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We show that any Sachdev-Ye-Kitaev- (SYK) like model with finite-body interactions among local
degrees of freedom, e.g., bosons or spins, has a fundamental difference from the standard fermionic model:
The former model fails to be described by an annealed free energy at low temperature. In this respect, such
models more closely resemble spin glasses. We demonstrate this by two means: first, a general theorem
proving that the annealed free energy is divergent at low temperature in any model with a tensor product
Hilbert space, and second, a replica treatment of two prominent examples which exhibit phase transitions
from an “annealed” phase to a “nonannealed” phase as a function of the temperature. We further show that
this effect appears only at OðNÞth order in a 1=N expansion, even though lower-order terms misleadingly
seem to converge. Our results prove that the nonbosonic nature of the particles in the SYK model is an
essential ingredient for its physics, highlight connections between local models and spin glasses, and raise
important questions as to the role of fermions and/or glassiness in holography.
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I. INTRODUCTION

There has recently been tremendous interest in the
Sachdev-Ye-Kitaev (SYK) model of interacting Majorana
fermions [1–8]. This is largely because the low-energy limit
of the SYK model provides a tractable example of
holography: a duality between a quantum system without
gravity and a quantum system with gravity in an emergent
dynamical spacetime [9–11]. It has become a valuable toy
model in studies of the chaotic nature of black holes, the
black-hole information problem, and much more. It has
also given rise to models of strongly correlated electronic
systems [12–20] and has inspired proposals for experi-
mental realizations [21–24].
What the SYK model does not exhibit is spin-glass

physics [25–27]. This is surprising, because the SYK
Hamiltonian bears a striking similarity to the quintessential
mean-field models of spin-glass theory [28–30]. Both the
SYK and spin-glass models are defined by random-strength
interactions among all degrees of freedom. Here we show

that the essential difference is the fermionic nature of the
particles in the SYK model: Any model with strictly local
degrees of freedom will share much more in common with
spin glasses.
This result is relevant because interest in SYK physics

has spread to generalizations of the original model. To
name a few: including multiple flavors of fermions [31],
using bosonic particles [2,32,33], using spins [34,35],
forming lattices of SYK models [36,37], and introducing
supersymmetry [38,39]. With the analysis presented in this
paper, we are able to immediately identify large classes of
such models in which the potential for glassiness must be
carefully addressed.
On the spin-glass side, all-to-all disordered models

have been featured prominently for decades. Sherrington
and Kirkpatrick first introduced a system of Ising spins
with infinite-range random interactions which exhibits
an intricate spin-glass phase [28,40,41]. The model has
been extended in numerous directions, both classical
and quantum, many of which are central to the field in
their own right: p-body interactions [29,42,43], spherical
spins [44–46], Potts spins [47,48], Heisenberg inter-
actions [1,2,30,49], and transverse fields [50–52], among
many others.
These variants all share certain phenomena which unite

them as spin glasses. As one lowers the temperature, the
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system first undergoes a “dynamical” transition at temper-
ature Td, below which dynamical correlation functions
never fully decay. The system experiences a further “static”
transition at a potentially lower Ts, below which one can
detect frozen magnetization patterns in the equilibrium
Gibbs distribution. Certain systems undergo a third
“Gardner” transition at an even lower Tg, below which
the magnetization patterns become more complex, with
subpatterns and so on. For pedagogical expositions of the
physics, see Refs. [53–55].
All indications are that the SYK model does not show

any such behavior [1,25–27,56]. This raises multiple
questions, chief among which is simply: Which general-
izations of the SYK model do have spin-glass phases?
Presumably such glassiness would rule out any connection
to quantum gravity (although that is itself an important
open question). It has long been known that the bosonic
variant of the SYK model is a spin glass [2,3,32], yet this is
merely one model out of the multitude which could arise.
A recent numerical study of small systems found evidence
suggesting that the hard-core bosonic variant is a spin glass
as well [33]. Beyond this, the question has remained
unexplored. There has been no general framework for
understanding when all-to-all disordered systems behave as
spin glasses rather than the SYK model.
This paper aims to fill that gap. On a technical level,

generic models can be analyzed in two ways, and we
address both. The first relies on the replica formalism: One
expresses the moments of the partition function as a path
integral and uses standard mean-field techniques to obtain
the free energy [53–55]. One can circumvent replicas by
making the “annealed” approximation; namely, replacing
the partition function by its first moment at the outset. The
second approach is to organize the diagrammatic expansion
of the propagator in powers of system size N. One averages
each term over the disorder and finds that a summable set of
diagrams (the so-called “melons” in the SYK model) gives
the leading-in-N contribution. This sum ultimately gives
the same results as the annealed approximation. Even
though the annealed approximation appears to be correct
for the SYK model, it is in general extremely unreliable at
low temperature. Indeed, breakdown of the annealed
approximation is often what signals entry into a spin-glass
phase. We study this breakdown and its consequences in
generic all-to-all disordered systems.
Alongside their relevance to holography and spin-glass

theory, the models we consider here may also give insight
into the performance of quantum-optimization algorithms.
It has long been known that many NP-complete optimiza-
tion problems are essentially spin-glass models, with the
ruggedness of the low-energy manifold, i.e., glassiness,
being responsible for the difficulty in solving them [53,55].
The question of whether quantum can outperform classical
algorithms thus becomes one of characterizing the quan-
tum-energy landscape, i.e., including quantum fluctuations

[57–60]. While we do not address this aspect explicitly in
what follows, it is an important consequence to keep
in mind.
In Sec. II, we introduce our notation and the specific

models which serve as our examples. In Sec. III, we
prove that the annealed approximation cannot hold at
low temperature in any model for which the Hilbert space
is a tensor product. This includes bosons (soft and hard
core), spins, distinguishable particles, etc. It shows that all
such models are fundamentally different from the SYK
model. In Sec. IV, we then give a more detailed and
transparent analysis of the hard-core bosonic and quantum
p-spin models. Despite the models not being fully solvable,
we show that each undergoes a transition from an annealed
phase at high temperature to a nonannealed phase at low
temperature. Lastly, in Sec. V, we use a concrete example to
demonstrate the difficulty in obtaining such results through
a 1=N expansion.

II. MODELS AND DEFINITIONS

Here we define the models of interest, starting with the
original SYK model and then introducing various modi-
fications. All of the models discussed here are in fact
ensembles of Hamiltonians given by Gaussian random
couplings. We also give a very brief description of the
replica method. More detailed accounts can be found in the
references.

(i) Fermionic models: The original SYK model is
defined using N Majorana (i.e., Hermitian) fermion
operators γ̂i. Note that the Hilbert space of the theory
has dimension 2N=2. The Hamiltonian, which has an
even integer q as a parameter, is

HSYK ¼ iq=2
X

i1<���<iq

Ji1;…;iq γ̂i1 � � � γ̂iq ; ð1Þ

where the couplings Ji1;…;iq are independent Gaus-
sian random variables with mean zero and variance

Var½Ji1;…;iq � ¼
ðq − 1Þ!
Nq−1 : ð2Þ

One can also consider the analogous complex SYK
model, where the Majorana operators are replaced
by complex fermions ĉi and ĉ†i (p≡ q=2 of each):

HCSYK ¼
X
II0

JII0 ĉ
†
i1
� � � ĉ†ip ĉi0p � � � ĉi01 : ð3Þ

Here and throughout, we use a convenient notation
in which the multi-index I represents a set of p
indices i1 < � � � < ip arranged in increasing order.
Thus, HCSYK consists of all possible p-body inter-
actions. The couplings JII0 are again independent
Gaussians, but now complex with
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Var½ReJII0 � ¼ Var½ImJII0 � ¼
ðp!Þ2
2N2p−1 ; ð4Þ

and such that JI0I ¼ J�II0 . One reason for considering
HCSYK as opposed to HSYK (or vice versa) is that
HCSYK has a conserved particle number.

(ii) Bosonic models: The bosonic SYK model simply
replaces the fermionic operators ĉi with bosonic
operators b̂i:

HBSYK ¼
X
II0

JII0 b̂
†
i1
� � � b̂†ip b̂i01 � � � b̂i0p : ð5Þ

The couplings JII0 remain exactly as in Eq. (4). An
issue with this definition is that in the grand-
canonical ensemble, where the number of particles
is unlimited, HBSYK is unbounded from below. One
could therefore work at fixed particle number, as
past works on the bosonic SYK model have done
[1,2,32], or one could interpret the b̂i as hard-core
bosons [33] (i.e., exclude double occupancies on
sites). Either choice guarantees that the model has a
definite ground state. We do the latter: In addition to
being more interesting (in the sense that much less is
known about it), the hard-core model has the benefit
of having a well-defined grand-canonical ensemble.

