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Seeing and recognizing an object whose size is much smaller than the illumination wavelength is a
challenging task for an observer placed in the far field, due to the diffraction limit. Recent advances in near-
and far-field microscopy have offered several ways to overcome this limitation; however, they often use
invasivemarkers and require intricate equipment with complicated image postprocessing. On the other hand,
a simplemarker-free solution for high-resolution imagingmay be found by exploiting resonant metamaterial
lenses that can convert the subwavelength image information contained in the near field of the object to
propagating field components that can reach the far field. Unfortunately, resonant metalenses are inevitably
sensitive to absorption losses, which has so far largely hindered their practical applications. Here, we solve
this vexing problem and show that this limitation can be turned into an advantage when metalenses are
combined with deep learning techniques. We demonstrate that combining deep learning with lossy
metalenses allows recognizing and imaging largely subwavelength features directly from the far field. Our
acoustic learning experiment shows that, despite being 30 times smaller than the wavelength of sound, the
fine details of images can be successfully reconstructed and recognized in the far field, which is crucially
favored by the presence of absorption.We envision applications in acoustic image analysis, feature detection,
object classification, or as a novel noninvasive acoustic sensing tool in biomedical applications.
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I. INTRODUCTION

The performance of microscopy applications is usually
hindered by a fundamental rule that is difficult to break—
the diffraction limit [1]. According to this principle, the
ultimate far-field resolution of direct-wave-imaging devices
is intrinsically constrained by the wavelength of operation.
In past decades, tremendous advances have been made in
both near-field [2,3] and far-field [4,5] microscopy to bend
this rule and allow for imaging with subwavelength
resolution, either by using near-field sensors or by intro-
ducing blinking markers and taking multiple far-field
images. Such techniques are often associated with sophis-
ticated and expensive optical setups, either relying on a
time-consuming near-field scan or taking multiple far-field
images of samples labeled with fluorescent molecules,
typically followed by extensive image postprocessing
[6,7]. In addition, many biomedical applications require
label-free solutions (without using any fluorescent tagging)

to perform remote, nondestructive, and noninvasive inves-
tigations of objects.
The origins of this limit stem from the fact that the

evanescent waves scattered from the subwavelength details
of an object cannot propagate to the far field, unlike the
larger image features, which inevitably limits the resolution
of conventional imaging techniques. Thus, to be able to
recover the subdiffraction details of the image, one needs to
recover the evanescent field components, for instance, by
working directly in the near field and exploiting negative
refraction [8–11]. Recently, exciting alternative approaches
have been proposed to convert the evanescent field com-
ponents into propagating waves by using metamaterials
[8,12–17]. For instance, hyperbolic dispersion can be used
to gradually convert evanescent components into a wave
that can propagate in the surrounding medium and reach
the far field [12,18,19]. Another interesting marker-free
approach to beat the diffraction limit combines a locally
resonant metamaterial lens (metalens) and time-reversal
techniques [14,20,21]. The use of superoscillations [22–26]
is an alternative route based on tailoring the interference of
several coherent sources to focus the probe field directly
into a subwavelength spot. However, these label-free
approaches face difficult challenges: While metalenses
are prone to losses due to their resonant nature, super-
oscillations are surrounded by large sidebands and typically
lead to low signal-to-noise ratios [27].
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More recently, advances in machine learning provided
scientists from different research fields with a unique tool to
solve complex problems—deep learning [28,29]. A deep
neural network (DNN) composed of multiple processing
layers with nonlinear modules is capable of discovering and
learning the intricate structure hidden in complex data by
self-adjusting the internal parameters of each of its layers.
By composing a sufficient number of such layers, DNNs
can learn very complex functions without human inter-
vention, allowing for many applications in different
domains of science, such as engineering, biology, medi-
cine, quantum physics, etc., [30–33]. Recent examples of
deep learning successes include medical image analysis
[34], speech recognition [35], image classification [31],
inverse imaging problems [36–38], and all kinds of com-
plex analytical problems [39,40]. Moreover, in search of
more efficient schemes of deep learning, several hybrid
schemes were proposed that integrate the physical layers
into DNN [41–44]. Inspired by such tremendous success,
several deep learning approaches for microscopy applica-
tions were proposed [38,45,46], where, however, DNNs are
mainly used to enhance the quality of images that are
obtained with traditional methods [38,46,47], exploiting,
for instance, generative adversarial networks [48,49].
In this work, we propose a combination of the modern

deep learning techniques and metamaterial approaches to
solve the limitations mentioned above of noninvasive
subwavelength imaging and open a new path for novel
applications in marker-free imaging technologies.
Remarkably, we show that, in stark contrast to conventional
methods, the presence of absorption losses in the metalens
is crucial to efficient learning. By putting a purposely lossy
locally resonant metalens in the proximity of subwave-
length input images and training the DNNs to reconstruct
and classify them directly, we can recover details as small
as λ=30 and reach a far-field experimental classification
accuracy of approximately 80%. This strategy, which is
here experimentally demonstrated with airborne audible
sound, may be translated into electromagnetic waves [50].

