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We propose the use of two-dimensional Penning trap arrays as a scalable platform for quantum
simulation and quantum computing with trapped atomic ions. This approach involves placing arrays of
microstructured electrodes defining static electric quadrupole sites in a magnetic field, with single ions
trapped at each site and coupled to neighbors via the Coulomb interaction. We solve for the normal modes
of ion motion in such arrays and derive a generalized multi-ion invariance theorem for stable motion even in
the presence of trap imperfections. We use these techniques to investigate the feasibility of quantum
simulation and quantum computation in fixed ion lattices. In homogeneous arrays, we show that
sufficiently dense arrays are achievable, with axial, magnetron, and cyclotron motions exhibiting interion
dipolar coupling with rates significantly higher than expected decoherence. With the addition of laser
fields, these can realize tunable-range interacting spin Hamiltonians. We also show how local control of
potentials allows isolation of small numbers of ions in a fixed array and can be used to implement high-
fidelity gates. The use of static trapping fields means that our approach is not limited by power
requirements as the system size increases, removing a major challenge for scaling which is present in
standard radio-frequency traps. Thus, the architecture and methods provided here appear to open a path for
trapped-ion quantum computing to reach fault-tolerant scale devices.
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I. INTRODUCTION

The study of many-body physics in quantum mechanics
is hindered by the inability of classical computing devices
to store and manipulate the information required to specify
these systems beyond about 50 spins [1,2]. Quantum
devices, which directly work in Hilbert space, would
overcome these limitations and, furthermore, open up
access to other calculations beyond the reach of classical
supercomputers [1,3–5]. Trapped atomic ions are among
the most successful platforms for exploring these advances.
They interact via the long-range Coulomb force, which
when combined with laser and microwave fields has
allowed high-quality quantum logic gates [6,7] as well
as Hamiltonian engineering for quantum simulations [8].
The most successful approach to controlling multiple
trapped-ion qubits has involved the use of semirigid ion
crystals, formed through the competing energy require-
ments of the global trapping potential and the Coulomb
repulsion. Primarily, these use one-dimensional ion chains
in radio-frequency (rf) ion traps [8,9]. The restriction to one

dimension is imposed by the desire to trap at the null of the
rf field. Penning traps have been used to perform quantum
simulations with two-dimensional (2D) ion crystals, with
the complication of continuous rotation in the crystal plane
[10]. In both cases, the intrinsic link between the lattice
structure and the oscillation frequencies of the normal
modes of oscillation places constraints which limit the
range of physics which can be investigated. Furthermore,
neither of these approaches is well suited to scaling these
systems up to levels close to a million qubits which are
expected to be required for solving relevant problems in
quantum chemistry [11].
An alternative platform which increases flexibility is the

use of microfabricated ion traps with electrode structures
on length scales close to the interion separation. This
platform would allow access to arbitrary 2D lattice geom-
etries, as well as provide the possibility to locally tune
potentials in order to decouple subsets of ions to facilitate
local multiqubit gates. For rf traps, early experiments in this
direction have been carried out [12,13], but a number of
significant challenges to scaling arise from the use of radio-
frequency potentials. One is that rf power dissipation in the
electrodes increases with the number of sites (similar to the
challenge in scaling optical power, which limits optical
dipole traps for neutral atoms). It also appears difficult to
achieve small site spacings for strong Coulomb coupling in
extended arrays of ions [14–16]. A further practical
challenge is that the operation of such traps relies on the
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alignment of the microscopic static and rf quadrupole
potentials, which is challenging to achieve in the presence
of stray charges on the electrode surfaces, especially when
large numbers of sites are involved [17].
Surface-electrode Penning traps offer an alternative

platform for trapping ions which utilizes only static fields.
Surface-electrode Penning traps have been experimentally
realized with both electrons [18] and atomic ions [19], with
the light mass of the former offering the potential for strong
site-site couplings [18,20,21]. For electrons, arrays of such
traps have been proposed as a coupled system suitable for
quantum information [21]. However, electrons lack many
of the control techniques available to atomic ions, which
have the considerable advantage of being able to utilize
advanced laser techniques for cooling, initialization, detec-
tion, and control [22,23].
In this paper, we consider the use of arrays of surface

Penning traps to realize 2D lattices of trapped atomic ions
for quantum simulation and computation, a setting which
appears scalable due to the use of only static fields for
trapping. We present a detailed study of the collective
motional modes of oscillations for ions trapped in this
architecture, which is the crucial element for any quantum
information application. We find that the motion of N
coupled ions can be mapped onto the same quadratic
eigenvalue problem for both the classical and quantum
treatments and use this framework to generalize the single-
ion invariance theorem for stable modes of motion [24,25]
to an arbitrary number of ions. We then focus on two cases
relevant to quantum simulation and computation in exten-
sible ion lattices. For quantum simulation, we demonstrate
that closely spaced arrays can be produced, by obtaining
optimal electrode geometries for a range of different
lattices. Here, Penning traps allow significantly higher
ion densities and, thus, higher coupling than radio-fre-
quency traps for similar experimental constraints. We show
that variable-range spin-spin interactions can be produced,
as well as verify the ability to access useful ion temper-
atures through laser cooling. We follow this demonstration
by studying the feasibility of quantum computing using
multiqubit gates on two nearest-neighbor ions which are
embedded in an array, by using local mode decoupling of
the ions. We show that a special regime of large zero-point
motion available for the magnetron and cyclotron modes
allows fast high-fidelity logic gates, which could be applied
to lattice-based error-correction codes such as the surface
and topological color codes [26,27].

II. PENNING MICROTRAP ARRAY

The configuration that we propose is shown in Fig. 1.
Electric potentials are applied to trap electrodes laid out on a
planar structure such as to form an array of static electric 3D
quadrupoles at a distance h above the trap surface. These,
combined with the homogeneous magnetic field, provide
three-dimensional confinement of a single ion at each site.

Together with the trapping potential, the Coulomb interaction
defines the equilibrium positions of the ions. For an infinite
lattice, the equilibrium positions align with the centers of the
quadrupole potentials created through the periodic arrange-
ment of electrodes. For the finite case, this statement is not
true and should be taken into account while designing the
electrodes to generate the required lattice of equilibrium
positions. The vibrations of the ions around their equilibrium
positions are also coupled by theCoulomb interaction. Aswe
show in the next section, at the single quantum level, this
coupling depends as the inverse cube on the distance between
ions and the zero-point motion amplitude and has the
strongest effect for two resonant sites. From the trapping
perspective, the primary objective is to achieve closely spaced
ions. The desirable electrode geometries for infinite lattices
are considered in more detail in Sec. VIII and then applied to
quantum simulation problems. A secondary aspect is that the
electrodes aremicroscopic, which allows local control. In this
way, ions may be tuned in and out of resonance with the rest.
This aspect is studied in the context of quantum computing in
Sec. IX. In Sec. X, we present a realistic scenario in which
these ideas could be implemented in an experiment.

III. DIPOLAR ION-ION COUPLING

The basis for multiqubit quantum control and quantum
simulations in such a setting is the long-range Coulomb

FIG. 1. Proposed array of Penning microtraps. The magnetic
field Bmakes an angle Θwith e⊥, the vector normal to the lattice
plane in which all of the ions lie. The ion separation is given by
the electrode pattern. The critical parameter for the ion-ion
interaction is the separation of neighboring sites d, while the
distance from the surface h strongly affects the level of noise from
fluctuating electric fields [28].
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interaction, which couples the oscillations of individual
ions at different sites. While for an ion oscillating along a
single spatial axis it is simple to think of the oscillating
charge distribution as an oscillating dipole potential, and,
thus, that the ions are coupled through something similar to
a dipole-dipole coupling, the types of motion exhibited by
ions in a Penning trap are more complex. To get a feeling
for the nature of this coupling, we first consider for the
moment a simplified setting, in which each ion is trapped
in a cylindrically symmetric static quadrupole potential
mω2

z=2½z2 − ðx2 þ y2Þ=2� for ions of mass m and charge e
embedded in a magnetic field of strength B0 aligned along
the z axis.
At a single site, the Hamiltonian for an ion in such a

potential can be written as

Ĥs ¼ ℏωþðâ†þâþ þ 1=2Þ − ℏω−ðâ†−â− þ 1=2Þ
þ ℏωzðâ†z âz þ 1=2Þ; ð1Þ

where ω� ¼ ðωc � ω1Þ=2 are the frequencies of the
modified cyclotron motion and magnetron motion, respec-
tively, with ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 2ω2

z

p
and ωc ¼ eB0=m the bare

cyclotron frequency [25]. Here, â� and âz are the annihi-
lation operators for the corresponding modes. This
Hamiltonian differs from a standard 3D oscillator due to
the negative sign in front of the magnetron term. It is also
worth noting that both the magnetron and cyclotron
motions are two-dimensional; thus, the relevant creation
and annihilation operators are made up of sums of the form
â� ¼ ð1= ffiffiffi

2
p Þðâx � iâyÞ, where âx and ây refer to motion

along x and y, respectively (full details of the trans-
formations and definitions used can be found in the
Appendix A).
Let us now consider two such sites labeled by

indexes i and j containing ions with equilibrium positions
separated by the vector Rij;0 ¼ Rij;0½sinðθijÞ cosðϕijÞ;
sinðθijÞ sinðϕijÞ; cosðθijÞ� which has magnitude Rij;0 and
makes an angle θij with the magnetic field. For the current
argument, let us work in the approximation that the motion
of the ions can be assumed to be a small perturbation which
is well described using a second-order expansion of the
Coulomb interaction about the equilibrium positions.
Moving to a rotating frame with respect to Ĥs for the
operators at each of the sites and further assuming that
the difference frequency between the bare modes is much
larger than the respective exchange frequencies for
the different modes, we find the Coulomb interaction
Hamiltonian

Ĥc;ij ¼
X
ν

ℏΩij
ν;exKνðâ†ν;iâν;j þ â†ν;jâν;iÞ

−
X
ν

ℏΩij
ν;exKνðâ†ν;iâν;i þ âν;iâ

†
ν;iÞ; ð2Þ

where Kz ¼ −K� ¼ 1–3 cos2ðθijÞ. The first term corre-
sponds to hopping of excitations between the sites, while
the second gives the modification of the on-site energy due
to the static potential of the other ion. The respective
coupling strengths for hopping of vibrational quanta from
one ion to another are given by the exchange frequencies