(iii) Spin models: The quantum p-spin model consists
of all-to-all p-body interactions among spins σ̂αi
(α ∈ fx; y; zg):

Hp ¼
X
IA

JAI σ̂
α1
i1
� � � σ̂αpip ; ð6Þ

where I is the same multi-index as before and A¼
fα1;…;αpg. We use spin-1=2, but our results apply
to any spin. The couplings JAI are real Gaussians
with variance

Var½JAI � ¼
p!

6ð3NÞp−1 : ð7Þ

Connections between this spin model and the SYK
model have recently been explored in Refs. [34,35].

It should be stressed that our conclusions are in no way
restricted to these models. We focus on those listed here
solely for the sake of concreteness and current relevance.
Regardless of the model, one is always faced with

the question of how to treat the random couplings (the
“disorder”). Assuming the ultimate goal is to calculate the
statistics of physical observables, an important quantity is
the “quenched” free energy:

fðβÞ≡ − lim
N→∞

1

Nβ
E½ln Tre−βH�; ð8Þ

where E½·� denotes the average over random couplings and
Tr½·� is the usual sum over states. Derivatives of fðβÞ clearly

give the disorder-averaged values of observables, exactly as
the free energy does in nonrandom systems.
fðβÞ is extremely difficult to evaluate, even for classical

systems. The replica method is one of the few ways to make
analytic progress. It is based on the identity

E½ln Tre−βH� ¼ lim
n→0

1

n
lnE½ðTre−βHÞn�: ð9Þ

One evaluates the average on the right-hand side for integer
n, interpreting ðTre−βHÞn as the partition function for n
uncoupled “replicas” of the system, i.e.,

�X
ΨhΨje−βHjΨi

�
n

¼
X

Ψ1;…;Ψn

hΨ1je−βHjΨ1i � � � hΨnje−βHjΨni

¼
X

Ψ1;…;Ψn

hΨ1;…;Ψnje−βH1−���−βHn jΨ1;…;Ψni; ð10Þ

where fΨg is a complete set of states. In the first line, the
operators and states live in the original Hilbert space H,
whereas in the second line, they live in the product
space H⊗n. Assuming one can obtain an analytic expres-
sion for the disorder average of Eq. (10), one then pretends
that n is an arbitrary real number and takes the n → 0 limit.
This technique is clearly not rigorous. It has nonetheless
been tremendously successful in the study of disordered
systems [53–55].
A drastic but useful approximation which avoids replicas

entirely is to interchange the disorder average and loga-
rithm in the definition of the quenched free energy (and
then take the average inside the trace). This approximation
gives the “annealed” free energy:

fðannÞðβÞ ¼ − lim
N→∞

1

Nβ
lnE½Tre−βHg �: ð11Þ

Note that derivatives of fðannÞðβÞ do not correspond to
physical quantities. One often finds that f ∼ fðannÞ at high
temperature but that fðannÞ gives patently incorrect results at
low temperature (see Sec. III). The SYK model seems to be
the only known nontrivial counterexample.
As an aside, the terminology quenched versus annealed

comes frommetallurgy and refers to whether fluctuations in
the disorder (accounted for by E½·�) are treated on the same
footing as thermal fluctuations in the degrees of freedom
(accounted for by the trace). Equation (8) treats the disorder
as fixed when computing observables and only afterwards
averages over disorder, whereas Eq. (11) sums over
fluctuations in both simultaneously.
Numerical simulations in principle provide another

means of tackling these models, but they are plagued by
difficulties of their own. The system sizes accessible to
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exact diagonalization (N ≈ 30) are simply too small to
conclusively observe spin-glass physics, and quantum
Monte Carlo would suffer from sign problems. The lack
of efficient numerical methods makes the rigorous results
that we present below all the more valuable.

III. BREAKDOWN OF THE ANNEALED
APPROXIMATION IN TENSOR

PRODUCT MODELS

Here we prove a general result: The annealed free
energy cannot be correct at low temperature for any all-
to-all model with a tensor product structure. Specifically,
consider any N-particle Hamiltonian of the form

Hg ¼
X
IA

JAI Ô
α1
i1
� � � Ôαp

ip
; ð12Þ

where I denotes sets of p particles and A denotes sets of p
indices from some group of size k, and JAI is Gaussian with

Var½JAI � ¼
N
2

p!
ðkNÞp : ð13Þ

We shall take the operators Oα
i to be Hermitian, but

models such as the complex SYK model involving non-
Hermitian operators can be treated in the same manner.
The only restriction we place on the operators is that
they obey a tensor product structure: The Hilbert spaceH is
a tensor product H1 ⊗ � � � ⊗ HN and Ôα

i is shorthand for
11 ⊗ � � � ⊗ Ôα

i ⊗ � � � ⊗ 1N . The quenched and annealed
free energies are, respectively,

fðβÞ ¼ − lim
N→∞

1

Nβ
E½ln Tre−βHg �;

fðannÞðβÞ ¼ − lim
N→∞

1

Nβ
lnE½Tre−βHg �: ð14Þ

We prove that there is a finite β� such that for β > β�,

fðβÞ ≠ fðannÞðβÞ: ð15Þ

A. Warm-up

Let us first consider a classical model, for which the
annealed free energy is easily computed. The Sherrington-
Kirkpatrick (SK) model mentioned in the Introduction is

HSK ¼
X
i<j

Jijσ
z
iσ

z
j; ð16Þ

with Ising spins σzi and Var½Jij� ¼ 1=N. A simple calcu-
lation gives

E½Tre−βHSK � ¼ 2N
Y
i<j

e
β2

2N; ð17Þ

and thus,

fðannÞðβÞ ¼ −
1

β
ln 2 −

β

4
: ð18Þ

Yet, if Eq. (18) were the correct expression for the average
free energy, then the average energy per spin would be ϵ ¼
−β=2 and the average entropy would be sðϵÞ ¼ ln 2 − ϵ2.
This cannot be, since the entropy in a discrete configuration
space is non-negative: The number of configurations ΩðϵÞ
within a small energy window around ϵ is a non-negative
integer; thus, limN→∞N−1 lnΩðϵÞ is either −∞ or non-
negative. The annealed free energy of the SKmodel must be
invalid for ϵ < −

ffiffiffiffiffiffiffi
ln 2

p
, i.e., β > 2

ffiffiffiffiffiffiffi
ln 2

p
.

B. Generic tensor product models

The statement that the entropy must be non-negative
applies equally well to quantum systems: Simply replace
the word “configurations” by “energy eigenstates.” For any
Hamiltonian Hg of the form in Eq. (12), we give an upper
bound to fðannÞ which diverges to −∞ as T ≡ 1=β → 0. It
follows that the annealed entropy, being −∂fðannÞ=∂T, must
diverge to −∞ as T → 0, and thus cannot be correct below
a certain temperature. See Fig. 1 for a sketch of the
situation.
Since the various Ôα may not commute for different α,

we cannot directly evaluate the annealed free energy as for
the SK model. Yet we always have Jensen’s inequality,

FIG. 1. Sketch of a bound on the annealed free energy (dashed)
which might result from the present analysis, as compared
to the exact annealed free energy (solid). The curves shown
are merely illustrations, not results for any specific model. The
important feature is that the bound diverges to −∞ as T → 0,
forcing the exact curve to do so as well. The shaded region is
where sðannÞ ≡ −∂fðannÞ=∂T < 0 and the annealed approximation
must be invalid.
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hΨje−βHg jΨi ≥ e−βhΨjHgjΨi; ð19Þ

for any quantum state jΨi. Summing Eq. (19) over a
complete set of states, averaging over disorder, and taking
the logarithm, we find that

fðannÞ ≤ −
1

Nβ
ln
X
Ψ
E
h
e−β

P
IA
JAI hΨjÔ

α1
i1
���Ôαp

ip
jΨii

¼ −
1

Nβ
ln
X
Ψ
e
Nβ2

4
p!