A. Concept of far-field subwavelength imaging

The scheme for far-field subwavelength acoustic imag-
ing studied in this work is illustrated in Fig. 1. We first
consider a subwavelength acoustic source shaped like the
digit “5.” In this reference case, the signals captured by a
microphone array placed in the far field do not contain any
information about the subwavelength details of the source
due to the diffraction limit (see the Appendix A). In other
words, regardless of the signal processing strategy used, it
is not possible to image the source. Less complicated tasks,
for instance, guessing digits drawn by the source with
reasonable probability (a standard classification problem),
are also not possible. Instead, in Fig. 1(b), to allow for the
information about the subwavelength details to reach the
far field, we insert a lossy locally resonant metalens [16,51]

(also of subwavelength size) composed of a cluster of
randomly placed subwavelength Helmholtz resonators,
whose resonant modes can couple to the evanescent waves
and radiate into the far field [14]. Then, the amplitude and
phase of the far field sampled by our microphone array are
fed into DNNs, which are trained on many handwritten
digits to be able to reconstruct and classify subwavelength
images [Fig. 1(c)]. In our work, two different types of
DNNs are used: a “U-net-type” convolutional neural net-
work (UCNN) [52] for the image reconstruction and
a multilayer parallel CNN (PCNN) for the image classi-
fication (see Appendix C1 for more details). For demon-
strative purposes, the input images are taken from the
MNIST database of handwritten digits (70 000 images
with (20 × 20)-pixel resolution) and downsampled to
8 × 8 pixels, as shown in Fig. 2(a). The spatial frequency
domain information reveals that the square source images,
with an overall dimension of D ≈ 0.1λ0, contain features
with spatial frequencies ξx;y up to 30=λ0, i.e., subwave-
length details of size down to λ0=30, where λ0 is the
wavelength in the surrounding medium at the operating
frequency f0. Our goal is to recover these high spatial
frequencies using deep learning. To demonstrate this
possibility in the most general way and underline the
key physical ingredients for an efficient learning process,
we start with a semianalytical 2D model of the problem
based on a coupled 2D dipoles method [53], which allows
us to generate the necessary data for training on subwa-
velength image recognition.

II. RESULTS

A. Semianalytical 2D data generation based
on the coupled-dipole method

In this model, the subwavelength images are drawn by
driven two-dimensional dipoles in an 8 × 8 square array of
total size D ≈ 0.1λ0 and pitch d ≈ 0.01λ0 [see Fig. 2(b)].
The response function of the dipoles is described by
Lorentzian polarizability with resonance frequency fr,
which are coupled to each other by the 2D Green’s function
(see the Appendix for details of the coupled-dipole model).
We enforce monopolar radiation of the array by choosing
the resonance frequency such that fr ≫ f0 and first
consider the case of the digit alone in the absence of a
metalens. To capture the spatial diversity of the source, we
probe the field in four points separated by a 40° angle,
placed either in the near- (0.25λ0) or far- (300λ0) field
region, and at four equidistant frequencies in the range
between 0.8f0 − 1.1f0, thus, generating a database with
70 000 samples of measured amplitudes and phases of the
field (we use 60 000 training samples and 10 000 test
samples). The results for image reconstruction and classi-
fication using the trained DNNs are summarized in
Fig. 2(b). In both near and far fields, the output images
[second column inset of Fig. 2(b)] hardly represent the
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digit 5, translating the fact that the UCNN struggles to
reconstruct the test samples. This fact is confirmed in the
spatial frequency domain, where UCNN reconstructs rel-
atively well the low spatial frequencies, while the high
spatial frequencies are incorrectly guessed as being much
smaller, explaining the blurred shapes of the digits.
Remarkably, unlike the case of image reconstruction, the
classification performance of the PNN is relatively high
[the last column of Fig. 2(b)], with 67.5% and 57.5% for
the near- and far-field regions, respectively. Such accuracy
is significantly higher than random guessing (10% accu-
racy). The relevant information about the nature of the digit
that allows for partial classification is already encoded in
the lowest spatial frequency components of the image, for
instance, in the location of its edges (consistent with the
robust classification of specific digits, for example, “0” and
“1” shown in Fig. S4 of the Supplemental Material [54]) or
of its center of gravity. Therefore, with some analogy to the
stimulated emission depletion technique [5], the DNN can
also be used to resolve two very close sources, which, in

principle, will be limited only by the accuracy of measuring
the phase wave fronts.
To further improve both the reconstruction quality and

the classification accuracy, we now add a metalens, in the
form of N randomly distributed undriven dipoles surround-
ing the source [see left inset of Fig. 2(c)]. Unlike the dipoles
used to draw the source digits, which are driven and
operated well below their resonance frequency fr, the
dipoles composing the metalens are undriven but resonant
at f0, allowing for strong multiple scattering in the lens (see
details in Appendix A). From Fig. 2(c), one can observe
that the source digit excites modes in the resonant metalens,
turning the monopole source digit into a multipolar source
with more open radiation channels. It should be noted here
that the number of eigenmodes in such metalens depends
mostly on the number of dipoles N and not on their spatial
distribution (see the Supplemental Material [54] for more
details). Therefore, each symbol encodes information about
its subwavelength features into the way it excites different
modes in the metalens, and this information is subsequently

FIG. 1. Deep neural network approach for far-field recognition of subwavelength images. (a) A subwavelength source radiates into an
infinite number of plane waves in all directions. The waves with high-amplitude wave-vector components that contain information about
the subwavelength features are concentrated in the near field of the object due to their exponential decay, therefore resulting in the loss of
subwavelength features in the far field. (b) A metamaterial lens inserted in the near field of the object can couple to the evanescent field
components and reradiate the waves with the information encoded into the far-field patterns. (c) The UCNN learns the correlation
between the far-field amplitude and phase patterns and the subwavelength images. This DNN is composed of several blocks containing a
convolutional encoding front end and deconvolutional decoding back end with skip connections (see the Appendix for additional
details) and followed by a PCNN that classifies reconstructed images into ten categories of handwritten digits (0–9).
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FIG. 2. Demonstration of subwavelength handwritten digits reconstruction and classification based on a semianalytical model of 2D
coupled dipoles. (a) The initial (20 × 20)-pixel image of a handwritten digit taken from the MNIST database (left inset) and
downsampled to (8 × 8)-pixel image (second column) with corresponding distribution in spatial frequency ξ space (third column). The
PCNN classifier trained on the downsampled database reaches an accuracy of 97.5% (the corresponding confusion matrix shown in the
right inset). (b) The subwavelength image is modeled by an array of dipoles placed at distances d ≪ λ and with resonance frequency
fr ≫ f0 to inhibit multiple scattering resonance. Reconstructed image (second column) and its corresponding reciprocal space domain
(third column), which show the failure of UCNN to recover the higher spatial frequencies. Thus, the accuracy of the PCNN classifier
trained on these reconstructed images reaches approximately 67.5% in the near field (top row inset) and 57.5% in the far field R ≫ λ
(bottom row inset). (c) Introducing a metamaterial lens that consists of N dipoles with resonance frequency fr ≈ f0 results in the
creation of different multipoles that can radiate, therefore, transferring the near-field information to the far field. The trained UCNN
manages to reconstruct better the subdiffraction details of the images, and as a result, PCNN performs with a higher accuracy of
approximately 74% for the metalens composed by N ¼ 29 lossless resonators (top row inset). The reconstruction and classification
accuracy can be further improved by increasing number of dipoles (N ¼ 302) and adding losses, with the overall accuracy of
approximately 84% (bottom row inset).
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radiated into the far field. We, therefore, expect that the
reconstruction quality and classification accuracy will
increase with the number of modes that can be excited
in the metalens at a given frequency. This fact means that,
surprisingly, the introduction of losses can improve the
learning efficiency by broadening the width of the metalens
resonances, increasing the number of modes that can be
accessed at a given frequency (effective mode density, see
Fig. S3 in the Supplemental Material [54]). Such unusual
dependence is in stark contrast to conventional imaging
methods based on metalenses, which are typically hindered
by losses.
To validate this intuition, we start by using a lossless

