each k) with energy E%). We can
use this spectrum to define the energy barrier A for a logical
fault. Namely, the energy barrier for the local decompo-

sition D(/) is defined as

Apg) = max(EW — Ey), (3)

where E is the ground-space energy. The energy barrier for
a logical fault in Hg is defined as

A = minApq. 4
minAng 4)

In other words, the energy barrier for a logical fault is the
smallest energy barrier of any logical operator minimized
over all local decompositions. Intuitively, the energy barrier
should be large in order to suppress logical faults from
occurring.

The expectation for many models is that below some
critical temperature the memory time will grow exponen-
tially in the energy barrier

Tmem ™~ eﬁA’ (5)

which is known as the Arrhenius law. This relationship is
observed to hold for many models such as the classical 2D
Ising model and 4D toric code, but it does not hold in
general (for instance, in models when entropic effects are
significant [6,12—14]). Indeed for stabilizer Hamiltonians,
an energy barrier that grows with the size of the system is a
necessary condition (although not sufficient) for self-
correction [64,65].

3. Dimensionality of excitations and self-correction

We conclude this subsection with a comment regarding
the crucial role of the dimensionality of excitations in the
feasibility of self-correction. The conventional wisdom is
that deconfined pointlike excitations are an obstruction to
self-correction, as harmful errors can be introduced with a
low energy cost due to excitations that are free to propagate.
For models with higher-dimensional excitations, the energy
cost to growing and moving these excitations can be large,
such that logical errors are suppressed.

The properties of excitations and their dimensions for a
given system can often be understood in terms of its
symmetries. As we see in Sec. Il C, systems with global
on-site symmetries have pointlike excitations that are free to
propagate, and therefore, such symmetries do not offer any
extra stability. This limitation motivates the consideration of
more general subsystem symmetries beyond the global on-
site case. Higher-form symmetries are a family of sym-
metries that generalize the conventional global on-site
symmetry. Excitations in systems with higher-form sym-
metries form higher-dimensional objects, and so their
importance in the context of self-correction becomes
apparent.

B. Topological phases with symmetry

Quantum phases of matter are characterized by their
ground-state properties. Two gapped local Hamiltonians are
said to belong to the same phase if they are connected by a
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one-parameter continuous family of local Hamiltonians
without closing the gap. When symmetry is at play, the
classification becomes richer, as all Hamiltonians in the
family must respect the symmetry. In particular, it is possible
that two Hamiltonians that are equivalent in the absence of
symmetry become inequivalent when the symmetry is
enforced. This leads to the notion of SPT and SET phases,
which we now briefly define (see Ref. [20] for a detailed
discussion).

Consider a lattice A in d dimensions with a D-
dimensional spin placed at each site i € A. We consider
systems described by a gapped, local Hamiltonian H =
> xea hx. Here, “local” means that each term hy is
supported on a set of spins X with bounded diameter.
We also assume the system has a symmetry described by a
group G with a unitary representation S. We say two
gapped Hamiltonians H, and H, with symmetry S(g), g €
G belong to the same phase if there exists a continuous path
of gapped, local Hamiltonians H(s) s € [0, 1] that all obey
the symmetry S(g) such that H(0) = Hy and H(1) = H,.

For SPT- and SET-ordered systems, one commonly
considers global symmetries S(g) that act via an on-
site fashion on the underlying degrees of freedom. The
global action of these on-site symmetries S(g) may be
expressed as

S(9) = Qu(g),

ieA

g€G, (6)

where u(g) is a local, site-independent representation of G.

We also consider a generalized class of global symmetries
known as higher-form symmetries, which have been recently
of high interest in the condensed-matter, high-energy, and
quantum-information communities [53,57,70-73]. These
higher-form symmetries form a family of increasingly
stringent constraints that generalize the on-site case, and
this is central in the discussion of the interplay of symmetry
and self-correction. We introduce these symmetries in
Sec. II B 3, and for the present discussion and the definitions
of SPT and SET phases, the action of the symmetry S(g) is
left general.

1. Symmetry-protected topological phases

A SPT phase with symmetry S(g) is defined as class of
symmetric Hamiltonians which are equivalent under local
symmetric transformations which do not close the gap and
which are not in the same class as the trivial phase
(a noninteracting spin model with a product ground state),
but which are in the same phase as the trivial model if
the symmetry were not enforced. Ground states of such
models are short-range entangled, meaning they can be
mapped to a product state under a constant-depth quantum
circuit; however, such a circuit must break the symmetry.
Key characteristics of such phases are the absence of
anyonic excitations and the absence of topology-dependent

ground-space degeneracy. However, when defined on a
lattice with boundary, these phases host protected modes
localized on the boundary, meaning the boundary theory of
a SPT phase must be either symmetry breaking, gapless, or
topologically ordered (note that a topologically ordered
boundary can exist only when the boundary has dimension
d > 2). As such, these systems are typically regarded as
having a trivial bulk, but exotic boundary theories. Some
well-known examples are the 1D cluster state and the spin-
1 Haldane phase (with Z3 symmetry), both of which host
degenerate boundary modes that transform as fractionalized
versions of the symmetry. More generally, the group
cohomology models [19] provide a systematic way of
constructing SPT-ordered models.

2. Symmetry-enriched topological phases

A SET phase with symmetry S(g) is defined by a
Hamiltonian that is distinct from the trivial phase, even
without any symmetry constraint. These topological phases
can form distinct equivalence classes under the symmetry
S(g), and are referred to as SET phases. The key character-
istics of such phases are the presence of anyonic excitations
and topology-dependent ground-space degeneracy. These
anyons can carry fractional numbers of the symmetry
group, or may even be permuted under the symmetry
action. Such anyon-permuting symmetries can be used to
define symmetry defects on the lattice, which can be
thought of as localized and immobile quasiparticles that
transform anyonic excitations when they are mutually
braided. Some well-known examples of SETs are found
in Refs. [25-29], and a general framework is given by
the symmetry-enriched string nets of Refs. [30,31]. These
SET phases fall into two categories. The first category
consists of nonanomalous SET phases. These are stand-
alone topological phases in d dimensions with on-site
symmetry S(g) as in Eq. (6). Anyons may undergo trans-
formations under the symmetry action S(g). The second
category consists of anomalous SET phases. These are
d-dimensional topological phases with a symmetry action
that cannot be realized in an on-site way on the degrees of
freedom on the d-dimensional boundary. These anomalous
phases appear only on the boundary of (d + 1)-dimensional
SPT phases.

It is conjectured that the topologically ordered boundary
of a SPT phase with bulk on-site symmetry must always be
anomalous. In particular, a wide class of three-dimensional
SPT phases can be classified by the group cohomology
models [19], which are labeled by elements of the coho-
mology group H*(G, U(1)). (See Refs. [74-77] for exam-
ples of models outside this classification.) Moreover, in two
dimensions, anyonic systems with discrete unitary sym-
metry G (that does not permute the anyons) also have a
label in H*(G, U(1)) that classifies the anomalies [78] (see
also Ref. [27]). The case w =1 (i.e., trivial) means that
there is no anomaly, and @ # 1 means the system is

031041-5



SAM ROBERTS and STEPHEN D. BARTLETT

PHYS. REV. X 10, 031041 (2020)

anomalous and cannot be realized in two dimensions in a
stand-alone way with on-site symmetries [32-37]. A
conjecture of Ref. [37] is that the gapped boundary
topological theory of a group cohomology model must
always have an anomaly w € H*(G, U(1)) that agrees with
the label specifying the bulk SPT order. This kind of bulk-
boundary correspondence was proved in Ref. [38] in the
case that the symmetry group G is Abelian and does not
permute the boundary anyons. Moreover, in Ref. [79],
a general procedure to extract a boundary anomaly label
from a bulk SPT has been given, in agreement with the
conjecture.

3. Higher-form symmetries

We make use of a family of symmetries called higher-
form symmetries [53,57,70-73] generalizing the on-site
case. These symmetries have been of recent interest for
several reasons; in particular, they provide a useful struc-
ture for error correction in quantum computation [57], and
they have been used to construct new phases of matter [53]
and to understand topological phases from the symmetry-
breaking paradigm [70,73].

A g-form symmetry (for some ¢ € {0,1,...,D —1}) is
given by a symmetry operator associated with every closed
codimension-¢g submanifold of the lattice; these operators
are written as S (g), where M is a closed codimension-¢
submanifold of A and g € G. On these codimension-g
submanifolds, the action of the symmetry operators takes
an on-site form: For g € G and a codimension-¢g submani-
fold M, the symmetry operator is

Sm(g) = [[ule). gea. (7)

ieM

where the product runs over all sites i of the submanifold
M, and u(g) is a local, site-independent representation of
G. That is, higher-form symmetries can be thought of as
being on-site symmetries on lower-dimensional submani-
folds. For systems with a boundary, we only require that the
submanifolds on which the higher-form symmetries are
supported are closed relative to the boundary of the lattice.
In other words, the manifold M on which the symmetry is
supported may have a boundary on the boundary of the
lattice A, i.e., OM C OA.

A key feature of systems with g-form symmetries is that
symmetric excitations must form g-dimensional objects. Of
particular interest in this paper is the 1-form symmetries in
three-dimensional systems, which are the next weakest
generalization (within the family of higher-form sym-
metries) of the conventional global on-site symmetry.
Symmetry operators in such systems are supported on
closed two-dimensional surfaces, and excitations form
closed one-dimensional looplike objects. In Secs. III and
IV, we look at two examples of self-correcting quantum
memories protected by Z% I-form symmetries.

4. Self-correction and topological order

The relationship between self-correction and thermal
stability is complex. Self-correction is a dynamic property
of a system, whereas thermal stability is an equili-
brium property. In many previous investigations, various
quantities have been used as proxies or indicators of
self-correction, for instance, the existence of a nonzero-
temperature phase transition [17,80], the presence of
topological entanglement entropy in the Gibbs state [81],
or the nontriviality of the Gibbs ensemble in terms of circuit
depth [82]. Here, by “thermal stability” we specifically
mean the presence of topological order in the thermal state,
as determined by the minimal circuit depth to prepare
following Refs. [57,82]. While we do not yet have a general
result connecting the thermal stability and memory time,
we explore the connection between these two notions
further through the example of the RBH model by proving
bulk thermal stability from the existence of a macroscopic
energy barrier on the boundary. This type of bulk-boundary
correspondence (at nonzero temperature) provides evi-
dence in favor of a close relationship between thermal
stability and self-correction.

C. Symmetry constraints and quantum memories

In this section, we consider what types of symmetric
models may be worth investigating as potential self-
correcting quantum memories.

An important condition that must be met by a symmetry-
protected self-correcting quantum memory is that all
logical operators can be implemented through a sequence
of symmetric local moves. That is, all logical operators [
admit a local decomposition D(1) = {I{®|k =1,...,N},
such that all /¥ are symmetric. If this condition is not met,
then one cannot guarantee the existence of a symmetric,
local encoding circuit. Furthermore, this condition implies
that even in the presence of symmetry, the bath is capable of
implementing all logical faults and that the logical infor-
mation will eventually be thermalized. If such a condition is
not met, one can construct “trivial” self-correcting models
in which the symmetry is spontaneously broken, as we
explain below.

1. No spontaneous symmetry breaking

If we require our model to admit symmetric local
decompositions of all logical operators, then the enforced
symmetry S(g) cannot be spontaneously broken. In a model
where the symmetry is spontaneously broken, the ground
space has less symmetry than the Hamiltonian, and this can
render the model trivial as a memory by disallowing all
logical operator actions. Different ground states will in
general be in different eigenspaces of the symmetry
operator, and thus, enforcing the symmetry would prohibit
transitions between ground states. In the case where the
spontaneously broken symmetry is higher form, enforcing
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it could remove some or all of the anyonic excitations from
the model.

The 3D toric code provides an illustrative example,
where one can trivially obtain a self-correcting quantum
memory by enforcing a Z, 1-form symmetry that prevents
any of the vertex terms from flipping. Enforcing the vertex
and plaquette terms in a 2D toric code provides another
trivial example of this phenomenon. These examples do not
admit symmetric local decompositions of all logical oper-
ators. For this reason, we consider only models where the
symmetry is not spontaneously broken, and SPT-ordered
systems provide a natural family of candidates.

2. On-site symmetries are insufficient for stability

In this section, we argue that on-site symmetries are
insufficient to promote a 2D topological quantum memory
to be self-correcting, even if such a phase lives on the
boundary of a 3D SPT model. Our goal here is simply to
motivate moving beyond on-site symmetries (to higher-
form symmetries), not to rigorously rule out any role for
on-site symmetries in the study of self-correction.

In particular, consider the case where the full system is
given by a commuting Hamiltonian with boundary, and that
the protecting symmetry is Abelian and on site (with
possibly an anomalous boundary action). The excitations
in such systems will be pointlike, and their presence
precludes the possibility of having thermally stable (sym-
metry-protected) topological order, as shown in Ref. [57].
This instability suggests that the boundary theory is also not
thermally stable, and thus, not self-correcting. Indeed, as
we show in Appendix B, this is the case for the class of
models where the boundary is an Abelian-twisted quantum
double with a potentially anomalous boundary symmetry.
Specifically, we show that there is a constant (symmetric)
energy barrier in this case. Therefore, we see that in the case
of on-site (0-form) symmetries, the SPT-ordered bulk offers
no additional stability to the boundary theory. This moti-
vates us to consider the boundaries of SPTs protected by
1-form (or other higher-form) symmetries.

3. System-bath coupling with symmetry
and the symmetric energy barrier

Consider the system-bath coupling of Eq. (1) and a
symmetry S(g) (with g € G for some group G). If

[Hga, S(9)] = 0, (8)

then all of the errors that are introduced due to interactions
with the bath must be from symmetric processes that
commute with S(g). In particular, only excitations that
can be created by symmetric thermal errors will be allowed,
and the symmetry is preserved throughout the dynamics.

Under symmetric dynamics, we should consider only
local decompositions of logical operators that commute
with the symmetry when defining the energy barrier A. If a

local decomposition D(I) = {I®|k = 1, ..., N} of alogical
operator [ is such that [[¥), §(g)] = Oforall kand all g € G,
then we call D(I) a symmetric local decomposition of /.
We label such symmetric local decompositions with sym-

metry G by Dg(I). Then, the symmetric energy barrier is
defined as

As; = min Ay 5. 9
G poth Dy (1) )

Namely, it consists of the smallest energy barrier for any
logical operator, where the cost is minimized over all
symmetric local decompositions. For notational simplicity,
we often omit the subscript G as the symmetry is clear from
context.

With the abundance of no-go results for self-correction in
2D and 3D stabilizer memories, the relevant question is
whether one can achieve self-correction if the system-bath
coupling respects a symmetry. In particular, for a given
model Hg, can a symmetry S(g) be imposed such that H
has a macroscopic symmetric energy barrier?

sys

III. SELF-CORRECTION WITH
A 1-FORM SPT PHASE

Our first example of a 3D self-correcting model in the
presence of a 1-form symmetry is described by a commut-
ing Hamiltonian based on the cluster-state model of RBH
[61]. This model has been used in high-threshold schemes
for fault-tolerant quantum computation [61,83,84]. In
particular, the RBH model underpins the topological for-
mulation of measurement-based quantum computation,
where single-qubit measurements are used to simulate
the braiding of punctures in the 2D toric code.

The RBH model is an example of a SPT-ordered system
under 1-form symmetry, which is thermally stable [57]. It
contains no anyonic excitations in the bulk; however, when
defined on a lattice with a boundary, the boundary theory
can be gapped, topologically ordered, and possesses point-
like anyonic excitations. In particular, the boundary can be
chosen to be described by a boundary Hamiltonian equiv-
alent to the 2D surface code. Without any symmetry, the
excitations of this 2D surface code phase are deconfined,
and information encoded in this surface will thermalize in
constant time in the absence of error correction. However,
in the presence of symmetry, a natural question is whether
the boundary code inherits any protection from the bulk
SPT order. We show that in the presence of 1-form
symmetry, the bulk SPT order gives rise to confinement
of boundary excitations and ultimately a macroscopic
lifetime of boundary information. As such, this model
provides a simple example of an anomalous SET phase on
the boundary of a 3D higher-form SPT that is thermally
stable, giving a self-correcting quantum memory.