Ωij
ν;ex ¼ e2

4πϵ0mω0
νR3

ij;0

; ð3Þ

where ω0
z ¼ ωz and ω0þ;ω0

− ¼ ω1.
The coupling Hamiltonian has a dipolar form for all

modes. The sign of the coupling for the magnetron and
cyclotron modes is inverted with respect to that of the axial
motion. For each type of motion, the orientation of the
effective dipole is along the magnetic field axis. While this
orientation is expected for the axial oscillation, for the other
modes this result is less intuitive, since it corresponds to a
direction perpendicular to the plane of oscillation of both
the cyclotron and magnetron motions. When the coupling
above is generalized to a two-dimensional lattice of sites,
the anisotropy of the interactions in the lattice plane
depends on the angle Θ between the magnetic field and
the lattice normal. For Θ ¼ 0°, the interactions are iso-
tropic, because θij ¼ π=2 for all directions within the plane.
For Θ ¼ 90°, θij values vary between 0 and 2π; thus, the
interactions are anisotropic.
An additional feature of the couplings, which we make

use of in Sec. IX, is that the couplings for the modified
cyclotron and magnetron motions are proportional to the
reciprocal of ω1 rather than the mode frequency itself, a
result which stems from the dependence of the zero-point
motion of each of these modes. Thus, by tuning ω1 to be
small, the coupling between two sites can be enhanced.
This tuning can be performed by raising ωz towards ωc=

ffiffiffi
2

p
(although the limit ωz ¼ ωc=

ffiffiffi
2

p
is unstable). Unlike a

standard mechanical oscillator, this enhancement of the
zero-point motion does not require lowering of the
mechanical oscillator frequency.

IV. OPERATING CONDITIONS

Within the restrictions of using symmetric quadrupole
potentials, there is, nevertheless, a range of possible choices
of ωc and ωz which could be used, related to the type of
couplings which are desired and the achievable experi-
mental constraints. However, these choices are constrained
by the fixed dependence of the mode frequencies on these
two parameters. As an example which we find interesting
from the perspective of engineered tunable-range spin-spin
couplings (see Sec. VIII B), we consider the challenge
of operating a trap with a fixed achievableωz while desiring
that the modes have a large enough splitting that three
separated bands of modes occur corresponding to coupled
magnetron, modified cyclotron, and axial frequencies.
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We find that, for an infinite lattice, the width of any one
band is in the range between 3 and 6 times the exchange
frequency for the respective mode. Figure 2 shows the trap
frequencies which can be achieved normalized to the axial
frequency ωz. To achieve large mode separations, it appears
attractive to work in the regime for which ωþ > ωz, which
corresponds to ωc > 3ωz=2. However, note that this choice
implies that ω− < ωz=2. The splitting between the ω�
modes and the axial modes becomes equal in magnitude
when ωc ¼ 2ωz (see the dashed line), for which ω− ¼
ωzð

ffiffiffi
2

p
− 1Þ= ffiffiffi

2
p

≈ 0.29ωz. In practice, there are good rea-
sons towork with highmagnetron frequencies, for example,
to achieve lower heating rates of those modes due to noise
being sampled at higher frequencies. The competing desires
to have large mode separation and high magnetron frequen-
cies may limit the choice of trap parameters.
A second regime of operation could also be used, inwhich

the difference in mode frequencies is significantly below the
trap frequencies themselves. For this regime, the axial
frequency can be chosen to be the highest frequency of
the three, and the modified cyclotron and magnetron modes
become closer in frequency. This result can be achieved in a
narrow regime for which 3ωz=2>ωc>

ffiffiffi
2

p
ωz, as indicated

by the shaded area in Fig. 2. As ωc is reduced within this
range, the difference frequency ω1 between the modified
cyclotron and magnetron frequencies is reduced. This
reduction increases the exchange frequencies for these
modes (but also proportionally the heating rate). The
maximal separation of modes within this regime is 0.191ωz.

V. NORMAL-MODE ANALYSIS

A full analysis of the normal modes of vibration of ions
is a prerequisite to understand the methods utilized for laser
cooling and implementation of analog quantum simulation.
The presence of a magnetic field in Penning traps makes
this analysis nontrivial. While the case of a naturally
formed two-dimensional ion crystal in a macroscopic
Penning trap has been treated before, this analysis involves

a transformation to a frame corotating with the rigid ion
crystal [29]. Here, we avoid any such transformation and
derive the normal modes for the general case of ions in an
array of micro-Penning traps, assuming only that the
equilibrium positions are well defined so that the harmonic
approximation for the electric potential can be used and that
the magnetic field is uniform over the region explored by
each ion. The analysis leads to a generalization of a well-
known invariance theorem used for single ions in Penning
traps [24,25].

A. Classical treatment

In the classical regime, the normal-mode analysis of a
finite system of N trapped ions can be carried out with the
help of Lagrangian mechanics. For simplicity, it is assumed
that all ions have an identical mass m, but the analysis
can be generalized to systems containing ions with different
masses (see Appendix B). In the frame of reference of
the laboratory, with no oscillatory fields present, the
Lagrangian of the system is given by

L ¼
XN
j¼1

�
1

2
mj _Rjj2 þ eAj · _Rj − eΦj

�
; ð4Þ

where Rj denotes the lab coordinates of ion j, Aj ¼
1
2
ðB ×RjÞ is the vector potential in the symmetric gauge

due to the uniform magnetic field B ¼ B0êz, and Φj is the
electric potential containing a sum of contributions from
the trapping potential for ion j and the Coulomb interaction
potential experienced by this ion due to all others.
The first step in obtaining normal modes is to solve for

the equilibrium positions, which we carry out numerically.
The second-order term in the series expansion of the system
Lagrangian about the equilibrium positions dictates the
normal-mode dynamics of the system near the stable
spatial configuration. The equations of motion for the 3N-
dimensional vector q ¼ ½x1…xN y1…yN z1…zN �T consist-
ing of all the generalized position coordinates can then be
deduced as

Mq̈ −W _qþΦq ¼ 0; ð5Þ

where M, W, and Φ are 3N × 3N matrices defined as
M ¼ m · I3N , W

xy
jk¼−Wyx

jk¼eB0δjk, and Φμν
jk ¼ ∂qμj∂qνkL,

respectively. Φ contains only terms from the static electric
potential and the Coulomb interactions. Here, the indices j
and k run over the ion numbers 1 to N, while the indices μ
and ν run over the Cartesian components x, y, and z. The
“mass matrix” M is a real diagonal matrix, and W is a real
antisymmetric matrix representing the velocity-dependent
forces (often referred to as the “damping matrix”), while the
“stiffness matrix” Φ is a real symmetric traceless matrix.
To find the normal modes of motion, we substitute the

oscillating trial solution q ¼ q0 exp ½−iωt�, which yields
the quadratic eigenvalue problem (QEP)

FIG. 2. Frequencies of oscillation of a single-ion Penning trap
as a function of the bare cyclotron frequency. All frequencies are
given in units of the axial frequency.
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½ω2M þ ωð−iWÞ −Φ�q0 ¼ 0; ð6Þ

that can be solved for complex eigenvectors q0 and
eigenvalues ω. When all eigenvalues are real, the motion
of all ions is bounded, and stable confinement can be
achieved. Each of the 3N collective normal modes of
motion is thus characterized by the eigenpair fωλ; qλg, and
the general solution for the motion can be expressed as

qðtÞ ¼ Re

�X3N
λ¼1

rλqλ exp ½−iðωλtþ δλÞ�
�
; ð7Þ

with the amplitude rλ and phase δλ for each mode λ
determined by the initial conditions.
It is important to note that the total energy contained in

each mode,

Eλ ¼
1

4
r2λðω2

λq
H
λ Mqλ þ qHλ ΦqλÞ; ð8Þ

is not trivially positive, unlike the case of Paul traps.
Typically, we observeN modes dominated by motion along
the axial direction, and it is convenient to continue calling
these modes axial modes in the context of theN ion array of
Penning traps. Each of the axial modes has a positive total
mode energy. Similarly, there are 2N radial modes, out of
whichN have each a positive mode energy andN have each
a negative mode energy. We denote the radial modes with a
positive sign as cyclotron modes and the ones with a
negative sign as magnetron modes.

B. Quantum mechanical treatment

The solution for the normal modes in the quantum
regime involves the formulation of the Hamiltonian in
terms of the canonical position and momentum operators q̂j
and p̂j and then forming the phonon creation and annihi-
lation operators â†λ and âλ for each mode λ as linear
combinations of these operators:

â†λ ¼
X3N
j¼1

ðαλjp̂j þ βλjq̂jÞ; ð9Þ

where α and β are complex coefficients. The objective is to
find these coefficients which allow us to diagonalize the
Hamiltonian for a stable system in the second quantized
form Ĥ ¼ P

3N
λ¼1 ℏωλðâ†λ âλ þ 1

2
Þ with the phonon operators

following the standard commutation relations ½â†λ ; â†λ0 � ¼ 0,
½âλ; âλ0 � ¼ 0, and ½âλ; â†λ0 � ¼ δλλ0 . Combining these require-
ments, we find that the 3N-dimensional vectors αλ for
each mode λ satisfy the same QEP we had to solve in the
classical analysis

½ω2M þ ωð−iWÞ −Φ�αλ ¼ 0; ð10Þ

and we have the relation βλ ¼ iωλMαλ þ 1
2
Wαλ. These

vectors can then be normalized such that the condition
½âλ; â†λ � ¼ 1 is fulfilled.
We note that the treatment discussed in this section

encompasses both rf and Penning traps, and the normal
modes for the former under the pseudopotential approxi-
mation can be retrieved by choosing the magnetic field
strength as zero and adding a suitable pseudopotential term
to Φ. In this case, Φ is not trace zero.