metalens with a relatively low mode density, with onlyN ¼
29 dipoles. We see in the top row of Fig. 2(c) that, while the
classification accuracy of the PCNN increases from 57.5%
to 74%, the image reconstruction of the digits is still of low
quality (see Fig. S4 in the Supplemental Material [54] for
digits other than 5). The incapability of the UCNN to
accurately recover the high spatial frequency components
of the subwavelength images is due to the insufficient
density of states supported by the metalens, resulting in its
inability to encode enough information about the subwa-
velength details of the image. This density of states can be
improved either by increasing the number of resonators that
form the metalens or by introducing absorption losses to the
resonators (see the Supplemental Material [54] for quanti-
tative calculations of the density of states for a different
number of resonators and amount of added losses). In
Fig. 2(c) (bottom row), we report the results obtained with
N ¼ 302 lossy resonators (with a collision frequency
Γ ≈ 0.27ω0). We see that not only the overall classification
accuracy raises to 84%, but also that the reconstruction
of the subwavelength images is now very accurate.
Remarkably, while in most metalens imaging scenarios,
the presence of losses inevitably degrades the imaging
performance of these resonant systems, here the effect is the
opposite since the neural network can learn from the larger
amount of information hidden in an increased number of
lossy modes. This traditional degradation of the imaging
performance is mostly attributed to the fact that the high-
frequency modes (with higher transverse wave-vector
components) have longer lifetimes (or higher quality
factors) and are more influenced by dissipation losses.
Therefore, prior techniques for subwavelength imaging
(for instance, a time-reversal technique [21]) require having
discrete resonances to decode the high spatial frequency
details. Unfortunately, such high resolution of modes
becomes impossible with increased intrinsic losses. In
contrast, in our approach, by adding losses, we increase
the transferring of the subwavelength information carried
by the modes with high spatial frequency details to other
modes without losing such information. However, as
anticipated, excessive absorption losses in a dense resonant
metalens (with a high number of resonators) will result in a

quick decay of modes with longer lifetimes and, therefore,
will provoke a loss of the subwavelength details; see
Appendix B. Such a difference may constitute a key
advantage for learning methods using metalenses in the
development of future acoustic or photonic applications, as
losses are an integral part of any realistic wave device. The
next section provides an experimental demonstration of
these findings using airborne audible sound.

B. Experimental deep learning for subwavelength
image recognition

For the experimental demonstration of subwavelength
acoustic imaging, we use an experimental setup shown in
Figs. 3(a) and 3(b) (see the Supplemental Material for a
picture of the setup with the metalens). In the experiment,
the acoustic images are drawn on an 8 × 8 lattice of
speakers [total size 718.24 cm2; see left inset of Fig. 3(a)],
each of them connected to the output’s channels of a
Speedgoat® real-time target machine (four IO131 mod-
ules), which allow independent control over the voltages
applied to each of the speakers (for more details, see
Appendix C 3). The metamaterial lens used for enhanced
image reconstruction consists of 39 subwavelength
Helmholtz resonators [plastic spheres with a diameter of
Db ¼ 100 mm ≈ λ0=13, and a neck of length 10 mm and
diameter 21.5 mm, as shown in the inset of Fig. 3(c)],
which are randomly placed in a mesh bag, with a period
roughly equal to their diameter. To define the operating
frequency range, we extract scattering parameters (S11, S21)
of a single Helmholtz resonator placed in a tube (see
Appendix C for more details). The extracted scattering
parameters are plotted in Fig. 3(c), from where the
resonance frequency can be inferred (fr ≈ 268 Hz). The
learning data are generated by drawing the source digit on
the loudspeaker array and measuring the complex acoustic
pressure at four locations and four arbitrarily chosen
frequencies between fmin ¼ 220 Hz and fmax ¼ 260 Hz
(λmax ¼ 1559 mm and λmin ¼ 1319 mm, respectively).
Therefore, the overall size of the acoustic source is around
0.2λ at the largest frequency, and the digits contain features
down to 30 times below the diffraction limit. Our exper-
imental results for the subwavelength imaging in the
presence and absence of the metalens are summarized in
Fig. 4. First, we test the possibility of image reconstruction
in the near field (approximately 0.1λmax) without the
metalens, which, as expected in this 3D scenario, provides
a proper restoration of subdiffraction details of subwave-
length images, as shown in Fig. 4(a). The trained UCNN
reconstructs most of the test digits with excellent visual
fidelity, although somehow blurring small details (due to a
partial loss of spatial frequencies ξx;y > 15=λ; see Fig. S5 in
the Supplemental Material [54]), resulting in good classi-
fication accuracy (86.5%). In the far-field region and the
absence of the metalens, the UCNN is no longer capable of
resolving the details <90 mm, resulting in the reliable
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reconstruction of only a few digits, such as 0 and 1 [see
Fig. 4(b) and the Supplemental Material Fig. S5 [54]).
Conversely, in the presence of the metalens [Fig. 4(c)], the
UCNN recovers the subwavelength images with an excel-
lent visual correspondence (with correlation coefficients
>0.7). The digit classifier PCNN can successfully train on
the restored images and demonstrates a good classification
accuracy of 79.4%, confirming the ability of the DNN
approach to recover the small subwavelength details in the
far field.