We first define and present the bulk properties of this
model. We then define some important boundaries of the
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model, including the anomalous toric code SET phase.
Finally, we present the global lattice and boundary con-
ditions and discuss the resulting model as a quantum code
and show that it results in a symmetry-protected SCQM.

A. The RBH model: Bulk properties
1. The RBH bulk Hamiltonian

In this subsection, we define the RBH model in the bulk.
Consider a 3D cubic lattice £. Label the set of all vertices,
edges, faces, and volumes of £ by V, E, F, Q. Similarly, to
prepare ourselves for boundary conditions that we specify
later, we label the interior vertices, edges, faces, and
volumes by V°, E°, F°, Q° and L° is the collection of
all interior cells. For now, we ignore any boundary
conditions (meaning, we consider only interior cells),
and one may consider periodic boundary conditions until
specified otherwise. We place a qubit on every face f € F
and on every edge e € E. We refer to qubits on faces as
primal qubits, and qubits on edges as dual qubits.

The bulk Hamiltonian is a sum of commuting cluster
terms

Hp ==Y Ki= ) K. (10)

fer° e€E°

where each cluster term is a five-body operator

K.=x.[[z. (1
fiecf

K =X/ ]] 2.

e:eCf

and X, and Z, are the usual Pauli-X and Pauli-Z operators
acting on the qubit ». These terms are depicted in Fig. 1.
We note that the terms in the Hamiltonian can be

considered “dressed” terms of a simpler, trivial bulk model.

In particular, we define the “trivial model” Hg)o) to be a

trivial paramagnet:

FIG. 1. (a) A portion of the bulk lattice. Primal qubits are
depicted in green, while dual qubits are depicted in blue. (b) A
bulk cluster term K ;. In both figures, bold lines indicate nearest-
neighbor relations between qubits, while dashed lines indicate
edges of the ambient cubic lattice.

0
HY ==Y X, (12)

i€EE°UF°

One can see that these two models are equivalent up to a
constant depth circuit
Hp = UHDUT, (13)
where U is a product of controlled-Z gates that act on all
pairs of neighboring qubits at sites i and j by

CZ; = exp (%’(1 A _z.,.)). (14)

Indeed, let a face f and an edge e be referred to as
neighbors if the edge is contained within the face e C f.
Then, U is a product of controlled-Z gates over all
neighboring sites

v=1I1]cz. (15)

fEF° eCcf

From this, we can see that the bulk Hamiltonian H /. is

nondegenerate (since Hﬁ)o) is nondegenerate).

2. Bulk excitations without symmetry

We now consider the excitations in the model in the
absence of any symmetry considerations. In the bulk, all
excitations can be created by products of Pauli-Z operators
applied to the ground state. Indeed, for any subset of edges
E' C E° or subset of faces F' C F°, the operator

Z(E.F) =[]z ]] 2 (16)

fEF  e€eE

anticommutes with precisely the cluster terms K, and K
for which e € E' and f € F’, and commutes with all
remaining bulk terms. Moreover, all excitations can be
reached in this way [as can be verified by considering the

trivial model H(COO) and the local unitary U of Eq. (15)]. The
energy cost for creating excitations at sites in £’ U F’ with
the operator Z(E', F') is given by

E' U F'[A gy, (17)

where Ag,, = 2 is the energy gap.

The bulk model is very simple due to its low-depth
equivalence with the trivial paramagnet. Excitations can be
locally created on any site by flipping a spin, they have no
interaction with each other, and the energy cost of a general
excitation is proportional to the number of flipped spins.

We refer to excitations supported on sites F/ C F° as
primal excitations, and excitations supported on sites E' C
E° as dual excitations.
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3. 1-form symmetries

The model H ;o has a Z3 1-form symmetry consisting of
operators supported on closed two-dimensional surfaces on
each of the primal and dual sublattices. In particular, a
generating set is given by vertex and cube operators (for
dual and primal qubits, respectively) for each ¢ € Q and

veV,
Sq — H Xf’
fifcq

S, =[] xe. (18)

e.vCe

In the bulk, these operators are depicted in Fig. 2. Taking
products of these operators gives rise to the Z3 1-form
symmetry

G=(S,.S,lveV.qe0). (19)

A general 1-form symmetry operator is generated by a
product of Pauli-X operators on faces of (relative) 2-cycles
of the lattice £ and edges dual to (relative) 2-cycles on the
dual lattice. Comparing to the general expression of 1-form
symmetries in Eq. (7), we note that the codimension-two
surfaces M are given by these (relative) 2-cycles and dual
2-cycles.

One can easily check that these operators commute with

both H . and H(LOO).

We briefly remark on lattices with boundaries. While the
microscopic content of the 1-form operators may change
near a boundary (as dictated by the boundary lattice
geometry), the macroscopic and topological features
remain unchanged—namely, that they are generated by
operators supported on two-dimensional surfaces that are
closed relative the boundary. We examine the boundaries in
the following sections in analogy to the boundaries of
topological phases, such as the surface code [85], where
microscopic details help us understand the topological
properties of the boundary, but are themselves not the
most important features.

It has been shown that under these symmetries, the bulk
model H . belongs to a nontrivial SPT phase, while the

trivial bulk H E?o) belongs to the trivial phase. Moreover, this

FIG. 2. Generators of the 1-form symmetry in the bulk. (a) A
primal generator S,. (b) A dual generator S,. Thick lines denote
neighbor relations, and dashed lines denote the cubic lattice.

distinction persists to nonzero temperature, where H o
remains SPT ordered [57]. In particular, while the whole
unitary U commutes with the symmetry, the individual CZ
gates do not. In fact, there is no constant depth circuit with
local gates that commute with the symmetry mapping the
RBH model to the trivial model.

4. Bulk excitations with 1-form symmetries

We now consider what excitations are possible in the
presence of the 1-form symmetry G. If we consider bulk
excitations, then the excitation operator Z(E',F’) of
Eq. (16) is symmetric if and only if both E’ is a 1-cycle
(i.e., it has no boundary) and F”’ is a 2-cocycle (meaning it is
dual to a 1-cycle on the dual lattice, where vertices are
replaced with cubes, edges with faces, and so on). In other
words, the only symmetric bulk excitations are formed by
combinations of closed-loop-like (i.e., one-dimensional)
objects, and we refer to them as loop excitations. We can
further refer to loop excitations as either primal or dual if
they are supported on sets of faces or edges, respectively.

Both the primal- and dual-loop excitations have an
energy cost proportional to their length, and are thus
confined. This confinement leads to thermal stability of
the model.

B. Boundaries I: General considerations

To obtain degeneracy in the ground space, we must
consider a lattice with boundaries. The allowable boundary
Hamiltonians are dictated by the symmetry action on the
boundary, which in turn is determined by the boundary
geometry. In addition to changing the ground-space degen-
eracy of the model, the choice of boundary Hamiltonian
may allow for different types of excitations to condense on
them. By condense, we mean that an excitation can be
absorbed on the boundary (and the reverse process is also
possible, where excitations can be emitted from a boun-
dary). In the following, we consider four different types of
symmetric gapped-boundary Hamiltonians that each allow
different excitations to condense on them. These bounda-
ries allow us to construct the Hamiltonian with a degenerate
ground space (i.e., code space) that is self-correcting under
I-form symmetry.

We first focus on a toric code boundary which is used to
encode information. We then introduce other boundary
types that can be combined with the toric code boundary to
construct a code that allows for all logical operators to be
implemented through a sequence of symmetric local moves
(as required by the discussion in Sec. II C).

1. Boundary condensation

Throughout this section, it is useful to characterize
boundaries in terms of the types of excitations that can
condense on them. By boundary, we mean a combination of
the choice of how to terminate the lattice, the symmetry
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FIG. 3. A dual-condensing boundary can absorb a dual-loop
excitation. (a) A dual-loop excitation in the bulk is depicted in
blue, while the dual-condensing boundary is shaded light blue.
(b) The loop is moved to the boundary, where part of it is
absorbed. (c) The loop is fully absorbed.

appropriately defined on this lattice, and a Hamiltonian that
commutes with the symmetry (we see examples of these
choices in the next subsection). We define a boundary as
being primal condensing or dual condensing as follows.

Definition 1.—We refer to a boundary as primal
condensing (dual condensing) if any primal- (dual-) loop
excitation can be piecewise removed near the boundary
using local, symmetric operations.

A schematic depicting a dual-condensing boundary is
shown in Fig. 3. Importantly, for a boundary to be able to
condense a general loop excitation, it must be capable of
piecewise condensing it. This piecewise requirement is
what makes the above definition nontrivial, as small loop
excitations can always be condensed wholly by contracting
them to a point (which, however, is not true for loop
excitations with nontrivial topology). Importantly, a boun-
dary is primal condensing (dual condensing) if and only if
primal- (dual-) string excitations can terminate on them in a
symmetric way. For example, Fig. 3(b) depicts a dual-loop
excitation terminating on a dual-condensing boundary.
Therefore, symmetric excitations need to be only closed
loops modulo their respective primal- or dual-condensing
boundaries.

Macroscopically, these types of boundaries can be
thought of as analogs of the X- and Z-type boundaries
of the surface code (often called rough and smooth) [85].
While a boundary may have its own set of excitations that
are localized within it (and they may interact with bulk loop
excitations), the definitions of primal condensing and dual
condensing are independent of any such boundary excita-
tions. We now look at an important boundary that is both
primal condensing and dual condensing.

C. Boundaries II: The toric code boundary

As mentioned, the type of Hamiltonian that can be
defined on the boundary is heavily constrained by the
symmetry. We first consider boundary conditions that
support a 2D toric code phase.

We consider a lattice with one boundary component which
we terminate with “toric code” boundary conditions (see
Fig. 4). Namely, the cubic lattice is terminated on a smooth
plane, such that there are boundary volumes, boundary faces,

(b)

FIG. 4. (a) The boundary of the lattice consists only of dual
qubits which are depicted in blue. Primal qubits on faces
penetrating into the bulk are depicted in green. (b) The boundary
terms A, and B. In both figures, bold lines indicate nearest-
neighbor relations, while dashed lines indicate edges of the cubic
lattice. The dashed lines on the boundary can be thought of as the
edges of a toric code lattice.

boundary edges, and boundary vertices, each having a lower
number of incident cells (neighbors) compared to the bulk.
‘We label the collection of all boundary volumes, faces, edges,
and vertices by L. We fix the topology and geometry more
precisely later; for this section, we consider a lattice
supported on a 3D half-space, i.e., with coordinates
(x,y,x) satisfying x >0, —00 <y < 00, —0 < 7 < 00,
such that the boundary is on the x =0 plane. On the
boundary, qubits are placed only on boundary edges, and
not on boundary faces, as depicted in Fig. 4. We refer to these
qubits as boundary qubits. (Note that we construct this
boundary using dual qubits. This choice is arbitrary, and an
analogous boundary exists that is comprised of primal
qubits.)

For this geometry, we consider Hamiltonians of the form

H:HL:(\ +H3[,’ (20)

where H o is the bulk Hamiltonian of Eq. (10) (which
sums only over sites on the interior, meaning it contains
only complete cluster terms), and Hy, is a boundary
Hamiltonian. A boundary Hamiltonian is in general any
Hamiltonian with local terms acting near the boundary of
the lattice 0L that commute with the symmetry (whose
action we describe shortly).

1. Boundary degrees of freedom

To determine what types of Hamiltonians H,, are
possible on the boundary, we describe the boundary
Hilbert space in terms of a more natural boundary algebra.
We begin with the case Hy, =0 such that H = H o
consists of all five-body cluster terms of Eq. (11). In this
case, there is an extensive degeneracy localized near the
boundary: There is a qubit “boundary degree of freedom”
for every boundary edge (i.e., one forevery e € E N 0L). It
is important to distinguish between the qubits that belong to
the boundary and the degrees of freedom localized near the
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boundary that describe the ground space. Indeed, the
operators that act on these degrees of freedom within the
ground space of H are not simply given by the Pauli
operators acting on boundary qubits. That is, for some Pauli
operator P, acting on ¢ € E N JL, we have IIyPI1, #
[Ty P, in general, where I is the ground-space projector (in
fact, we have equality only if the bulk is a trivial para-
magnet). The effective Pauli-X and Pauli-Z operators can
be obtained by finding the dressed versions of these Pauli
operators using the unitary in Eq. (15).

More explicitly, the effective Pauli-X and Pauli-Z oper-
ators for these boundary degrees of freedom are given by
X, =UXU" =X,Z,. Z,=UZU =2, (21
where U is a product of CZ gates as in Eq. (15), and f(e) is
the unique face f € F° such that e C f. These operators
preserve the ground space (as they commute with all bulk
cluster terms in H o) and act on the boundary degrees of
freedom in the ground space as the usual Pauli spin
operators. We describe boundary degrees of freedom in
terms of the boundary algebra generated by X,, Z,. We
emphasize that the support of the boundary algebra is not
strictly contained on the boundary qubits, as would be the
case if the bulk Hamiltonian was trivial. This subtle
difference between the boundary degrees of freedom and
cut boundary qubits is important, as we will see.

2. Symmetry action on the boundary

The Z3 1-form symmetry on a lattice with a boundary is
again given by the group G in Egs. (18) and (19) (consisting
of operators supported on two-dimensional submanifolds
that are closed relative the lattice boundary). The operators
near the boundary are depicted in Fig. 5.

A general boundary Hamiltonian can be written in terms
of operators from the boundary algebra. We must therefore
analyze the action of the 1-form symmetry on the boundary
algebra (to infer how the boundary degrees of freedom
transform under the symmetry). First, we note that
the operators of Eq. (21) are not themselves symmetric.
Taking the boundary symmetry operators S, and S, with

FIG. 5. Symmetry operators on the boundary (a) S, with
qe oL, (b) S, with v € JL. Thick lines denote neighbor
relations, and dashed lines denote the cubic lattice.

veVnaL, ge Qn IL (depicted in Fig. 5), for any e €
E n OL we have (under conjugation)

Su: Xg = Xe’ Ze = (_I)L(D)Ze’ (22)

X, Z,—~ 7, (23)

where 1,(v) =1 if v Ce and 1,(v) =0 otherwise, and
similarly, 1,(e) = 1 if e C g and 1,(e) = O otherwise.

From this structure, we can write the action of the 1-form
symmetry in the ground space of H in terms of operators in
the boundary algebra as follows. Define the following
“dressed toric code” operators for every v € V N L and
every f € FnoL:

A= 1] x 112

e€dE:vCe  fieCf

By =[] z.. (24

eieCf

where OE = E n 0L is the set of boundary edges. Such
operators are depicted in Fig. 4. They are dressed versions
of the usual toric code operators

I[ x.

ecOE:vCe

A, =

B, =[] z.. (25)

e:eCf

and can be obtained by conjugating them by the unitary
of Eq. (15).

Now it can be verified from the (anti)commutation
relations of Egs. (22)—(23) that the 1-form symmetry acts as

S,=A,, Y veVniL, (26)

S,=Bs,. Y qe0niL, (27)
and as the identity otherwise. Here, f(g) is the unique face
f(q) =0gNOL, and A, and B, are defined in Eq. (24).
The equivalence = means that the two operators have the
same action in the ground space. In other words, S, and A,
(resp. S, and B #(¢)) have identical commutation relations

with all boundary operators X, and Z, of Eq. (21), and
therefore have equivalent action on the boundary degrees of
freedom.

Thus, we see that the SPT-ordered bulk requires the
boundary theory to be nontrivial: In order to respect the
symmetry, any boundary Hamiltonian must commute with
the dressed toric code operators, and therefore, any trivial
boundary Hamiltonian (e.g., trivial paramagnet) is ruled
out. There are two further observations to make about the
action of the symmetry on the boundary. First, the sym-
metry is represented as a 1-form symmetry on the boundary
degrees of freedom: l.e., A, and B ¢ generate a symmetry
group whose elements are supported on closed loops.
Second, the supports of these symmetry operators are
not strictly contained on the boundary qubits.

031041-11



SAM ROBERTS and STEPHEN D. BARTLETT

PHYS. REV. X 10, 031041 (2020)

3. Toric code boundary Hamiltonian

In order to add a nontrivial Hamiltonian Hy, to the
boundary, it must be composed of terms that commute with
A, and Bf from Eq. (24). As such, the canonical choice of
boundary Hamiltonian has terms given by A, and B ¢ This
gives us the dressed toric code boundary

Hpe ==Y A,— > By, (28)

vedV feoF

where 0V and OF are the set of all boundary vertices and
faces, respectively. Again, the terms of this Hamiltonian are
depicted in Fig. 4.

