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We study the superconducting pairing correlations in the ground state of the doped Hubbard model—in
its original form without hopping beyond nearest neighbor or other perturbing parameters—in two
dimensions at intermediate to strong coupling and near optimal doping. The nature of such correlations has
been a central question ever since the discovery of cuprate high-temperature superconductors. Despite
unprecedented effort and tremendous progress in understanding the properties of this fundamental model, a
definitive answer to whether the ground state is superconducting in the parameter regime most relevant
to cuprates has proved exceedingly difficult to establish. In this work, we employ two complementary,
state-of-the-art, many-body computational methods—constrained-path (CP) auxiliary-field quantum
Monte Carlo (AFQMC) and density matrix renormalization group (DMRG) methods—deploying the
most recent algorithmic advances in each. Systematic and detailed comparisons between the two methods
are performed. The DMRG is extremely reliable on small width cylinders, where we use it to validate the
AFQMC. The AFQMC is then used to study wide systems as well as fully periodic systems, to establish
that we have reached the thermodynamic limit. The ground state is found to be nonsuperconducting in the
moderate to strong coupling regime in the vicinity of optimal hole doping.
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I. INTRODUCTION

Understanding high-temperature superconductivity in
the cuprates [1] has been a long-standing mystery and
one of the greatest challenges in theoretical condensed
matter physics [2]. Very early on, the single-band two-
dimensional (2D) Hubbard model [3], along with its
cousin, the t-J model, were argued to be the paradigmatic
models for this problem [4,5], and in many ways, this
suggestion has proven to be accurate. Many of the

properties of the cuprates seem to be reasonably well
described—or at least mirrored—in the Hubbard model,
such as antiferromagnetism [6–8] and its abrupt disappear-
ance upon doping, pairing, and stripe formation, and
pseudogap physics [9]. Pairing, when it occurs, can be
seen as a consequence of a sort of frustration between the
hopping or kinetic energy of the holes and antiferromag-
netic correlations, which are disrupted by the hopping.
Superconducting long-range order itself, however, is

one of the most delicate properties in these systems.
Superconductivity appears to have a subtle competition
and coexistence with stripe formation [10–12]. In terms
of the models, this means that accurate answers about a
possible superconducting phase require simulations that are
able to describe all of the possible phases in an unbiased
fashion so that their competition can be resolved. One also
needs a systematic approach to the zero-temperature as well
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as the thermodynamic limit, particularly since stripes can
introduce a new length scale somewhat larger than the size
of a pair. Numerous studies over the years have addressed
pairing order in the Hubbard model. They have often been
driven by remarkable methodological advances and have
led to a great deal of insight in the physics of the model
(see, for example, Refs. [13–38]). However, given the
competing energy scales and intertwined states, it can
reasonably be argued that none has satisfied these rigorous
criteria for establishing the nature of superconductivity in
the physically relevant parameter regime. Both positive and
negative results have been found for d-wave pairing order,
reflecting the extreme sensitivity of the ground state and
low-lying excitations in the model, and the competition
between d-wave and other states [33,39–54].
The relation between superconductivity and stripes or

other orders is also strongly affected by modifications of
the model, such as the next-nearest-neighbor hopping t0.
Given the existence of superconductivity in the cuprates
with an apparent electronic mechanism, it seems likely
that some modification of the pure model exhibits super-
conductivity. For example, recent studies on width-four
cylinders—where DMRG can be pushed to resolve the
competing phases to high accuracy—found a nonsuper-
conducting filled-stripe state in the pure model but quasi-
long-range pairing correlations with the addition of a t0
term, coexisting with half-filled stripes [38,55–57]. While
superconductivity arising from the addition of a t0 is
encouraging, one clearly needs to go beyond width four.
(Note that a width-four cylinder is equivalent to a stack of
plaquettes, and there is no difference between a pair on a
plaquette and a half-filled stripe. Larger systems are needed
to properly allow stripes and superconductivity to compete
or coexist.) Hopping parameters t0 and third neighbor
(diagonal) t00 have been predicted using electronic structure
methods [58]; however, even small differences in these
parameters can alter the ground-state phase, and it is
difficult to establish whether additional terms, such as
hopping mediated by a second hole, are important. It is also
not clear whether one needs to study a three-band model in
order to connect directly with the cuprates.
Here, we choose to focus on the pure Hubbard model,