VI. GENERALIZED INVARIANCE THEOREM

A real trap is imperfect and can suffer from misalign-
ments between the magnetic field and the confining axis of
the quadrupole potential or the trap potential differing from
the desired precise form. Including these imperfections
in the matrices W and Φ in the QEP encountered in the
classical analysis and dividing the equation by m, we get

½ω2 · I3N þ ωð−iW0Þ −Φ0�q0 ¼ 0; ð11Þ

where we define the matrices W0 ¼ W=m and Φ0 ¼ Φ=m.
This new QEP can then be linearized by mapping it onto a
standard eigenvalue problem while increasing the dimen-
sionality by a factor of 2 so that we arrive at

Av ¼ ωv; ð12Þ

with 6N-dimensional eigenvectors v ¼ ½ q0 ωq0 �T and
6N eigenvalues ω belonging to the 6N × 6N matrix A:

A ¼
�
O3N I3N
Φ0 iW0

�
: ð13Þ

Since A2v ¼ ω2v and the sum of eigenvalues of a matrix is
equal to its trace,

X6N
λ¼1

ω2
λ ¼ trðA2Þ ¼ trð2Φ0 −W02Þ ¼ −trðW02Þ: ð14Þ

This result holds for any potential terms added to Φ0 which
exist in free space, since these must be traceless in order to
satisfy Laplace’s equation (it would not hold for a pseudo-
potential). While for a single ion only the trapping
potentials are present, in the case of a multi-ion system,
the Coulomb interactions are also contained in this term.
Noting that the frequencies come in pairs of positive-
negative values in the stable regime, we can express this
sum in terms of the 3N positive frequencies:

X3N
λ¼1

ω2
λ ¼ −

1

2
trðW02Þ ¼ Nω2

c; ð15Þ

where ωc ¼ eB0=m is the bare cyclotron frequency.
This relation between the strength of the magnetic field
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quantified and the normal-mode frequencies of a stable
N-ion system represents a nontrivial generalization of the
well-known Brown-Gabrielse invariance theorem for a
single ion in a Penning trap [24,25]:

ω2þ þ ω2
− þ ω2

z ¼ ω2
c: ð16Þ

A complementary result relating the product of the normal-
mode frequencies to the curvature of the total electric
potential can be derived by taking the determinant of the
matrix A, giving

Y3N
λ¼1

ðmω2
λÞ ¼ jΦj: ð17Þ

The results (15) and (17) further generalize to systems
containing ions of different masses (see Appendix D for
more details). The single-ion invariance theorem is widely
used in precision measurement [30], and our generalization
can be applied to precision mass measurements of multi-ion
crystals [31].

VII. LASER COOLING

Doppler cooling is more complicated in Penning traps as
compared to radio-frequency traps due to the fact that the
magnetron modes have a negative total energy. As a
consequence, the cooling requirements of the magnetron
modes are incompatible with those of the axial and
cyclotron modes, and no combination of uniform beams
can cool all modes of motion simultaneously [32]. One way
to combat this limitation is to use a nonuniform beam with
intensity gradient, but the final temperatures reached for
both kinds of radial modes are greater than one would
expect from the standard Doppler cooling limit, and the
range of motional frequencies that allow for cooling all
three kinds of modes is also restricted [32].
An alternative solution which has been realized exper-

imentally [33] is to couple the cyclotron and magnetron
modes by applying a weak quadrupolar electric field
ϕaxðx2 − y2Þ oscillating at the bare cyclotron frequency,
in a technique known as axialization [34]. A red-detuned
uniform-intensity Doppler cooling laser beam can then
simultaneously cool all modes. With the axialization drive,
the system no longer consists solely of electrostatic fields,
but, since the amplitude of such a drive is much lower than
for the rf drive required for Paul traps, the deleterious
effects of micromotion are accordingly much smaller.
Moreover, this technique is required only during the laser
cooling process and works efficiently at all trap frequen-
cies, allowing trapping in regimes not accessible through
the use of just inhomogeneous beams.
The derivation of the rate equations of the mode ampli-

tudes of ions due to Doppler cooling in Penning traps in the
presence of axialization has no simple analytical solution.

Instead, we perform numerical simulations on small num-
bers of ions in which we numerically integrate the equations
of motion of the trapped ion including the axialization
potential as well as stochastic momentum kicks which occur
with a probability which depends on the Doppler shift
between the laser and the ion resonance to simulate photon
scattering events. By running the simulation a large number
of times, the average classical amplitudes of each mode can
be found, which can then be converted to mean quantum
phononoccupation numbers.Results of such simulations for
laser cooling of a six-9Beþ-ion honeycomb lattice with
lattice constant 15 μm with the confining axes tilted at
Θ ¼ 20° with respect to the radial plane are shown in Fig. 3.
Here, B0 ¼ 2.5 T and ωz ¼ 2π × 2.1 MHz. The uniform
laser beam is oriented parallel to the electrode plane so that
kL ¼ cosΘêx þ sinΘêz. The axialization voltage here is
ϕax ¼ 0.03ϕ0. The initial quantum numbers for each mode
are chosen within a range close to 104 quanta. The results
show that modes can be cooled with time constants in the
range of 0.1–0.2 ms, with final mode occupations in the
range of 10–30 quanta. These numbers would be expected
for Doppler cooling at these trap frequencies. For coupled
ion arrays, it is important that the axialization drivemixes all
magnetron modes with the modified cyclotron modes. This
requirement implies that the modulation strength must be
greater than thewidth of the relevant spread of frequencies of
each set of modes.

VIII. QUANTUM SIMULATION
IN FIXED LATTICES

One of the primary uses of multi-ion control in recent
years has been for quantum simulation of lattice models.
Such a simulation involves the use of always-on couplings
between either spins or motional degrees of freedom of the
different ions, realizing a representation of a Hamiltonian
of interest elsewhere in physics. Although proposals and
experimental demonstrations exist for spin-boson and
pure bosonic systems [35–37], a particular focus of recent
work has involved Ising spin models implemented on the
internal degrees of freedom [8,10]. In the following section,

(a) (b) (c)

FIG. 3. Mode occupation numbers as a function of time for a
six-9Beþ-ion honeycomb lattice being laser cooled in conjunction
with axialization. (a) Cyclotron (b) Axial (c) Magnetron.
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we describe how Penning trap arrays could be used for such
studies, including optimal electrode layouts, the relevant
features of the normal modes, and the implementation of
tunable-range Ising spin interactions. These ingredients
form a hierarchy: lattice, modes, and spin Hamiltonians
which are largely shared with other types of quantum
simulations which might be of interest. A strength of the
systems considered here is that the lattice can be designed
through the electrode layout.

A. Optimal electrode geometries

From Eq. (3) above, it is clear that the 1=R3
ij;0 nature of

effective couplings between the ions favors forming closely
spaced ion arrays. Although this spacing can be achieved
by scaling the size of the whole trapping structure, it results
in a reduction of the ion-electrode distance, which is
undesirable due to the expected increase in ion motional
heating [38,39] and the increased chance that stray scat-
tered light from the optical control fields used for cooling
and engineered spin-spin interactions induces charging of
the electrode surfaces resulting in stray electric fields. For
operation of the system, it is also desirable to work with
trap frequencies which are high enough to avoid common
noise sources in the laboratory, which reduces heating and
facilitates laser cooling. For a given electrode structure, the
motional frequencies can be increased with a correspond-
ing increase in the applied electrode voltages. However, at
some point this increase is limited by voltage breakdown,
and therefore it is beneficial to search for optimal electrode
layouts for achieving closely spaced ion traps while
retaining high trap frequencies of the individual microtraps.
We consider here the experimental feasibility to generate
such surface-electrode trap layouts with high motional
coupling between ions in micro-Penning trap arrays for
a given applied voltage. Our focus lies, in particular, on
single-layer surface-electrode traps, as they offer an open
planar structure which facilitates optical access. We note
that approaches with two planes of electrodes facing each
other might allow improved conditions with regards to
spin-spin couplings, but these seem to be more technically
challenging [16].
Previous work describes methods for obtaining surface-

electrode geometries which maximize the achievable cur-
vature of the pseudopotential in arrays of rf traps for a given
trapping site density with distance from the electrode
surface h [14]. The problem reduces to maximizing the
quadrupole strength which can be produced at the array of
sites, which is the identical problem for the Penning trap
arrays. However, in the case of rf traps, this quadrupole
potential must be converted into a ponderomotive pseudo-
potential while maintaining conditions suitable for stable
motion, while the Penning trap frequencies are directly
dependent on the static quadrupole. The advantage this
direct dependence gives can be evaluated by considering
the effect of modulating a static potential Π with curvature

tensor Πð2Þ ≡ ∂μ∂νΠ, with ν; μ ¼ x, y, z at a radio-
frequency Ωrf, creating Π cosðΩrftÞ. In the pseudopotential
approximation [40], the curvature tensor of the pseudo-
potential for an ion of mass m is then

Ψð2Þ
rf ¼ e

2mΩ2
rf

½Πð2Þ�2 ð18Þ

at any trap center. For simplicity, we focus on a cylin-
drically symmetric trap potential defined as

Π ¼ ϕ0

h2

�
z2 −

x2 þ y2

2

�
: ð19Þ

To compare the strength achievable for the rf vs Penning
trap, we take the Frobenius norm of the curvature
tensor, finding that the magnitudes of the two curvature
tensors can be related using the Mathieu parameter qz ¼
−4eϕ0=ðmΩ2

rfh
2Þ as

kΨð2Þ
rf k ¼

ffiffiffi
3

p

8
jqzj · kΠð2Þk: ð20Þ

Thus, the curvature of the pseudopotential is weaker than
that of the corresponding static potential by a factor offfiffiffi
3

p jqzj=8. For surface-electrode rf traps, stability becomes
a concern for jqzj≳ 0.3, corresponding to a reduction factor
of around 15. In this case, for a given voltage which is
applied to the electrodes, the trap frequency in the rf trap is
reduced relative to a Penning trap with the same geometry
by a factor of

ffiffiffiffiffi
15

p
.