4. Toric code boundary excitations

The toric code Hamiltonian introduces a new set of
excitations on the boundary that are interesting in them-
selves but also interact nontrivially with bulk excitations.

The boundary supports anyonic excitations that are free
to propagate in the absence of any symmetry. Indeed, for a
string / C OF on the boundary, we can define the string
operator Z(l) = [],e; Z,. The string operator Z(I) com-
mutes with all Hamiltonian terms, apart from vertex terms
A, with v € 9l for which it anticommutes with. We define
flipped A, terms as e excitations, and string operators Z(1)
create these excitations. Similarly, we can define a dual-
string operator X(I') = [T,y X, [1;er Z5 for a string
' C OE, which when applied to the ground space, creates
m excitations on the faces at the ends of /. Here, I+ =
{f eF°:0f nl+ @} denotes the set of faces sitting just
inside the boundary incident to the string /. At the end
points of the string operator X(I'), m excitations occur as
the plaquette operators B ¢ with f on the ends of /

anticommute with X(/'), while all remaining terms com-
mute. Examples of such operators are depicted in Fig. 6.

Now we consider excitations that respect the symmetry.
On the boundary, we see that boundary excitations are
symmetric only if they are accompanied by a bulk string

FIG. 6. (a) The e- and m-type excitations on the boundary of
string and dual-string operators. For an e excitation (m excitation)
to be symmetric, they must be accompanied by a bulk dual-
(primal-) string excitation terminating on them. (b) An example
of a symmetric excitation. Two e excitations live on the boundary
of a bulk dual-string excitation depicted in red.

excitation. In particular, a string operator Z(/) creating e
particles at vertices u and v is made symmetric by attaching
a bulk string operator Z(E’) whose boundary is at the
location of the two particles OE' = {u,v} (i.e., [UE is a
cycle). Similarly, the dual string operator X (/') that creates
m excitations at g’ and v/ can be made symmetric by
attaching a bulk string operator Z(F’) such that the union
I't U F' is a dual cycle (i.e., has no boundary on the dual
lattice). Such excitations will flip cluster stabilizers in the
bulk for all terms K, with ¢ € E’ and K, with f € F’, but
will create only a pair of e or m particles on the boundary at
their end point.

The following two lemmas characterize the valid con-
figurations of excitations in the presence of symmetry.

Lemma 1: The toric code boundary is both primal
condensing and dual condensing.

Proof.—We first show that it is dual condensing. We can
decompose any cycle / C E into two components: [ = /[;,, U
lyoun Where [, =1 N E° is its interior component, and
lhoun = L N OE is its boundary component. As we see,
Z(l;,;) anticommutes with all terms K, with e € [;;; and
commutes with all other terms. Also, Z(/yy,,) commutes
with all terms apart from A, with v € Ol,,o,,. Therefore, any
bulk dual-loop excitation given by an operator Z(/) may be
translated to a boundary using a series of local symmetric
moves [translations may be performed by sequentially
applying Z(c) operations for some small cycle c]. The
dual-loop excitation can then be piecewise absorbed upon
contact with the boundary.

To show primal condensing, the argument is similar. We
decompose any dual-cycle /' C F into two components
I'=10,010., where I[  =10NFyy, and L =1nN
(F\Fyous) Where Fyo, = {f € F|Of N OE # @&}.
Intuitively, F,,, is the set of faces that contain one edge
on the boundary of the lattice. Then, Z(Z,) anticommutes
with all terms K ; with f € I and commutes with all other
terms. Now find a string 7 C JF on the boundary such that
=1, (recal r*={feF:0fnt+@}). Such a
string can always be found. Now, Z(1},,) itself does not
commute with all bulk cluster terms K , but Z(l; )X (t) =
X (t) is a dressed string operator that commutes with all terms
apart from the plaquettes B + with f € 6t. Then, similar to the
previous case, any primal-loop excitation in the bulk can be
translated to the boundary where it can be piecewise absorbed
by sequentially applying local Pauli-X operators. [

As we see, primal and dual excitations need be only
closed loops modulo the toric code boundary, where they
can terminate as an anyonic m- Or e-type excitation,
respectively. The following lemma states that, in fact, these
anyonic excitations can exist only if they are at the end of a
bulk string excitation.

In the following, for any subset of faces f, let 5f C Q be
the set of volumes that each contain an odd number of faces of
f on their boundary (6f = {q € Q:|0g N f| # 0 mod 2}).
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Lemma 2: In the 1-form symmetric sector, e excitations
can belocated atsites V, € dV if and only if accompanied by
a dual bulk string excitation supported on / C E satisfying
0l = V,. Similarly, m excitations can be located at sites
F,, C OF if and only if accompanied by a primal bulk string
excitation supported on I’ C F satisfying §F,, = 8.

Proof.—For the e excitations, we have the following
constraint: For every vertex operator A,, v € OV, there exists
a unique e € E° such that S, = A,K, (can be seen upon
inspection of Fig. 5). As §, = +1 in the ground space, it must
also be for any excitations produced by a symmetric process.
Therefore, any flipped term A, must be accompanied by a
uniquely determined flipped bulk term K,. As every dual
qubit on an edge e is in the support of two symmetry
generators S, and S, , which also must be preserved, the
flipped term K, must be part of a string excitation that can
terminate only at another flipped term A,,, w € OV

For the m excitations, the argument is the same after
noting the following constraint between bulk and boundary
excitations: For every plaquette operator B . f € OF, there

exists a unique ¢ € Q such that S, = B, [[pcp, Ky ®

5. Energetics of boundary excitations

For any two vertices v, v/ € V let d(v,v’) denote
the lattice distance between v and o' as d(v,v') =
min;g{|/|:0l = (v, v')}. Namely, it is the smallest number
of edges required to connect the two vertices. Similarly, for
any two faces f, f' € F, d(f, f) is defined to be the lattice
distance between f, f on the dual lattice (where 3-cells are
replaced by vertices, faces by edges, edges by faces, and
vertices by 3-cells). Also, recall Ay, = 2 is the energy gap.

Lemma 3: For the model H defined on the half
Euclidean (3D) space, the minimal energy cost to sym-
metrically create a pair of e excitations (m excitations) at
positions x, x’ is given by [d(x,x") + 4]Agy.

Proof.—Consider the process of creating a pair e
excitations on the boundary at positions x(i), x(iy)" and
then moving them to positions x = x(iy), X' = x(iy)’ using
a sequence of moves labeled by iy, ..., i;. The positions of
the excitations at steps i; are given by x(i;),x(i;)". From
Lemma 2, at every step i}, the excitations must be accom-
panied by a dual-string excitation in the bulk supported on
I(i;) C E° with OI(i;) = (x(i;),x(i;)"). The energy cost of
the string [(i;) is given by its length |/(i;)|Ag,, which
minimally is [d(x(i;), x(i;)’) + 2]Agp. Adding in the
energy cost 2A,,, of the two e excitations gives the result.
The m excitations follow analogously. m

We use this lemma in the following subsections to derive
the symmetric energy barrier.

6. Comparison: Trivial bulk and toric code boundary
We contrast this behavior with that of the trivial model.
Namely, consider the trivial model H(®) = H(Lou) + H((C)Og,
with H(EOO) the trivial paramagnet defined in Eq. (12) and

Hy) ==>"4,- > B, (29)

vedLl feOF

with A, and B/ the undressed toric code terms of Eq. (25).

The trivial model H®) can be connected to our model H
using the nonsymmetric circuit of Eq. (15). Lemma 1 still
holds for the trivial model; however, Lemma 2 and
subsequently Lemma 3 do not. Indeed, one can symmet-
rically create a pair of flipped plaquettes B using a string
of X operators without creating any bulk excitation. The
coupling between boundary anyons and bulk strings is
crucial for self-correction, as otherwise the anyons remain
deconfined on the boundary. We discuss how this con-
ditions results from the anomalous SET order of the
boundary and the SPT order of the bulk in Sec. Il G.

We now have symmetry and spectral properties of the
toric code boundary. In Sec. III E, we discuss the ground-
space degeneracy of this boundary in the context of the full
model and its associated lattice topology.

D. Boundaries III: Other types of boundaries

The toric code boundary is not the only choice of
symmetric boundary condition, and in our construction
of a SCQM we make use of several other boundaries. In
particular, our construction requires the existence of boun-
daries with certain condensation properties to ensure that
all logical operators of the code can be implemented using
sequences of local symmetric moves. While a rigorous
classification of the possible boundary theories remains an
interesting open problem, the toric code boundary con-
ditions of the previous section along with the three
presented in this section are sufficient for our purposes.

We present these boundaries with a canonical choice of
lattice geometry; however, we emphasize that they should
be viewed as stable topological objects, and their important
properties are not dependent on microscopic details. (This
independence can be viewed in analogy to the rough and
smooth boundaries of the 2D surface code [85].) In
particular, if we were to erase a disk within one of these
boundaries (by removing the Hamiltonian terms and adding
or removing qubits), using the general symmetry-based
construction in Sec. III C 2, we can argue that any possible
Hamiltonians that can fill in the disk are determined by the
surrounding boundary Hamiltonian and in particular must
belong to the same phase. The argument is presented in
Appendix C. Such an argument demonstrates that the
particular choice of Hamiltonians in this section may be
regarded as canonical representatives of the boundary
theories. We leave a rigorous proof of this statement, along
with an exhaustive proof of the possible boundary theories
for this 1-form SPT phase to future work.

We consider three different boundary geometries that
support the following types of gapped boundary
Hamiltonians to be used in the code construction, based
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on their condensation properties as defined in Definition 1
of Sec. III B:

(1) the primal boundary Hamiltonian Hp, which is

primal condensing but not dual condensing;

(2) the dual boundary H p, which is dual condensing but

not primal condensing; and

(3) the “sink” boundary H g, which is primal condens-

ing and dual condensing.

The different boundaries are distinguished by what exci-
tations can condense on them in a symmetric way, and they
can be thought of in analogy to the Z-type and X-type
boundaries of the surface code (often called rough and
smooth) [85]; the primal boundary is chosen to allow primal
stringlike excitations (i.e., excitations generated by Z strings
on primal qubits) to condense, the dual boundary is chosen to
allow dual stringlike excitations (i.e., excitations generated
by Z strings on dual qubits) to condense, and both strings can
condense on the sink boundary. There exist nondegenerate,
symmetric Hamiltonians consisting of commuting Pauli
terms with these properties, as we now show.

All of the Hamiltonians in this subsection are given by a
sum over (potentially truncated) cluster terms

Hboundary = _ZKf - ZKe’ (30)

feOF e€IE

where K, and K of the form of Eq. (11). Similarly, all
symmetry generators are determined by Eq. (18), and they
may take the form of Figs. 2 or 5 depending on the
boundary lattice geometry. The Hamiltonians are all non-
degenerate, as they are locally equivalent to a trivial
paramagnet. We emphasize that although we utilize micro-
scopic details of these boundaries in the analysis of this
section, what is important is their topological properties, as
encapsulated by Lemmas 4-6 (which are independent of
precise lattice details).

We note that similar to the bulk case, excitations on the
boundary are given by operators Z(E', F') of Eq. (16), for
E' C OF and F' C OF. Such an operator flips precisely the
terms K, and K, with e € E' and f € F’, and this can be
verified by local unitary equivalence with the trivial para-
magnet using Eq. (15). We note the usual product relation
between cluster terms and symmetry operators

S, = [[%ks Y aqeo. (31)
fe€oq

S,= [k Vvev (32)
e.vCe

puts nontrivial constraints on the relationship between bulk
and boundary excitations that we now explore.

1. Primal boundary

For the primal boundary, we consider “smooth” boun-
dary conditions (in analogy to the smooth or Z-type

(b)

FIG. 7. (a) The lattice at the primal boundary. Primal qubits are
depicted in green, while dual qubits are depicted in blue. (b) The
primal boundary Hamiltonian Hp consists of cluster terms, as
depicted by (i) and (ii). Bold lines indicate nearest-neighbor
relations between qubits, while dashed lines indicate edges of the
ambient cubic lattice.

boundary of the surface code). On the boundary, qubits
are placed on both boundary edges and boundary faces, as
depicted in Fig. 7. On this boundary, the 1-form symmetry
generators reduce to the six-body primal symmetry oper-
ators S, of Fig. 2, and five-body dual symmetry operators
S, of Fig. 5. The Hamiltonian terms of Hp are four-body
K, operators and five-body K, operators, as depicted in
Fig. 7. These terms all commute with the symmetry.

Lemma 4: The primal boundary Hp is primal condens-
ing and not dual condensing.

Proof.—We first show that the boundary is primal
condensing by showing that primal excitations can termi-
nate on it. First, for any pair of faces f, f' € OF on the
boundary, any subset of faces I’ C F° with 6’ = 6(f U f')
defines a symmetric excitation operator Z(I') (i.e.,
[Z(I'),S,] =0V q € Q). This property is due to the fact
that every boundary face f belongs to a unique 3-cell g,
meaning each boundary primal qubit is in the support of a
unique symmetry generator S, (as opposed to two in the
bulk). As Z(1') flips precisely the terms K, with f € I’ and
commutes with all others, we can locally and symmetri-
cally absorb primal-loop excitations near the primal
boundary.

To show that the primal boundary is not dual condensing,
we note that for every dual qubit on some boundary edge,
e € 0 is in the support of two symmetry generators S, S,/
Therefore, the only operators Z(/), [ C E that commute
with the 1-form symmetry operators satisty 0/ = @. This
means that dual excitations must form closed loops, even
on the boundary. [

2. Dual boundary

The dual boundary is similar to the primal boundary; it
can be obtained by reversing the role of primal and dual
qubits on the boundary. In particular, we consider the
“rough” boundary conditions depicted in Fig. 8 (in analogy
with the X-type boundary of the surface code). For this
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(@ (b)

FIG. 8. (a) The lattice at the dual boundary. Primal qubits are
depicted in green, while dual qubits are depicted in blue. (b) The
dual boundary Hamiltonian Hp consists of cluster terms, as
depicted by (i) and (ii). Bold lines indicate nearest-neighbor
relations between qubits, while dashed lines indicate edges of the
ambient cubic lattice.

boundary, the 1-form symmetry generators reduce to the
six-body dual symmetry operators S, of Fig. 2, and five-
body primal symmetry operators S, of Fig. 5. The
Hamiltonian terms of Hj are five-body K, operators and
four-body K ; operators, as depicted in Fig. 8. These terms all
commute with the symmetry.

Lemma 5: The dual boundary H, is dual condensing
and not primal condensing.

Proof.—The proof is the same as Lemma 4, exchanging
the role of primal and dual qubits. [

3. Sink boundary

Finally, we consider the sink boundary. This lattice
boundary is again given by the smooth boundary conditions
of the previous subsection. On the boundary, qubits are
placed only on boundary faces, and not boundary edges, as
depicted in Fig. 9. On this boundary, both primal and dual
I-form symmetry generators reduce to the six-body oper-
ators of Fig. 2. The Hamiltonian terms of Hpp are five-body
K, operators and one-body or four-body K, operators, as

o 0 .o 0 -0 o . O .8 O @
»»»»» R EEE S EEE R R R RS e R
o ) ) ) G) )
(@] . (@] | (@] | (@] | (@] | (@] :
o000 —0 0 oo @ @ .0
,,,,,, R < -
‘ ‘
o ) ) o @ o
® e : o ® ® | e
OO 0T -0 00 o9 00 00
»»»»» Rt et LR B G L LTS L EEE T
(¢} . O ] o e o
(@] o o ' o (@] (@]
(a) (b)

FIG. 9. (a) The lattice at the sink boundary. Primal qubits are
depicted in green, while dual qubits are depicted in blue. (b) The
dual boundary Hamiltonian Hpp consists of cluster terms, as
depicted by (i) and (ii). The primal qubits on the boundary surface
have no neighbors (meaning the corresponding cluster term is
given simply by Pauli X). Bold lines indicate nearest-neighbor
relations between qubits, while dashed lines indicate edges of the
ambient cubic lattice.

depicted in Fig. 9. These terms all commute with the
symmetry.

Lemma 6: The sink boundary Hpp is both primal
condensing and dual condensing.