C. Transfer learning for subwavelength imaging

In the previous section, we demonstrated that our DNNs
can restore the initial subwavelength image from the
recorded amplitude-phase distributions in the far field.
Here, we go one step further and demonstrate its ability
to relearn quickly on a new database, which can be much
smaller than the original one. Such flexibility in the
learning process is also known as transfer learning: We
create a new database consisting of 600 training and 200
test samples (approximately 1% of the initial MNIST

database) of four letters “E,” “F,” “L,” and “P” and retrain
our UCNN (previously trained on the MNIST database) on
this new, significantly smaller dataset. Then, we ask the
neural network to classify and reconstruct unknown letters
drawn in a test dataset. The experimentally reconstructed
letters are shown in Fig. 5 (see Fig. S7 [54] for more
examples). The excellent visual fidelity (with correlation
coefficients ≥0.94 between the input and reconstructed
letters) demonstrates the high adaptability of the DNN
approach, which becomes more efficient at learning new
data types without being limited by the diversity of the
input databases.

III. DISCUSSION

We experimentally demonstrate that a combination of a
resonant metalens and DNNs enables the reconstruction
and recognition of subwavelength acoustic images from
the far field with an accuracy of approximately 80%,
which is allowed by the presence of substantial absorption
losses in the metalens. This marker-free method allows for
beating the diffraction limit and reconstructs source images

FIG. 3. Experimental testing of subwavelength acoustic imaging from far field. (a) Scheme of the experimental setup for the
subwavelength image reconstruction and recognition. The acoustic image is drawn on a source (left inset), which is composed of
speakers placed in a lattice with a period of d ¼ 33.3 mm (approximately λ0=41) with the overall side length of L ¼ 268 mm
(approximately λ0=5), where λ0 is the minimum measured wavelength. The amplitude of the excitation of each speaker is controlled by a
Speedgoat real-time target machine, which also records the signals coming from four microphones placed in the far field. (b) Photo of
the experimental setup in the anechoic chamber. (c) The scattering (S) parameters of a Helmholtz resonator (a plastic ball with a
bottleneck as shown in the inset photo) that comprises the locally resonant metalens and has the resonance frequency fr ≈ 268 Hz.
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FIG. 4. Experimentally reconstructed acoustic images and their classification. Performance of the DNNs for the experimental
reconstruction and classification of the handwritten input digits. (a) The reconstructed (left inset) images from the measured amplitude-
phase arrays of pressure and corresponding confusion matrices for the classification problem (right inset) in the (a) near field, (b) far field
without any metalens, and (c) far field with the metalens placed close to the source. The correlation coefficient between each
reconstructed image and its corresponding target image is shown at the bottom of the image.

FIG. 5. Subwavelength image reconstruction using the transfer-learning technique. UCNN initially trained on the 0–9 digits is
retrained on a small set (600 training and 200 test samples) of letters (“E,” “P,” “F,” and “L”) and then used to reconstruct the letters that
it did not see before. (a) Initial test letters drawn on an (8×8)-speaker lattice. (b) Reconstructed letters using retrained UCNN, which are
practically identical to the target letters, demonstrating the great versatility of the DNN approach to recognize any image using the
transfer-learning technique. The correlation coefficient between each reconstructed image and its corresponding target image is shown at
the bottom of the image.
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containing details smaller than λ=30, which are crucial for
accurate classification of these images, whose total size is
0.2λ. Moreover, once the DNNs are trained, they signifi-
cantly accelerate the subwavelength imaging process,
allowing image reconstruction and recognition at high
frame rates. We believe that even smaller acoustic objects
can be successfully recognized by working with acoustic
resonators with lower resonance frequencies, such as ones
based on membranes, which can form the basis of a new
form of acoustic metasurface dedicated to learning systems
capable of noninvasive, marker-free subwavelength imag-
ing. A potentially interesting future direction may be to
explore whether a similar approach can be used to detect
the presence, position, or shapes of small particles in
multiple-scattering media, with potential impact in bioen-
gineering applications. The insensitivity of the learning
scheme to geometrical disorder and the nondetrimental role
of absorption represents clear advantages of the method,
suggesting its possible transposition to optics. Photonic
subwavelength imaging may be implemented using simple
CCD sensors and readily available subwavelength photonic
resonators, with Lorentzian dispersion, including plas-
monic particles, quantum dots, dielectric Mie resonators,
or diamond vacancies.
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APPENDIX A: ROLE OF SPATIAL
ARRANGEMENT AND RESONANCE