with parameters U and t only. The existence or absence
of superconducting order in this fundamental model at
moderate to strong coupling is an outstanding theoretical
question. This question has presented a 30-year challenge,
magnified by the quest to understand high-Tc super-
conductivity. An intense experimental effort is ongoing
with ultracold atoms in optical lattices to realize “quantum
simulations” of this model [59–62]. The model has also
served as a barometer for the capacity of the computa-
tional physics and chemistry community to perform
reliable computations in interacting quantum systems.
We study pairing correlations and superconductivity using

two complementary methods—the density matrix renorm-
alization group (DMRG) and auxiliary-field quantum
Monte Carlo (AFQMC) methods. Our work follows up
on a previous study involving four different methods that
determined that the ground state of the Hubbard model
has stripe order at 1=8 doping [63]. Although stripes may
tend to compete with superconductivity [64], it may be
possible for them to coexist [12,34,65–68].
The constrained-path AFQMC method [69,70] we use

treats the fermion sign problem approximately, so valida-
tion is important. Here, we use DMRG [71] on width-four
and width-six cylinders to validate an approach to predict
pairing orders in AFQMC. The DMRG calculations
involve multiple independent DMRG programs pushed
to the limit of current capabilities. We find excellent
agreement between the DMRG and AFQMC. The
AFQMC does not have DMRG’s width restrictions, and
we then use the AFQMC to study systems of over 250
lattice sites, including periodic boundary conditions. In the
AFQMC calculations, we devise new techniques to probe
the superconducting order, both through a linear response
measure of the order parameter and through the use of a
BCS trial wave function to directly measure the pairing
correlation function. These simulations allow us to con-
clude that only short-range pairing occurs in the regime of
interest (U=t around 6–8 and dopings 0.1 < h < 0.2), and
the system is not superconducting.
In the small U=t limit, controlled results from perturba-

tion theory have shown that the Hubbard model has a
superconducting ground state [72–75]. Diagrammatic
Monte Carlo studies [76] indicate that a BCS supercon-
ducting state of d-wave symmetry can emerge at weak
coupling (U=t < 4) for doping h ≥ ∼0.3. Given the sensi-
tive and delicate nature of the ground state of the model,
and, in particular, given that stripe formation is believed not
to occur at weak coupling [75], it is very interesting how
this part of the phase diagram connects with the other
parameter regimes. We emphasize that our work does not
imply a general statement that there is no superconducting
order anywhere in the pure Hubbard model. Rather, our
focus is on the nature of the pairing order in the pure
Hubbard model in the physically important parameter
regime as a model for cuprate superconductors.
The rest of this paper is organized as follows. Section II

discusses the two different methods we employ and two
different ways in each to probe pairing and superconduct-
ing order. Our results are presented in Sec. III: first, a
general scan of the doping dependence of the supercon-
ducting order at U ¼ 8; then, a detailed study of the case of
U ¼ 8 and h ¼ 1=8, followed by an analysis of the relation
between pairing and stripe order; and next, the dependence
on the interaction strength. We conclude in Sec. IV. Further
technical details as well as additional results are included
in the Appendixes.
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II. APPROACH

We study the pure Hubbard Hamiltonian with nearest-
neighbor hopping and on-site interaction:

Ĥ ¼ −t
X
hijiσ

ĉ†iσ ĉjσ þU
X
i

n̂i↑n̂i↓ − μ
X
iσ

n̂iσ; ð1Þ

where ĉiσ is the fermionic annihilation operator, σ denotes
spin (¼ ↑ or ↓), n̂iσ ¼ ĉ†iσ ĉiσ is the particle number operator
on site i, and hiji denotes nearest neighbor sites. We study
rectangular lattices of size N ¼ Lx × Ly, typically with
periodic boundary conditions (PBC) along the y direction
and open boundary conditions along the x direction (i.e.,
cylinder geometry). We vary the aspect ratios of the
cylinders (e.g., 32 × 8, 24 × 14) to ensure that the rectan-
gular cells do not impact our results [77]. We perform
finite-size extrapolations. Additionally, we perform com-
plementary calculations with PBCs along both directions.
We set t as the energy unit, i.e., t ¼ 1.
We denote the number of electrons in the simulation cell

by Ne, with Ne ¼ N↑ þ N↓. The electron density or filling
factor is n ¼ Ne=N, and the hole doping level is then
h ¼ 1 − n. These quantities are specified in an average
sense, as Ne is controlled by the chemical potential μ and
will fluctuate in most of our calculations.