The discussion above makes it clear that the optimization
of electrode structures for Penning trap arrays is identical to
the case of radio-frequency traps and, thus, produces
identical electrode geometries [14,15]. Similar to the earlier
work, we define a dimensionless curvature κ¼kΦð2Þkh2=V,
where V is a fixed voltage applied to part of the electrode
plane (the rest being set to zero) and h is taken to be the
distance from the center of the quadrupole to the nearest
trap surface. For the symmetric potential, the component of
the dimensionless curvature aligned with the magnetic field
is κ̂z ¼ 22=3κ̂. We then optimize the electrode geometry.
Figure 4 shows the dimensionless curvature of the trap
potential achievable for different infinite lattices as a
function of the ratio of trap height to interion distance,
with the magnetic field directed perpendicular to the plane
of the electrodes. The values given are normalized to the
dimensionless curvature κ̂ ≈ 0.473 achievable for an opti-
mal surface-electrode point trap [14].
Typical electrode structures in quantum information

experiments can withstand differences in voltages on
neighboring electrodes sufficient to achieve V ¼ 300 V
[41]. With h ¼ 30 μm, κ ¼ 10−4 then allows one to achieve
ωz ¼ 2π × 2.1 MHz for beryllium ions. Figure 4 indicates
that this result would allow ions spaced by between 26
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and 15 μm, with the former corresponding to the triangular
lattice and the latter to the honeycomb and kagome
lattices. The resulting exchange frequencies are between
11 kHz < Ωex;z=ð2πÞ < 55 kHz. The frequencies in this
range are far above heating rates and frequency drift
rates observed in traps of a similar size; thus, high-quality
coherent exchange would be expected [42].
The discussion above considers trapping potentials with

the confinement direction (and magnetic field) out of the
plane of the electrodes. The introduction of a tilt between
the electrode plane normal and the magnetic field modifies
the geometries of the optimized electrodes and the values
of κ which can be achieved. Figure 5 shows the value of
h=d for which a dimensionless curvature κ=κ̂ ¼ 10−4 is
achieved as a function of the angle Θ between the magnetic
field and the normal to the electrode plane. We see that

Θ ¼ 90° produces the highest curvatures for all geometries
(and, thus, requires the smallest h=d to get to κ=κ̂ ¼ 10−4),
with an additional maximum for Θ ¼ 0°. The former allows
laser cooling with laser beams in the plane of the electrode
surface, the latter does not—previous work in radio-
frequency traps indicates that Θ > 8° is necessary for
robust laser cooling [43]. The change in achievable h=d
for a fixed κ between Θ ¼ 0° and Θ ¼ 8° is small for the
triangular and square lattices but considerable in the case of
the kagome and honeycomb lattices.

B. Spin-spin interactions for the Ising model

We now examine the possibility of implementing spin-
spin couplings of the form relevant to studying models such
as the transverse Ising model [44], which is a common
target of quantum simulation experiments using trapped
ions. An effective spin-spin interaction can be generated
based on standard techniques developed in the trapped-ion
quantum computing community to implement multiqubit
gates [45–48]. These methods rely on the application of
forces that depend on the internal (pseudo)spin state of the
ions. For instance, two laser beams off-resonant with
respect to the internal transition and with a frequency
difference μR and wave-vector difference kR between each
other create a traveling-wave interference pattern at the
ions. Each ion experiences a state-dependent optical dipole
force (ODF) that oscillates at the frequency μR. To simplify
the algebra, we assume that the two relevant states of the
ions are spin-half ground states with no hyperfine structure
[49]. In this case, it is possible to generate an ODF that is
equal in magnitude but opposite in sign for the two internal
states which can be considered as eigenstates of the Pauli
operator σ̂z. For small coherent displacements of the ions
from their equilibrium positions, we can use the Lamb-
Dicke approximation and keep only resonant terms, result-
ing in the ODF interaction Hamiltonian

ĤODF ≈
XN
j¼1

EOkR · rj sinðϕj − μRtÞσ̂zj; ð21Þ

where EO depends on the laser beam properties as well as
the matrix elements of the internal transition of the ions and
the phase at the ion location is given by ϕj ¼ kR ·Rj0.
A similar Hamiltonian can be achieved in a rotated spin
basis (σ̂x; σ̂y) by driving both red and blue motional
sidebands of the spin-flip transition simultaneously [47].
Given the periodic arrangement of ions, we can ensure that
this phase is the same for all ions using well-chosen laser
beam configurations. To simplify the following discussion,
we assume that this condition is met (see Appendix E for a
more general treatment).
The time evolution operator associated with ĤODF can be

calculated by carrying out a Magnus expansion in the
interaction picture, and, for the given ODF interaction, this

FIG. 4. Dimensionless curvatures κ as functions of the ratio of
microtrap height h to interion spacing d, for several lattice
geometries.

FIG. 5. The value of h=d for which a dimensionless curvature
κ=κ̂ ¼ 10−4 is achieved as a function of the angle of tilt of the
trapping axis with respect to the normal of the plane, for several
lattice geometries. For the hexagonal and kagome lattices, a
strong effect is observed.
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expansion yields two terms. The first term describes periodic
spin-motion entanglement generated by the ODF. Quantum
simulation experiments typically work in the regime in
which this entanglement is negligible and can, therefore,
be adiabatically eliminated [5]. The second term describes an
effective Ising-like spin Hamiltonian

Ĥspin ¼
X
jj0

Jjj0 ðtÞσ̂zjσ̂zj0 ; ð22Þ

with the static part of the spin-spin interactions Jjj0 ðtÞ
given by

J0jj0 ¼
E2
O

2ℏ

X
λ

ωλ

μ2R − ω2
λ

Reðη�λjηλj0 Þ: ð23Þ

Here, we define the Lamb-Dicke parameters in a slightly
unconventionalmanner as ηλj ¼

P
ν¼x;y;z k

ν
Rρλ0γλjν, with ρλ0

being the spread of the zero-point wave function of mode λ
and γ the corresponding eigenvector normalized to 1. For an
rf trap, this definition reduces to the standard form of the
Lamb-Dicke parameter [50].
An interesting aspect of the simulation of the Ising model

using trapped ions is the possibility to engineer spin-
coupling terms which follow a power-law scaling with
the interion separation jJjj0 j ∝ 1=jRjj00ja, with a dictated by
the experimental detunings [10]. However, such tunable-
range interactions are possible only with a certain mode
structure, in which the center-of-mass (COM) mode has the
highest (lowest) frequency in a given band, and the state-
dependent force is tuned to a higher (lower) frequency than
this mode. In previous experiments with bulk crystals, this
situation is naturally satisfied, whereas it is not always
satisfied in the trap arrays which we consider in this paper.
In the following, we trace the importance of the normal-
mode structure in the determination of the effective spin-
spin interactions that can be engineered for a given system
of ions. We take as an example a honeycomb lattice of 204
ions, with the nearest-neighbor separation d ¼ 15 μm.
Here, B0 ¼ 2.5 T and ωz ¼ 2π × 2.1 MHz. We use an
ODF interaction strength corresponding to a Rabi fre-
quency of EO=ℏ ¼ 2π × 300 kHz, which is a level similar
to that used in previous experiments [8].
We first consider the case when the magnetic field is

aligned normal to the plane in which the ions lie. With such
an orientation, the axial motion is decoupled from the radial
motion, and the COM mode sits at the highest frequency in
the axial band. With a wave-vector difference kR ¼ kRêz,
only the axial modes are excited. By tuning the ODF to the
blue of the axial branch, variable-range spin-spin couplings
can be engineered with the range of interaction decreasing
from infinite range (a ¼ 0) to dipole-dipole type (a ¼ 3)
as ðμR − ωzÞ is increased. Since all coupling terms are
positive, they allow one to simulate an antiferromagnetic
Ising Hamiltonian. Experiments carried out so far using

both rf traps (for, e.g., Ref. [8]) and Penning traps (for, e.g.,
Ref. [10]) are based on this simplification. Conversely, a
tunable-range ferromagnetic Ising model can be simulated
by aligning kR along the radial plane and tuning the ODF to
the red (blue) of the cyclotron (magnetron) branches.
Simulating this type of couplings is possible since the
cyclotron (magnetron) COM mode is the lowest (highest)
in its branch. The coupling terms for the magnetron branch
are negative, since the magnetron motion represents an
inverted harmonic oscillator.
One of the challenges for realizing a setup with the

magnetic field normal to the plane is that it is difficult to
cool the axial motion or generate an ODF along the axis
using lasers directed parallel to the surface of the chip or,
equivalently, the plane where the ions sit. While these
problems can be countered by using in-chip waveguides
[51], we rather attempt to see how well the behavior
described above holds when the magnetic field is tilted
at an angle Θwith respect to the normal of the lattice plane.
The crucial factor here is the position of the COM mode
within the branch being excited by the ODF. For the trap
settings and lattice considered here, the COM mode is on
the edge of the band for Θ≲ 43°. Figure 6 shows the
normal-mode spectrum for the case ofΘ ¼ 20°, which does
satisfy this condition. Spin-spin coupling terms generated
from this lattice through tuning the ODF outside the
frequency spectrum of the cyclotron and axial branches
are plotted in Fig. 7.
For the case of Θ ¼ 90°, that is, when the magnetic field

is along the plane, a suitably oriented in-plane laser beam
can cool all motional modes. However, all three COM
modes lie away from the extrema of their respective
branches, making it hard to implement variable-range
spin-spin interactions by tuning μR alone. With such a
mode structure, detuning μR in either direction from any of
the three COM modes does not reveal a well-defined
power-law decay, and the coupling terms have different
signs depending on the angle of the interion vector.
A histogram plot in Fig. 8 shows this behavior. The same
is expected more generally whenever μR lies in the middle
of the branch of modes used. More complicated methods
involving multifrequency laser beams could make it pos-
sible to emulate a tunable-range Ising model with such a
geometric arrangement of microtraps [52], but we do not
consider this here. At large detunings of the ODF from a
given branch, dipole-dipole couplings can be realized with
a distance scaling jJjj0 j ∝ 1=jRjj00j3, but the sign of the
coupling term between any given pair of spins is deter-
mined mostly by their relative phase in the mode closest to
the chosen value of μR. This frustration in sign might allow
for the study of disordered spin dynamics in poorly
understood systems such as quantum spin glasses [53].
The same behavior could also be effected by tuning within
any phonon branch, although the emergence of any power-
law scaling is not expected, except for the case when the

SCALABLE ARRAYS OF MICRO-PENNING TRAPS FOR … PHYS. REV. X 10, 031027 (2020)

031027-9



ODF is tuned close to the COM mode, leading to infinite-
range behavior (a ¼ 0).
While the statements above give a general discussion,

they do not include the tuning of the angle between the
projection of the magnetic field into the plane and the
lattice symmetry axes. Here, it is probable that special cases
arise with interesting features, which could be an area of
future study.

IX. QUANTUM COMPUTATION
WITH LOCAL MODES

Many of the most promising approaches to quantum
error correction also make use of extended two-
dimensional lattices of qubits. These include both the
surface code [26] and the topological color codes [27].
For fault tolerance, errors must be local and must have low
rates; thus, it is desirable that gates between ions involve
only the chosen ions and do not require precise control of

FIG. 6. Frequency spectrum of a 204-ion honeycomb lattice
(nearest-neighbor distance d ¼ 15 μm) arranged with the tilted
configuration (Θ ¼ 20°). Shown here are the cyclotron, axial, and
magnetron branches of the normal modes. The center-of-mass
frequency in each mode branch is marked with a cross. The width
of each branch is shown in terms of the respective two-ion
exchange frequency through black arrows.