Proof.—The proof is similar to the first part of Lemma 4:
We observe that the boundary contains both primal and
dual qubits that belong to unique six-body symmetry
generators S, and S, respectively (as opposed to two).
As such, primal- and dual-excitation chains can symmet-
rically terminate on these qubits. [

Finally, we note that gapped interfaces exist between all
of these boundaries. We demonstrate this fact explicitly in
the following subsection.

E. The cubic RBH code

We now use these various boundaries to construct a code
that is self-correcting under 1-form symmetries; we call the
model the cubic RBH model.

1. The lattice

The lattice £ we consider has the topology of a 3-ball.
Namely, we consider cubic boundary conditions: The
lattice is a cubic lattice with dimensions d X d x d, with
six boundary facets, depicted in Fig. 10. The bulk of the
model is given by the usual RBH cluster Hamiltonian,
while on each of the six boundary facets we choose one of
four different boundary conditions. Namely, one of the six
boundary faces is chosen to support the logical information
using a dressed toric code Hy,—which we call the toric
code boundary—and the remaining five boundary faces
support either a primal boundary, a dual boundary, or a sink
boundary, as depicted in Fig. 10.

The lattice must terminate on each of these boundary
facets according to the boundary conditions outlined in the
previous two subsections. In Fig. 10, we show a small
example of the lattice when viewed from the direction of
the toric code (i.e., Hy,) boundary. Note in particular that
the toric code boundary facet has planar boundary con-
ditions due to the way it terminates on the primal and dual
boundaries. Namely, the top and bottom edges of the toric
code boundary facet are known as rough edges, and the left
and right edges are known as smooth edges.

2. The Hamiltonian

The Hamiltonian decomposes into bulk and boundary
components. The bulk Hamiltonian is given by the usual
RBH cluster Hamiltonian H ;. of Eq. (10). The boundary
Hamiltonians come in four different types. First, on the
toric code boundary, we put the dressed toric code
Hamiltonian Hy, of Eq. (28). Dressed toric code terms
are truncated near the rough and smooth edges. In
particular, the plaquette terms Bf are truncated near the

rough boundaries, while the star terms A, are truncated
near the smooth boundaries. The Hamiltonians Hp, Hp,
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FIG. 10. (a) The boundaries of the cubic RBH model. H - is the
toric code boundary, Hp and Hp are the primal and dual
boundaries, respectively, and Hg, is the sink boundary.
(b) The lattice for the toric code boundary Hy,. The top and
bottom edges are called rough boundary conditions, while the left
and right edges are called smooth boundary conditions. The
Hamiltonian consists of the negative sum of all star and plaquette
terms A, B  from Eq. (24). Dashed lines denote edges of the cubic
lattice.

and Hg, on the primal, dual, and sink boundaries can
all be expressed in the form Hyoungary Of Eq. (30). The
terms in these Hamiltonians are cluster terms that are
potentially truncated, depending on what boundary they
reside on.

We note that all of these boundaries meet at gapped
interfaces. In particular, the lattice structure at the edge lines
and corners is explicitly depicted in the Fig. 10. The
symmetry operators are again generated by S, and S, of
Eq. (18). They are five-body or six-body operators, depend-
ing on if they are near a particular boundary. All Hamiltonian
terms are symmetric and mutually commuting.

3. The ground space

As we discuss, the bulk Hamiltonians H ., along with the
boundary Hamiltonians Hp, Hp, and Hgy, are all non-
degenerate. The overall degeneracy manifests on the toric
code boundary H,. In particular, for the planar boundary
conditions on the toric code boundary, there is a twofold dege-
neracy. This can be easily verified by its local unitary
equivalence with the planar code, which encodes one logical
qubit.

4. Logical operators and code space

The toric code Hamiltonian H,, encodes one logical
qubit, with string logical operators X and Z running
between opposite pairs of edges of the boundary face. In
particular, the logical operators are given by

x=1[x112z. z=]]z- (33)

ecay feaj ecb,

where a, is a dual cycle on the boundary (meaning it is a
cycle on the dual of the boundary lattice) that runs between
the two smooth edges, b, is a cycle on the boundary that

FIG. 11. Logical operators for the toric code boundary H,.
(a) Logical X runs between the left and right smooth edges.
(b) Logical Z runs between the top and bottom rough edges.
Dashed lines denote edges of the cubic lattice.

runs between the two rough edges, and ar = {f € F°:
Of Nay # @}. These logicals are depicted in Fig. 11. Note
in particular, that such strings are symmetric, as the top and
bottom boundary facets are dual condensing, while the left
and right are primal condensing.

5. Logical operator decomposition

In this model, logical operators admit symmetric local
decompositions, as we now demonstrate. The toric code
Hamiltonian encodes one logical qubit, with string logical
operators X and Z running between opposite pairs of edges
of the boundary face. These logicals are given by Eq. (33).
In order to implement either logical operators (X or Z)
through a sequence of local moves, we also create a large
bulk excitation. (Note that this behavior is expected, as we
claim the model is self-correcting, we must necessarily
traverse a large energy barrier to implement a logical
operator.) This large bulk excitation can then be absorbed
by the sink boundary in order to return to the code space.
Importantly, e excitations (m excitations) can be symmet-
rically created and destroyed at the rough edge (smooth
edge) of the toric code boundary. In fact, implementing a
logical Z (X) operator can be viewed as a process creating
an e excitation (m excitation) from one rough (smooth)
edge to the opposite rough (smooth) edge. The strategy is
outlined in Fig. 12.

Lemma 7: Both logical X and Z of the cubic RBH
model admit symmetric local decompositions.

Proof.—We first consider a symmetric local decompo-
sition of Z. Consider a string operator Z(c), ¢ C E
supported on the dual qubits near the code boundary, as
in Fig. 12. Grow this string operator until we achieve
Z(14+1)=Z(1)Z(l'), where [+ I’ is a contractible loop
(and therefore achievable by local symmetric moves), [ is a
string running between the top and bottom rough edges,
and ' is a string in the bulk with the same boundaries as I.
Thus, Z([) is a logical Z operator, and Z(I') is an operator
causing a bulk stringlike excitation anchored between the
two dual boundaries. We then consider translating the bulk
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FIG. 12. Implementing a logical Z operator through a sequence
of local moves. (a) An error chain Z(c) supported on dual qubits
(the union of the solid blue and dashed blue lines) is created near
the toric code boundary. This error chain creates string excitations
in the bulk (solid blue), and anyonic excitations where it meets
the toric code boundary. (b) The loop is grown until it consists of
a logical operator Z (dashed blue line) along with a large bulk
excitation (solid blue) anchored between the two dual boundaries.
(c) The bulk excitation is moved to the sink boundary, where it
can be absorbed. The whole process results in a logical Z. Logical
X operators can be implemented in a similar way, where an error
loop on the primal lattice is grown and propagated, and an
additional chain of Pauli-X errors is also propagated along the
toric code boundary.

excitation caused by Z(/’) to the sink boundary, following
Fig. 12 (which can be achieved with local symmetric moves
as the two loops are homologous). This operator and the
corresponding excitations can then be absorbed by the sink
boundary as it is dual condensing.

Logical X operators can be decomposed in a similar way.
First, consider the same process as above to produce a
string operator Z(["), [ C F supported on the primal qubits
anchored between the opposite primal boundaries (which
can be achieved in the same way, as the sink boundary is
primal condensing). Z(") can be translated adjacent to the
code boundary, such that I’ = aj for some dual cycle on the
boundary a,; One can then apply a sequence of Pauli-X
operators along a,, giving logical X. (]

6. The energy barrier

As we see, when the dynamics are restricted to the 1-
form symmetric sector, bulk excitations form collections of
closed-loop-like objects. Second, boundary anyonic exci-
tations appear only at the end of a bulk-string-like exci-
tation. This coupling of the thermal properties between
bulk and boundary in the presence of symmetry, is enough
to achieve a diverging symmetric energy barrier [as defined
in Eq. (9)].

Definition 2.—We define the lattice width d of the cubic
RBH model as d = min{dy, dy, d.onq}, Where d is the
smallest lattice distance between the two rough edges of the
toric code boundary, dy is the smallest lattice distance
between the two smooth edges of the toric code boundary,
and d,,,q is the smallest lattice distance between the toric
code boundary and the sink boundary.

Note that min{dy, dy} is the usual (code) distance of the
planar code on the same boundary. For any edge ¢ € OE
[face f € OF], we define d.yuq(e) [deona(f)] as the lattice

distance to the nearest dual-condensing [primal-condens-
ing] boundary. Recall also the lattice distance d(x,x’)
defined in Sec. III C5.

Lemma 8: Let C C JE U OF denote the positions of a
general configuration of boundary anyons. Then, the
energy cost to symmetrically create this configuration is

lower bounded by (d¢ + |C|) Ay, Where

dc = minf del@) + d(0,0) | (34
pep {a}.{b.c}eP

where P is a partition of the elements of C into pairs {b, ¢}
of the same type or singletons {a}, and P is the set of all
such partitions.

Proof.—This proof is the generalization of Lemma 3 to
the cubic RBH model. The proof follows in the same way,
where we additionally note that each e (m) anyon may be
connected by a bulk loop excitation to either another e (m)
anyon, or to an appropriate dual-condensing (primal-
condensing) boundary. As such, the smallest energy cost
is obtained by finding the total length of the (shortest)
perfect match for all anyons, where anyons are allowed to
pair with their respective boundary. The energy cost is then
obtained by scaling the length of the excitations by the gap
Agqp, and adding in the contribution for each anyon. =

Theorem 1. The symmetric energy barrier for a logical
fault in the cubic RBH model is lower bounded by

d % -7,
where d is the lattice width defined in Definition 2, and 7’ is
constant (independent of lattice size).

Proof—Let {I®|k=1,...,N} be any sequence of
operators such that each /¥ is symmetric, ) and [+
differ only locally, /(') = I, and ") is a logical operator
supported on either the a, dual cycle or the b, cycle of

(35)

Eq. (33). Let r be the largest range of any operator /(¥ [(k+1)
for any k € 1, ..., N, which is assumed to be constant.
By locality of /(*), we must traverse an intermediate state
that has a nonzero number of anyonic excitations on the code
boundary. Moreover, since at each time step the separation
between anyons can change only by a constant amount, to
achieve a nontrivial logical operator, there is a time step
k' € {1, ..., N} with a configuration of anyons given by Cy,
such that d¢, > min{|dy/2], |dz/2]} —r. Here, dc, is
given by the (minimum length) perfect match of all anyons
on JL, where anyons can be matched with the boundaries
they can condense on. Note that Zz’ck, > min{dc,, deond}
where Zick, is defined in Eq. (34). Then by Lemma 8, we
have that the energy cost of the configuration Cy is at
least (Zlck, + |Cy|)Agap, Which is lower bounded by
(min{dc,, deona} + |Cr'| = 1) Agqp. Using the definition of

the lattice width and letting 7' =rA,,,, the result follows. m
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This proof gives a conservative lower bound on the
energy barrier, but it is sufficient for our purposes. In
particular, as the lattice width d grows with the number of
qubits, we have a macroscopic energy barrier. In other
words, the energy barrier for a logical fault grows with the
size of the system.

7. Self-correction

We show that the 1-form symmetric cubic RBH model
inherits a macroscopic energy barrier to a logical fault, due
to the stringlike nature of excitations resulting from the
I-form symmetry together with its coupling of bulk
and boundary excitations. The question is whether this
energy barrier is sufficient for an unbounded memory time.
In Appendix D, we give an argument following the well-
known Peierls argument (see also Ref. [1]) to show that this
energy barrier implies self-correction of the 1-form sym-
metric RBH model. In brief, we estimate the probability
that an excitation loop [ of size w emerges within the Gibbs
ensemble at inverse temperature 5. We show that large loop
errors are quite rare if the temperature is below a critical
temperature 7., and we give a lower bound on 7, at
2/1og(5). As such, if the error rate is small enough (that is,
the temperature is low enough), then the logical informa-
tion in the code is stable against logical errors, and the
encoded information on the boundary will be protected for
a time growing exponentially in the system size.

Along with the memory time, we therefore meet all of
the requirements of a symmetry-protected, self-correcting
quantum memory. In particular, we show that all operators
admit a symmetric, local decomposition in Lemma 7.
Additionally, the ground space of this system is perturba-
tively stable, as it meets the topological quantum order
(TQO) stability conditions of Ref. [86]. Finally, as a code, it
admits an efficient decoder [1,61]. Therefore, this model
meets the requirements for a self-correcting quantum
memory when protected by the Z3 1-form symmetry.

F. Encoding with more general topologies

One may ask what other boundary conditions and
topologies can be used to construct a self-correcting code
under 1-form symmetries. In this subsection, we outline
one other choice and rule out a number of others.

In particular, note that in the previous discussion we
could replace the sink Hamiltonian with another toric code
Hamiltonian, as it is both primal and dual condensing.
While the degeneracy of the ground space increases by
another factor of 2 in this case, we do not get an increase in
the number of qubits that we can encode. This is because
the two opposite toric code boundaries must always be
correlated as dictated by the symmetry: Labeling the two
codes as L and R, there is no local symmetric decom-
position of individual logical operators Z; and Z (X, and
Xg), but only of the product Z, ® Zg (X, ® Xg). This

property is similar to the theory of SPT phases in one
dimension, where the two separate degenerate boundary
modes of a 1D chain cannot be independently accessed in
the presence of symmetry.

Similarly, one could remove the primal and dual boun-
daries by considering the lattice £ with a topology of
T? x I, where T? is the torus and I = [0, 1] is the interval.
On each side, 7% x {0}, T2 x {1} we choose toric code
boundary conditions and define a toric code Hamiltonian
H . With this topology, the ground space of the system is
2%fold degenerate (as each boundary toric code has a
degeneracy d, = 229 where ¢ is the genus of the 2D
manifold it is defined on, with g =1 for the torus). For
each toric code, one can define logical operators

)_(l = HXFHZf7 Z1 = HZL” (36)

e€a;  feay e€b,

and

L=1[x]1]z. 2z=]]z (37)

eeby, fe};j e€a,

for cycles a,,, b, and dual cycles a,, b, wrapping around
the two nontrivial cycles of the torus labeled by a and b.
Similarly, we can make use of only one of the toric codes,
as the two copies are correlated under the 1-form symmetry.
In other words, we do not have a symmetric decomposition
of all logical operators, only a subgroup of them.

1. Topological obstruction to logical decompositions

The issue of finding choices of boundary conditions that
allow for symmetric local decompositions of logical
operators is nontrivial. For example, on a solid torus
D? x S, with D? a disk and S' a circle (depicted in
Fig. 13), we cannot encode any logical qubits. Although the
boundary of the solid torus is a torus, there does not exist
symmetric local decompositions of logical operators sup-
ported on the b cycle of Fig. 13. For example, logical
operators Z supported on the b cycle (in Fig. 13) cannot be
created by a sequence of local, symmetric operators
because any such sequence results in a homologically trivial
(contractible) cycle. This phenomenon will always occur for
codes that live on the boundary of a 3-manifold due to the
following fact: For any 2-manifold, precisely half of
the noncontractible cycles (if they exist) become contract-
ible when the manifold is realized as the boundary of a
3-manifold [87]. This justifies our consideration of the more
involved boundary conditions of the previous subsection.

G. Bulk boundary correspondence
at nonzero temperature

As we show above, the 1-form symmetries constrain the
form of the excitations in the model and give rise to an energy
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FIG. 13. The solid torus. The boundary of the solid torus is a
torus, where two nontrivial cycles a and b are depicted. One
might expect to be able to encode two logical qubits in the
system; however, any operator supported on the b loop does not
admit a symmetric local decomposition.

barrier and self-correction. These 1-form symmetries are a
very strong constraint, and one may ask if a code is trivially
guaranteed to be self-correcting whenever such symmetries
are enforced. (As an example of a strong symmetry leading
trivially to self-correction, consider the toric code where the
symmetry of the full stabilizer group is strictly enforced.)

In this section, we show that the 1-form symmetry,
although strong, is itself not sufficient to lead to self-
correction unless the bulk is SPT ordered (such as in the
previous models). Specifically, we show that self-correction
under 1-form symmetries depends on the bulk SPT order of
the model, establishing a bulk-boundary correspondence
for SPTs at nonzero temperature. Recall, at zero temper-
ature, the correspondence is that a system with nontrivial
SPT order in the bulk must have a protected boundary
theory—meaning it is gapless or topologically ordered—
whenever the symmetry is not broken [88,89]. Here we
show that the bulk-boundary correspondence holds at
nonzero temperature in the RBH model and that the
stability of the boundary toric code phase (i.e., whether
or not we have a SCQM) depends on the bulk SPT order at
nonzero temperature.