ðkNÞp
P

IA
hΨjÔα1

i1
���Ôαp

ip
jΨi2 : ð20Þ

Note that Eq. (20) holds for any basis jΨi used on the right-
hand side.
The tensor product structure allows us to use a product

basis, i.e.,

hΨjÔα1
i1
� � �Ôαp

ip
jΨi¼ hψ i1 jÔα1

i1
jψ i1i � � � hψ ip jÔ

αp
ip
jψ ipi: ð21Þ

Furthermore, since the operators Ôα are not identically 0,
there must be some single-particle state jψ�

i i for which

jhψ�
i jÔα

i jψ�
i ij≡ jOα�j > 0; ð22Þ

at least for some α. Use this jψ�
i i as a basis state. Then,

X
Ψ

exp
�
Nβ2

4

p!
ðkNÞp

X
IA

hΨjÔα1
i1
�� �Ôαp

ip
jΨi2

�

> exp

�
Nβ2

4

p!
ðkNÞp

X
IA

jhψ�
i1
jÔα1

i1
jψ�

i1
ij2 �� �jhψ�

ip
jÔαp

ip
jψ�

ip
ij2

�

¼ exp

�
Nβ2

4kp
jOα�j2pþ���

�
; ð23Þ

where the omitted terms (coming from A ≠ fα;…; αg) are
positive. Inserting into Eq. (20) gives our final bound:

fðannÞ ≤ −
β

4kp
jOα�j2p: ð24Þ

Clearly, fðannÞ → −∞ as β → ∞, as claimed.
The divergence of fðannÞ at low temperature is not limited

to Gaussian disorder. The Gaussian coupling distribution is
used only to evaluate the average in Eq. (20), and an
analogous bound can be obtained for any other distribution.
For example, suppose each JAI has some alternate proba-
bility density PðJÞ for which the mean is zero and the
variance is still given by Eq. (13). Assume PðJÞ falls off
faster than exponentially for J2 ≫ Var½J�, so that we can
safely expand inside the average:

E½e−β
P

IA
JAI hΨjÔ

α1
i1
���Ôαp

ip
jΨi�

∼
Y
IA

�
1þ 1

2
β2E½ðJAI Þ2�hΨjÔα1

i1
� � � Ôαp

ip
jΨi2

�

∼ e
Nβ2

4
p!

ðkNÞp
P

IA
hΨjÔα1

i1
���Ôαp

ip
jΨi2 : ð25Þ

We can proceed with the proof as before and obtain the
same Eq. (24), for any such PðJÞ.
For the sake of concreteness, we next consider some

specific models.

C. Example: Quantum p spin

Anatural basis to use for the quantump-spinHamiltonian
[Eq. (6)] is the σ̂zi eigenstates j↑i and j↓i. Both states have
expectationvalues jhσ̂zi ij2¼1=4, jhσ̂xi ij2¼ jhσ̂yi ij2¼ 0. Thus,
Eq. (20) gives the bound

fðannÞp ≤ −
1

β
ln 2 −

β

4

1

12p
: ð26Þ

The extra term compared to Eq. (24) comes from summing
over the 2N basis states, which we neglect for simplicity in
the general treatment.

D. Example: Hard-core bosonic SYK model

In this case [Eq. (5)], we have that

fðannÞBSYK ≤ − lim
N→∞

1

Nβ
ln

X
ψ1���ψN

e
Nβ2

2
ð1N
P

i
jhψ ijb̂ijψ iij2Þ2p : ð27Þ

The number eigenstates jψ ii ∈ fj0i; j1ig do not give useful
bounds, but the superpositions jψ ii∈ fðj0i� j1iÞ= ffiffiffi

2
p g do:

fðannÞBSYK ≤ −
1

β
ln 2 −

β

2

1

16p
: ð28Þ

E. Example: Complex fermionic SYK model

Note that the bound in Eq. (20) always applies, regard-
less of whether the Hilbert space is a tensor product or not.
In particular, it holds for the fermionic SYK model (both
real and complex), for which the annealed free energy
seems to be correct at all temperatures. It is informative to
see how this result is consistent with the bounds obtained
through Eq. (20), in contrast to the examples above.
Given the similarity between hard-core bosons and

fermions, and given that the states ðj0i � j1iÞ= ffiffiffi
2

p
yield

a free energy diverging at low temperature in the former, let
us consider the analogous basis in the fermionic Hilbert
space:

jΨi≡ 1ffiffiffiffiffiffi
2N

p ½1þ ð−1Þψ1 ĉ†1� � � � ½1þ ð−1ÞψN ĉ†N �j0i

¼ 1ffiffiffiffiffiffi
2N

p
X
s1���sN

ð−1Þψ⃗ ·s⃗
Y

k∶sk¼1

ĉ†kj0i: ð29Þ
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Here the state index Ψ ∈ f0; 1gN is denoted as a vector ψ⃗,
and similarly for s⃗.
Starting from Eq. (20), we need to evaluate

hΨjĉ†i1 � � � ĉ†ip ĉjp � � � ĉj1 jΨi

¼ 1

2N

X
s⃗;s⃗0

ð−1Þψ⃗ ·ðs⃗þs⃗0Þh0j
� Y

k∶sk¼1

ĉk

�
ĉ†i1 � � � ĉ†ip

× ĉjp � � � ĉj1
� Y

l∶s0l¼1

ĉ†l

�
j0i: ð30Þ

Note that to leading order in N, none of the ik are equal to
any of the jl. A given term vanishes unless s0i1¼���¼s0ip¼0,
s0j1 ¼ � � � ¼ s0jp ¼ 1. Furthermore, we need sk ¼ s0k except
for k ∈ fi1;…; ip; j1;…; jpg, in which case sk ¼ 1 − s0k.

Thus, ð−1Þψ⃗ ·ðs⃗þs⃗0Þ ¼ ð−1Þψ i1
þ���þψ ipþψjpþ���þψj1 , which can

be taken outside the sum.
Additional minus signs come from rearranging the

fermion operators. First note that factors of ĉi1 ĉ
†
i1
, ĉj3 ĉ

†
j3
,

etc., in which the two matching operators are adjacent, can
be treated as the identity: As a pair, they commute past all
other operators, and ĉiĉ

†
i j0i ¼ j0i. Thus, owing to the

initial order of the ĉ†l in Eq. (29) (the index increases from
left to right), one can convince oneself that we obtain a
factor of −1 for each k less than i1, each k less than i2, each
l less than j1, each l less than j2, and so on. But now
suppose that j1 ≤ i1 − 2. Each choice of s⃗ can be associated
with an r⃗ according to sj1−1 ¼ 1 − rj1−1, sj1þ1 ¼ 1 − rj1þ1,
with all other sl ¼ rl. The two vectors give contributions
differing by exactly one minus sign, and therefore sum to 0.
The lesson is that Eq. (30) evaluates to 0 unless every i

and j index is adjacent to another, e.g., i1 ¼ j1 − 1 or
i2 ¼ j1 þ 1. Yet this restriction reduces the number of free
indices for us to sum over, and we need all 2p to be free in
order to obtain an extensive bound on fðannÞ (a factor ofN2p

to compensate for N−ð2p−1Þ from the coupling variance). In
the thermodynamic limit, the only bound we obtain in this
case is

fðannÞCSYK ≤ −
1

β
ln 2: ð31Þ

The right-hand side does not diverge as β → ∞, and

fðannÞCSYK has the potential to remain correct even at zero
temperature.

IV. REPLICA ANALYSIS FOR
SPECIFIC MODELS

Much additional insight comes from considering the
replica analysis in detail for specific models. We focus on
the hard-core bosonic and p-spin models. Yet keep in mind
that even though we limit ourselves to these two for ease of

presentation, our analysis is in fact much more general.
It can be applied with minimal modifications to any model
which admits a path integral representation, even if local
constraints on the fields are required.
Furthermore, the replica analysis allows us to make

conclusions about the high-temperature behavior of the
models. Indeed, we show that the hard-core bosonic and p-
spin models undergo genuine phase transitions: For each,
there exists a βc such that the free energy equals fðannÞ for
β < βc and does not for β > βc. We are able to say this
without needing to calculate the precise functional behavior
of fðannÞ.

A. Hard-core bosonic SYK model

The hard-core bosonic SYK model is given by Eq. (5)
reproduced here:

HBSYK ¼
X
II0

JII0 b̂
†
i1
� � � b̂†ip b̂i01 � � � b̂i0p : ð5Þ

To construct a path integral representation of the partition
function, we express each hard-core boson operator b̂i as a
pair of fermions together with a constraint:

b̂i ¼ ĥ†i âi; ĥ†i ĥi þ â†i âi ¼ 1: ð32Þ

The partition function is then

ZBSYK¼
Z Y

i

DhiDaiDμie
−
P

i
Sð0Þ½hi;ai;μi�−

P
II0JII0Sint½hII0 ;aII0 �;

ð33Þ
with

S½0Þ½hi; ai; μi�≡
Z

1

0

dτ½hiðτÞ�∂τhiðτÞ þ aiðτÞ�∂τaiðτÞ

− μiðτÞðhiðτÞ�hiðτÞ þ aiðτÞ�aiðτÞ − 1Þ�;
ð34Þ

Sint½hII0 ; aII0 �≡ β

Z
1

0

dτai1ðτÞ�hi1ðτÞ � � � aipðτÞ�hipðτÞ

× hi0pðτÞ�ai0pðτÞ � � � hi01ðτÞ�ai01ðτÞ: ð35Þ

Note that we enforce the constraint by way of a Lagrange
multiplier μi on each site. Also note that we use a slightly
nonstandard definition of imaginary time: τ ranges from
0 to 1 for all β. This is convenient in what follows.
As we have described in Sec. II, we now evaluate