FREQUENCY OF SCATTERERS

To overcome the diffraction limit without introducing
markers and employing several measurements (like in
stimulated-emission-depletion microscopy), one needs to
recover the waves that carry the subwavelength (with high
spatial frequencies) details of the object. Since such waves
have high transverse wave-vector components and their
phase velocities exceed the phase velocity of sound in free
space, they are bound to the object or being of evanescent
nature. Therefore, to recover such evanescent waves, they
need to be converted to propagating waves. Such con-
version can be performed by coupling these waves to the
modes of the resonant metamaterial that have similar high
transverse wave-vector k⊥ components, as illustrated in
Fig. 6 (blue dashed line represents the dispersion relation of
such resonant metamaterial). In such resonant metamaterial
composed of tightly packed multiple resonators with
distances ad ≪ λ0 and a resonance frequency ω0, the
multiple scattering provides the existence of the modes
(at frequencies ω < ω0) with high transverse wave-vector
components that, in turn, can leak into free space and be
captured in the far field. From Fig. 6, it can also be seen that
it is possible to retrieve some of these high transverse wave

vectors without any conversion but at a higher operating
frequency ωf ¼ 10ω0, i.e., outside of the subwavelength
regime (shown as a semitransparent blue region).
Thus, to reconstruct a subwavelength source (with

overall dimensions 0.1λ0 × 0.1λ0), we surround it with a
resonant metalens composed of periodic (ad ¼ 0.005λ0)
scattering particles resonating at the frequency ω0, as
shown in the left inset of Fig. 7(a). The number of modes
in such resonant medium depends on the number of
resonators and not their spatial distribution, as we dem-
onstrate in the next part. Therefore, for a more striking
illustrative purpose, we use a high number of resonators
(300) to construct the metalens. As expected, the neural
network can reconstruct the images with high fidelity by
learning on complex field amplitudes in the far field (with a
classification accuracy of 83.6%). For more explicit illus-
tration, a few examples of input and reconstructed images
are shown in the first and second rows of Fig. 7(a).
Next, to demonstrate that the high-k⊥ modes are due to

the multiple scattering and do not depend on the spatial
distribution of the resonators but the strong coupling
between them, we introduce some random disorder to
the lattice in the range δr ¼ ½0; ad� [Fig. 7(b)] and δr ¼
½0; 2ad� [Fig. 7(c)]. As can be seen, the neural network can
reconstruct images with similar accuracy (classification
accuracies of 84.6% and 84%). However, increasing the
resonance frequency of resonators (for instance, ω1 ¼ 3ω0)
will modify the dispersion relation and result in a weaker
coupling between them at ω < ω0, which is shown in Fig. 6
(red dashed curve). Thus, the subwavelength details can no
longer be recovered, resulting in a low classification
accuracy, which is close to the case of bare digits, as

FIG. 6. Subwavelength imaging principles. Dispersion rela-
tions of locally resonant media composed of densely packed
subwavelength resonators with different resonance frequencies
ω0 (blue dashed line) and ω1 ¼ 3ω0 (red dashed line). Both lines
lie below the sound cone (semitransparent green region). Only
the first resonant medium possesses modes with high transverse
wave-vector components k⊥ up to kf below ω0, i.e., in the
subwavelength regime.
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shown in Fig. 7(d). This fact demonstrates the importance
of multiple scattering phenomena, which are crucial for the
conversion of the evanescent waves.

APPENDIX B: INFLUENCE
OF ABSORPTION LOSSES

To further demonstrate the importance of the absorption
losses for the reconstruction of subwavelength images,
we perform additional simulations for the metalens with
300 dipoles and different values of absorption losses (by
controlling the damping factor of resonators) as shown in
Figs. 8(a) and 8(b). In the presence of radiation losses
only (Ω ¼ 0 and the collision frequency Γ ¼ 0.25ω0), the
classification accuracy does not surpass 80%. Next, we
increase the accuracy by adding the absorption losses and
therefore widening the average resonance linewidth Γn. It
should be noted here that the high-frequency modes (that
also have higher k⊥) have longer lifetimes or higher quality

factors and therefore are more influenced by the dissipation
losses. In other approaches, for instance, the time-reversal
technique for subwavelength imaging [21], decoding
of the subwavelength information requires resolving
the maximum of modes (having discrete resonances),
which becomes impossible with increased intrinsic losses.
However, in our approach, by adding losses we first
increase transferring of the subwavelength information
carried by the modes with high k⊥ to the lower modes,
without losing such information. However, as anticipated,
excessive absorption losses will result in a too-quick decay
of the modes with high k⊥ and therefore will provoke a loss
of the subwavelength details; see Figs. 8(a) and 8(b). Our
study shows that the optimal absorption level corresponds
to resonators in which the decay rate is around 30% of their
resonance frequency. In our experiment, the Q factor of the
Helmholtz resonators is around 7, consistent with operation
with optimal absorption level.

APPENDIX C: METHODS

1. Deep neural network architectures

The deep neural networks used in this work are based on
the CNNs, commonly applied in many visual recognition

FIG. 7. Subwavelength image reconstruction using resonant
metalenses. (a) A lattice of 300 resonators with a period ad ¼
0.005λ0 and a resonance frequency ω0 (left inset). The examples
of input (top row) and reconstructed (second row) images using
UCNN. A lattice with random displacements of resonators in the
range (b) δr ¼ ½0; ad� and (c) δr ¼ ½0; 2ad� and the corresponding
reconstructed images. (d) A lattice of 300 resonators with a period
ad ¼ 0.005λ0 and a resonance frequency 3ω0 (left inset) and
corresponding reconstructed images.

FIG. 8. Influence of absorption losses on image reconstruction
using UCNN and coupled-dipole method. Examples of subwa-
velength digits reconstructed from arrays of complex field values
obtained for different collision frequencies.
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tasks, including image reconstruction and classification
problems. In such NNs, the convolutional layers (filters)
extract the different features of the input images, allowing
the NN to learn these filters without human intervention.
The detailed schemes are shown in the Supplemental
Material Fig. S1 [54]. In the UCNN, the convolutional
encoding part consists of downsampling small filter kernels
that allow us to capture the image features. It is followed by
a deconvolutional decoding part, where these features are
upsampled. The skip connections between the contracting
and the expanding paths improve the feature extraction.
The U-shaped network is followed by a convolution layer
that learns to assemble an output based on the provided
information. For the classification problem, we employ a
parallel CNN structure that consists of four parallel CNN
layers, each with a different number of output channels.
Such configuration allows a better feature extraction while
reducing overfitting. To minimize a mean-square error
cost function, an Adam optimizer with a learning rate of
1 × 10−3 is used in both DNNs. The DNNs are imple-
mented using the TensorFlow-based KERAS PYTHON library for
deep learning and neural networks toolbox of Wolfram
Mathematica. The constructed DNNs are trained and
deployed on a single NVIDIA GeForce RTX 2060 graphic
processing unit.