In order to make this connection, we recall a formulation
of phase equivalence due to Chen et al. [20]. Namely, two
systems belong to the same phase if they can be related by a
local unitary transformation (a constant depth quantum
circuit), up to the addition or removal of ancillas.
Importantly, with symmetries S(g) present, the local unitary
transformations must commute with the symmetry, and the
ancillas that are added or removed must be in a symmet-
ric state.

We now remark on the earlier claim on the necessity of the
SPT nontriviality of the bulk to achieve self-correction. To
do so, we first note that the symmetric energy barrier is
invariant under symmetric local unitaries (that is, it is a phase
invariant). Indeed, consider two Hamiltonians H, and Hp
(defining quantum memories) in the same phase. Then in
particular, we have that H, + H 4 and Hp are related by a
symmetric local unitary U, where H 4 consists of a sum of
local projections on the ancillas A into a symmetric state.
Since H, and H, + H 4 differ only by a sum of non-
interacting terms on the ancilla, they have the same energy
barrier. Let X be a logical operator for H 4, and consider a

local decomposition {l§(k> lk=1,...,N} of X (recall lg;) =1

and lng) =X, and 1§(") and ZE?H) differ only by a local

operator). This decomposition is also a logical decomposi-

tion for H, + H 4. Then, {UIYU'|k =1,...,N} consti-
tutes a local decomposition for a logical operator of H 5 with
the same energy barrier. This works for all choices of logical
operators X, and the models have the same symmetric
energy barrier.

The invariance of the energy barrier requires us to
consider a SPT-nontrivial bulk to achieve self-correction
in the presence of 1-form symmetries. Indeed, if we instead

consider the SPT-trivial model H'% of Eq. (12) with the
undressed toric code terms of Eq. (25) on the boundary in
the presence of 1-form symmetries, we see that there is no
energy barrier in the following way. Consider the logical X
operator, which is given by a product of Pauli-X operators
supported on a dual cycle on JL (it is not dressed, unlike
the logical X of the RBH model H). Then, the symmetric
energy barrier for this error is a constant 2A,,, since the
process of creating two m particles and wrapping them
around a boundary cycle is symmetric and flips only two
B/ plaquettes at any given time. Therefore, the trivial model
is not self-correcting, even in the presence of 1-form
symmetries. In particular, this also gives a simple argument

for why H belongs to a distinct SPT phase to H (LOO). Indeed,
the SPT ordering in the bulk is crucial to achieving the bulk-
boundary anyon coupling of Lemma 2 that leads to a
confinement of anyons as in Lemma 3.

This bulk-boundary correspondence (at nonzero tem-
perature) holds for systems with on-site symmetries too;
we argue in Sec. IIC2 that self-correction was not
possible on the 2D boundary of a 3D SPT protected by
on-site symmetry. This coincides with the lack of bulk
SPT order at T > 0 when the protecting symmetry is on
site, as shown in Ref. [57].

IV. THE GAUGE COLOR CODE PROTECTED
BY 1-FORM SYMMETRY

We now turn to a model based on the gauge color code in
three dimensions as our second example of a symmetry-
protected self-correcting quantum memory. The gauge color
code [62] is an example of a topological subsystem code. In
this section, we study a commuting Hamiltonian model with
a 1-form symmetry based on the gauge color code. This
model provides another example of a self-correcting quan-
tum memory protected by a 1-form symmetry.

We first give a brief overview of the gauge color code
before defining the Hamiltonian model we are interested in.

A. Subsystem codes

In addition to logical degrees of freedom, subsystem
codes contain redundant “gauge” degrees of freedom in the
code space that are not used to encode information.
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Whereas stabilizer codes are specified by a stabilizer
group S that is an Abelian subgroup of the Pauli group,
a subsystem code is specified by a (not necessarily Abelian)
subgroup G of the Pauli group known as the gauge group.
A stabilizer group S for the subsystem code can be defined
by choosing any maximal subgroup of the center Z(G) of
the gauge group, such that —1 ¢ S. In other words, S «
Z(G) (in general, there are many choices for S obtained by
selecting different signs for generating elements). As usual,
the code space Cj is defined as the mutual 41 eigenspace
of all elements of S.

Information is encoded only into the subsystem of Cg
that is invariant under all gauge operators g € G. More
precisely, we have Cs = H; ® H,, where H; is the state
space of logical degrees of freedom (elements of G act
trivially on this space), and H,, is the state space of the
gauge degrees of freedom (elements of G can act non-
trivially on this space). There are two types of Pauli logical
operators: bare and dressed. Bare logical operators are
elements of C(G)—the centralizer of the gauge group
within the Pauli group, meaning they are Pauli operators
that commute with all gauge operators. Dressed logicals are
elements of C(S)—the centralizer of the stabilizer group
within the Pauli group (meaning they are Pauli operators
that commute with all stabilizer operators). Bare logicals
act exclusively on logical degrees of freedom and act
trivially on the gauge degrees of freedom, while dressed
logicals can act nontrivially on gauge degrees of freedom,
too. Both types of logicals are identified up to stabilizers (as
stabilizers act trivially on the code space).

B. The gauge color code lattice

Gauge color codes are defined on lattices known as
3-colexes [90]. In particular, a 3-colex is the result of gluing
together 3-cells (polyhedra) such that each vertex is
4-valent (meaning each vertex belongs to four edges)
and 4-colorable (meaning each polyhedral 3-cell can be
given one of four colors such that neighboring 3-cells are
differently colored). Let these four colors be labeled r, b, g,
and y (for red, blue, green, and yellow).

We note that, similar to the RBH model, the gauge color
code must have boundaries in order to possess a nontrivial
code space. For concreteness, we consider the tetrahedral
boundary conditions of Ref. [91], but one could also
consider more general boundary conditions. In the follow-
ing, we label the tetrahedral 3-colex by C;, which is a set of
vertices, edges, faces, and 3-cells. Tetrahedral 3-colexes C;
are given by cellulations of the 3-ball, whose boundary
consists of four facets, each of which must satisfy a certain
coloring requirement. To describe this requirement, we first
note that each nonboundary edge can be given a single
color label, where the color is determined by that of the two
3-cells that it connects. If an edge terminates on a boundary
(meaning, precisely one of its vertices belongs to the
boundary), then its color is determined by unique bulk

3-cell on its other end point. Then, the boundary coloring
requirement is as follows: For each boundary facet, only
edges of one color can terminate on the boundary, and this
color is unique for each facet. We therefore color each
boundary facet by the color of the edges that terminate
on it.

Similarly, each face f in C; can be labeled by pairs of
colors uv = vu inherited from the two neighboring 3-cells
that it belongs to. Namely, each nonboundary face is
colored by the complement of the two colors on the
3-cells the face is incident to (e.g., a face belonging to
an r and b 3-cell is colored gy). Faces on the boundary are
colored by the opposite of the color of the boundary and the
color of the unique 3-cell they belong to. As such, the
boundary of color k consists of plaquettes of all colors uv
such that u, v # k. We arbitrarily choose one of the
boundary facets, the b facet, and call this the outer colex
Cou» Which consists of the vertices, edges, and plaquettes
strictly contained on the boundary. This outer colex is
therefore a 2-colex (a trivalent and 3-colorable two-
dimensional lattice), and can be used to define a two-
dimensional color code. The remainder of the lattice
C3\Coy is called the inner colex.

On the outer colex, each plaquette has one of three
possible color pairs {gy,ry,rg}, which we relabel for
simplicity according to gy <> A, ry < B, rg < C as in
Fig. 14. Each edge of the outer colex neighbors two
plaquettes of distinct colors, and we color each edge the
third remaining color. Moreover, each of the three boun-
daries of the outer colex can be given a single color
according to what color edges can terminate on them, as
depicted in Fig. 14.

C. The 3D gauge color code

To each vertex of the lattice C; we place a qubit. The
gauge color code is specified by the gauge group G, which
is a subgroup of the Pauli group on n qubits (where 7 is the
number of vertices). The stabilizer group S is in the center
of the gauge group, consisting of elements of the gauge

(2) (b)

FIG. 14. (a) The tetrahedral 3-colex. (b) The b boundary of the
tetrahedral lattice consists of faces that are colored uv with u,
v # b, which are then relabeled according to gy <> A, ry <> B,
and rg < C.
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group that commute with every other element and where
the signs are chosen such that —1 ¢ S. For the gauge color
code, we have an X and Z gauge generator for each face of
the lattice,

G = {G},G%|f a face of C3}, (38)

where G} = [[,e; X, and G = [[,¢; Z, are Pauli oper-
ators supported on the face f. The stabilizers of the code are
given by X and Z on the 3-cells of the lattice

S = {85, 8% qga3-cell of C3}, (39)

where S§ = [],e, X, and S7 = [],, Z, are Pauli oper-
ators supported on 3-cells. Code states of the gauge color
code are the states that are in the +1 eigenspace of all
elements of the stabilizer group. With the aforementioned
boundary conditions, the code encodes one logical qubit,
and bare logical operators can be taken to be X = [, ¢, X,
and Z = [I.ec, Z,» where the products are over all vertices
of the lattice. Importantly, note that equivalent logical
operators (i.e., up to products of stabilizers) can be found
on the outer colex, namely, X ~[],c X, and Z~
[1.ec,, Z, are valid representatives. One can find dressed
versions of these logicals on the outer colex that are
stringlike—we discuss this in the following subsection.
Similar to the RBH model, we are therefore justified in
viewing the logical information as being encoded on the
boundary.

There are many different Hamiltonians whose ground
space contains a representation of the logical degrees of
freedom of the gauge color code (here, representation
means that one can find dressed logicals of the gauge
color code that are logical operators for the ground space of
a given model). One possible choice of Hamiltonian that
represents the gauge color code logical degrees of freedom
in its ground space is given by the sum of all local gauge
terms,

Hg=-Y Gf - G%, (40)
! !

which we refer to as the full gauge color code Hamiltonian.
This Hamiltonian is frustrated, meaning one cannot exactly
satisfy all of the constraints ij- and GJ% simultaneously,
making it difficult to study. There are many different
Hamiltonians whose ground spaces contain the code space
of the gauge color code, and in the next subsection we
introduce a solvable model consisting of mutually com-
muting terms.

D. A commuting model

Here we define an exactly solvable model for the gauge
color code. The Hamiltonian is given by a sum of gauge

terms that belong to 3-cells of a single color. Without loss
of generality, we fix this color to be b (blue), and take all
faces X, and Z, belonging to the blue 3-cells or blue
boundary facet. That is, all faces f that have color uv with
u, v # b. Label the set of these faces by

Oy = {G}.GFIK(f) € {gr.gy.1y}}.  (41)

where C(f) denotes the color of f. Note that Gy, consists of
commuting terms, as all terms are supported on either a
bulk 3-cell or the b boundary (which are both 3-colorable
and 3-valent sublattices). Or equivalently, if two faces share
a common color, then the terms commute. We can define an
exactly solvable Hamiltonian by

Hg =-> G. (42)

GeGy,

This Hamiltonian decomposes into a number of decoupled
2D color codes, one on the b boundary, and one for each
bulk 3-cell of color b. Additionally, every qubit is in the
support of at least one G € Gy,.

With the above choice of boundary conditions, the outer
colex (the b boundary) encodes one logical qubit, while the
bulk 2D color codes are nondegenerate (as they are each
supported on closed 2-cells). The ground space of the
model is the joint 41 eigenspace of all terms G € G, and
the ground-space degeneracy is twofold. This choice of
Hamiltonian explicitly represents the gauge color code
space on the outer colex. This situation is reminiscent of the
RBH model, where quantum information is encoded on the
boundary of the 3D bulk. We remark that the ground state
of Hg, can be thought of as a gauge-fixed version of the
gauge color code G.

Logical operators can be chosen to be stringlike oper-
ators supported entirely on the outer colex (the b boundary
facet). Recall that edges and plaquettes on the outer colex
have one of three possible colors, A, B, or C, as defined in
Fig. 14, and the boundaries are given a single color
according to what color edges can terminate on them, as
depicted in Fig. 15. The logical operators take the form of
strings that connect all three boundaries of the triangular
facet as in Fig. 15. Logical Pauli operators are supported on
at least d qubits, where d is the smallest side length of the
boundary facet and referred to as the distance of the code.

On the outer colex, an X- or Z-string operator with color
k € {A, B, C} will flip the two k-colored plaquettes on the
boundary of the string. In particular, a k-colored X string
will create m excitations on its boundary (corresponding
to the flipped G% plaquettes). Similarly, a k-colored Z
string will create ej excitations on its boundary (corre-
sponding to the flipped G]’f plaquettes). These strings are
depicted in Fig. 15. On a k-colored boundary, both ¢} and
my particles can condense, meaning they can be locally
created or destroyed at the boundary as in Fig. 15.
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(b)

FIG. 15. (a) A logical string consists of three colored strings
extending from their respective boundary and meeting at a point.
The support of the logical X or Z is indicated by the larger white
nodes. (b) e, excitations appear at the ends of an A-colored Z
string. Both e, and m, excitations can condense on the
A-colored boundary (and analogously for other boundaries).

As such, the action of logical X (Z) can then be
interpreted as creating three m-type (e-type) quasiparticles
of each color from the vacuum at a point, then moving each
colored excitation to its like-colored boundary where it is
destroyed.

1. Relation to the RBH model

To motivate how the model Hg, is constructed, we draw
a comparison to the RBH model of the previous section. In
particular, the RBH also has the structure of a subsystem
code that on a certain lattice is dual to the gauge color code.
For the RBH model, one can consider the gauge group G is
given by

QC:<KP,Xp\peEUF>, (43)

where K, are the cluster-state stabilizers of Eq. (11), and
X, are single-qubit Pauli-X operators. The corresponding
stabilizer group S is given by

Sc=(S,lpeQuV), (44)

where S, are the 1-form symmetry generators of the RBH
model given by Eq. (18). (The choice of gauge generators
X, stems from the application of the RBH model to fault-
tolerant measurement-based quantum computing, where X
measurements are used to propagate information.)

The commuting model describing the RBH model is
chosen by selecting a subset G’ of local, commuting
elements of G to define the Hamiltonian and imposing
symmetries given by the stabilizer Sp. This choice is
nonunique, as there are many other subsets G’ of G that
can be used to construct a commuting model. Additionally,
to avoid spontaneous symmetry breaking, we choose G
such that the stabilizer is a subgroup of the group generated
by G, that is, S < (G'). The same construction is also used
to generate the commuting gauge color code model, and it
can be used more generally for subsystem codes with a

stabilizer group that has the structure of a Z& I1-form
symmetry for some k. We note, however, that there are
many distinct ways of generating such Hamiltonians, and
not all of them will be self-correcting under the 1-form
symmetry.

E. 1-form symmetry and color flux conservation

The commuting model Hg, ~without any symmetry
constraints is easily shown to be disordered at any nonzero
temperature. (It is a collection of uncoupled 2D color
codes.) In this section, we identify a 1-form symmetry of
this model that, when enforced, leads to a diverging energy
barrier and therefore self-correction on the boundary code.

The Hamiltonian Hg, has a 73 1-form symmetry given
by the stabilizer group S of Eq. (39). Recall that S is
generated by the stabilizers S} and S% on the 3-cells g of
the lattice and consists of operators supported on closed
codimension-one (contractible) surfaces. The two copies of
Z, 1-form symmetry come from the independent X-type
and Z-type operators. The symmetry S gives strong
constraints (conservation laws) on the possible excitations
in the model: This constraint is the color flux conservation
of Bombin [62]. To discuss the color flux conservation that
arises from the Z3 1-form symmetry, let us assume that the
system H, is coupled to a thermal bath [as in Eq. (1)] such
that the whole system respects the symmetry S, and discuss
what type of excitations are possible in the model.

The model Hg, is a stabilizer Hamiltonian, and so
excitations are labeled in the standard way. Specifically,
excited states can be labeled by the set of “flipped terms”
Gex C Gy. Not all sets G, can be reached from the ground
space in the presence of the symmetry S. Since the ground
space of Hg, consists of the states in the +1 eigenspace of
all terms in Gy, it follows that the ground space is also the
+1 eigenspace of all operators in S, and since they are
conserved, only the excited states that satisfy color flux
conservation on each cell (as we describe) can be reached.