E½Zn
BSYK�. To save space, we give the steps of the

calculation in the Appendix A. The method is standard,
and analogous calculations can be found in, e.g.,
Refs. [3,51,54,55]. The result is a path integral over an
order parameter Grr0 ðτ; τ0Þ and Lagrange multiplier
Frr0 ðτ; τ0Þ:
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E½Zn
BSYK� ¼

Z Y
rr0

DGrr0DFrr0eNΦn½G;F�; ð36Þ

where

Φn½G;F�≡ β2

2

X
rr0

Z
1

0

dτdτ0(Grr0 ðτ; τ0ÞpGr0rðτ0; τÞp − Frr0 ðτ; τ0ÞGr0rðτ0; τÞ)þ ln
Z Y

r

DhrDarDμre−S
ðeffÞ½h;a;μ�; ð37Þ

SðeffÞ½h; a; μ�≡X
r

Sð0Þ½hr; ar; μr� −
β2

2

X
rr0

Z
1

0

dτdτ0Frr0 ðτ; τ0ÞarðτÞ�hrðτÞhr0 ðτ0Þ�ar0 ðτ0Þ: ð38Þ

The indices r and r0 denote different replicas: r;r0 ∈
f1;…;ng.
In the thermodynamic limit, Eq. (36) is dominated by the

saddle-point value, whose location is determined by the
equations

Frr0 ðτ; τ0Þ ¼ 2pGrr0 ðτ; τ0ÞpGr0rðτ0; τÞp−1; ð39Þ

Grr0 ðτ; τ0Þ ¼ hhrðτÞ�arðτÞar0 ðτ0Þ�hr0 ðτ0Þieff ; ð40Þ

where h·ieff denotes an expectation value using the effective
action of Eq. (38). From the analysis in Appendix A, one
can show that in physical terms, the solution Grr0 ðτ; τ0Þ to
Eqs. (39) and (40) is simply the equilibrium Green’s
function for the hard-core bosons in the original model:

Grr0 ðτ; τ0Þ ¼ hTb̂irðτÞb̂ir0 ðτ0Þ†i; ð41Þ

where T denotes time ordering.

Thus far, all calculations are exact. We cannot proceed
any further in full generality, since (unlike in the SYK
model) the remaining action for h and a is not quadratic.
Nonetheless, we use this starting point to both confirm that
the annealed free energy diverges at low temperature and
show that it is correct at high temperature.

1. Low temperature

If we set n ¼ 1 in Eq. (36), then we in fact have an
expression for the annealed free energy:

max
G;F

Φ1½G;F� ¼ −βfðannÞðβÞ: ð42Þ

In terms of the order parameter Gðτ − τ0Þ (note the lack of
replica indices and that we assume time translation invari-
ance), the expression for Φ1 is

Φ1½G;F� ¼
β2

2

Z
1

0

dτ½GðτÞpGð1 − τÞp − FðτÞGð1 − τÞ� þ ln
Z

DhDaDμe−S
ð0Þ½h;a;μ�þβ2

2

R
1

0
dτdτ0Fðτ−τ0ÞaðτÞ�hðτÞhðτ0Þ�aðτ0Þ; ð43Þ

and the saddle-point equations are

Fðτ − τ0Þ ¼ 2pGðτ − τ0ÞpGðτ0 − τÞp−1; ð44Þ

Gðτ − τ0Þ ¼ hhðτÞ�aðτÞaðτ0Þ�hðτ0Þieff : ð45Þ

At low temperature, the maximizer of Eq. (43) is static, i.e., independent of τ. We show this self-consistently. Given
a τ-independent F, we can perform a Hubbard-Stratonovich transformation on the remaining path integral:

Z
DhDaDμe−S

ð0Þ½h;a;μ�þβ2F
2

R
1

0
dτdτ0aðτÞ�hðτÞhðτ0Þ�aðτ0Þ ¼

Z
dzdz�

2π
e−

1
2
jzj2

Z
DhDaDμe−S

ð0Þ½h;a;μ�þβ
ffiffi
F

p
2

R
1

0
dτðzaðτÞ�hðτÞþz�hðτÞ�aðτÞÞ:

ð46Þ

The path integral on the right-hand side is precisely that of a single hard-core boson with z-dependent Hamiltonian

HðeffÞðzÞ ¼ −
ffiffiffiffi
F

p

2
ðzb̂† þ z�b̂Þ: ð47Þ
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We at last have a tractable expression. Equation (45) becomes

G ¼ 1R
dzdz�
2π e−

1
2
jzj2Tr½e−βHðeffÞðzÞ�

Z
dzdz�

2π
e−

1
2
jzj2Tr½e−βð1−τÞHðeffÞðzÞb̂e−βτHðeffÞðzÞb̂†�

¼ 1R
dzdz�
2π e−

1
2
jzj22 cosh β

ffiffiffi
F

p
2
jzj

Z
dzdz�

2π
e−

1
2
jzj2 cosh βτ

ffiffiffiffi
F

p

2
jzj cosh βð1 − τÞ

ffiffiffiffi
F

p

2
jzj: ð48Þ

The right-hand side must be independent of τ in order
to be consistent, and this is indeed what happens at low
temperature: For τ ≫ 1=β ∼ 0, we have

G ∼
1

4
; F ∼

2p
42p−1

: ð49Þ

Returning to Eq. (43), the annealed free energy is

fðannÞðβÞ ∼ −
β

2

1

16p
þ � � � ; ð50Þ

where the ellipses denote terms subleading in β.
Of course, FðτÞ is not strictly static at low but nonzero

temperature. Rather, it has a static component F and a
correction ΔFðτÞ, where the correction is non-negligible
only for τ ≲ 1=β. The presence of ΔFðτÞ does not change
the fact that the correlation time is Oð1=βÞ, and thus, this
ansatz for FðτÞ is fully self-consistent. Furthermore, ΔFðτÞ
gives only subleading corrections to fðannÞ. The expression
shown in Eq. (50) is correct to leading order.
Finally, note that while we obtain the annealed free

energy by setting n ¼ 1 in Φn½G;F� [Eq. (37)], the same
expression results from instead setting all inter-replica
order parameters to 0: set Grr0 ¼ Frr0 ¼ 0 for r ≠ r0, and
take the n → 0 limit as prescribed (see Sec. II). Since we
know that this expression cannot be correct at low temper-
ature, it follows that the true equilibrium value of the order
parameter, whatever it may be, cannot be diagonal in
replica indices.
The conclusion is that in the hard-core bosonic SYK

model, the autocorrelation function GðτÞ develops a static
component as T → 0 which is responsible for the divergent
annealed free energy. This in turn implies that the system
must no longer be replica diagonal. It also suggests why the

fermionic model should behave differently: There, GðτÞ
cannot have a nonzero static component because the
Fourier transform has weight only on odd multiples of π.

2. High temperature

To show that the annealed free energy is correct at high
temperature, we place a bound on the probability of a
random disorder realization having free energy other than
fðannÞ. Write the (random) partition function Z as ZE½Z�.
Chebyshev’s inequality states that

Pr½jZ − 1j > η� ≤ Var½Z�
η2

: ð51Þ

We show that for β less than a certain value, Var½ZBSYK�→0
as N → ∞. Since

fðβÞ ¼ fðannÞðβÞ − 1

Nβ
lnZðβÞ; ð52Þ

it follows from Eq. (51) that fBSYK ¼ fðannÞBSYK with proba-
bility approaching 1 in the thermodynamic limit.
The second moment of ZBSYK is obtained by setting

n ¼ 2 in Eq. (36). We have two order parameters: the intra-
replica correlator Grrðτ; τ0Þ≡Gðτ − τ0Þ (r ∈ f1; 2g) and
the inter-replica correlator G12ðτ; τ0Þ≡Q. Note that we
take G12 to be static, as is standard in spin-glass theory,
which amounts to assuming that time translation symmetry
is not spontaneously broken [1,2]. Thus,

E½Z2
BSYK� ¼

Z
DGDFdQdλeNΦ2½G;F;Q;λ�; ð53Þ

with

Φ2½G;F;Q; λ� ¼ β2
Z

1

0

dτðGðτÞpGð1 − τÞp − FðτÞGð1 − τÞ þQ2p − λQÞ

þ ln
Z

Dh1Dh2Da1Da2Dμ1Dμ2e−S
ð0Þ½h1;a1;μ1�−Sð0Þ½h2;a2;μ2�

× e
β2

2

R
1

0
dτdτ0Fðτ−τ0Þða1ðτÞ�h1ðτÞh1ðτ0Þ�a1ðτ0Þþa2ðτÞ�h2ðτÞh2ðτ0Þ�a2ðτ0ÞÞe

β2

2
λ
R

1

0
dτdτ0ða1ðτÞ�h1ðτÞh2ðτ0Þ�a2ðτ0Þþa2ðτÞ�h2ðτÞh1ðτ0Þ�a1ðτ0ÞÞ:

ð54Þ
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The saddle-point equations are

Fðτ − τ0Þ ¼ 2pGðτ − τ0ÞpGðτ0 − τÞp−1; ð55Þ

Gðτ − τ0Þ ¼ hhrðτÞ�arðτÞarðτ0Þ�hrðτ0Þieff ; ð56Þ

λ ¼ 2pQ2p−1; ð57Þ

Q ¼ hh1ðτÞ�a1ðτÞa2ðτ0Þ�h2ðτ0Þieff : ð58Þ

We immediately have one solution to the saddle-
point equations. Denote the solution to the annealed
equations, Eqs. (44) and (45), by GeqðτÞ and FeqðτÞ. It
is self-consistent to set

GðτÞ ¼ GeqðτÞ; FðτÞ ¼ FeqðτÞ; Q ¼ 0; λ ¼ 0;

ð59Þ

in Eqs. (55)–(58). This is not a trivial statement: It relies on
the fact that in the absence of any inter-replica coupling,
each replica has a separate Uð1Þ symmetry which ensures
hhrðτÞ�arðτÞi ¼ 0. More generally, the annealed solution
with Q ¼ 0 is valid whenever a symmetry guarantees that
the expectation value of the single-site operator is zero
(e.g., such as fermion parity in the original SYK model). If
the action were to include an explicit symmetry-breaking
term, then Q ¼ 0 would not be a valid solution.
The question is now whether Q ¼ 0 is the dominant

solution to the saddle-point equations, i.e., that which
maximizesΦ2. To address this carefully, in Eq. (54), denote
every part of the expression except for Q2p and λQ by
A2½G;F; λ�. This lets us write the second moment of ZBSYK
as follows:

E½Z2
BSYK� ¼

Z
dQeNβ2Q2p−NΛ2½Q�; ð60Þ

with

e−NΛ2½Q� ≡
Z

dλe−Nβ2λQ

Z
DGDFeNA2½G;F;λ�: ð61Þ

One can show that

Z
dQe−NΛ2½Q� ¼ E½ZBSYK�2; ð62Þ

as is easiest to see starting from Eq. (A4) in Appendix A.
As a result, we can write

Var½ZBSYK�
E½ZBSYK�2

¼
R
dQðeNβ2Q2p − 1Þe−NΛ2½Q�R

dQe−NΛ2½Q� : ð63Þ

We have already established that Λ0
2½0� ¼ 0, by virtue of

Q ¼ 0 satisfying the saddle-point equations. Furthermore,

evaluating Eq. (61) by saddle-point demonstrates thatΛ2½Q�
is the Legendre-Fenchel transform of A2½Geq; Feq; λ� and
must therefore be convex [61]. Thus, Q ¼ 0 is the unique
minimum of Λ2½Q�. Finally, a direct calculation starting
from Eq. (61) gives

Λ00
2½0� ¼ 2

�Z
1

0

dτGeqðτÞ
�

−2
; ð64Þ

i.e., the curvature of Λ2 remains nonzero even as β → 0.
These observations imply that β2Q2p − Λ2½Q�, although

not itself concave, has its global maximum at Q ¼ 0 for β
less than a certain nonzero value. Furthermore, for such β,

Z
dQðeNβ2Q2p − 1Þe−NΛ2½Q� ¼ Oð 1

Np−1Þ
Z

dQe−NΛ2½Q�:

ð65Þ

This establishes what we claim: There exists a critical
temperature above which Var½ZBSYK�=E½ZBSYK�2 → 0 in

the thermodynamic limit and fBSYK ¼ fðannÞBSYK.

B. Quantum p spin

The quantum p-spin model is given by Eq. (6) repro-
duced here:

Hp ¼
X
IA

JAI σ̂
α1
i1
� � � σ̂αpip : ð6Þ

We express the partition function in terms of spin-coherent
states jΩi. In fact, the only features of the states that we
need are the identities [62,63]

1 ¼
Z �Y

i

dΩi

2π
jΩiihΩij

�
; ð66Þ

Ŝα1i1 � � � Ŝ
αp
ip

¼
Z �Y

i

dΩi

2π
jΩiihΩij

��
3

2

�
p
Ωα1

i1
� � �Ωαp

ip
:

ð67Þ

The integrals are over the unit sphere, and Ωα
i is the projec-

tion of unit vector Ωi onto axis α. The partition function is

Zp ¼
Z Y

i

DΩie
−βð3

2
Þp
P

IA
JAI
R

1

0
dτΩα1

i1
ðτÞ���Ωαp

ip
ðτÞ: ð68Þ

In this notation, we include the overlaps between coherent
states in the integration measure, i.e.,

DΩi ≡
Y
τ

dΩiðτÞ
2π

hΩiðτ þ dτÞjΩiðτÞi: ð69Þ
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We never need to express the overlaps in continuum
notation.
Our treatment of Eq. (68) is very similar to that of the

bosonic SYK model, and we include it here to highlight the
generality of the method. For that reason, we present only
the results of each step, and leave the details to be filled in
by analogy with Sec. IVA.
The replicated, disorder-averaged partition function is

E½Zn
p� ¼

Z Y
rr0

DGrr0DFrr0eNΦn½G;F�; ð70Þ

with

Φn½G;F�≡ β2

4

�
3

2

�
2pX

rr0

Z
1

0

dτdτ0ðGrr0 ðτ; τ0Þp

− Frr0 ðτ; τ0ÞGrr0 ðτ; τ0ÞÞ

þ ln
Z Y

r

DΩre−S
ðeffÞ½Ω�; ð71Þ

SðeffÞ½Ω�≡ −
β2

12

�
3

2

�
2pX

rr0

Z
1

0

dτdτ0Frr0 ðτ; τ0Þ

×
X
α

Ωα
r ðτÞΩα

r0 ðτ0Þ: ð72Þ

The saddle-point equations are then

Frr0 ðτ; τ0Þ ¼ pGrr0 ðτ; τ0Þp−1; ð73Þ

Grr0 ðτ; τ0Þ ¼
1

3

X
α

hΩα
rðτÞΩα

r0 ðτ0Þieff : ð74Þ

The notation is the same as before: r and r0 are replica
indices, and h·ieff denotes an expectation value using the
effective action of Eq. (72).

1. Low temperature

The n ¼ 1 action is

Φ1½G;F� ¼
β2

4

�
3

2

�
2p

Z
1

0

dτ½GðτÞp − FðτÞGðτÞ�

þ ln
Z

DΩe
β2

12
ð3
2
Þ2p
R

1

0
dτdτ0Fðτ−τ0Þ

P
α
ΩαðτÞΩαðτ0Þ:

ð75Þ
We again make a static ansatz for FðτÞ, which turns out to
be consistent at low temperature. A Hubbard-Stratonovich
transformation gives

Φ1½G;F� ¼
β2

4

�
3

2

�
2p

Z
1

0

dτðGðτÞp − FðτÞGðτÞÞ

þ ln
Z

d3hffiffiffiffiffiffiffi
8π3

p e−
1
2

P
α
h2α

×
Z

DΩeβð
3
2
Þp

ffiffi
F
6

p P
α
hα
R

1

0
dτΩαðτÞ: ð76Þ

The remaining path integral is that of a single spin-1=2 in a
magnetic field proportional to h⃗; thus, we can evaluate the
Ω⃗ðτÞ · Ω⃗ðτ0Þ correlator directly:

G ¼ 1

27
þ 2

27

R
d3hffiffiffiffiffi
8π3

p e−
1
2
jh⃗j2 cosh βð1−2τÞ

2
ð3
2
Þp−1

ffiffiffi
F
6

q
jh⃗j

R
d3hffiffiffiffiffi
8π3

p e−
1
2
jh⃗j2 cosh β

2
ð3
2
Þp−1

ffiffiffi
F
6

q
jh⃗j

; ð77Þ

which is simply G ∼ 1=27 in the limit β → ∞ with
τ ≫ 1=β. Finally, the annealed free energy is

fðannÞðβÞ ∼ −
β

4

1

12p
þ � � � ; ð78Þ

which indeed diverges at low temperature.