(a)

(b)

FIG. 7. Spin-spin coupling terms generatedwith an optical dipole
force for a 204-ion honeycomb lattice (d ¼ 15 μm) arranged with
the tilted geometry (Θ ¼ 20°). TheODF can be created by two laser
beams along the plane of the electrodes so that the difference wave
vector is given by kR ¼ kR cosΘêx þ kR sinΘêz. When the beat
note frequency μR lies to the red of the cyclotron branch, all
couplings are negative, and a ferromagnetic Ising interaction can be
engineered. These couplings follow an approximate power-law
decay jJjj0 j ∝ 1=jRjj00ja, and the exponent a increases with an
increasingmagnitude of δþ¼μR−ωþ. Here,EO=ℏ¼2π×300kHz.
Similar tunable ferromagnetic couplings can be achieved by tuning
to the blue of the magnetron COM mode. For the radial modes,
lasers parallel to the electrode plane can also be used to create a
wave-vector difference along the ŷ axis. When μR is increasingly
tuned away from the axial branch so that δz ¼ μR − ωz increases, all
couplings are positive, and, hence, variable-range antiferromagnetic
Ising-like interactions can be generated with a going from 0 to 3.
The strength of these couplings is limited by the angle of tiltΘ. Use
of laserless methods could eliminate this restriction. (a) Cyclotron
branch, (b) Axial branch.
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the complete array. For this reason, it is desirable to
decouple these chosen ions from the rest of the array. In
our architecture, this decoupling can be achieved by local
tuning of the trap potential of the ions in question.
As a test case, we consider a lattice of 90 beryllium ions

on a square lattice spaced by 30 μm with a quadrupole
potential corresponding to ωz ¼ 2π × 2.55 MHz [see
Fig. 9(a)]. We choose a magnetic field of 2.2 T which lies
in plane, for which ωc=ð2πÞ ¼ 3.75 MHz. For an ion in a
single isolated potential, the modified cyclotron and mag-
netron modes are then at 2.39 and 1.36 MHz, respectively.
In order to perform a gate locally between the central two
ions, we tune the curvature of the potential for these two
ions such that the axial oscillation frequency for a single
isolated ion is ðωz þ ΔωzÞ ¼ 2π × 2.63 MHz, where
Δωz ¼ 2π × 80 kHz. The resulting mode spectrum is
shown in Fig. 9(b). The choice of curvature is special,
because the potential it produces meets conditions for
which the resulting modes have a relatively small separa-
tion between the uncoupled magnetron and modified
cyclotron modes (a contribution to which is made by the
potential of the neighboring ions). Since the zero-
point motion of these modes scales as 1=Δα with
Δα ¼ ωα − ωc=2, such a choice enhances the zero-point
motion of the modified cyclotron and magnetron modes. In
addition, these modes are relatively far-detuned from the
modes of the rest of the lattice. For the chosen curvature,
the coupled modes closest to ωc=2 are those in which the
selected ions move out of phase (often called stretch
modes), which have frequencies for which Δs;þ¼2π×
60.2kHz andΔs;−¼2π×−60.50kHz and zero-point motion
for the chosen ions of 96.4 nm. The next closest are the
COM modes of the selected ions, with Δc;þ ¼
2π × 179.3 kHz and Δc;−¼2π×−179.6kHz with corre-
sponding zero-point motion of 55.9 nm. These then form an

isolated set of modes on which a multiqubit gate can be
performed. Similar to the approach taken in Sec. VIII, we
consider a geometric phase gate [45,49], which uses an
oscillating state-dependent force such as can be produced
with a traveling standing wave or a magnetic field gradient,
and make the simplification that the force at any given point
is equal in magnitude and opposite in sign for the two
eigenstates of σ̂z. The Hamiltonian is then the one found in
Eq. (21), and we assume that the experiment can be
arranged such that the phase of the force is the same at
each ion. To perform a gate, the frequency μR must be
chosen. For the mode detunings above, an attractive
possibility is to use an oscillating force at μR ¼ ωc=2,
which drives the two stretch modes almost equally but with
the opposite detuning. While for a Paul trap this drive
would result in the phases due to each mode canceling out,
for the Penning trap the contributions of both modes

(a)

(b)

FIG. 9. (a) 90-ion square lattice of beryllium ions, with two
selected ions (shown larger) in a potential well with a different
curvature from all of the others, achieved by local tuning of the
electrode voltages. (b) Normal-mode frequencies for the lattice
considered. Modes 1–90 are axial modes, 91–180 are modified
cyclotron modes, and 181–270 are magnetron modes. The
isolated modes of the ions at two selected sites are shown with
enlarged symbols, corresponding to mode indices 1 and 2, 179
and 180, and 181 and 182. Because of their frequency separation
from the bulk, these modes are largely isolated. The horizontal
dashed line indicates half the bare cyclotron frequency ωc=2.

FIG. 8. Histogram of spin-spin coupling terms when the beat
note frequency μR is tuned slightly away from the COM
frequency of the axial branch. Here, μR − ωz ¼ 2π × 0.5 kHz.
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add, because the lower-frequency mode of the pair is a
magnetron mode and, thus, has a negative frequency. If
only these two modes are included in the gate, it could be
performed in a time of tg ¼ 2π=Δs;þ by using a Rabi

frequency ηsΩ ¼ Δs;þ=
ffiffiffi
2

p
. In practice, the contributions of

the COM modes subtract from this effect, and the addi-
tional bulk modes also contribute. For a Lamb-Dicke
parameter of η ∼ 0.17 for the stretch modes, simulations
involving all modes show that a Rabi frequency of EO=ℏ ¼
2π × 300 kHz could be used to perform a gate which would
produce a Bell state with a fidelity of F > 0.9998 in 16 μs.
The large zero-point motion means that a Raman beam pair
with a small difference wave vector is required to operate
within the Lamb-Dicke regime, which is desirable for
insensitivity of gate fidelity to the initial ion temperature
[45]. For beryllium, this beam pair would require an angle
of θR ¼ π=36 for the beryllium wavelength of 313 nm.
Alternatively, a magnetic field gradient of approximately
19 T=m (lower than that realized in recent experiments
[54]) would provide a gate with the same speed. Note that
the motional mode parameters used in this analysis are
chosen to satisfy a close-to-integer ratio between Δc and
Δs, such that both the local stretch and COM modes are
disentangled from the internal states at the end of the
gate [45].
These results indicate that local changes to the potential,

combined with individual optical or microwave addressing
of the ions, could be used to realize quantum computing in
the proposed architecture. The enhanced zero-point motion
used here is particularly appealing in the context of

magnetic field gradient gates, which struggle to achieve
high gate speeds in Paul trap settings due to the challenge of
producing high field gradients [54–57]. In the presence of
high Rabi frequencies, faster gate speeds should be possible
using multipulse techniques following methods demon-
strated in Paul traps [58,59]. For error correction, the need
for regular detection of ancilla ions poses challenges with
regards to measurement cross talk, which might require the
use of selective electron shelving [40]. For parallelizing
error-correction codes, it is necessary to select multiple
pairs of ions at different points in the lattice and perform
gates on each of these simultaneously. Here, the 1=d3

nature of the Coulomb mode coupling is advantageous.

X. IMPLEMENTATION EXAMPLE

As an example of a possible implementation of a two-
dimensional Penning trap array suitable for quantum simu-
lation, we consider a honeycomb lattice of 62 sites. The
surface-electrode pattern required for such a layout with
nearest-neighbor spacing of 30 μm is shown in Fig. 10.
Applying a voltage of 135V to the dc electrodes results in an
axial trap frequency of ωz ¼ 2π × 2.1 MHz for beryllium
ions. In a global magnetic field angled at Θ ¼ 20° from the
plane normal with a magnitude of B0 ¼ 2.5 T, we get a
reduced cyclotron frequency ofωþ ¼ 2π × 3.73 MHz and a
magnetron frequency of ω− ¼ 2π × 0.54 MHz. In this
setup, effective laser cooling requires an axialization field,
which is generated by applying a drive to the rf electrodes
at a frequency of ωþ þ ω− ¼ 2π × 4.27 MHz and an
amplitude of 4 V.

FIG. 10. Top and side view of an example trap architecture for a honeycomb array of 62 beryllium ions, with a nearest-neighbor
distance d ¼ 30 μm. Ions are trapped at a distance of h ¼ 45 μm above the surface of the electrodes and are globally addressed, cooled,
and detected by lasers parallel to the surface. The electrodes labeled dc generate the static electric potential, which, in conjunction with
the global magnetic field, provides three-dimensional confinement at the sites marked in red. Tilting the magnetic field and the confining
axis of the electric potential with respect to the normal of the electrode plane allows for laser cooling of all modes of motion with lasers
parallel to the surface. The electrodes labeled rf provide the weak oscillating axialization field for laser cooling the radial modes of
motion. Imaging is carried out with an objective placed at a working distance of 18 mm from the ions.
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Working inside the bore of a several tesla super-
conducting magnetic presents challenges for the delivery
of the optical power required for cooling, detection, and
single- and multiqubit control operations. One approach
which has been used in multiple experiments is to direct
beams down the magnet bore and then redirect them using
mirrors through a vacuum system housed in the bore
[60–62]. For the purposes of working with ions in an
array of surface traps with the ions at a height of 45 μm
from the surface, we envision beams with a diameter of
2 mm directed down the bore of the magnet, which are then
reflected towards the trap with a mirror and then focused to
a beam waist of 10 μm using a 100 mm focal length
cylindrical lens. This configuration results in an intensity
variation of only 2.5% over the trap area, where 100 μW of
313 nm cooling light would have an intensity 8 times that
of the saturation intensity, which would be sufficient for
laser cooling. Raman beams with a power of 4.3 mW can be
directed parallel to the trap surface with the difference wave
vector chosen to address either the axial or the radial modes
of motion. This intensity results in a one-photon Rabi
frequency of Ω ¼ 2π × 300 MHz and for a detuning
of 150 GHz a two-photon Rabi frequency of Ω2 ¼
2π × 300 kHz.
The final element required for running such a setup

is the imaging system. Here, we envision using a
Schwarzschild objective that is diffraction limited over
a 130 μm2 region, with an effective focal length of
9.5 mm, a working distance of 18 mm, and a collection
efficiency of 4%, similar to what we have developed for
previous experiments [63]. Light collected from this
objective is directed back out of the magnet bore with
a mirror, where it can be imaged onto a suitable detector.
Taking into account other losses and the quantum effi-
ciency of the detector, we expect a detection efficiency
of 1% or 50 counts in 100 μs.
It is worth considering the power dissipation due to the

axialization field. For a surface-electrode trap fabricated
using a complementary-metal-on-silicon (CMOS) process,
each ion’s trap site (with an electrode area of 1200 μm2)
would be expected to have a capacitance of 0.01 pF.
Assuming a resistance of R ¼ 4Ω of the wiring to the trap
chip, each trap site would dissipate Prf ¼ 1

2
RC2V2

rfΩ2
rf ¼

2.3 pW due to the axialization. Such a treatment makes
clear the power-dissipation advantage of the Penning trap
approach. For a Paul trap of similar dimensions and trap
frequencies, the required rf voltage is Vrf ¼ 100 V at a
drive frequency Ωrf ¼ 2π × 163 MHz [64], which would
dissipate a power of Prf ¼ 2 μW, a factor of 106 more.