A. Two complementary methods

In this work we employ two state-of-the-art methods,
constrained-path (CP) AFQMC and DMRG. These meth-
ods are representative of the leading edge of computational
capabilities for interacting quantummany-fermion systems.
They involve very different approximations in obtaining
ground-state properties in the thermodynamic limit. To
quantify the CP error in AFQMC, we benchmark the results
in finite systems of narrow cylinders, where DMRG is
highly accurate. The AFQMC does not have size or
boundary condition restrictions and can reliably approach
the thermodynamic limit. The systematic, detailed, and
complementary use of these leading computational tech-
niques is a unique and distinguishing feature of the present
study. The excellent agreement between the two methods
allows us to draw conclusions with confidence.

1. Constrained-path auxiliary-field quantum
Monte Carlo

In AFQMC, the interaction part of the Hamiltonian is
recast into a summation (or an integral) of noninteracting
terms through a Hubbard-Stratonovich transformation. As a
result, physical quantities are represented as a path integral
in many-dimensional auxiliary-field space. The high-
dimensional summation or integral can be evaluated with
Monte Carlo techniques [6]. However, with few exceptions,
a minus sign problem is present [78], which causes an
exponential growth of the statistical errors with system size.

The CP approach overcomes this difficulty by imposing a
boundary condition in auxiliary-field space, which is
derived from an exact property of the path integral [69]
but whose practical implementation involves a trial wave
function. The use of CP introduces a systematic error,
which can be improved with better trial wave functions.
Usually, simple wave functions such as the Hartree-Fock
solution have been used as trial wave functions, and
previous results [79] show the systematic error is typically
small. Recently, we introduced an approach [70] to
optimize the trial wave function self-consistently, further
reducing the systematic error. As mentioned, a key feature
of this work is the combined use of CP-AFQMC with
DMRG, which allows us to systematically gauge the
accuracy of CP in cylindrical systems.
Ground-state AFQMC is typically formulated in a sector

of the Hilbert space with a fixed number of particles, Ne,
and fixed Sz (although a corresponding approach in
Hartree-Fock-Bogoliubov space exists [80]). Our compu-
tation of the pair-pair correlation function is done in this
manner, by separate AFQMC calculations on the original
Hubbard Hamiltonian in Eq. (1), using backpropagation
[69] and BCS trial wave functions [81]. In this work, the
order parameter is computed in AFQMC after a particle-
hole transformation has been applied to Eq. (1), which
results in a modified Hamiltonian that conserves the total
particle number [36] but breaks total Sz (further details are
given in Appendix A). As described in the next section,
in this formulation, the order parameter can be computed
from total energy calculations, which leads to very accurate
results.

2. Density matrix renormalization group

DMRG is a variational method [71,82] that can be
understood in the language of matrix product states
(MPS) [83]. The MPS matrix dimensions, or the so-called
bond dimensions, indicate the number of states kept in the
reduced Hilbert space and play central roles in the
approximation. A general many-body state can be repre-
sented by a MPS with exponential growth of the bond
dimension from the edges. In practice, one restricts the
maximum value of the bond dimension, thus limiting the
maximum entanglement allowed in the variational state.
Ground states of local Hamiltonians of physical interest
generally have low entanglement. DMRG minimizes the
energy in this low-entanglement Hilbert space. The accu-
racy of DMRG can be systematically improved by increas-
ing the bond dimension. Although DMRG is naturally
formulated and most powerful for one-dimensional sys-
tems, it is now widely applied to 2D systems [84] and
remains one of the most accurate numerical methods in 2D.
In this work, we employ two DMRG schemes with