2. High temperature

Using the same notation as in Sec. IVA, the n ¼ 2
action is

Φ2½G;F;Q; λ� ¼ β2

2

�
3

2

�
2p
Z

1

0

dτ½GðτÞp − FðτÞGðτÞ þQp − λQ�

þ ln
Z

DΩ1DΩ2e
β2

12
ð3
2
Þ2p
R

1

0
dτdτ0Fðτ−τ0Þ

P
α
ðΩα

1
ðτÞΩα

1
ðτ0ÞþΩα

2
ðτÞΩα

2
ðτ0ÞÞe

β2

12
ð3
2
Þ2pλ

R
1

0
dτdτ0

P
α
ðΩα

1
ðτÞΩα

2
ðτ0ÞþΩα

2
ðτÞΩα

1
ðτ0ÞÞ:

ð79Þ

One saddle point of Φ2 is at

GðτÞ ¼ GeqðτÞ; FðτÞ ¼ FeqðτÞ; Q ¼ 0; λ ¼ 0;

ð80Þ

where GeqðτÞ and FeqðτÞ are the order parameters which
maximize Φ1. Without any coupling between the two
replicas in Eq. (79), hΩα

1ðτÞΩα
2ðτ0Þi ¼ hΩα

1ðτÞihΩα
2ðτ0Þi,

and hΩα
r ðτÞi ¼ 0 owing to the (statistical) symmetry

of the original Hamiltonian. By establishing that Eq. (80)
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is the dominant saddle point at high temperature, we show
that Var½Zp�=E½Zp�2 → 0 and fp ¼ fðannÞp with probability
1, exactly as done for the hard-core bosonic model.
Write E½Z2

p� as

E½Z2
p� ¼

Z
dQeN

β2

2
ð3
2
Þ2pQp−NΛ2½Q�; ð81Þ

e−NΛ2½Q� ≡
Z

dλe−N
β2

2
ð3
2
Þ2pλQ

Z
DGDFeNA2½G;F;λ�; ð82Þ

where A2 consists of all the remaining terms in Φ2. By the
same arguments as in Sec. IVA, we have that Λ0

2½0� ¼ 0,
Λ2½Q� is convex, and

Λ00
2½0� ¼ 3

�Z
1

0

dτGeqðτÞ
�

−2
: ð83Þ

Thus, for β less than some nonzero value, E½Z2
p� is

dominated by Q ¼ 0 and

Var½Zp� ∼O

�
1

N
p
2
−1

�
E½Z2

p�: ð84Þ

The free energy then agrees with the annealed value [64].

V. THE DANGER IN 1=N EXPANSIONS

The preceding sections have been in the spirit of the
replica formalism, but there is another technique for
studying all-to-all disordered models: expanding the free
energy in powers of system size N. Many studies of the
SYK model and its variants have taken the latter approach
[31,35,65]. Although in principle one could obtain all of the
above results through a 1=N expansion, the correct low-
temperature physics cannot be identified without taking
subtle issues of convergence seriously. The purpose of this
final section is to present an example of the issues which
arise, as an argument in favor of the replica method over
1=N expansions.
First consider the structure of a 1=N expansion, say, for

the quantum p-spin model for concreteness. Suppose one
wishes to compute the moments of the partition function,
E½Zn

p�. We can expand the exponentials:

E½ðTre−βHpÞn�

¼E

��X∞
L¼0

1

L!
Trð−βHpÞL

�n�

¼
X∞

L1;…;Ln¼0

ð−βÞL1þ���þLn

L1! � ��Ln!
Tr1 � ��TrnE½HL1

p;1 � ��HLn
p;n�: ð85Þ

Note that in the second line, the n replicas are considered as
separate degrees of freedom, each with its own trace.
However, the Lr factors of Hp;r all involve the same spins
of replica r, and every factor contains the same Gaussian

couplings JAI . Since Hp is linear in the couplings, the

product HL1

p;1 � � �HLn
p;n is a sum of products of Gaussians,

and the disorder average is given by all pairwise contrac-
tions according to Wick’s theorem. These features are all
naturally expressed in terms of chord diagrams [34,35],
which we describe in Appendix B. Evaluation of Eq. (85) is
then reduced to a sum over chord diagrams. Each diagram
comes with a power of N, which allows the sum to be
organized as a 1=N expansion.
We further show in Appendix B that, assuming all

Lr ≪ N, the diagrams having contractions between repli-
cas are subleading. In other words, the disorder average
factors to leading order:

E½HL1

p;1 � � �HLn
p;n�∼E½HL1

p;1� � � �E½HLn
p;n�; L1;…;Ln ≪ N:

ð86Þ

Since in the thermodynamic limit Lr ≪ N for any fixed Lr,
the naive conclusion would be that the entire sum factors,
and thus, E½Zn

p� ∼ E½Zp�n. In particular, E½Z2
p� ∼ E½Zp�2,

which would imply by Chebyshev’s inequality that Zp ∼
E½Zp� with high probability. Yet we have proven in Sec. III
that Zp ≁ E½Zp� at low temperature.
The error is in assuming that the dominant terms of

Eq. (85) have L ∼Oð1Þ. Since we expect the energy to be
extensive, i.e., Hp ∼OðNÞ, the expansion of e−βHp should
be dominated by L ∼OðNÞ. We must at the very least
include such L in our evaluation of Eq. (85).
The noncommutativity of the operators in the quantum

model makes it difficult to be any more quantitative. Thus,
instead consider the simpler classical model:

Hcl ¼ −
X
I

JIσ
z
i1
� � � σzip ; ð87Þ

where the sum is again over all multi-indices of p spins,
and Var½JI� ¼ p!=2Np−1. Note that p ¼ 2 is precisely the
SK model described in Sec. III [Eq. (16)].
Every statement made above about the quantum p-spin

model can also be made about the classical model, and in
the classical model we can confirm our suspicion that the
breakdown of the annealed approximation appears only at
OðNÞth order in the 1=N expansion. We start with

E½Z2
cl� ¼

X∞
L1;L2¼0

ð−βÞL1þL2

L1!L2!
Tr1Tr2E½HL1

cl;1H
L2

cl;2�: ð88Þ

A term of Eq. (88) with given ðL1; L2Þ contains L1 þ L2

factors of the Gaussian couplings, which are contracted in
pairs. Some contractions will connect spins on the first
replica to spins on the second. By organizing the expansion
in terms of the number L of such pairings, as we detail in
Appendix B, we have that
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E½Z2
cl� ¼ e

Nβ2

2

X∞
L¼0

1

L!

�
β2p!
2Np−1

�
L

Tr1Tr2
X
I1���IL

σzI11σ
z
I12

� � � σzIL1σzIL2

¼ E½Zcl�2
X∞
L¼0

1

L!

�
Nβ2

2

�
L 1

22N
Tr1Tr2

�
1

N

X
i
σzi1σ

z
i2

�
pL
; ð89Þ

where in the first line σzIjr ≡
Q

i∈Ij σ
z
ir (r is the replica index), and in the second line the nested sum is factored. We also use

that E½Zcl� ¼ eNðln 2þβ2=4Þ.
To proceed, write the trace as

1

22N
Tr1Tr2

�
1

N

X
i
σi1σi2

�
pL

¼ N
2

Z
1

−1
dQ

1

2N

�
N

N 1−Q
2

�
QpL ∼

ffiffiffiffiffiffi
N
2π

r Z
1

−1
dQ

QpLffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p eNsðQÞ; ð90Þ

with

sðQÞ ¼ −
1þQ
2

ln ð1þQÞ − 1 −Q
2

ln ð1 −QÞ: ð91Þ

The integral over Q can be evaluated at the saddle point,
leaving us with a single sum over L.
First consider L ∼Oð1Þ with respect to N. The saddle

point is at Q ¼ 1=2, and the resulting integral goes as
ðpL=2 − 1Þ!!N−pL=2. We have that

E½Z2
cl�

E½Zcl�2
∼ 1þ

X∞
L¼1

ðpL
2
− 1Þ!!
L!

�
β2

2

�
L

Nð1−p
2
ÞL: ð92Þ

Every term in the sum over L is subleading in N, for
any β (except if p ¼ 2, in which case, see Ref. [64]). This
seems to say that E½Z2

cl� ∼ E½Zcl�2, even though that cannot
possibly be the correct result at low temperature.
However, consider L ∼OðNÞ. The saddle point Q� is

now given by the equation

ln
1þQ�

1 −Q� ¼ 2pl
Q� ; ð93Þ

where l≡ L=N, and the sum over L can be written
(ignoring subexponential prefactors)

Z
∞

0

dleNfl lneβ2
2l þpl lnQ�ðlÞþs½Q�ðlÞ�g ≡

Z
∞

0

dleNgðlÞ: ð94Þ

This integral is evaluated by saddle point as well. The
limiting behavior of the exponent is

gðlÞ ∼
�
l ln β2l

p
2
−1; l ≪ 1;

l ln eβ2

2l − ln 2; l ≫ 1:
ð95Þ

See Fig. 2 as well. It is clear that if β is small, gðlÞ < 0 for
all l > 0, and thus, the integral isOð1=NÞ. The fluctuations
in the partition function are small and the correction to the
annealed free energy is indeed subleading. Yet if β is large,

the maximum of gðlÞ is positive. The fluctuations in Zcl
become greater than the mean, and we can no longer claim
that the annealed free energy is correct.
This shows that a 1=N expansion of the partition function

(and thus, of the free energy) converges at small β but

FIG. 2. The exponent gðlÞ governing corrections to the an-
nealed free energy, for both small β and large β. Dashed lines are
the asymptotic behavior of gðlÞ at large l. The specific parameters
used are p ¼ 6, small β ¼ 1.0, large β ¼ 1.5.
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diverges at large β. Furthermore, note that the saddle point of
Eq. (94) is at l� ∼ β2=2 for large β, i.e., L� ∼ Nβ2=2. Were
one to take the N → ∞ limit before resumming the series,
onewouldmiss the divergence entirely, and indeed overlook
much of what makes these spin-glass models interesting.