In particular, note that for any 3-cell g of color k # b,
there is precisely one way of obtaining the stabilizers S}
and Sg from terms in Gy,, while for a 3-cell of color b, there
are three ways of obtaining the stabilizers. More precisely,
for the X-type stabilizers, we have

si= 11 ¢&f. (45)

K(.f})czquv
where

{gy} if K(g) =,

if K(q) =g,
aye ¥ TR = e (46)
{rg} if K(q) =y,
{gy.ry,rg} if K(q) =b.
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The above expression holds similarly for the stabilizer SZ.
This can be seen as any plaquette that neighbors a 3-cell of
color k must be of color uv with u, v # Kk, for which there
is only one choice within G, for k # b, and three choices
when k = b. Note that the multiple ways of forming S
and Sg on blue 3-cells as per Eq. (46) leads to local product
constraints on these blue 3-cells (further constraining the
excitations); however, this is not important for the present
discussion.

To ensure that an excitation G, is valid, we must remain
in the 41 eigenspace of S. From Eq. (45), we see that every
3-cell ¢ must have an even number of flipped plaquettes
belonging to its boundary. Indeed, a single flipped pla-
quette ij of color uv would violate the two stabilizer

operators Sfj and Sf;, on the neighboring u- and v-colored 3-

cells g and ¢'. This constraint implies that symmetric
excitation configurations consist of collections of closed-
loop-like sets of flipped plaquettes.

This constraint can be more easily visualized on the dual
lattice, where 3-cells are replaced by vertices, faces by
edges, edges by faces, and vertices by 3-cells. On the dual
lattice, vertices carry a single color, edges are labeled by
pairs of colors, and excitations are therefore given by sets of
edges. We call the edges on the dual lattice that define an
excitation a flux string. The color flux conservation on
these closed flux strings is as follows.

To satisfy the constraints of Egs. (45) and (46), for each
vertex v of color k € {b,r, g,y} the number of edges in a
flux string incident to » must be even. Since the vertices of
color k € {r, g,y} support only terms in G;, on neighbor-
ing edges of a single color type (e.g., an r vertex supports
only terms on its neighboring gy-colored edges), then the
color of the excitation is conserved at each one of these
vertices. Similarly, on a b vertex, all pairs of colors are
separately conserved. This means if a uv-colored edge
excitation enters a vertex, there must be a uv-colored edge
excitation leaving the vertex. In summary, bulk excitations
must form closed loops, where the color is conserved at
every vertex, and this is illustrated in Fig. 16.

Flux loops may terminate on the outer colex. Recall that
for a boundary facet of color Kk, there are no faces of color
uk for any u. In particular, for k # b, there is a unique
color u such that there are terms Gf and G? of color uk in

Gy,- Flux loops of color uk can terminate on this k-colored
boundary facet. For the b-colored boundary facet (the outer
colex), all three color pairs of flux loops can terminate on
the outer colex. Flux loops terminating on the b facet can
be viewed as ending in an ey or my anyonic excitation on
the boundary for k € {A, B, C} as in Fig. 16 (recall the
colors are relabeled on the outer colex according to
gy < A, ry < B, rg <& C). Moreover, in the same
way, the only way anyons can exist on the outer colex
is at the ends of a flux loop on the bulk, as stand-alone
boundary anyonic excitations violate the symmetry. That is,

() (®)

FIG. 16. (a) An example of a flux loop, where the correspond-
ing colored strings on the dual lattice are depicted; the shaded
blue spheres represent b-colored 3-cells. [The constraint from
Eq. (45) requires an even number of flipped rg plaquettes on a y-
colored 3-cell]. (b) An rg-colored flux loop of flipped G% terms
(coming from a string of X operators) terminating with a pair of
ec anyons on the outer colex.

the 1-form symmetry couples the bulk and boundary
excitations, as is the case in the RBH model.

F. Energy barrier

We are now equipped to calculate the symmetric energy
barrier for Hg, in the presence of the symmetry S. Recall
that a logical error occurs when a triple of excitations a,,
ag, ac, where @ = e or m are created at a point, and each
anyon travels to its like-colored boundary. Put another way,
a logical error occurs if an anyonic excitation ¢y is created
at each boundary, and the three anyons move and fuse back
to the vacuum in the bulk of the outer colex. In any case, the
only way to achieve a logical Pauli error is to create a
number of anyonic excitations, which must move a
combined distance of at least d, the side length of the
outer colex. In the symmetric sector, anyonic excitations
can exist only on the boundary if they are accompanied by a
bulk flux loop, and so the above creation, movement, and
fusion process can occur only when accompanied by bulk
flux loops.

Since boundary excitations oy with a € {e,m} and k €
{A, B, C} appear on the end of flux loops (each of which
can terminate only on its like-colored boundary), to
calculate the energy barrier we need track only the smallest
length flux loops required to move the boundary anyons to
create a logical error. From any point » on the outer colex,
letI5 (v), Ig(v), Ic(v) be the shortest flux loops from a face
f on the outer colex containing v, to a face on the A, B, and
C facets, respectively (these flux loops are dual to a closed
path on the dual lattice). Let |l (v)|, |Ig(v)], |lc(v)| be the
lengths of these flux loops (i.e., the number of edges on the
dual path) and define

>

dy = min [[ly(v)] + [lg(0)] + [lc(0)[]  (47)

V&L out

to be the shortest combined distance from any point on the
outer colex to all three other facets. Note that d |, grows as
all side lengths of the tetrahedral 3-colex are increased.
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Then, during any anyon creation, movement, and anni-
hilation process resulting in a logical error, the bulk flux
loops which accompany the boundary anyons must have a
combined length of at least d, . This will incur an energy
penalty of Ay = 2d, since each flux loop consists of a path
of flipped terms G € Gy,. As such, the energy is propor-
tional to d, which scales linearly with the minimum side
length of the tetrahedral 3-colex. In particular, the model H’
with symmetry S has a macroscopic energy barrier, and the
boundary information is protected in the presence of a 3D
bulk and symmetry constraint.

We make two remarks. First, the energy barrier and
conservation laws in this section are presented in terms of
excitations rather than error operators (as opposed to the
operator approach for the RBH model). For the purposes of
calculating the energy barrier, these two pictures are
equivalent, since the sequence of local (symmetric) exci-
tations corresponds to a sequence of local (symmetric)
operators and vice versa. Second, we remark that a tristring
logical operator of the above form can be pushed onto a
single boundary of the outer colex, giving rise to a
stringlike representative. As such, a logical error can arise
from a pair of anyons of the same color being created and
moved along the boundary of the outer colex. Such a
process also has an energy lower bounded by Ay = 2d
since a k-colored string on the boundary of the outer colex
is never adjacent to a boundary where its k-flux loops can
terminate.

The argument from the symmetric energy barrier to self-
correction follows identically to that of the RBH model.
That is, provided the temperature is sufficiently low,
information can be stored for a time that grows exponen-
tially with the system size. (Note that the critical temper-
ature will depend on the specific choice of 3-colex.) As a
result, our stabilizer model based on the 3D gauge color
code protected by Z3 1-form symmetry provides another
example of a self-correcting quantum memory.

In the RBH model, the fact that the boundary is self-
correcting in the presence of 1-form symmetries could be
interpreted as directly resulting from the thermally stable
bulk SPT order. In this stabilizer model of the gauge color
code, the boundary stability and bulk SPT (at nonzero
temperature) are also related [92].

V. EMERGENT 1-FORM SYMMETRIES

As we show, SET models protected by a I-form
symmetry can be self-correcting. However, enforcing such
1-form symmetries is a very strong constraint, and these
symmetries are unusual in physics compared with the more
prevalent on-site (O-form) symmetries. Here we explore the
idea that 1-form symmetries may actually appear naturally
in 3D topological models and not require any sort of
external enforcement. We refer to such a symmetry as
emergent. It sounds too good to be true, but note that
emergent symmetries in 2D topological models are

ubiquitous (while perhaps poorly understood). In this
section, we review emergent (0-form) symmetries in 2D
topological models, as first highlighted by Kitaev [4]; here
we focus on the 2D color code. We then show that 3D
models may possess emergent 1-form symmetries associ-
ated with such emergent O-form symmetries on closed 2D
submanifolds of the 3D model. We revisit the 3D gauge
color code in light of these observations. Finally, we
demonstrate the stability of emergent 1-form symmetries
in topologically ordered models and discuss the implica-
tions for self-correction.

We note that this section contains arguments that are less
formalized compared with the previous sections, and in
many regards more speculative. As such, this section may
be viewed as an extended discussion on the potential role of
emergent 1-form symmetries in self-correction, rather than
the presentation of concrete results.

A. Emergent 0-form symmetries in 2D

Kitaev observed the emergence of symmetry in 2D
topological models such as the toric code and referred to
this as a “miracle” [4]. As we now know, emergent
symmetries are a generic property of 2D topologically
ordered models. We begin this section by reviewing an
instructive first example: the 2D color code. We demon-
strate the emergence of a Z3 0-form symmetry in this 2D
code and how this gives rise to the well-known anyonic
color conservation (see, for example, Ref. [52]). Although
we focus on how global product constraints are helpful to
expose global conservation laws, we emphasize that the
more important physical property is the local conservation
law (associated with a O-form symmetry) that arises in
relation to the modular Gauss law.

We first consider a 2D color code defined on the surface
of a sphere (one can equivalently consider any closed
surface for the discussion that follows). Recall that a 2D
color code is defined on a lattice known as a 2-colex,
which is a 3-colorable, 3-valent cellulation A of a two-
dimensional surface, which in this case is a sphere. We
place a qubit on each vertex of A, and define the familiar
X-type and Z-type face operators G}( =]l X, and G]Z, =
[1,e +Z, for each face f C A. In particular, since the lattice
is 3-colorable and 3-valent, these face operators G}( and G]Zf
all commute. These operators generate the 2D color code
stabilizer group Scc = (G, G%|f a face of A), and define
a corresponding Hamiltonian H,p.cc by

Hopcc=— Z (G} + G%). (48)
faces f

This 2D color code differs only from that defined on the
outer colex (considered in Sec. IV, Fig. 14) by a choice of
boundary conditions.
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Recall that a generating set for the anyonic excitations of
this model can be labeled by my and ey, where k € {A, B}
labels a color, e-type anyons correspond to flipped X-type
plaquettes, and m-type anyons correspond to flipped Z-
plaquettes. One can obtain C-colored anyons as the fusion
of an A- and B-colored anyon of the same type. This set of
anyons forms a group under fusion A,p_cc & ZEL’ with the
above choice of generators.

However, not all anyonic excitation configurations are
possible, as there are global constraints that need to be
satisfied in this model. In particular, since our model is
defined on a closed surface, we have the following
identities for each @ € {X,Z}:

[Iei=1I6:=]cs=]]e. (49)

feA vEA
K(f)=A

oA
SOR Kin=c
Letting Ny and N} be the number of e), and my anyonic
excitations, respectively, the above equation implies the
following relation

N{ =Ng = N¢ mod 2, (50)
and similarly for Nj. In particular, this relation means that
the number of ey, eg, and ec anyons is conserved mod 2
(and similarly for my, mg, and mc).

If we regard anyons of color C as being comprised of an
A-colored and a B-colored anyon, we can obtain further
constraints. Namely, for any two colors u, v € {A, B, C},
we have a product constraint

[Tc:I]cs=1 (51)
fCA fCA

Kifj=u K=

This relation implies a constraint on the parity of anyons
N{+Né=0 mod 2, (52)

which along with the fact that we are regarding Ng =
N§ + Ng, means that N{ = N§ = 0 mod 2 (and similarly
for m-type anyons). The product constraint of Eq. (51)
exists on the whole two-dimensional lattice (that is, a
codimension-zero surface) and gives rise to four indepen-
dent anyonic constraints: that the number of e, anyons
must be created or destroyed in pairs, and similarly for eg,
my, and mg. Thus, we refer to it as an emergent Z‘z‘ 0-form
symmetry.

The identities of Eq. (51) make this emergent symmetry
look like a global constraint; however, it is in fact a O-form
symmetry. That is, we can identify an action of this
symmetry on any submanifold, not just the whole lattice.
This structure to the symmetry is best seen by reformu-
lating it as a type of Gauss law for anyonic excitations,
detecting the total topological charge in a region through an
observable localized to the boundary of the region.

Specifically, consider submanifolds that are not closed.
Let M be a codimension-zero submanifold of the 2-colex
(that is, a subset of faces) with boundary. Then for
a € {X,Z}, it holds that

[Tc: 1163 = how- (53)
foMm fom

Kfu Koy

where hgy = [[,eom @ 1s supported on the boundary of
M. (Note that we assume the 2-colex is closed; however,
the above equation also holds when M is disjoint from the
boundary of the 2-colex.) Now instead of the global
constraint of Eq. (52), we get a constraint for every
submanifold M. Namely, the charge within the region
M is equal (mod 2) to the eigenvalue of the operator /i,
N§ + N¢ = (hyp) mod 2 (54)
for any excited state (provided, as is true with this model,
that anyons are well localized). Choosing v = C lets us
determine N4 and N§g independently, and similarly for N}'.
In other words, one can detect the topological charge within
the region M using operators on the boundary of the
region, giving rise to the well-known topological charge
conservation law for anyons in the color code. Thus, we see
that the conservation law applies locally as well (provided
the length scale is such that anyons remain well localized),
and it is not just a global constraint on the entire manifold.
Importantly, in the above considerations, emergent sym-
metries are revealed not by elements of a symmetry group,
but rather by product constraints amongst the Hamiltonian
terms. This behavior is a result of the stabilizer Hamiltonian
models that we consider as examples. We can now turn
to higher-dimensional examples, again of stabilizer
Hamiltonians, where this holds true for higher-form sym-
metries, i.e., where emergent ¢g-form symmetries are
associated with product constraints on closed codimen-
sion-¢g submanifolds of the lattice. Ultimately, however, we
expect the symmetry considerations rather than the product
constraints to be more fundamental, and we return to this
issue in Sec. V C.

B. Emergent 1-form symmetries in 3D

Here we demonstrate how emergent 1-form symmetries
can arise in a 3D model, in a sense by bootstrapping from
the 2D case.

1. Single-sector 3D gauge color code

For illustrative purposes, we first consider a single
charge sector of the 3D gauge color code Hg. This
single-sector model is not topologically ordered, and so
it does not possess emergent symmetries; nonetheless, it is
useful to illustrate the connection between 1-form sym-
metries in a 3D model and O-form symmetries in associated
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2D models existing across all codimension-one submani-
folds of the 3D model. The I1-form symmetries fix
excitations to be one-dimensional objects that conserve
color flux.

Recall that the gauge color code is defined on a 3-colex
C5 (a 4-colorable, 4-valent cellalation) with a qubit on each
vertex. For concreteness, we restrict our discussion to the X
sector of the gauge color code (the Z sector follows
similarly). That is, we consider the Hamiltonian

Hy = —Ef:Géff (55)

consisting of the sum of all face terms over a 3-colex. The
ground space of Hy is the mutual +1 eigenspace of all
terms G%, and the excitations are eigenstates of the
Hamiltonian in the —1 eigenspace of some terms (we
say these terms are GX = —1). We can label excited states
uniquely by specifying which terms are G¥ = —1, but
importantly not all configurations are allowed, as there are
algebraic constraints amongst terms.

Consider any closed codimension-one submanifold M
of the 3-colex that is also a 2-colex, with the color pairs
A, By, and Cy, selected from the six possible color
pairs of faces in C3. On this sub-2-colex, we have the
familiar constraints. Namely, for any two color pairs u,
Ve {AM,BM,CM}, we have

[Ici]]cr=1 (56)
fcoM

foM ()

K(f)y=u  K(H=v
mirroring the constraints of Eq. (51). In particular, this
relation holds in the smallest instance when M is the
boundary of a 3-cell.

The product relations of Eq. (56) lead to constraints on
excitations. Namely, for each codimension-one submani-
fold (that is a 2-colex), the number of faces f C g with
G’f( = —1 carrying a color k must sum to (0 mod 2), and

this holds for each (single) color k. This constraint in turn
requires excitations (which carry pairs of colors) to form
closed-loop-like objects that conserve color. The dual
lattice again provides the visualization, where excitations
correspond to sets of edges and edges carry a pair of colors.
At each vertex v of the dual lattice, let N} be the number of
loop excitations carrying the (single) color k that contain v.
Then, the constraints of Eq. (56) mean that

V k.o, (57)

which is precisely the color flux conservation discussed in
Sec. IV D. In particular, this implies that excitations must
form closed-loop-like objects.