2. Coupled-dipole method

To demonstrate the principle of far-field subwavelength
imaging, first, we perform a numerical analysis using a
semianalytical model based on two-dimensional coupled
dipoles [58,59]. Such a 2D model contains all the essential
physical ingredients to simulate wave propagation and
scattering in locally resonant media. In the model, each
dipole pi is modeled by its polarizability αi, which follows
a Lorentzian model consistent with the optical theorem,
namely, α−1 ¼ ω2

r − ω2 þ jððk2=4εÞ þ ΩÞ (the energy
conservation demands that Im α−1 > ðk2=4εÞ), where k
is the wave vector, ε is the medium’s relative permittivity, ω
is the operating frequency, ωr is the dipole’s resonance
frequency, and Ω ≥ 0 is a part that controls absorption
losses. Dipoles located at different positions i and j are
coupled to each other through the 2D free-space Green’s

functions Gijðri!; rj
!Þ ¼ −jðk2=4εÞHð2Þ

0 ðkjrj!− ri
!jÞ and

can be locally excited using an external source field ES
i :

α−1i pi −
X

i≠j
Gijpj ¼ ES

i :

In order to simulate an image source, each pixel of the
image is modeled as a dipole, which is excited with an
external source field ES

i ≠ 0with an amplitude proportional
to the intensity of such pixel.
Furthermore, we eliminate the correlation between

the digit shape and the total amplitude of the field by

normalizing the sum of amplitudes of each dipole to the
number of active pixels. The resulting linear system is
solved at each frequency using the lower–upper decom-
position with partial pivoting and row interchanging. The
distributions of the field at each frequency are obtained by
summing the contributions of dipoles. For the image
reconstruction and recognition, the fields are calculated
at four separate points placed either in the near or far field,
depending on the considered scenario. The absorption
losses in the dipoles that form the metalens are simulated
by adding a nonzero inelastic part Ω > 0 to the imaginary
part of the inverse polarizability.

3. Experimental setup

We assemble an 8 × 8 lattice of speakers [inset in
Fig. 3(a)], each having a resonant frequency ωr≈290Hz.
The overall lateral dimensions are 268 × 268 mm (approx-
imately 1=5 of the minimum wavelength). In this lattice,
each speaker represents one pixel of the subwavelength
image, and the voltages applied to speakers fix the pixels’
intensities. The speakers are connected directly to the
output channels of a Speedgoat Performance real-time
target machine with IO131 interface, which is controlled
by the xPC target environment of MATLAB SIMULINK and
allows us to control the amplitudes and phases of the
applied voltages. To excite our setup, we use a Gaussian-
shaped pulse modulated at 250 Hz and with a pulse width
of 7 ms. The far-field pressure measurements are performed
using four ICP® microphones (proprietary name for
Integrated Electronics Piezo-Electric microphones) that
are placed at a distance of 2.5 m away from the image
source and separated by an angle of approximately 40°. The
ICP microphones are connected to the same target machine,
which measures the amplitude and phase of pressure at
these positions and stores these values on the controlling
computer.

4. Extracting S parameters

To characterize the resonant properties of Helmholtz
resonators, we perform a simple two-port scattering experi-
ment. We place a Helmholtz resonator inside a tube
supporting a single plane-wave-like propagating mode,
forming a two-port scattering network. In this picture,
each port represents the wave propagating toward (away
from) the resonator on both sides of the waveguide [60].
Thus, we can define the relation between the propagating
waves using the S matrix:

�
E1
m

E2
p

�
¼

�
S11 S12
S21 S22

��
E1
p

E2
m

�
;

where Ei
pðEi

mÞ are the complex amplitudes of the waves
propagating toward (away from) the resonator at ports
i ¼ 1, 2. The amplitudes Ei

pðEi
mÞ are extracted from
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complex pressure measurements performed at four different
points along the tube (two on each side of the resonator).
By performing two independent measurements, exciting the
same structure from both sides, we get enough information
to find all four S-matrix coefficients.

[1] E. Abbe, Beiträge Zur Theorie Des Mikroskops Und Der
Mikroskopischen Wahrnehmung, Arch. Mikroskop. Anat. 9,
413 (1873).

[2] L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling,
M. Sauer, O. Biehlmaier, and G. P. C. Drummen, Super-
Resolution Microscopy Demystified, Nat. Cell Biol. 21, 72
(2019).

[3] E. Betzig and R. J. Chichester, Single Molecules Observed
by Near-Field Scanning Optical Microscopy, Science 262,
1422 (1993).

[4] S.-H. Lee, J. Y. Shin, A. Lee, and C. Bustamante, Counting
Single Photoactivatable Fluorescent Molecules by Photo-
activated Localization Microscopy (PALM), Proc. Natl.
Acad. Sci. U.S.A. 109, 17436 (2012).

[5] S. W. Hell and J. Wichmann, Breaking the Diffraction
Resolution Limit by Stimulated Emission: Stimulated-
Emission-Depletion Fluorescence Microscopy, Opt. Lett.
19, 780 (1994).

[6] S. W. Hell, Toward Fluorescence Nanoscopy, Nat. Bio-
technol. 21, 1347 (2003).

[7] P. Hoyer, G. de Medeiros, B. Balázs, N. Norlin, C. Besir, J.
Hanne, H.-G. Kräusslich, J. Engelhardt, S. J. Sahl, S. W.
Hell et al., Breaking the Diffraction Limit of Light-Sheet
Fluorescence Microscopy by RESOLFT, Proc. Natl. Acad.
Sci. U.S.A. 113, 3442 (2016).

[8] J. B. Pendry, Negative Refraction Makes a Perfect Lens,
Phys. Rev. Lett. 85, 3966 (2000).