VI. CONCLUSION

We have demonstrated that the annealed approximation
breaks down at low temperature in any all-to-all disordered
model with finite-body interactions and a tensor product
Hilbert space. This encompasses many in the family of
SYK-like models, such as the bosonic variants and the
quantum p-spin model. Furthermore, we have shown that,
at least in the hard-core bosonic and quantum p-spin
models (although the technique can easily be generalized),
the partition function is self-averaging at high temperature.
Thus, we identify two distinct phases: one in which the free
energy equals the annealed value, and one in which it does
not. These results are obtained using rigorous bounds on
the annealed free energy and the replica technique. Note
that we do not rely on any of the more cryptic aspects of the
replica method (taking the number of replicas to 0 and
maximizing rather than minimizing the free energy).
Finally, we have highlighted the subtleties that come with
applying 1=N expansions to such models.
Strictly speaking, these results are not enough to prove

that the models are spin glasses at low temperature. Spin-
glass order is characterized by an overlap matrix in which
the permutation symmetry is broken (“replica symmetry
breaking”), whereas we have shown only that the matrix
cannot be diagonal. In more physical terms, a spin glass has
multiple low-temperature states, whereas we have shown
only the existence of some low-temperature state distinct
from the high-temperature state.
That said, the results we established here do force one to

confront the issue of glassiness. The standard annealed
approximation cannot accurately describe the effects of
disorder in any tensor product model, and one must use an
approach which allows for nondiagonal and potentially
symmetry-broken replica order parameters. In particular,
this statement applies to many models of current interest in
the context of SYK physics, as well as closely related
systems in the quantumoptimization field [58–60].Whether
replica symmetry is broken or merely nondiagonal in any
specific model is an interesting open question which
requires further analysis.
As for the relevance of these models to holography, it is

still possible that some might have gravitational duals

despite the breakdown of the annealed approximation.
The precise dynamics cannot be exactly as in the fermionic
SYK model, since that model is described by the annealed
approximation, but a more complex gravitational theory is
not ruled out. It is also possible that glassiness and
gravitational dynamics can coexist in an interesting way,
e.g., Refs. [66–68]. These are all important questions that
remain to be investigated, both from the holographic and
spin-glass perspectives. We believe that the work presented
here is only the beginning of what spin-glass theory can
offer to this problem (see also the recent Ref. [68]).
There is one potential way for the annealed free energy to

remain accurate at low temperature even in tensor product
models: have an interaction degree which increases with
system size. Note that every bound obtained here no longer
diverges if the p → ∞ limit is taken before the T → 0 limit.
This does not prove that the annealed approximation holds,
but we cannot claim that it must break down in such
models. One example is the double-scaling limit studied in
Refs. [34,35,69,70], where p ∼

ffiffiffiffi
N

p
. It was argued that the

quantum p-spin model has a Schwarzian density of states
in this limit. In view of our results, it would clearly be
desirable to have a more detailed understanding of the low-
energy physics for general p.
Finally, it is interesting to note that every system currently

known to have a simple gravitational dual includes fermionic
degrees of freedom. This observation could be a streetlight
effect, perhaps related to the difficulty of reliably studying
nonsupersymmetric theories at strong coupling. However,
here we have uncovered a general result preventing a wide
class of bosonic theories from exhibiting the simplest kind of
gravitational dynamics known to occur in a corresponding
fermionic theory. Perhaps this is one example of a general
class of constraints which places purely bosonic theories of
gravity into the swampland [71].
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APPENDIX A: CALCULATING THE
REPLICATED ACTION

We present the details for the hard-core bosonic model.
The quantump-spin model and others proceed analogously.
Beginning from Eq. (33), we have that

E½Zn
BSYK� ¼

Z Y
ir

DhirDairDμire
−
P

ir
Sð0Þ½hir;air;μir�E½e−

P
II0
P

r
JII0Sint½hII0r;aII0r��

¼
Z Y

ir

DhirDairDμire
−
P

ir
Sð0Þ½hir;air;μir�þ ðp!Þ2

2N2p−1

P
rr0
P

II0 Sint½hII0r;aII0r�Sint½hII0r0 ;aII0r0 �� : ðA1Þ
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The sums over spins or multi-indices now come alongside sums over replica indices r; r0 ∈ f1;…; ng. Note that, to leading
order in N,

ðp!Þ2
2N2p−1

X
rr0

X
II0

Sint½hII0r; aII0r�Sint½hII0r0 ; aII0r0 ��

¼ β2ðp!Þ2
2N2p−1

X
rr0

Z
1

0

dτdτ0
X

i1<���<ip

X
i0
1
<���<i0p

½ai1rðτÞ�hi1rðτÞ � � � aiprðτÞ�hiprðτÞhi0prðτÞ�ai0prðτÞ � � � hi01rðτÞ�ai01rðτÞ

× ai0
1
r0 ðτ0Þ�hi0

1
r0 ðτ0Þ � � � ai0pr0 ðτ0Þ�hi0pr0 ðτ0Þhipr0 ðτ0Þ�aipr0 ðτ0Þ � � � hi1r0 ðτ0Þ�ai1r0 ðτ0Þ�

¼ β2

2N2p−1

X
bb0

Z
1

0

dτdτ0
X

i1≠���≠ip

X
i0
1
≠���≠i0p

½ai1rðτÞ�hi1rðτÞhi1r0 ðτ0Þ�ai1r0 ðτ0Þ � � � aiprðτÞ�hiprðτÞhipr0 ðτ0Þ�aipr0 ðτ0Þ

× hi0prðτÞ�ai0prðτÞai0pr0 ðτ0Þ�hi0pr0 ðτ0Þ � � � hi01rðτÞ�ai01rðτÞai01r0 ðτ0Þ�hi01r0 ðτ0Þ�

∼
Nβ2

2

X
bb0

Z
1

0

dτdτ0
���� 1N

X
i
hirðτÞ�airðτÞair0 ðτ0Þ�hir0 ðτ0Þ

����
2p
: ðA2Þ

Thus, the action for E½Zn
BSYK� (not including Sð0Þ) is a functional solely of

Grr0 ðτ; τ0Þ≡ 1

N

X
i

hirðτÞ�airðτÞair0 ðτ0Þ�hir0 ðτ0Þ: ðA3Þ

We indicate this feature explicitly inside the path integral by introducing a δ functional:

E½Zn
BSYK� ¼

Z Y
rr0

DGrr0e
Nβ2

2

P
rr0
R

1

0
dτdτ0Grr0 ðτ;τ0ÞpGr0rðτ0;τÞp

Z Y
ir

DhirDairDμire
−
P

ir
Sð0Þ½hir;air;μir�

× δ

�
Grr0 ðτ; τ0Þ −

1

N

X
i

hirðτÞ�airðτÞair0 ðτ0Þ�hir0 ðτ0Þ
�
: ðA4Þ

In the large-N limit, the path integral is dominated by a specific value of Grr0 ðτ; τ0Þ. We determine this saddle point by
introducing a Lagrange multipler Frr0 ðτ; τ0Þ, and thus have

E½Zn
BSYK� ¼

Z Y
rr0

DGrr0DFrr0e
Nβ2

2

P
rr0
R

1

0
dτdτ0ðGrr0 ðτ;τ0ÞpGr0rðτ0;τÞp−Frr0 ðτ;τ0ÞGr0rðτ0;τÞÞ

Z Y
ir

DhirDairDμire
−
P

i
SðeffÞ½hi;ai;μi�; ðA5Þ

where SðeffÞ is given by Eq. (38). The path integral over h, a, and μ now factors among the N different sites i, and we obtain
Eqs. (36) and (37):

E½Zn
BSYK� ¼

Z Y
rr0

DGrr0DFrr0eNΦn½G;F�; ð36Þ

Φn½G;F�≡ β2

2

X
rr0

Z
1

0

dτdτ0ðGrr0 ðτ; τ0ÞpGr0rðτ0; τÞp − Frr0 ðτ; τ0ÞGr0rðτ0; τÞÞ þ ln
Z Y

r

DhrDarDμre−S
ðeffÞ½h;a;μ�: ð37Þ

Note that the remaining integration over h, a, and μ is for a
single site. In return, the action for that site has couplings
between different replicas and times.