Not all excitations are independent. A string excitation of
a color xz may branch into a pair of strings with colors xk

and kz for kK # x, z. This then means there are three
independent color pairs, such that all loop excitations can
be regarded as the fusion of these loops. The flux
conservation can be regarded as three independent con-
straints on looplike excitations.

Similar to the 0-form case, 1-form symmetries also imply
a constraint (conservation law) for the looplike excitations.
We can infer a generalization of the law for detecting
topological charge, which in this case applies to color flux,
by considering codimension-one submanifolds that are not
closed. In particular, let M’ be a codimension-one sub-
manifold with a boundary. Then it holds that

[T TI G5 = how (58)

fem! fem!
K(f)=u K(f)=v

where hg,y is an operator supported on the (one-
dimensional) boundary of M (again we are assuming that
M is supported away from any boundary of the 3-colex).
This means that the number (mod 2) of u-colored and
v-colored excitations that thread the region M’ is detected
by an operator A, on the boundary of that region. Again,
we can use the constraints to determine this number on each
independent color pair.

In summary, we see that this model supports three
independent types of excitations, each constrained to form
closed loops (with the possibility of branching and fusion).
This 3D example, then, gives the appearance of an
emergent Z3 1-form symmetry arising from a O-form
symmetry on codimension-one submanifolds (where the
rank of the 1-form symmetry group is due to the number of
independent excitations that are conserved). We note,
however, that by restricting to the X sector, we do not
have a topologically ordered model; the codimension-one
submanifolds do not have an emergent O-form symmetry
without both sectors, and so an emergent 1-form symmetry
does not appear in the 3D model. Both electric and
magnetic sectors are required simultaneously in order to
have the emergent symmetry associated with either [4].
Regardless, our purpose here is simply illustrative—we are
not fundamentally interested in this single-sector model,
but rather a topologically ordered 3D model with both
sectors such as the gauge color code. We turn to that
model now.

2. The gauge color code and color flux conservation

Does the topologically ordered 3D gauge color code
have an emergent 1-form symmetry associated with color
flux conservation? Each sector of the gauge color code on
its own, Hy and H,, has looplike, color-flux-conserving
excitations. Proliferation of such excitations is therefore
suppressed, as they are energetically confined. For the full
gauge color code Hamiltonian
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Hg= —zf:c;jf - Zf:GZ, (59)

it is tempting to conclude that a Z§ 1-form symmetry will
emerge and lead to confined errors and suppression of
logical faults. However, the terms of Hg are not mutually
commuting (and indeed frustrated), and therefore, we
cannot immediately label excited states by specifying terms
G}f , G; = +1. In other words, this frustrated model’s
excitations are not guaranteed to be well-defined extended
objects with well-defined color flux as appear in each sector
separately. If they were, then this would be strong evidence
that the model was self-correcting.

Unfortunately, there are few tools available to understand
the spectrum of a frustrated Hamiltonian such as Hg, and
without such information, it is a very difficult task to
analyze the thermal stability and memory time of the code.
In this sense, one can view the exactly solvable model Hg,
as the result of removing terms from the Hamiltonian until
it is commuting, in the process losing its emergent 1-form
symmetries and supplementing them with enforced 1-form
symmetries. Understanding the excitations in Hg remains
an important problem to determine if it is self-correcting.

3. Higher-dimensional generalizations
and emergent q-form symmetries

We briefly generalize the discussion to emergent
g-form symmetries in d-dimensional systems that arise
from (product) constraints residing on codimension-g
submanifolds. In particular, a commuting Hamiltonian H =
> xca by in d dimensions has an emergent Z, g-form
symmetry if for all closed codimension-¢g submanifolds M,
there exists an constraint

[Irx=1 (60)

XcM

If there are such multiple independent constraints on the
submanifolds, then there are multiple copies of emergent
Z, q-form symmetries. Importantly, we note that these
constraints all look like emergent Z, 0-form symmetries on
codimension-g submanifolds. The generalized conserva-
tion law states that the number (mod 2) of excitations
(which must be g-dimensional objects) threading the
codimension-g region M’ can be measured by the operator
H )y on the codimension-(g + 1) boundary of the region.
In particular, if H has a g-form emergent symmetry, let M’
be a codimension-g submanifold with a boundary, then it
holds that

14 = how- (61)
ieM’

where /g,y is an operator supported on a small neighbor-
hood of the boundary of M. [This relation holds
because we can choose a complementary codimension-g

submanifold M” such that OM’ = OM", then if M is the
result of gluing M and M’ along their boundary, we will
have the usual constraint of Eq. (60). Thus, [[;c¢ h; can
differ only from the identity by an operator supported on a
small neighborhood of OM’.]

Examples of models with emergent higher-form sym-
metries include toric codes in various dimensions. For
dimensions d > 2, there are d — 1 distinct ways of defining
a toric code. Namely, foreach k € {1, ...,d — 1}, we define
the (k,d — k) toric code that has k-dimensional logical X
operators and (d — k)-dimensional logical Z operators. One
can confirm that these models have emergent Z, (k — 1)-
form and Z, (d — k — 1)-form symmetries. The smallest
dimension that allows for a toric code with emergent Z3
I-form symmetries is d = 4 with the (2,2) toric code, which
is a self-correcting quantum memory.

C. Stability of emergent symmetries

Our discussion of emergent symmetries focuses on
Hamiltonians with commuting terms. This property allows
for the simple identification of product constraints. One can
ask if the resulting emergent symmetries are a property of a
finely tuned system alone or if they hold more generally. In
this section, we show that these symmetries are robust
features of phases of matter, and that they cannot be broken
by local perturbations, irrespective of any symmetry
considerations, provided they are sufficiently small. The
argument uses the idea of quasiadiabatic continuation
following Ref. [93].

Consider a family of local Hamiltonians H, labeled by a
continuous parameter s € [0, 1], such that Hy = H is the
original Hamiltonian, and H; remains gapped for all
s € [0,1]. This family of Hamiltonians can be used
describe the situation where a perturbation is added to
H. We label ground states of H by |y;) and ground states of
H, by |y). Note that the ground states can be unitarily
related by an adiabatic continuation. Then, following
Ref. [93], there exists a unitary U(s) corresponding to a
quasiadiabatic change of the Hamiltonian with the follow-
ing properties. For any operator O, one can find a dressed
operator O, = U(s)OU(s), such that O, has approxi-
mately the same expectation value in |y!) as O does in |y;)
(and similarly for low-energy states). Moreover, if O is
local, then O, is local too. [The support of the dressed
operators increases by a size determined by the choice of
quasiadiabatic continuation unitary U(s). The approximate
ground-state expectation values improve exponentially in
the range of increased support of dressed operators.]

Importantly, one can use quasiadiabatic continuation
to find dressed versions Ky (s) = U(s)hyU(s)" of the
Hamiltonian terms that have approximately the same low-
energy expectation values as those in the unperturbed
Hamiltonian. These Hamiltonian terms will also have the
same constraints. In particular, if H had an emergent g-form
symmetry arising from some product constraints amongst
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Hamiltonian terms, then the dressed Hamiltonian also has
the same local conservation laws. To see this, note that local
conservation laws can always be inferred at low energies, as
they involve only Hamiltonian terms in a small neighbor-
hood. We need not be concerned with the high-energy
sector, as by checking all local conservation laws, one can
establish that the model has an emergent g-form symmetry.
Note that the dressed terms will in general be supported in a
larger region, meaning one may need to rescale the lattice to
resolve excitations and faithfully capture the generalized
conservation law in the perturbed Hamiltonian. For exam-
ple, consider the color code in the presence of perturbations,
then one can renormalize the lattice such that individual
excitations are well defined. Then in the renormalized
lattice, these excitations still conserve anyon parity, and
they still obey a conservation law for topological charge.

We remark that we require the gap to remain open in the
presence of the perturbations. This can be guaranteed for
any local perturbation (provided it is sufficiently weak), if
H satisfies the conditions of TQO-1 and TQO-2 of
Ref. [86]. In particular, the example models we consider
in Secs. III and IV satisfy the conditions.

D. Duality between emergent and enforceable
symmetries

For emergent symmetries, we are faced with the puzzle
that we have a conservation law without any symmetry
operator. What is the origin of this symmetry? As pointed out
by Kitaev in the case of the 2D toric code [4], we can always
recover symmetry operators by introducing redundant
“unphysical” degrees of freedom viewed as gauge degrees
of freedom. Here we briefly consider how Kitaev’s approach
can be applied to higher-form symmetries. In particular, for
systems with emergent symmetries, we construct symmetry
operators on an enlarged Hilbert space. This construction
provides a duality between systems where the g-form
symmetry is emergent and systems where it is enforced.

We begin with the color code in 2D and then show how to
lift the construction to the 1-form case in 3D. We start by
introducing new ancillary degrees of freedom—one ancilla for
each term in the Hamiltonian. Label these ancillaby ay (f) and
az(f) corresponding to the terms G¥ and G7 and fixed them

in the +1 eigenspace of Pauli operators X and Z, respectively.
We can now regard the new Hilbert space as H ® A, and
states in H are embedded according to the isometry
W) > ) @ la), where [a) = (®uy(7) 1)) (®a(r) [0)).
We refer to the (original) degrees of freedom in H as matter
and those in A as gauge. Importantly, not all states |@) €
'H ® A are physical; only the subspace of states satisfying
Xowpl@) = |@) and Z,,)|@) = |p) are physical. At this
point, it is clear from the embedding that the physical state
space is the same as the original state space.

We now couple the matter and gauge degrees of freedom
with an entangling unitary. Consider the mapping of gauge
terms and matter Hamiltonian terms

Xax(f) = SX, G); = GX, (62)

Zay() > S%, GJZC — G%, (63)

where S = X, (;)G} and $7 = Z, (G7. Such a mapping
can be achieved with a unitary U as we show below. In this
new Hilbert space, which we label U(H ® A)U', the
physical state space is the subspace satisfying

S¥lp) = S%e) = lo). (64)

The symmetry operators S;f and S% are known as gauge
transformations, and states and operators that are related by
them are thought of as equivalent.

The entangling unitary U that will result in the above
mapping can be constructed out of two-qubit controlled-

NOT gates A; ;, which act by conjugation on Pauli operators
as follows:
X; = XX, Zi—Z;, (65)
X=X, Z— Z,Z, (66)

Then, for each face f, we define the following unitaries:

Uf = TAwr U7 =TTAvan  (67)
veEf vef

Note that Ujf has the following action:

A\ if f=1,
Ui XaynUp' = { Xf . (68)
: ay(f) Otherwise.

Moreover, U]’f, commutes with all Hamiltonian terms G}(
and GJ% V f [this statement needs to be verified only for
terms GJ? where f’ and f are neighbors, where it holds

because neighboring terms intersect an even number of
times, as is always the case for commuting Calderbank-
Shor-Steane (CSS) stabilizer Hamiltonians]. A similar
calculation gives the action of U%,

SZ i f=1,

. (69)
otherwise,

UZ/Za (f)l]Z/Jr - {
! - ! Zﬂz(f)
where again U% commutes with all Hamiltonian terms G¥
and Gf YV f. Then, the desired unitary U is given by
— X7z
U=1[,U;U7.
Since the Hamiltonian is unchanged by U, one can ask

what the excitations in the physical space of U(H ® A)U"
look like. Namely, for each flipped term G (G%), we must

also flip the ancilla ay(f) [az(f)]. Thus, one can equally
label excitations by the terms G¥ and G7 or the terms X, ()

and Z,, ), as the two sets are gauge equivalent.
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The emergent O-form symmetry manifests itself as
product constraints amongst Hamiltonian terms [following
Eq. (51)]. Specifically, it is equivalent to the following
constraints for any color u # v:

IT s II sf=11%u0 (70)
ax(f)

FIK(H=u  fIK()=v

and similarly for the Z terms. Here, we see that the operator
Hax(f) Xay () (which is gauge equivalent to a product of
color code terms G}( ) counts the number of excitations mod
2. As it is a product of symmetry operators, any physical
state must lie in its +1 eigenspace. That is, we find a
symmetry operator that determines the parity conservation
of anyons by introducing gauge degrees of freedom.

In the same way, we can perform an analogous procedure
for each sector in the 3D gauge color code. Again, we
associate the ancilla with each term in the Hamiltonian and
then apply the unitary U that entangles gauge and matter
degrees of freedom. Much like the 2D case, this mapping
leads to symmetry operators constructed on all codimension-
one submanifolds (out of products of S} and S7 on these

surfaces) and a requirement that the physical states must live
in their common +1 eigenspace (the enforced 1-form
symmetry). These symmetry operators mirror the 1-form
operators that we see Secs. III and IV. In fact, this
construction works for any CSS stabilizer code (in any
dimension), where the product over v € f in Eq. (67) is
replaced by the product over the qubits in the support of the
stabilizer term.

By introducing redundant degrees of freedom, we relate
a model with an emergent symmetry to one with an
enforced symmetry. The duality mapping known as gaug-
ing [53,94-98] formalizes this relationship. In the Abelian
case, gauging a model with an on-site (0-form) symmetry
can produce a model with an emergent 0-form symmetry.
For example, the 2D toric code contains O-form emergent
symmetries and can be obtained by gauging the trivial
paramagnet. Gauging also provides a potential direction for
identifying models with emergent 1-form symmetries.
We note that formalisms for gauging or ungauging more
general types of symmetries have been explored by Vijay
et al. [99], Williamson [100], as well as Kubica and
Yoshida [92]; these approaches provide potentially power-
ful tools to identify self-correcting quantum memories
protected by emergent 1-form symmetries.

We also remark on the parallels between this simple
duality mapping and error correction. In fact, the coupling
of gauge degrees of freedom is similar to many schemes of
syndrome extraction, where measurement of ancillas is used
to infer the eigenvalues of stabilizer terms. Measurement
errors can break this correspondence, however, and result in
a misidentification of errors. This is typically accommo-
dated by requiring many rounds of measurements. For
single-shot error correction (such as in the gauge color code

[63]), only a single round of measurements is needed, owing
to the extensive number of symmetry constraints present,
whose violation indicates a measurement error. In the case
of emergent O-form symmetries, the global constraint alone
cannot provide sufficient information to correct for meas-
urement errors. In a similar vein to self-correction in 3D, it
would be interesting find 2D topological codes (if they
exist) with emergent Z% I-form symmetries, as such codes
could in principle admit single-shot error correction.

VI. DISCUSSION

We show that spin-lattice models corresponding to 2D
SET-ordered boundaries of thermally stable 3D SPT-
ordered phases protected by a suitable 1-form symmetry
can be self-correcting quantum memories. The key features
of these 1-form symmetric models are that the bulk
excitations are stringlike and confined, and that the sym-
metry naturally couples bulk and boundary excitations to
confine the latter as well.

We present two explicit examples of 3D self-correcting
quantum memories protected by 1-form symmetries. The
understanding and classification of such 3D models remains
largely unexplored. A natural class of candidates is the
(modular) Walker-Wang models [37,101-104], which pos-
sess many of the desirable properties we seek. In particular, if
the input anyon theory to the Walker-Wang construction is
modular, then all bulk excitations are confined, while the 2D
boundary contains a copy of the input anyon theory. One can
consider building 1-form symmetries into these types of
models, as has been done by Williamson and Wang [105] for
a class of models based on the state sum topological
quantum field theories of Ref. [106]. (We note this is similar
to the way that Ref. [37] “decorates” a Walker-Wang model
with a O-form symmetry.) The two-group construction of
Ref. [72] presents another interesting family of models
that warrants further investigation. In the stabilizer case,
another possible approach to construct 3D models with
I-form symmetries is to “foliate” [107,108] a topological
stabilizer code with emergent O-form symmetries. As an
example, foliation of a d-dimensional topological CSS code
with emergent g-form symmetry generates a (d + 1)-dimen-
sional generalized RBH-type model with a (g + 1)-form
symmetry. A rigorous classification of all boundaries of such
I-form SPT phases—including the RBH model—remains
an interesting open problem.