different conserved quantum numbers, using different
update schemes. The first scheme conserves only the Sztot
with Uð1Þ symmetry and uses the two-site update in the
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optimization. This scheme is used when a pairing field is
applied to the system, breaking the particle number con-
servation. In such systems, the particle numbers are
controlled by the chemical potential. This scheme effi-
ciently enables fluctuations between different quantum
numbers in the optimization and is less likely to be stuck
in a local minimum. The truncation errors in this scheme
are on the order of 10−7 (smaller doping) to 10−5 (larger
doping). The second scheme [85] conserves both the Uð1Þ
total particle number and SUð2Þ spin symmetries and uses
the single-site update [86,87]. The single-site update is
faster than the two-site update and thus allows us to achieve
large bond dimension. This scheme is used for systems
without pairing fields, which thus conserve total particle
number. Since the truncation error is ill defined in the
single-site update, we use the two-site energy variance in
the standard extrapolations [88]. The number of states kept
in these systems is up to 30 000 SUð2Þ states, which
corresponds to about 90 000Uð1Þ states, providing the best
accuracy attained to date, to our knowledge.

B. Two different ways to characterize
superconducting correlation

To study the superconducting properties in the ground
state, we use two different probes: pair-pair correlation
functions and the pairing order parameter. These probes are
both defined in terms of the pairing operator of a pair of
nearest-neighbor sites, i and j:

Δ̂ij ≡ ðĉi↑ĉj↓ − ĉi↓ĉj↑Þffiffiffi
2

p : ð2Þ

We compute the pair-pair correlation function

Pi0j0;ij ¼ hΔ̂†
i0j0Δ̂iji ð3Þ

and the pairing order parameter

Δi;j ¼ hðΔ̂ij þ Δ̂†
ijÞ=2i; ð4Þ

where h� � �i denotes expectation with respect to the many-
body ground state.
The pair-pair correlation function in Eq. (3) can be

obtained directly in a calculation working in a sector with
fixed particle numbers. From this function, the d-wave
pairing correlation function, Pdði − i0Þ, can be constructed
as a function of pair separation ði0 − iÞ, by considering all j
in hiji and all j0 in hi0j0i, following the sign convention for
d-wave as we specify next.
The pairing order parameter in Eq. (4), on the other hand,

requires a different approach. We add a term in the
Hamiltonian describing SC pairing fields [77,89] applied
to the system:

Ĥp ¼ −
X
hi;ji

hijp
Δ̂ij þ Δ̂†

ij

2
; ð5Þ

where the amplitude of hijp is given by the parameter hp, and
the sign of hijp is positive if the bond ði; jÞ is vertical (along
the ŷ direction) and negative otherwise (along the x̂
direction), in order to probe pairing order of the structure
dx2−y2 [90,91].
In AFQMC, we can obtain the superconducting pairing

order parameter Δ from total energy calculations, using the
Hellmann-Feynman theorem:

ΔðhpÞ≡
�
dðĤ þ ĤpÞ

dhp

�
jΨ0ðhpÞi

¼ dEðhpÞ
dhp

����
hp

; ð6Þ

where jΨ0ðhpÞi and EðhpÞ are the ground-state wave
function and energy of the Hamiltonian ðĤ þ ĤpÞ. We
compute the derivative in Eq. (6) by the finite difference
ΔðhpÞ ¼ ðEðhp − δÞ − Eðhp þ δÞ=2δÞ þOðδ2Þ, where δ is
chosen to be sufficiently small to ensure that the error is
smaller than our statistical error bar or targeted resolution.
As hp → 0, the order parameter in the unperturbed ground
state is obtained. This approach allows us to directly
compute the pairing order parameter in AFQMC, which
had not been possible before.
We next use an example to illustrate the above approach

to compute order parameters. We consider the antiferro-
magnetic (AFM) Neel order at half-filling. A staggered
inducing field is applied to the periodic supercell of size
Lx ¼ Ly ¼ L, with magnitude hm and alternating signs on
the two sublattices. Because of the absence of the sign
problem at half-filling, no constraint is needed in the
AFQMC calculation, and the results are exact numerically.
In Fig. 1(a), we show the computed staggered AFM order
parameter MLðhmÞ as a function of the applied field
strength hm for different lattice sizes. Extrapolation to
the thermodynamic limit (TDL) is then performed at each
fixed hm, as illustrated in panel (b). The resulting TDL
values are plotted in panel (c) versus hm and extrapolated to
the hm → 0 limit to obtain the order parameter. The result
of 0.236(3) is in excellent agreement with the previous
result of 0.236(1) computed from spin-spin correlation
functions [92]. This test provides a validation of our
approach for computing superconducting order parameters,
which follows identical procedures. (We note that the
staggered AFM magnetization in the repulsive Hubbard
model at half-filling can be mapped to the s-wave on-site
pairing order parameter in the attractive Hubbard model,
through a partial particle hole transformation as discussed
in Appendix A.)
In the following two subsections, we show benchmark

results on the two ways to compute the pairing order,
respectively. Careful and detailed comparisons are made
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between AFQMC and DMRG, first for computing the
pairing order parameter and then for pair-pair correlation
functions, by using cylindrical geometries. Our results after
applying these approaches to address the physical proper-
ties of the Hubbard model are presented in Sec. III.