[9] S. Guenneau, A. Movchan, G. Pétursson, and S. Anantha
Ramakrishna, Acoustic Metamaterials for Sound Focusing
and Confinement, New J. Phys. 9, 399 (2007).

[10] D. Maystre and S. Enoch, Perfect Lenses Made with
Left-Handed Materials: Alice’s Mirror?, J. Opt. Soc.
Am. A 21, 122 (2004).

[11] V. M. García-Chocano, J. Christensen, and J. Sánchez-
Dehesa, Negative Refraction and Energy Funneling by
Hyperbolic Materials: An Experimental Demonstration in
Acoustics, Phys. Rev. Lett. 112, 144301 (2014).

[12] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Far-Field
Optical Hyperlens Magnifying Sub-Diffraction-Limited
Objects, Science 315, 1686 (2007).

[13] R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, Far-Field
Subwavelength Imaging with Near-Field Resonant Metal-
ens Scanning at Microwave Frequencies, Sci. Rep. 5, 11131
(2015).

[14] F. Lemoult, M. Fink, and G. Lerosey, Far-Field Sub-
Wavelength Imaging and Focusing Using a Wire Medium
Based Resonant Metalens, Waves Random Complex Media
21, 614 (2011).

[15] F. Lemoult, M. Fink, and G. Lerosey, A Polychromatic
Approach to Far-Field Superlensing at Visible Wavelengths,
Nat. Commun. 3, 889 (2012).

[16] N. Fang, H. Lee, C. Sun, and X. Zhang, Sub-Diffraction-
Limited Optical Imaging with a Silver Superlens, Science
308, 534 (2005).

[17] M.Dubois, J. Perchoux,A. L.Vanel, C. Tronche,Y.Achaoui,
G. Dupont, K. Bertling, A. D. Rakić, T. Antonakakis, S.
Enoch et al., Acoustic Flat Lensing Using an Indefinite
Medium, Phys. Rev. B 99, 100301 (2019).

[18] D. Lu and Z. Liu, Hyperlenses and Metalenses for Far-
Field Super-Resolution Imaging, Nat. Commun. 3, 1205
(2012).

[19] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Far-Field
Optical Hyperlens Magnifying, Science 315, 1686 (2007).

[20] P. Del Hougne, F. Lemoult, M. Fink, and G. Lerosey,
Spatiotemporal Wave Front Shaping in a Microwave
Cavity, Phys. Rev. Lett. 117, 134302 (2016).

[21] F. Lemoult, G. Lerosey, J. De Rosny, and M. Fink, Resonant
Metalenses for Breaking the Diffraction Barrier, Phys. Rev.
Lett. 104, 203901 (2010).

[22] E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad,
M. R. Dennis, and N. I. Zheludev, A Super-Oscillatory
Lens Optical Microscope for Subwavelength Imaging,
Nat. Mater. 11, 432 (2012).

[23] F. M. Huang and N. I. Zheludev, Super-Resolution without
Evanescent Waves, Nano Lett. 9, 1249 (2009).

[24] E. T. F.Rogers andN. I. Zheludev,Optical Super-Oscillations:
Sub-Wavelength Light Focusing and Super-Resolution Imag-
ing, J. Opt. 15, 094008 (2013).

[25] T. Roy, E. T. F. Rogers, and N. I. Zheludev, Sub-Wavelength
Focusing Meta-Lens, Opt. Express 21, 7577 (2013).

[26] M. Dubois, E. Bossy, S. Enoch, S. Guenneau, G. Lerosey,
and P. Sebbah, Time-Driven Superoscillations with Negative
Refraction, Phys. Rev. Lett. 114, 013902 (2015).

[27] M. Berry, N. Zheludev, Y. Aharonov, F. Colombo, I.
Sabadini, D. C. Struppa, J. Tollaksen, E. T. F. Rogers, F.
Qin, M. Hong et al., Roadmap on Superoscillations, J. Opt.
21, 053002 (2019).

[28] Y. Lecun, Y. Bengio, and G. Hinton, Deep Learning, Nature
(London) 521, 436 (2015).

[29] M. Nielsen, Neural Networks and Deep Learning (Determi-
nation Press, 2013), http://neuralnetworksanddeeplearning
.com/.

[30] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A.W.M. van der Laak, B. van Ginneken,
and C. I. Sánchez, A Survey on Deep Learning in Medical
Image Analysis, Med. Image Anal. 42, 60 (2017).

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet
Classification with Deep Convolutional Neural Networks,
Adv. Neural Inf. Process. Syst. 25, 1097 (2012), https://dl
.acm.org/doi/10.5555/2999134.2999257.

[32] Y. Zhang and E. A. Kim, Quantum Loop Topography for
Machine Learning, Phys. Rev. Lett. 118, 216401 (2017).

[33] T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A.
Kalinin, B. T. Do, G. P. Way, E. Ferrero, P. M. Agapow, M.
Zietz, M. M. Hoffman et al., Opportunities and Obstacles
for Deep Learning in Biology and Medicine, J. R. Soc.
Interface 15, 20170387 (2018).

[34] M. Vardhana, N. Arunkumar, S. Lasrado, E. Abdulhay, and
G. Ramirez-Gonzalez, Convolutional Neural Network for
Bio-Medical Image Segmentation with Hardware Acceler-
ation, Cogn. Syst. Res. 50, 10 (2018).