APPENDIX B: CHORD DIAGRAMS

Starting with the quantum p-spin Hamiltonian,

Hp ¼
X
IA

JAI σ̂
α1
i1
� � � σ̂αpip ≡X

IA

JAI Ô
A
I ; ðB1Þ

where we define ÔA
I ≡ σ̂α1i1 � � � σ̂

αp
ip

for convenience, con-

sider first the problem of calculating the average of the
partition function:

E½Zp� ¼ E½Tre−βHp �: ðB2Þ

Expanding the exponential and using Eq. (6), we have
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E½Zp� ¼
X∞
k¼0

ð−βÞ2k
ð2kÞ!

X
I1A1���I2kA2k

E½JA1

I1
� � �JA2k

I2k
�Tr½ÔA1

I1
� � �ÔA2k

I2k
�:

ðB3Þ
Note that all odd-order terms automatically vanish due to
the disorder average.
Since the couplings are Gaussian, the ðIj; AjÞ multi-

indices must be paired up. Thus, the operators ÔA
I also

occur in pairs. We represent the pairings diagrammatically
by drawing a circle with 2k marked points, one for each
insertion of an operator, and drawing k chords through the
circle to connect the points in pairs. Each such picture is
called a “chord diagram” (see Fig. 3). Finally, we assign a
multi-index ðI; AÞ to each chord and sum over all possible
assignments.
The simplest chord diagram has ðI1; A1Þ ¼ ðI2; A2Þ,

ðI3; A3Þ ¼ ðI4; A4Þ, etc. In fact, since ðÔA
I Þ2 ¼ 1 for all

ðI; AÞ, evaluating the diagram is trivial: We obtain

ð−βÞ2k
ð2kÞ! ×

�
3p
�
N

p

��k
×

�
p!

6ð3NÞp−1
�

k
× 2N

∼
1

ð2kÞ!
�
Nβ2

2

�
k

2N: ðB4Þ

The first factor on the left-hand side is explicit in Eq. (B3),
the second comes from the sum over multi-indices, the
third is the variance of JAI , and the fourth comes simply
from tracing over the Hilbert space. Taking the large-N
limit gives the right-hand side.
If all the operators were to commute with each other, then

every chord diagram would give the same contribution: Just
rearrange the operators until the members of each pair are
adjacent. Since the total number of pairings is ð2kÞ!=2kk!,
the sum over all chord diagrams would give

E½Zp;commuting� ¼ 2N
X∞
k¼0

1

k!

�
Nβ2

4

�
k

¼ eNðln 2þβ2

4
Þ: ðB5Þ

Of course, the operators do not all commute, and E½Zp�
does not have so simple an expression. Instead, some

choices of Ô
Aj

Ij
and ÔAl

Il
anticommute, e.g., if Ô

Aj

Ij
has a

factor of σ̂x1 and Ô
Al
Il
has a factor of σ̂y1. Thus, depending on

the specific multi-indices assigned to a diagram, we may
acquire a factor of −1 in rearranging the operators. An
example is shown in Fig. 3. In place of Eq. (B4), we have

ð−βÞ2k
ð2kÞ! ×

�X
fIAg

ηfIAg

�
×

�
p!

6ð3NÞp−1
�
× 2N; ðB6Þ

where the sum is over sets of k multi-indices, and ηfIAg
is either 1 or −1 depending on the specific multi-indices in
question.
Note that the effect of noncommuting operators is only

appreciable in higher-order terms. Namely, for k ∼Oð1Þ
with respect to N, Eq. (B6) gives the same value as
Eq. (B4): When choosing k multi-indices involving p
spins each, all but an Oð1=NÞ fraction of the possible
choices have every spin distinct (and thus, commuting).
Rather than dwell further on E½Zp�, let us turn to the

second moment. Again expanding e−βHp , of which there
are now two factors, we have

E½Z2
p� ¼

X∞
l1;l2¼0

ð−βÞl1þl2

l1!l2!

X
I1A1���Il1þl2

Al1þl2

E
h
JA1

I1
� � � JAl1þl2

Il1þl2

i

× Tr
h
ÔA1

I1
� � � ÔAl1

Il1

i
Tr
h
Ô

Al1þ1

Il1þ1
� � � ÔAl1þl2

Il1þl2

i
: ðB7Þ

In words, there are l1 þ l2 insertions of operators, l1 of
which are in the first trace and l2 of which are in the second.
We represent these insertions by two circles with l1 and l2
marked points, respectively. However, all l1 þ l2 couplings
are within the same disorder average, meaning that the
points can be paired between the circles (see Fig. 4).
Organize the sum in Eq. (B7) by the number l of pairs
connecting
the two:

E½Z2
p� ¼

X∞
l¼0

X∞
k1;k2¼0

ð−βÞ2lþ2k1þ2k2

ðlþ2k1Þ!ðlþ2k2Þ!
�

p!
6ð3NÞp−1

�
lþk1þk2

×
X
fIAg

ηfIAg: ðB8Þ

1

2 3

4

56

1

3 2

5

46

(I1, A1) = (I3, A3), (I2, A2) = (I5, A5), (I4, A4) = (I6, A6)

= ±

FIG. 3. (Left) An example of a chord diagram. Each gray
marker l represents an operator ÔAl

Il
, and each black line indicates

that the multi-indices of the two connected markers are equal.
(Right) Rearrangement of the operators in the diagram, using that
any two operators either commute or anticommute. The ampli-
tude of the rearranged diagram equals that of the original, up to a
minus sign which depends on the assigned multi-indices.

FIG. 4. An example of a chord diagram relevant for the second
moment of Zp.
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The inner sum is over sets of lþ k1 þ k2 multi-indices such
that the two traces are both nonvanishing, and ηfIAg is again
either 1 or −1 depending on the specific multi-indices.
Note that for the l ¼ 0 terms, the fIAg sum factors into

two separate sums, one for each circle. Furthermore, the
sums over k1 and k2 are then precisely those that gave us
E½Zp�. Thus,

Var½Zp� ¼
X∞
l¼1

X∞
k1;k2¼0

ð−βÞ2lþ2k1þ2k2

ðlþ 2k1Þ!ðlþ 2k2Þ!

×
�

p!
6ð3NÞp−1

�
lþk1þk2X

fIAg
ηfIAg: ðB9Þ

For l ¼ 1, ηfIAg ¼ 0. This is because each ÔA
I is trace-

less, and the two operators paired between the circles are
each left unpaired in their respective traces.
For l ¼ 2, let us count the powers of N. Assume that

k1; k2 ∼Oð1Þ as well, so that we can ignore the minus signs
as we discuss above. Yet we still need to ensure that every
factor of σ̂αi occurs in pairs to survive the trace. This
requirement restricts the number of sums over spin indices
in

P
fIAg to pk1 þ pk2 þ p: Each of the multi-indices

within each circle can be summed freely, but the two which
connect the circles must have every index paired with each
other. The counting for other l ∼Oð1Þ is analogous, and
once we include the number of contractions, we have

ð−βÞ2lþ2k1þ2k2

ðlþ 2k1Þ!ðlþ 2k2Þ!
�

p!
6ð3NÞp−1

�
lþk1þk2X

fIAg
ηfIAg

∼
ð−βÞ2lþ2k1þ2k2

ð2k1Þ!ð2k2Þ!l!
�

p!
6ð3NÞp−1

�
lþk1þk2 ð3NÞpk1þpk2þlp

2

p!lþk1þk2

¼ 1

ð2k1Þ!ð2k2Þ!l!
�
Nβ2

2

�
k1þk2

�
β2

2 × 3
p
2

�
l

N−ðp
2
−1Þl:

ðB10Þ
Note that, at least for p > 2, all l ≠ 0 are suppressed by

powers ofN relative to l ¼ 0. If wewere to naively sum this
expression over all ðl; k1; k2Þ, we would be led to believe
that Var½Zp�=E½Zp�2 → 0 as N → ∞, regardless of β. Yet
we prove in the main text that this cannot be true. The
resolution, as we also discuss in the main text, is that
Eq. (B10) holds only for l; k1; k2 ∼Oð1Þ, whereas we need
to sum over all values at fixed N. Once ðl; k1; k2Þ become
comparable to N, not only do anticommuting operators
begin to matter, but the combinatorics of the chord
diagrams changes. This second point is demonstrated
explicitly in the main text.
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