1. Pairing order parameter

The ground-state energies of 16 × 2 and 16 × 4 systems
computed from AFQMC and DMRG are shown in the top
panel of Fig. 2, as a function of the applied pairing field
strength hp. Uniform “d-wave” pairing fields are applied to
the entire system. A fixed value of μ is used, which gives a
doping of 1=8 at hp ¼ 0 (μ ¼ 1.75 for 16 × 4 and μ ¼ 1.55
for 16 × 2). In AFQMC, the trial wave functions are
optimized self-consistently by coupling to natural orbitals
[70]. (For small hp, the resulting trial wave function is the
same as the noninteracting wave function.) The inset shows
the difference between the energies computed from
AFQMC and DMRG. The relative error of the AFQMC
energy is less than 0.5% for all hp in Fig. 2, which means
the CP error is very small.
In the bottom panel of Fig. 2, we plot the pairing order

parameters from AFQMC and DMRG, for the same
system. In DMRG, the order parameter is directly com-
puted as a ground-state expectation value for each hp, while
in AFQMC, it is computed with the approach involving
Hellman-Feynman theorem described above. Agreement
between the two methods is excellent throughout the entire
range. The general behavior of the order parameter is
similar to that of the AFM order in Fig. 1 for small supercell
sizes. The pairing order parameter approaches 0 linearly as
hp → 0, which is reasonable as spontaneous symmetry
breaking can only occur in the TDL. At small hp, a rapid
drop is seen in Δ, deviating from the trend at larger hp. The
behavior is also manifested in the energy results, as we
show in Appendix B: A fit of the energies at hp > hthp
(where hthp is a threshold whose precise value does not

affect the result) gives an ESCðhp ¼ 0Þ that lies above the
true ground-state energy of the system.
We also show the comparison for the pairing order

parameter at U ¼ 4 and h ¼ 1=6 in a 24 × 4 cylinder, in

(a) (b) (c)

FIG. 1. Illustration of the approach to compute order parameters. The AFM order parameter at half-filling (U ¼ 4) is computed by
applying staggered magnetic fields to the periodic supercell. (a) The computed magnetic order parameterM is shown as a function of the
pinning field strength hm for different system sizes. (b) A quadratic fit is performed at each hm to extrapolate MðhmÞ to the TDL. The
procedure is shown for two values hm ¼ 0.06 and 0.1, as marked by the vertical dashed lines in panel (a). (c) An extrapolation of
M∞ðhmÞ to the hm → 0 limit is then performed, again using a quadratic fit. The resultingM∞ð0Þ is shown by the open symbol. The value
is in excellent agreement with the order parameter determined from direct computation of spin-spin correlation functions [92], shown by
the red star.

FIG. 2. Upper panel: Comparison of the ground-state energies
computed from AFQMC (blue) and DMRG (red), as a function of
the applied pairing field strength hp, at U ¼ 8. Two cylindrical
systems are shown, 16 × 2 and 16 × 4, with the chemical
potential held fixed in each so that the doping is 1=8 when
hp → 0. The inset shows the difference of the energy computed
from AFQMC with respect to DMRG. Lower panel: Comparison
of the computed SC pairing order parameter for the same
systems.
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Fig. 3. Noninteracting trial wave functions are used in the
calculation. Note that the pinning field range here is much
smaller than in Fig. 2, focusing on the weak fields and a
very fine scale of the pairing order parameter for compari-
son. With the lower value of U, this system requires larger
bond dimensions in DMRG to converge, and we illustrate
the extrapolation with truncation error. Good agreement is
seen in the order parameters computed from AFMQC and
the extrapolated results from DMRG.