XI. SCALING

Arrays of microfabricated Penning traps provide a new
perspective towards scaling, because they do not require
applying rf drives to the ion trap chip beyond the modest

frequencies and voltages needed for axialization. The
reduction in power dissipation becomes even more critical
for a larger number of sites; for instance, an array similar to
that considered above with thousands of sites (as might
be required for quantum computation) would require
dissipating several hundred watts in a similarly sized rf
trap, which is most likely not feasible. By contrast, the
Penning trap approach dissipates several hundred micro-
watts due to axialization fields, which have to be applied
only during the reduced fraction of time devoted to Doppler
cooling.
Penning traps also reduce the number of degrees of

freedom which must be controlled at any one site relative to
radio-frequency traps. Stray electric fields in Paul traps
lead to misalignment of the radio-frequency and static
quadrupole potentials, resulting in undesirable micromo-
tion which affects the interaction of the ions with laser
fields. In Penning traps, these move the center of the trap,
resulting in shifts of the motional frequencies if the
potential is anharmonic, but do not produce any other
undesirable effect. Recent evidence suggests that heating
may be linked to processes driven by the radio-frequency
drive in Paul traps [65], which gives hope that anomalous
heating could be reduced in the systems proposed here.
While the prospects for scaling look attractive relative to

current approaches, many caveats remain. Although cow-
iring of thousands of electrodes is well within the capa-
bilities of fabrication based on commercial CMOS
processes, and trap chips fabricated using these methods
have been successfully used to trap ions [66], much work
on fabrication and operation remains in order to realize
large-scale arrays. In common with all ion trapping
schemes requiring local control for quantum computing,
a considerable remaining challenge is optical delivery of
focused laser beams, in particular, where local fields for
individual sites are required (this constraint is not met in the
approach considered in Sec. X above, which uses global
laser beams). For truly large-scale quantum computing
systems, the integration of optics [51,67,68] into the ion
trap chips seems to be essential. The need for high-intensity
laser beam delivery might be mitigated using oscillating
magnetic fields delivered directly from the ion trap chip or
using static magnetic field gradients [69,70].
As opposed to Paul traps, the primary difficulty of

realizing high-quality qubit control in Penning traps is
the presence of a high magnetic field, fluctuations in which
pose a limit to spin-state coherence. Stability on the level of
a part per billion is available through the use of super-
conducting magnets, which limits current experiments to
coherence times of 50 ms [71]. The effect on the stability of
motional modes is negligible at this level. One approach to
protecting spin qubits in a quantum computation setting
would be to use decoherence-free subspaces, which protect
against the expected homogeneous field fluctuations [72].
Alternative schemes might utilize dynamical decoupling or
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employ nuclear transitions (which are less sensitive to field
fluctuations) for memory [60].

XII. CONCLUSIONS

This study establishes the possibility of using ions in
Penning trap arrays for scalable many-body quantum
simulations and quantum computation. While we con-
sider here simple settings for motional modes and the
possibility to realize tunable-range spin-spin interactions,
the flexibility of local control of trapping potentials
means that couplings could be used to access a wide
range of possibilities which have been previously dis-
cussed in the context of other systems, including but not
limited to spin-boson systems [35], dissipative simula-
tions [36], and engineered topology [37]. Although
quantum computing seems feasible using static arrays
with selected ions tuned into local resonance, it is only
one way of scaling trapped-ion quantum information.
Breaking the lattice down into smaller units would allow
smaller ion separations to be achieved [13]. Utilizing
this design would require some level of transport of
ions, which could be performed by moving the electric
quadrupole positions dynamically [19,23,40,73]. Here,
the Penning microtrap array holds the considerable
advantage that there is no need to separate regions for
quantum gates from specialized junction regions where
two-dimensional transport occurs [74,75]. Since the
homogeneous magnetic field supplies three-dimensional
confinement anywhere that a static quadrupole can be
placed, reorganization of the potential landscape in three
dimensions would allow three-dimensional movement of
ions at any point above the trap surface. Thus, Penning
microtrap arrays appear to remove multiple constraints on
scaling trapped-ion quantum computing, paving the way
to useful quantum computers.
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APPENDIX A: SINGLE-SITE PENNING TRAP

We consider for the moment a simplified setting, in
which each ion is trapped in a symmetric static quadrupole
potential mω2

z=2½z2 − ðx2 þ y2Þ=2� for ions of mass m and
charge e embedded in a magnetic field of strength B0

aligned along the z axis. At a single site, the potential and
magnetic field give rise to a Hamiltonian

Ĥs ¼
p̂2
x þ p̂2

y

2m
þ 1

8
mω2

1ðx̂2 þ ŷ2Þ − ωc

2
ðx̂p̂y − ŷp̂xÞ

þ p̂2
z

2m
þ 1

2
mω2

z ẑ2; ðA1Þ

where ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c − 2ω2

z

p
and ωc ¼ eB0=m is the bare

cyclotron frequency. Writing the position and momentum
operators in terms of creation and annihilation operators
for the individual x, y, and z degrees of freedom, defined as

x̂¼
ffiffiffiffiffiffiffiffiffi
ℏ

mω1

s
ðâ†xþ âxÞ; p̂x ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏmω1

4

r
ðâ†x− âxÞ;

ŷ¼
ffiffiffiffiffiffiffiffiffi
ℏ

mω1

s
ðâ†yþ âyÞ; p̂y ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏmω1

4

r
ðâ†y− âyÞ;

ẑ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωz

s
ðâ†z þ âzÞ; p̂z ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏmωz

2

r
ðâ†z − âzÞ; ðA2Þ

the Hamiltonian can be rewritten as

Ĥs ¼
ℏω1

2
ðâ†xâx þ â†yây þ 1Þ þ i

ℏωc

2
ðâ†xây − â†yâxÞ

þ ℏωzðâ†z âz þ 1=2Þ: ðA3Þ

This equation can be separated into a sum of three
independent harmonic oscillators using the transformation
â� ¼ ð1= ffiffiffi

2
p Þðâx � iâyÞ for the radial motion. We then

obtain the expression given in Eq. (1) in the main
manuscript.

APPENDIX B: NORMAL MODES:
CLASSICAL DESCRIPTION

We consider a system of N micro-Penning traps
containing a single ion each (with charge þe) arranged
arbitrarily in space. The Coulomb interaction between ions
leads to a coupling between their motional states, resulting
in 3N collective normal modes of motion.

1. Lagrangian formulation

Let the quadrupole center j and the position of the ion j
in the reference frame of the lab be defined by the
coordinates Dj and Rj, respectively. Then, the local
coordinates of the ion j with respect to this quadrupole
center are given by the vector r̄j ¼ Rj −Dj.
The trapping electrodes create a static quadrupole

electric potential centered at each site j, and this potential
can be written in terms of the local coordinates as
ϕj ¼

P
μν ϕ

μν
j0 r̄

μ
j r̄

ν
j , where the indices μ and ν run over

the Cartesian components x, y, and z.
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The electrostatic potential acting on the ion j due to the
Coulomb interaction with other ions is

κj ¼
X
k≠j

e
4πϵ0jRj −Rkj

¼ kee
X
k≠j

1

jRjkj
; ðB1Þ

where ke ¼ 1=ð4πϵ0Þ is the Coulomb constant.
The total electric potential, in the absence of any

oscillating fields, is thus given by Φj ¼ ϕj þ κj.
A static homogeneousmagnetic fieldB¼B0sinθcosφêxþ

B0sinθsinφêyþB0cosθêz creates the vector potential Aj at
the site j. In the symmetric gauge, Aj ¼ 1

2
ðB ×RjÞ.

In the laboratory frame of reference, the total Lagrangian
of the system is then given by

Ltot ¼
XN
j¼1

�
1

2
mjj _Rjj2 þ eAj · _Rj − eΦj

�
; ðB2Þ

where mj is the mass of the jth ion.
The normal-mode analysis begins by finding the equi-

librium configuration of ions fRj0g, which is determined
by the minimum of the total potential energy. By expanding
the system Lagrangian about the equilibrium position of
each ion in a Taylor series up to second order, we get a
Lagrangian in terms of the generalized position vectors
rj ¼ Rj −Rj0, which specify the displacement of each ion
from its equilibrium point. The second-order term in the
expansion effectively determines the normal-mode dynam-
ics of the system near the stable spatial configuration and is
given by

L ¼
XN
j¼1

�
1

2
mjj_rjj2 þ

e
2
ðB × rjÞ · _rj − e

X
μν

ϕμν
j0r

μ
j r

ν
j

�

−
kee2

2

XN
j¼1

XN
k≠j

�X
μ

3Rμ2
jk0 − R2

jk0

R5
jk0

ðrμj − rμkÞ2 þ
X
μ≠ν

3Rμ
jk0R

ν
jk0

R5
jk0

ðrμj − rμkÞðrνj − rνkÞ
�
: ðB3Þ

We proceed by putting together all the generalized position coordinates into a single 3N-dimensional vector q ¼
½ x1…xN y1…yN z1…zN �T and introducing the 3N × 3N block matrices M, W, V, and K constructed in terms of N × N
submatrices as