In the examples we explore, we see the necessity of the
bulk SPT ordering in order to have a self-correcting
boundary and for the bulk SPT ordering of these models
to be thermally stable. A common viewpoint is that a self-
correcting quantum memory should be topologically
ordered at nonzero temperature. While this has not been
proven to be strictly necessary, it has been observed to be
true for many examples under Hastings’s definition for
topological order at T > 0 [82]. (For example, 2D commut-
ing projector Hamiltonian models and the 3D toric code all
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lack topological order at T > 0, corresponding to the
absence of self-correction.) Our examples provide further
support to this perspective.

We briefly consider what our results imply for self-
correction in the 3D gauge color code. As we show in
Sec. IV, the 3D gauge color code realized as commuting
Hamiltonians protected by an (enforced) 1-form symmetry is
self-correcting. If we consider the full Hamiltonian of
Eq. (40), the model is frustrated, and it is difficult to prove
that it possesses the stringlike excitations with well-defined
topological charge required for our arguments. We also argue
that the full model possesses an emergent 1-form symmetry:
The color flux conservation as previously identified by
Bombin [62]. This emergent symmetry gives strong support-
ing evidence that proving self-correction for the full
Hamiltonian of Eq. (40) (without enforcing any symmetry
requirement) may be possible. What remains is to understand
the spectrum of the model, and in particular, verify whether
the energy cost of a loop excitation grows with its length.

The idea that 1-form symmetries may be emergent in 3D
topological models is extremely intriguing, both from the
perspective of self-correction and more generally. We argue
that 1-form symmetries may emerge in 3D models that
possess emergent O-form symmetries on all codimension-
one submanifolds, which in turn can be guaranteed by
topological ordering of these submanifolds. We can ask
whether the 1-form symmetries of the RBH model or
commuting gauge color code model can be realized in an
emergent fashion in a 3D commuting, frustration-free
Hamiltonian. It is not clear if this is possible. The key
goal here is to identify models that possess well-defined
bulk excitations together with sufficient emergent 1-form
symmetries to guarantee confinement for all of such
excitations. This is in contrast to the 3D toric code, where
only one sector has an emergent 1-form symmetry, and
correspondingly, only one type of logical operator is
thermally stable (giving rise to a self-correcting classical
memory). Topological subsystem codes, such as the gauge
color code, are natural candidates. Along with obviating the
need to enforce symmetries, another advantage of emergent
symmetries is that the conservation laws are manifestly
true, without putting any restrictions on the system-bath
coupling.

A key open question is how to construct more general
families of models with emergent higher-form symmetries.
We discuss a simple duality between emergent and
enforceable symmetries, in which symmetries can be
introduced by adding gauge degrees of freedom in systems
with emergent symmetries. In the case of O-form sym-
metries, a simple well-known gauging map [53,94-98] can
be used to obtain a model with emergent Z, O-form
symmetry from a model with an enforced Z, O-form
symmetry. Investigating this more generally in the presence
of both enforced and emergent higher-form symmetries
may lead to interesting new models, and here we point the

interested reader to new results by Kubica and Yoshida on
generalized gauging and ungauging maps [92].

We do not consider the issue of efficient decoding for
these self-correcting quantum memories. We note that our
two examples, the RBH model and the gauge color code,
have efficient decoders with the additional feature of being
single shot [57,61,109]. In general, we note that the
stringlike nature of the excitations (errors) in these 1-form
symmetric self-correcting quantum memories ensure that
efficient decoders exist in general [110].

Finally, there are many avenues for further investigation
into the role of symmetry in self-correcting quantum
memories. In particular, one can consider the stability
and feasibility of self-correction in defect-based encodings,
for example, in twist defects [43,55] or the “Cheshire
charge” loops of Refs. [111,112]. Such defects have a rich
connection with SPT order, as well as with both enforced
and emergent symmetries. Namely, as shown in Ref. [52],
one can view topological phases with nontrivial domain
walls as having SPT ground states protected by O-form
symmetries, where the protecting symmetry comes from
the emergent O-form symmetries of the topological model.
It would be interesting to see if SPTs protected by higher-
form symmetries also arise in this way, that is, from domain
walls of topological models with emergent higher-form
symmetries, and whether these associated domain walls
(and symmetry defects that live on their boundaries) can be
thermally stable. For example, the SPT order (at temper-
ature 7 > 0) in the RBH model manifests as a thermally
stable domain wall in the 4D toric code [57]. Whether one
can construct similarly stable domain walls in 3D or less is
an open problem. Another direction is to consider more
general subsystem symmetries, where the dimension need
not be an integer. For example, fracton topological orders
(which can be partially self-correcting [12]) have been of
great interest recently [99,100,113].
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APPENDIX A: DAVIES FORMALISM

In this Appendix, we briefly review the Davies formal-
ism. Recall the system-bath coupling

Hgyy = Hsys + Hpa + /IZSa ® B, (Al)
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where S, ® B, describe the system-bath interaction for S,,
a local operator acting on the system side, B, is an operator
acting on the bath side, and « is an arbitrary index. It is
assumed that the coupling parameter is small, |1] < 1.
Suppose that the state is initialized in a ground state p(0) of
Hgy, then the state evolves under a Markovian master
equation

p1) = =ilHogs p(1)] + L(p(1), (A2)
where L is the Lindblad generator. Then, the initial ground
state p(0) evolves under this master equation according to

plt) = ¢£(p(0)).

Here, the Lindblad generator is given by

(A3)

£00) = Yh(a0)(AuupAl =3 (0 A} ). (A

In the above, A,, are the Fourier components of
Ay () = e’ e~ ! meaning they satisfy

E e_m}lAa,w — elH“Y"tAae_lH"Y“[. (AS)
@

One can think of A, ,, as the component of A,, that transfers
energy o from the system to the bath. Note that when
the Hamiltonian H is comprised of commuting terms, the
terms A, () and therefore also A, ,, are local operators. The
function A(a, @) can be thought of as determining the rate
of quantum jumps induced by A, that transfer energy w
from the system to the bath, and it is the only part that
depends on the bath temperature. It must satisfy the detailed
balance condition h(a, —w) = e #”h(a, @), which ensures
that the Gibbs state
pp = e Pon [ Tr(e M) (A6)
at inverse temperature /3 is a fixed point of the dynamics of
Eq. (A2). That is, ps = lim, p(t). Moreover, under
natural ergodicity conditions (see Refs. [114,115] for more
details), it is the unique fixed point.
In the case that we have a symmetry
[Hpn. S(9)] = 0, (A7)
then all of the errors that are introduced due to interactions
with the bath must be from processes that conserve S(g). In
particular, only excitations that can be created by sym-
metric thermal errors will be allowed. Indeed, in the case
that Eq. (A7) holds, we have that

e“1(S(9)'poS(9)) = S(g)T e  (po)S(g).  (A8)

which justifies the consideration of the symmetric energy
barrier in Eq. (9).

We note that the assumptions of this formalism are
satisfied for systems where the terms are comprised of
commuting Paulis, as in this case the system Hamiltonian
has a discrete spectrum with well-separated eigenvalues.
However, the formalism will not necessarily work beyond
this exact case, for instance, when perturbations are added
and small energy splittings are introduced between pre-
viously degenerate eigenvalues. The study of thermaliza-
tion times for many-body stabilizer Hamiltonians in the
presence of perturbations is an interesting problem.

APPENDIX B: THERMAL INSTABILITY
OF 0-FORM SPT-ORDERED MEMORIES

In this Appendix, we argue that on-site symmetries are
insufficient to promote a 2D topological quantum memory
to be self-correcting, even if such a phase lives on the
boundary of a 3D SPT model. We restrict our discussion to
the case where the boundary Hamiltonian is an Abelian-
twisted quantum double. The interesting case is where the
boundary symmetry action is anomalous. (However, we do
not allow this boundary symmetry action to permute the
anyon types.)

We argue that the boundary theory of a 3D SPT-ordered
bulk phase, if topologically ordered, will necessarily
possess deconfined anyons. That is, the boundary string
operators corresponding to error chains can be deformed
while still respecting the symmetry, even with anomaly. We
focus on (twisted) quantum doubles on the boundary of 3D
group cohomology SPTs, and rather than going into the
details of their construction, we focus on the key features.
In particular, local degrees of freedom (of both bulk and
boundary) for these models are labeled by group elements
as |g), g € G. The symmetry action of these 2D (boundary)
systems takes the form S(g) = R(g)N(g), where R(g) =
®; u(g), with u(g) = >, |gh) (h|, and N(g) is diagonal
in the |g) basis and can be represented as a constant-depth
quantum circuit. One can think of R(g) as the on-site action
and N(g) as an anomaly. This anomaly must be trivial in a
strictly 2D system, or equivalently, if the system is at the
boundary of a trivial SPT phase.

There are two types of excitation operators in the
(twisted) quantum doubles. One type of excitation string
operator for the boundary system is diagonal in the |g) basis
(i.e., it is the same as in the untwisted theory), so it
commutes with N(g). This excitation string operator
commutes with u(g) up to a phase (that is a kth root of
unity for some k € N), so to commute with R(g) we need to
consider excitation string operators of certain lengths. In
particular, the process of creating an anyonic excitation at
one boundary and dragging it to another boundary (or
creating an anyon pair and dragging one around a nontrivial
cycle before annihilating them again) can be done in a
symmetric way. Since such an operation results in a logical
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error and costs only a constant amount of energy, we see
that the boundary theory is unstable.

Thus, we see that the anomaly affords no extra stability,
and the model has the same stability as a topological model
with an extra on-site symmetry on top. That is, like genuine
2D topological models of this type, the model has a
constant symmetric energy barrier. Note that this argument
can break down in 4D, where the boundary is a 3D twisted
quantum double.

Therefore, we see that in the case of on-site (0-form)
symmetries, the SPT-ordered bulk offers no additional
stability to the boundary theory. Indeed, the symmetric
energy barrier for the Abelian-twisted quantum double
remains the same as the energy barrier without symmetry:
constant in the size of the system. This motivates us to
consider the boundaries of SPTs protected by 1-form (or
other higher-form) symmetries.

APPENDIX C: SHORT-RANGE INSENSITIVITY
OF THE BOUNDARY PROPERTIES

We show that boundaries of the 1-form symmetric RBH
phase in Secs. III C and I D are not sensitive to short-
range (UV) details of the lattice.

Consider a lattice with boundary neighborhood R and
Hamiltonian on this boundary Hy. We consider the case
where Hy is known; for example, it may be the toric code
boundary Hamiltonian of Sec. III C. Consider erasing a
region £ C R, in the sense of removing all Hamiltonian
terms with support intersecting £, along with potentially
adding or removing spins. We show that knowledge of the
Hamiltonian restricted to R\E, which we denote H R\E> 18
sufficient to determine the possible symmetric Hamiltonians
Hg on £ and that they must belong to the same phase of
matter as Hpg\¢. In other words, knowledge of Hy within
some region (with a potentially nice lattice geometry) is
sufficient to canonically choose the Hamiltonian in neigh-
boring regions which may not enjoy the nice lattice
geometry.

Our argument extends upon that of Sec. III C 2, where
we determine the boundary theory by analyzing the loop-
like boundary action of 1-form symmetry operators. All 2D
topological order can be understood in this way, in terms of
certain loop operators that preserve the ground space. In the
case of stabilizer models, this property can be formulated in
a precise way [116]. Indeed, for stabilizer models, the
topological order is entirely characterized by the local
commutation relations between loops that stabilize the
ground space.

Consider a pair of 1-form symmetry operators S;, S,
with some support on the boundary R. The action of these
1-form operators on the boundary degrees of freedom is
given by looplike operators /;, /. Loop operators /; and /,
must preserve the ground space of the Hamiltonian Hy on
the boundary in order for the boundary to be symmetric. We
consider the case where the induced loop operators /; and /,

intersect within two regions a and b with a C R\€ and
b C &. Since [S}, S»] = 0, we must also have [/}, ,] = 0.
From this, it follows [/, L],] =0 < [l 1],.l2|,] = 0 and
{lilg» bl.} =0 {li|p, 1], } =0, where the notation |,
and |, denotes the restrictions of the operators to a and b,
respectively. That is, knowledge of local commutation
relations of loops within a is sufficient to determine the
local commutation relations within b. As all 2D stabilizer
models are characterized by the local commutation rela-
tions of loops that stabilize their ground space [116], the
phase in R\ & is sufficient to determine the phase within the
erased region £.

Our discussion is simplified greatly by the fact that our
model is a topological stabilizer model, but similar argu-
ments can be made for more general 1-form symmetric
models in 3D. We remark that our argument bears some
resemblance to Hasting’s “healing the puncture” technique
in Ref. [117].

APPENDIX D: ENERGY BARRIER IS
SUFFICIENT

In this Appendix, we consider the timescale for logical
faults in the 1-form symmetric RBH model. We estimate
the probability that an excitation loop / of size w emerges
within the Gibbs ensemble at inverse temperature . We
show that large loop errors are quite rare if the temperature
is below a critical temperature 7., which we lower bound
by 2/ log(5).

Recall the symmetric excitations are given by applying
operators Z(E',F') = [[;ep Z [ loer Ze» Where E' is a
cycle (i.e., has no boundary) and F” is dual to a cycle on the
dual lattice. We refer to both such subsets £’ and F’ as
cycles I = E' U F', and the resulting excitation |y (7)) as an
excitation loop configuration. Moreover, we refer to each
connected component of / as a loop (intuitively, loops are
minimal in that no proper subset of a loop can be a cycle).
The energy E(y) of such an excitation configuration is
givenby 2|(E' U F') N L°| +2|0(E' U F') n OL[; i.e., itis
proportional to the length of the bulk cycle plus the number
of times a bulk cycle touches the boundary. Then, the Gibbs
state pj is given by the weighted mixture of all symmetric
excitations, where the weights are given by

1
Pﬁ(y) — z g_/jE(V)’

Z=3 Pyy). (DI

and y = (E',F') represents a valid (i.e., symmetric)
excitation.

Define d = min{dy, dx, d.,nq} from Definition 2. For a
logical error to have occurred during the system-bath
interaction, we must pass through an excited state [y(c))
such that ¢ contains a bulk loop with length w > d — r, for
some constant » independent of system size. (Here, a bulk
loop is one where at least half of its support is away from
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the boundary.) Let us bound the probability that configu-
rations containing such a loop occurs. Define B, to be the
set of cycles containing a bulk loop with size at least w.
Then,

D Pse) DD Pyle) (D2)
c€B, sl e
< e PN " Py(e) (D3)
s e
<D e, (D4)

loops [
[[[=w

where from the first to the second line we use that a
configuration ¢ containing a loop [/ differs in energy from
the configuration ¢\l by E(c) = e PPOE(c\I). Now the
last line can be rewritten to give

> " Py(c) < D N(k)e -,

ceB,, k>w

(Ds)

where we ignore contributions to E(I) due to the boundary
[these contributions will decrease only the right-hand side
of Eq. (D4)], and N (k) counts the number of loops of size
k. Since a loop [ resides on either the primal or dual
sublattice, each of which has the structure of a cubic lattice,
we can obtain a crude upper bound on N (k) by considering
a loop as a nonbacktracking walk, where at each step one
can move in five independent directions. This counting
gives the bound N(k) < p(d)5™ =k, where p(d) is a
polynomial in d, and is in particular proportional to the
number of qubits.
Then, provided T < 2/log(5), we have

D Pyle) < pld)y_Hox))

ceB,, k>w

(Do)

1
p(d) (1 = oz0)-2)

ek10g(5)-2p) (D7)

which is exponentially decaying in k [again provided
T <2/log(5)]. Since errors can be achieved only if we
pass through a configuration with a bulk loop of length
d — r, we have the contribution of configurations that can
cause a logical error bounded by

1
pOly(d) m e‘“d,

where a = 2 —log(5) > 0 is satisfied when the temper-
ature is small enough. One can show that the decay rate of
the logical operators is exponentially long, and therefore,
the fidelity of the logical information is exponentially long
in the system size (see Proposition 1 of Ref. [2]). One could

(D8)

perform a more detailed calculation to show that, with a
suitable decoder, error correction succeeds after an evolu-
tion time that grows exponentially in the system size (i.e.,
that logical faults are also not introduced during the
decoding).

We also note that a similar argument can be made for the
commuting gauge color code model of Sec. IV. A different
critical temperature is be observed that depends on the
choice of 3-colex.
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