2. Pair-pair correlation function

The pair-pair correlation function is computed with a
fixed number of particles (canonical ensemble). Results
from CP-AFQMC have been obtained earlier in supercells
with PBC using free-electron trial wave functions [35] and
also using a BCS type of trial wave function after a particle-
hole transformation [36]. Here, we employ a more direct
and general approach to apply projected BCS trial wave
functions [81], and we are able to access much larger
systems because of algorithmic improvements and espe-
cially increased computing power. Our results are consis-
tent with the earlier studies [35,36]. More unique to this
work is the detailed and direct comparison with DMRG to
quantify the accuracy.
In Fig. 4, we show a comparison of the pair-pair

correlation function for 24 × 4, at doping of 1=8, with
U ¼ 4 in a cylindrical geometry between DMRG and
AFQMC. The pair-pair correlations have a much smaller
signal (roughly Δ2), as can be seen even in these small
system sizes. Agreement is reasonable, but the accuracy does
not reach the level seen with the order parameter calcu-
lations. Hence, the order parameter will be the primary tool

on which we rely to accurately determine the nature of
superconducting orders. Thus, the development in this work
of direct computation of the order parameter is crucial.

C. Competition between pairing and stripes:
Small-cylinder finite-size effects

A central question to this work is how stripe order
and pairing order compete or cooperate. The interaction
between the two types of order plays out in subtle ways on
small-diameter cylinders. In this section, we discuss this
interplay in a general, intuitive way, as a guide for the
subsequent finite-size scaling analysis.
Let us think about how one can have a striped state that

also has pairing order. One would expect that two different
requirements should be associated with such a state. The
first is that an individual stripe would have local pairing—
that one can think of a stripe as being made up of pairs. The
second is that, in order to have long-range phase coherence,
particularly between stripes, there should be substantial
pair tunneling between stripes, associated with a density of
off-stripe pairs. One might think of this case as a vapor
pressure of pairs outside the “liquid” of stripes. Stripes that
bind their pairs too tightly would have weak or nonexistent
long-range pairing order. Numerical approaches, in order to
probe the 2D thermodynamic limit, must connect to these
two requirements.

FIG. 3. Comparison of the computed pairing order parameter at
U ¼ 4, as a function of the applied pairing field strength hp. The
system is a 24 × 4 cylinder, at h ≃ 1=6. DMRG results, withUð1Þ
symmetry and a two-site update, with different bond dimensions
are shown. The results after extrapolation to zero truncation error
are also plotted. The inset illustrates the extrapolation (with
respect to the truncation error) at hp ¼ 0.003 ×

ffiffiffi
2

p
≈ 0.00424.

The red dot represents the extrapolated value from DMRG, while
the blue dot with the error bar is the AFQMC result.

FIG. 4. Comparison between DMRG and AFQMC of the pair-
pair correlation function for a 24 × 4 cylinder, with U ¼ 4 at 1=8
doping. The reference bond is [(12,1), (12,2)]. Vertical and
horizontal bonds are along the y and x directions, respectively.
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Previous work on stripes has touched on the local pairing
question. Filled stripes were first obtained theoretically in
Hartree-Fock calculations, which are based on a single-
particle mean-field approximation, without any notion of
pairing. If filled stripes have pairing, it would be a subtle
modification of the nonpaired mean-field state. In contrast,
there is evidence that partially filled stripes have local
pairing structure. For example, in DMRG simulations of
the t-J and Hubbard models on cylinders, it was noticed
that the ring-shaped stripes circling the cylinder strongly
favor an even number of holes. For example, on a width-six
cylinder, one finds stripes with either four or six holes, not
three or five. Another example is shown in Appendix C. In
DMRG simulations without particle-number conservation,
the hole number in a stripe is always even as the chemical
potential is varied.
To study whether pairs can leave their stripes, it is

essential that the pair and the stripe are distinct. On a two-
leg ladder, there are only pairs, so one cannot address this
question. On a width-four cylinder, a half-filled stripe is a
pair, so one cannot expect to probe the 2D physics very well
on this system. A four-hole filled stripe on a width-four
cylinder would allow probing of pairs leaving the stripe, but
because the stripe is filled, it may not support pairs within
the stripe. Thus, the smallest cylinder that can address both
key questions has width six, where one can have a four-hole
stripe circling the cylinder.
Note that width-four cylinders have another complica-

tion, unrelated to the thermodynamic limit. As discussed
for the case of the t-J model [93], there are two very distinct
forms of d-wave pairing on a width-four cylinder. One is
the usual type, living on the surface of the cylinder. The
unusual type forms pairs circling the cylinder, for which it
is useful to think of the cylinder as a stack of plaquettes. It
has been known for some time that a single plaquette nicely
fits a d-wave pair. This state seems especially 1D-like.
Note that next-nearest-neighbor hopping t0 connects sites
within pairs for the surface pairing state but not for the
plaquette state.