FAR-FIELD SUBWAVELENGTH ACOUSTIC IMAGING BY DEEP … PHYS. REV. X 10, 031029 (2020)

031029-11

https://doi.org/10.1007/BF02956173
https://doi.org/10.1007/BF02956173
https://doi.org/10.1038/s41556-018-0251-8
https://doi.org/10.1038/s41556-018-0251-8
https://doi.org/10.1126/science.262.5138.1422
https://doi.org/10.1126/science.262.5138.1422
https://doi.org/10.1073/pnas.1215175109
https://doi.org/10.1073/pnas.1215175109
https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1038/nbt895
https://doi.org/10.1038/nbt895
https://doi.org/10.1073/pnas.1522292113
https://doi.org/10.1073/pnas.1522292113
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1088/1367-2630/9/11/399
https://doi.org/10.1364/JOSAA.21.000122
https://doi.org/10.1364/JOSAA.21.000122
https://doi.org/10.1103/PhysRevLett.112.144301
https://doi.org/10.1126/science.1137368
https://doi.org/10.1038/srep11131
https://doi.org/10.1038/srep11131
https://doi.org/10.1080/17455030.2011.613954
https://doi.org/10.1080/17455030.2011.613954
https://doi.org/10.1038/ncomms1885
https://doi.org/10.1126/science.1108759
https://doi.org/10.1126/science.1108759
https://doi.org/10.1103/PhysRevB.99.100301
https://doi.org/10.1038/ncomms2176
https://doi.org/10.1038/ncomms2176
https://doi.org/10.1126/science.1137368
https://doi.org/10.1103/PhysRevLett.117.134302
https://doi.org/10.1103/PhysRevLett.104.203901
https://doi.org/10.1103/PhysRevLett.104.203901
https://doi.org/10.1038/nmat3280
https://doi.org/10.1021/nl9002014
https://doi.org/10.1088/2040-8978/15/9/094008
https://doi.org/10.1364/OE.21.007577
https://doi.org/10.1103/PhysRevLett.114.013902
https://doi.org/10.1088/2040-8986/ab0191
https://doi.org/10.1088/2040-8986/ab0191
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1016/j.media.2017.07.005
https://dl.acm.org/doi/10.5555/2999134.2999257
https://dl.acm.org/doi/10.5555/2999134.2999257
https://dl.acm.org/doi/10.5555/2999134.2999257
https://dl.acm.org/doi/10.5555/2999134.2999257
https://dl.acm.org/doi/10.5555/2999134.2999257
https://doi.org/10.1103/PhysRevLett.118.216401
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1016/j.cogsys.2018.03.005


[35] A. Graves, A. R. Mohamed, and G. Hinton, in Proceedings
of the IEEE International Conference on Acoustic Speech
Signal Processing (2013), p. 6645, https://doi.org/10.1109/
ICASSP.2013.6638947.

[36] U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy,
C. Vonesch, M. Unser, and D. Psaltis, Learning Approach to
Optical Tomography, Optica 2, 517 (2015).

[37] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, Deep
Convolutional Neural Network for Inverse Problems in
Imaging, IEEE Trans. Image Process. 26, 4509 (2017).

[38] Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang,
and A. Ozcan, Deep Learning Microscopy, Optica 4, 1437
(2017).

[39] N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, Learning
to See through Multimode Fibers, Optica 5, 960 (2018).

[40] P. Zhang, H. Shen, and H. Zhai, Machine Learning
Topological Invariants with Neural Networks, Phys. Rev.
Lett. 120, 066401 (2018).

[41] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M.
Jarrahi, and A. Ozcan, All-Optical Machine Learning Using
DiffractiveDeepNeuralNetworks, Science 361, 1004 (2018).

[42] Y. Shen, N. C. Harris, S. Skirlo et al., Deep Learning with
Coherent Nanophotonic Circuits, Nat. Photonics 11, 441
(2017)

[43] P. Hougne, M. F. Imani, A. V. Diebold, R. Horstmeyer, and
D. R. Smith, Learned Integrated Sensing Pipeline: Recon-
figurable Metasurface Transceivers as Trainable Physical
Layer in an Artificial Neural Network, Adv. Sci. 7, 1901913
(2020).

[44] T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan,
Wave Physics as an Analog Recurrent Neural Network, Sci.
Adv. 5, eaay6946 (2019).

[45] Z. Luo, A. Yurt, R. Stahl, A. Lambrechts, V. Reumers,
D. Braeken, and L. Lagae, Pixel Super-Resolution for
Lens-Free Holographic Microscopy Using Deep Learning
Neural Networks, Opt. Express 27, 13581 (2019).

[46] J. A. Grant-Jacob, B. S. Mackay, J. A. G. Baker, Y. Xie, D. J.
Heath, M. Loxham, R.W. Eason, and B. Mills, A Neural
Lens for Super-Resolution Biological Imaging, J. Phys.
Commun. 3, 065004 (2019).

[47] E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman,
Deep-STORM: Super-Resolution Single-Molecule Micros-
copy by Deep Learning, Optica 5, 458 (2018).

[48] F. Tom and D. Sheet, in Proceedings of the 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI
2018) (IEEE, New York, 2018), pp. 1174–1177.

[49] H. Wang, Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Günaydın,
L. A. Bentolila, C. Kural, and A. Ozcan, Deep Learning
Enables Cross-Modality Super-Resolution in Fluorescence
Microscopy, Nat. Methods 16, 103 (2019).

[50] H. M. Yao, M. Li, and L. Jiang, Applying Deep Learning
Approach to the Far-Field Subwavelength Imaging
Based on Near-Field Resonant Metalens at Microwave
Frequencies, IEEE Access 7, 63801 (2019).

[51] J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, Experimental
Demonstration of an Acoustic Magnifying Hyperlens, Nat.
Mater. 8, 931 (2009).

[52] O. Ronneberger, P. Fischer, and T. Brox, in Lecture Notes
on Computer Science, edited by N. Navab, J. Hornegger,
W. Wells, and A. Frangi (Springer, Cham, 2015), Vol. 9351,
p. 234.

[53] M. a Taubenblatt and T. K. Tran, Calculation of Light
Scattering from Particles and Structures on a Surface by
the Coupled-Dipole Method, J. Opt. Soc. Am. A 10, 912
(1993).

[54] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.10.031029 for the details
of NNs and transfer learning technique, numerical demon-
stration of importance of the modes’ density and multiple
scattering phenomena, more examples of experimentally
reconstructed digits, and the photo of experimental setup,
which includes Refs. [55–57].
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