M ¼

2
64
Mxx ON ON

ON Myy ON

ON ON Mzz

3
75; W ¼ eB0

2
64

ON cos θ · IN − sin θ sinφ · IN
− cos θ · IN ON sin θ cosφ · IN

sin θ sinφ · IN − sin θ cosφ · IN ON

3
75;

V ¼

2
64
Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

3
75; K ¼

2
64
Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

3
75: ðB4Þ

Here, IN and ON represent the N × N identity and zero
matrices, respectively, and the components of other sub-
matrices are defined as

Mμμ
jk ¼ mjδjk; ðB5Þ

Vμν
jk ¼ 2eϕμν

j0δjk; ðB6Þ

Kμμ
jk ¼

8>><
>>:

−kee2
P
l≠j

R2
jl0−3R

μ2
jl0

R5
jl0

; j ¼ k;

kee2
R2
jk0−3R

μ2
jk0

R5
jk0

; j ≠ k;

ðB7aÞ

Kμν
jk ¼

8>><
>>:

3kee2
P
l≠j

Rμ
jl0R

ν
jl0

R5
jl0

; j ¼ k;

−3kee2
Rμ
jk0R

ν
jk0

R5
jk0

; j ≠ k;
μ ≠ ν; ðB7bÞ

where indices j and k run from 1 to N while again the
indices μ and ν refer to the components x, y, and z.
The above definitions together withΦ ¼ V þ K allow us

to write the effective phonon Lagrangian compactly as

L ¼
X3N
j¼1

�
1

2
Mjj _q2j −

1

2

X3N
k¼1

Wjk _qjqk −
1

2

X3N
k¼1

Φjkqjqk

�
:

ðB8Þ

It should be clear thatM is a real diagonal matrix, while W
is a real antisymmetric matrix. The matrix V is traceless as a
direct consequence of Laplace’s equation, while the matrix
K is traceless, because the Coulomb forces being internal
forces in the system of ions pairwise cancel each other and
the total sum equates to zero. V andK are also both real and
symmetric. As a result, Φ ¼ V þ K is a real symmetric
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traceless matrix. These properties are useful in determining
certain characteristics of the resulting normal-mode eigen-
frequencies and eigenvectors of the system.

2. Equations of motion

Through the Euler-Lagrange equations,

d
dt

�∂L
∂ _qj

�
¼ ∂L

∂qj ; ðB9Þ

we can derive from the Lagrangian the equations of motion
of our system. The two relevant derivatives are

∂L
∂ _qj ¼ Mjj _qj −

1

2

X3N
k¼1

Wjkqk ðB10Þ

and

∂L
∂qj ¼

1

2

X3N
k¼1

Wjk _qk −
X3N
k¼1

Φjkqk; ðB11Þ

which we can combine to get

Mjjq̈j −
X3N
k¼1

Wjk _qk þ
X3N
k¼1

Φjkqk ¼ 0: ðB12Þ

In vector form, we can then see that the equations of motion
can be written as

Mq̈ −W _qþΦq ¼ 0: ðB13Þ

To find the normal modes of motion, we substitute the
oscillating trial solution q ¼ q0e−iωt, which yields the QEP

½ω2M þ ωð−iWÞ −Φ�q0 ¼ 0; ðB14Þ

that can be solved for complex eigenvectors q0 and
eigenvalues ω, which, in general, can be complex. The
set of eigenvalues fωλg are the normal-mode frequencies,
while the corresponding normalized eigenvectors fqλg give
us the normal-mode coordinates.
The general solution can be written as

qðtÞ ¼
X3N
λ¼1

ρλqλe−iωλt; ðB15Þ

where ρλ are complex scalars. The motion of the ions in
terms of the normal modes can then be retrieved as

rðtÞ ¼ Re½qðtÞ� ¼ 1

2

X3N
λ¼1

ðρλqλe−iωλt þ ρ�λq
�
λe

iωλtÞ: ðB16Þ

For real frequencies, the collective motion is bounded, and,
hence, all ions are confined.

APPENDIX C: NORMAL MODES: QUANTUM
MECHANICAL DESCRIPTION

From the Lagrangian of the system, we can
identify canonical conjugate variables to formulate our
Hamiltonian. The generalized momentum corresponding to
the generalized position qj is given by pj ¼ ð∂L=∂ _qjÞ. The
classical Hamiltonian of the system is then

H ¼
X3N
j¼1

_qjpj − L

¼
X3N
j¼1

�
1

2
Mjj _q2j þ

1

2

X3N
k¼1

Φjkqjqk

�
: ðC1Þ

Quantizing the generalized coordinates as operators
satisfying the standard commutation relations

½q̂j; q̂k� ¼ 0; ½p̂j; p̂k� ¼ 0; ½q̂j; p̂k� ¼ iℏδjk; ðC2Þ

we can formulate the quantum mechanical Hamiltonian of
the system as

Ĥ ¼
X3N
j¼1

�
p̂2
j

2Mjj
þ 1

4Mjj

X3N
k¼1

Wjkp̂jq̂k −
X3N
k¼1

Wjk

4Mkk
q̂jp̂k

−
1

8

X3N
k¼1

Tjkq̂jq̂k þ
1

2

X3N
k¼1

Φjkq̂jq̂k

�
; ðC3Þ

where T ¼ WM−1W is a real symmetric matrix.
To diagonalize the Hamiltonian in the second quantized

form Ĥ ¼ P
3N
λ¼1 ℏωλðâ†λ âλ þ 1

2
Þ, we form the phonon

creation and annihilation operators â†λ and âλ, respectively,
for the mode λ as linear combinations of the generalized
position and momentum operators:

â†λ ¼
X3N
k¼1

ðαλkp̂k þ βλkq̂kÞ; ðC4Þ

âλ ¼
X3N
k¼1

ðα�λkp̂k þ β�λkq̂kÞ; ðC5Þ

where αλk and βλk are complex numbers. For the commu-
tation relation ½âλ; â†λ0 � ¼ δλλ0 to hold, the Hamiltonian must
satisfy the commutation relation

½Ĥ; â†λ � ¼ ℏωλâ
†
λ : ðC6Þ

This commutator can be calculated by substituting Ĥ and
â†λ in terms of the canonical variables, and comparing the
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coefficients of p̂l and q̂l in ½Ĥ;â†λ �¼ℏωλ

P
3N
l¼1ðαλlp̂lþβλlq̂lÞ

yields the following set of coupled equations:

− i
βλl
Mll

þ i
2

XN
m¼1

Wlm

Mll
αλm ¼ ωλαλl; ðC7aÞ

i
XN
m¼1

�
Wlm

2Mmm
βλm −

Tlm

4
αλm þΦlmαλm

�
¼ ωλβλl: ðC7bÞ

These can be written more succinctly in vector form as

−iM−1βλ þ
i
2
M−1Wαλ ¼ ωλαλ; ðC8aÞ

i
2
WM−1βλ −

i
4
Tαλ þ iΦαλ ¼ ωλβλ: ðC8bÞ

On eliminating βλ using βλ ¼ iωλMαλ þ 1
2
Wαλ, we then

see that

ω2
λMαλ − iωλWαλ −Φαλ ¼ 0; ðC9Þ

which is the same QEP encountered in the classical analysis
in Appendix B. The QEP yields 6N eigenvectors and 6N
eigenvalues. 3N eigenvectors are used to form the creation
operators, while the other 3N eigenvectors to form the
annihilation operators. We note that if the pair ðνλ; uλÞ
satisfies the QEP, then the pair ð−νλ; u�λÞ also satisfies the
QEP. Thus, the total set of 6N eigenpairs

S ¼ fðνλ; uλÞ; jν2λMuλ − iνλWuλ −Φuλ ¼ 0g ðC10Þ

for λ running over 1 to 6N can be divided into two equally
sized subsets depending on the signs of the eigenvalues:

Sþ ≔ fðνλ; uλÞjðνλ; uλÞ ∈ S; νλ > 0g;
S− ≔ fð−νλ; u�λÞjðνλ; uλÞ ∈ S; νλ > 0g: ðC11Þ

The index λ now runs from 1 to 3N so that νλ is assumed to
be positive from here on.
Selecting the 3N eigenpairs which form the creation

operators effectively means picking the sign of the eigen-
frequency (and the corresponding eigenvector) for a given
mode λ in Ĥ ¼ P

3N
λ¼1 ℏωλðâ†λ âλ þ 1

2
Þ and involves fixing

the normalization of the eigenvectors αλ so that ½âλ;â†λ �¼1.
Explicitly,

½âλ; â†λ � ¼ iℏðβHλ αλ − αHλ βλÞ

¼ ℏ
ωλ

ðω2
λα

H
λ Mαλ þ αHλ ΦαλÞ: ðC12Þ

Substituting αλ ¼ cλγλ, where γλ is normalized to one and
cλ is a complex scalar,

½âλ; â†λ � ¼
ℏjcλj2
ωλ

fω2
λγ

H
λ Mγλ þ γHλ Φγλg; ðC13Þ

which for the condition ½âλ; â†λ � ¼ 1 yields

jcλj2 ¼
ωλ

ℏ

�
1

ω2
λγ

H
λ Mγλ þ γHλ Φγλ

�
: ðC14Þ

Since jcλj2 is non-negative, ½âλ;â†λ �¼1 onlywhen the quantity
ωλ=ðω2

λγ
H
λ Mγλ þ γHλ ΦγλÞ is positive. This expression

helps us pick out the 3N eigenpairs to form the creation
operators

ðωλ;αλÞ¼
�ðνλ;cλγλÞ; ν2λγ

H
λ Mγλþ γHλ Φγλ> 0;

ð−νλ;cλγ�λÞ; ν2λγ
H
λ Mγλþ γHλ Φγλ< 0;

ðC15Þ

where

cλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

νλ
ℏjν2λγHλ Mγλ þ γHλ Φγλj

r
ðC16Þ

can without loss of generality be chosen as real.
Furthermore, inverting the expressions for the creation
and annihilation operators yields the second quantized
form of the position and momentum operators:

q̂j ¼ −iℏ
X3N
λ¼1

ðα�λjâ†λ − αλjâλÞ

¼ −iℏ
X3N
λ¼1

cλðγ�λjâ†λ − γλjâλÞ ðC17Þ

and

p̂j ¼ iℏ
X3N
λ¼1

ðβ�λjâ†λ − βλjâλÞ ðC18Þ

APPENDIX D: TRAP IMPERFECTIONS

In a real experimental setup, the trapping potential may
not be of the idealized form expected from the optimization
of the electrode structures, while the magnetic field could
be misaligned with the confining direction of the potential.
As long as the imperfections in the electric potential are
harmonic and the magnetic field is homogeneous over the
entire system, we could employ the general discussion in
Appendix B in order to study the normal modes of the
imperfect system.
Linearization of the QEP (B14) in the first-companion

form yields the generalized eigenvalue problem (GEP)