III. RESULTS

This section contains the following four parts. We first
scan the pairing susceptibility versus doping h at a
representative interaction strength of U ¼ 8. We then carry
out a detailed and systematic study of the pairing properties
at 1=8 and U ¼ 8 in Sec. III B. This section is followed by
an examination of the relation between stripe and SC orders
in Sec. III C and then an investigation of the dependence
on U in Sec. III D.

A. d-wave pairing susceptibility versus doping

We first probe the SC response as a function of electron
density, by computing the pairing order parameter in the
presence of a d-wave pairing field, which is applied to the

entire system. We choose the pairing field amplitude
around hp ¼ 0.05, which induces a sizable SC order but
does not drive the system far away from its ground state
(see Fig. 15 in Appendix C). The electron density n is
controlled by the chemical potential μ. For the 16 × 4
cylinder, the μ value is varied in the range of 1.4 to 2.0,
which yields an electron density from about 0.79 to 1.
Figure 5 shows the SC pairing order parameter as a function
of density, or doping level. It can be seen from the 16 × 4
scan that the SC order has a stronger response between
n ∼ 0.81 and 0.92, with the maximum close to n ¼ 0.885.
Results in wider systems remain consistent, with the SC
order showing slow variations in the vicinity of h ¼ 1=8
doping. At density near the maximum SC order, the
system displays charge and spin orders consistent with
the ground state at 1=8 doping (n ¼ 0.875), namely, a stripe
order [63]. This result indicates that the system shows a SC
order in response to the applied pairing field but remains
in a similar ground state as the one when the pairing field
is absent.
We have also investigated the doping dependence of the

SC response in a 64 × 4 system using a different but
complementary approach to the one in Fig. 5. A linearly
varying chemical potential μðxÞ is applied along the
cylinder, and the SC order and local density are computed
without a pairing field by allowing particle numbers to
fluctuate in the DMRG calculation. The dependence of the
SC order as a function of local density is found to be
consistent with that in Fig. 5, as shown in Appendix C.
The fact that 1=8 doping is near the maximum response

of the SC order for U ¼ 8, and that the SC order shows
rather weak dependence on the precise density, leads us to
focus on the system of h ¼ 1=8, U ¼ 8, for which there is
also detailed data on the spin and charge order, as well as
ground-state energy, to compare with. The interaction
strength of U ¼ 8 is chosen as representative of the
physically relevant regime. The results are presented in
the next section.

FIG. 5. SC order parameters as a function of doping level, with
U ¼ 8. Results from three systems are shown, each at a modest
value of the applied d-wave pairing field (with strength hp
indicated in the legend). The doping level or particle density is
controlled by varying the chemical potential.
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B. Absence of long-range d-wave pairing
order at U = 8 and h= 1=8

We begin this section by considering a 48 × 4 cylinder at
h ¼ 1=8, with a pairing pinning field applied on vertical
bonds at the left edge only. We measure how the SC pairing
order parameter hΔ̂iji decays as a function of distance from
the left edge, which gives an indication of the behavior of
the pairing correlation function in the bulk. We expect at
least algebraic decay of the pairing order parameter if the
system exhibits long-range SC order and exponential decay
if there is no such order. The calculations are done with
DMRG, without conserving particle number but with Uð1Þ
symmetry for Sztot. In Fig. 6, we show the SC pairing order
parameter on the vertical (ŷ) bonds along the x̂ direction.
The SC pairing order parameter is well converged when the
bond dimension reachesm ¼ 12 000, so no extrapolation is
needed. We perform both exponential and algebraic fits.
The SC pairing order parameter clearly decays exponen-
tially versus distance from the pinning field. As shown in
the inset in Fig. 6, the pairing order on the horizontal (x̂)
bonds is perfectly symmetric with the negative values of the
vertical bonds. Although the pairing pinning fields are
applied only on the vertical bonds at the left edge, the whole
system spontaneously builds a d-wave pairing structure.
This result further confirms the tendency for short-range d-
wave pairing; however, the exponential decay of the pairing
order indicates that there is no long-range SC order in the
filled stripes.
We next investigate the pair-pair correlation directly on a