�
O3N I3N
Φ iW

��
q0
ωq0

�
¼ ω

�
I3N O3N

O3N M

��
q0
ωq0

�
: ðD1Þ
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Inversion of the matrix on the rhs of the above equation
leads to a further reduction to the SEP:

Av ¼ ωv; ðD2Þ
with 6N-dimensional eigenvectors v ¼ ½ q0 ωq0 �T and 6N
eigenvalues ω belonging to the 6N × 6N matrix

A ¼
�
I3N O3N

O3N M−1

��
O3N I3N
Φ iW

�
: ðD3Þ

For the sake of brevity, we define the matricesW0 ¼ M−1W
and Φ0 ¼ M−1Φ, so that we have

A ¼
�
O3N I3N
Φ0 iW0

�
ðD4Þ

and

A2 ¼
� Φ0 iW0

iW0Φ0 Φ0 −W02

�
: ðD5Þ

Since A2v ¼ ω2v and the sum of eigenvalues of a matrix is
equal to its trace,

X6N
λ¼1

ω2
λ ¼ trðA2Þ ¼ trð2Φ0 −W02Þ ¼ −trðW02Þ; ðD6Þ

where we use the fact that Φ0 is traceless. The stability of
the system can as usual be determined by checking if all
eigenvalues are real. Noting that the frequencies come in
pairs of positive and negative values in the stable regime,
we can express the above sum in terms of the 3N positive
frequencies:

X3N
λ¼1

ω2
λ ¼ −

1

2
trðW02Þ: ðD7Þ

This trace can be explicitly calculated as

trðW02Þ ¼ −2e2B2
0

XN
j¼1

1

m2
j
¼ −2

XN
j¼1

ω2
c;j; ðD8Þ

where ωc;j ¼ eB0=mj is the true cyclotron frequency of the
jth ion, thus allowing us to express the sum as

X3N
λ¼1

ω2
λ ¼

XN
j¼1

ω2
c;j: ðD9Þ

Note that the sum is independent of the trapping potential.
For a typical experiment with ions of the same species and
no impurity defects, mj ¼ m, and the above sum further
simplifies in terms of the common true cyclotron frequency
ωc ¼ eB0=m to

X3N
λ¼1

ω2
λ ¼ Nω2

c: ðD10Þ

Equation (D10) can be treated as a nontrivial generalization
of the well-known Brown-Gabrielse invariance theorem for
a single ion in an imperfect Penning trap,

ω2þ þ ω2
− þ ω2

z ¼ ω2
c: ðD11Þ

One additional result can be derived from Eq. (D2) by using
the property that the product of the eigenvalues of a matrix
is equal to its determinant so that

Y6N
λ¼1

ωλ ¼ jAj ¼
				O3N I3N
Φ0 iW0

				: ðD12Þ

An interchange of 3N columns in the matrix on the rhs
allows us to write the product in terms of the 3N positive
frequencies as

ð−1Þ3N
Y3N
λ¼1

ω2
λ ¼ ð−1Þ3N

				 I3N O3N

iW0 Φ0

				; ðD13Þ

or

Y3N
λ¼1

ω2
λ ¼ jΦ0j: ðD14Þ

Finally, we arrive at

Y3N
λ¼1

ωλ ¼
ffiffiffiffiffiffiffiffi
jΦ0j

p
; ðD15Þ

which for the case of ions having identical masses can be
more conveniently expressed as

Y3N
λ¼1

ðmω2
λÞ ¼ jΦj: ðD16Þ

This result tells us that the product of eigenvalues is
independent of the magnetic field and depends only on
the curvature tensor of the total electric potential.

APPENDIX E: SPIN-SPIN COUPLING

The derivation in this Appendix follows closely the
methodology from Ref. [29]. The ODF leads to the
interaction term

ĤODF ¼ −
XN
j¼1

EO cosðkR ·Rj − μRtÞσ̂zj: ðE1Þ

In the Lamb-Dicke regime, we can expand this expression
in terms of the equilibrium positions and deviations from
them as
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ĤODF ≈
XN
j¼1

EOkR · r̂j sinðkR ·Rj0 − μRtÞσ̂zj: ðE2Þ

Then, the effective spin Hamiltonian is given by

Ĥspin ¼
i
2ℏ

½ŴIðtÞ; V̂IðtÞ�; ðE3Þ

which uses the definitions

V̂IðtÞ ¼ eiĤPHt=ℏĤODFðtÞe−iĤPHt=ℏ; ðE4Þ

ŴIðtÞ ¼
Z

t

0

V̂Iðt0Þdt0; ðE5Þ

and

ĤPH ¼
X3N
λ¼1

ℏωλ

�
â†λ âλ þ

1

2

�
: ðE6Þ

We can express the excursions from equilibrium in terms of
the harmonic oscillator creation and annihilation operators,
giving

kR · r̂j ¼ −iℏ
X
ν

kνR
X3N
λ¼1

ðα�λjνâ†λ − αλjνâλÞ: ðE7Þ

In the interaction picture with respect to the oscillator mode
Hamiltonian ĤPH, we then find that

V̂IðtÞ ¼ −
ℏEO

2

X
j;ν;λ

kνR½fλjðtÞα�λjνâ†λσ̂zj − gλjðtÞαλjνâλσ̂zj�;

ðE8Þ

where we define the functions

fλjðtÞ≡ eiϕjeiðωλ−μRÞt − e−iϕjeiðωλþμRÞt; ðE9aÞ

gλjðtÞ≡ eiϕje−iðωλþμRÞt − e−iϕje−iðωλ−μRÞt; ðE9bÞ

ϕj ¼ kR ·Rj0: ðE9cÞ

From Eqs. (E3)–(E5) and making the rotating wave
approximation with respect to the oscillator frequencies,
we then find that the static part of the effective spin
Hamiltonian can be written in the form of an Ising-like
spin Hamiltonian

Ĥspin ¼
X
jj0

J0jj0 σ̂
z
jσ̂

z
j0 ; ðE10Þ

with the coupling terms given by

J0jj0 ¼
E2
O

2

X
ν;ν0

X
λ

ω2
λ

mω2
λ þ γHλ Φγλ

kνRk
ν0
R

μ2R − ω2
λ

× cosðϕj − ϕj0 ÞReðγ�λjνγλjν0 Þ

−
E2
O

2

X
ν;ν0

X
λ

ωλμR
mω2

λ þ γHλ Φγλ

kνRk
ν0
R

μ2R − ω2
λ

× sinðϕj − ϕj0 ÞImðγ�λjνγλj0ν0 Þ: ðE11Þ

Here, γλ is the normalized normal-mode eigenvector
corresponding to the frequency ωλ, and the indices ν; ν0 run
over x, y, and z.

APPENDIX F: QUANTUM GATES

The theory for calculations of quantum gates is similar to
that detailed above, with the difference that for fidelity
calculations we have to consider the effects of residual
spin-motional entanglement and geometric phases from
motional state components displaced in phase space. For a
gate operated using an oscillating force with state depend-
ence in the z basis, a common method for measuring the
fidelity is to sandwich the two-ion gate in a Ramsey
experiment performed simultaneously on both ions. This
experiment produces the maximally entangled state jψBi ¼
ðj00 > −ij11iÞ= ffiffiffi

2
p

. Thus, the force pulse acts on a super-
position state ðj00i þ j01i þ j10i þ j11iÞ=2≡P

E jEi=2
with E ∈ f00; 01; 10; 11g. If the motional state of all
modes is prepared in the ground state, the initial state of
internal and motional states is

jψi ¼ 1

2

X
E

jEi ⊗⊗
λ
j0iλ: ðF1Þ

For two ions with index j ¼ 1 and j ¼ 2 which are at the
same phase of the optical dipole force (here assumed to be
zero), the interaction picture Hamiltonian V̂IðtÞ becomes

V̂IðtÞ ¼ −
ℏEO

2

X
ν;λ

kνR½fλðtÞâ†λðα�λ1νσ̂z1 þ α�λ2νσ̂
z
2Þ þ H:c:�;

ðF2Þ
where H.c. indicates the Hermitian conjugate. Since the
gate acts on the four eigenstates of σz1 þ σ̂z2, the action of the
Hamiltonian acts in terms of these four eigenstates as

UðtÞjψi ¼ 1

2

X
E

jEi
Y
λ

D̂λ½χλ;EðtÞ�eiΦλ;EðtÞ; ðF3Þ

where D̂λ denotes a displacement operator on the mode λ,
with the displacement amplitude

χλ;EðtÞ ¼ EOpλ;EFðμR;ωλ; tÞ; ðF4Þ
with the function
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Fðμ;ω; tÞ ¼ −
e−itðμ−ωÞ=2 sin½tðμ − ωÞ=2�

ðμ − ωÞ

þ eitðμþωÞ=2 sin½tðμþ ωÞ=2�
ðμþ ωÞ ðF5Þ

and pλ;E ¼ P
ν k

ν
Rð�αλ1ν þ�αλ2νÞ with plus signs for

internal state 0 and minus signs for internal state 1 of each
ion. The phases are given by

Φλ;EðtÞ ¼
E2
0

4

X
ν;ν0

jpλ;Ej2GðμR;ωλ; tÞ ðF6Þ

with

Gðμ;ω; tÞ ¼ 2tω
μ2 − ω2

þ 2 μ sin½ðμþ ωÞt�
ðμþ ωÞðμ2 − ω2Þ

−
2 μ sin½ðμ − ωÞt�
ðμ − ωÞðμ2 − ω2Þ −

ω sinð2 μtÞ
μðμ2 − ω2Þ : ðF7Þ

Once the state after the gate is found, it can be used to form
a density matrix from which all relevant quantities can be
obtained. For the fidelity with the maximally entangled
state, we take F ¼ hψBjρðtÞjψBi. We trace out the motional
displacements using the overlap between two coherent
states:

h0jD̂†ðχÞD̂ðβÞj0i ¼ e−jχj2=2e−jβj2=2eχ�β: ðF8Þ
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