48 × 6 cylinder. At h ¼ 1=8 doping, the ground state has

filled stripes with λ ¼ 8 [63]. Previous study on width-two
ladders found that the SC pair-pair correlation decays
algebraically [94], while further study on width-four
cylinders showed that the correlation decays exponentially
[55]. Here, we study a width-six cylinder, employing the
Uð1Þ × SUð2Þ symmetry adapted DMRG with a single-site
update and keeping bond dimension up to 22 000 SUð2Þ,
which is, to our knowledge, the largest bond dimension to
date in studying the SC pairing on width-six cylinders. The
computed SC pair-pair correlation is then extrapolated with
respect to the two-site energy variance [88]. (The extrapo-
lation details can be found in Appendix E.) Again, we
perform both exponential and algebraic fits. As shown in
Fig. 7, the SC pair-pair correlations clearly follow an
exponential decay with pair separation, showing no
long-range order. The inset shows the (negative) values
of the correlations on the vertical (horizontal) bonds. The
correlations on the horizontal bonds are perfectly symmet-
ric with the vertical bonds but with opposite sign, again
confirming the d-wave structure.
On the width-six cylinders, in addition to the filled

stripes with λ ¼ 8, the 2=3-filled stripes with λ ≈ 5 can also
be stabilized, and this state has a slightly higher energy
(∼0.001t) [63] than the ground state studied above. This
state has a wavelength closer to the stripes (λ ¼ 4) observed
experimentally [95], so it is interesting to also investigate
the pairing in this metastable state.
Using DMRG, we computed the pair-pair correlation

function in 48 × 6 cylinders at 1=8 hole doping in this state.
As in the ground state with filled stripes, the results are
shown in Appendix D. The pair-pair correlation is found to

FIG. 6. SC pairing order parameter on the vertical bonds at a
fixed y, versus position x, for a 48 × 4 cylinder at 1=8 hole
doping, computed from DMRG with Uð1Þ symmetry (Sztot) and a
two-site update. Pairing fields with hp ¼ 0.25 are applied to the
vertical bonds at the left edge x ¼ 0. Results with different bond
dimensionm are shown. Both exponential (red line) and algebraic
(blue curve) fits are shown; the solid (dashed) region indicates the
region (not) used in the fits. The oscillation of the pairing order
parameter coincides with the stripe period. The inset shows the
(negative) pairing order parameters on the vertical (k) [horizontal
(⊥)] bonds for m ¼ 12 000.

FIG. 7. SC pair-pair correlation on the vertical bonds at a fixed
y, versus pair separation, for a 48 × 6 cylinder at 1=8 hole doping,
computed from DMRG with Uð1Þ × SUð2Þ symmetry and
single-site update. Results of different bond dimensions m, as
well as the extrapolation to the infinite bond dimension, are
shown. The pair separation ðx0 − xÞ is measured with respect to
the reference bond, a vertical bond at x ¼ 5. Both the exponential
(red line) and the algebraic (blue curve) fits are shown; the solid
(dashed) region indicates the region (not) used in the fits. The
correlation length is approximately 2.9 from the fitting. The inset
shows the (negative) correlations on the vertical (k) [horizontal
(⊥)] bonds for m ¼ 22 000.
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decay exponentially, even faster than in the ground state
with filled stripes.
It is worth emphasizing that we have used two different

DMRG schemes above—one under Uð1Þ symmetry (Sztot)
with two-site updates and the other under SUð2Þ ×Uð1Þ
(spin and particle number) with strictly single-site updates.
The consistency between the two approaches is a further
confirmation of their reliability. The width of the systems
that can be studied efficiently with DMRG is limited due to
the linear increase of entanglement entropy with the width.
To reach the TDL in two dimensions, we complement
DMRGwith two kinds of AFQMC calculations, computing
both the pair-pair correlation function and the pairing order
parameter, as described next.
The pair-pair correlation function in an 32 × 6 supercell

with PBC along both directions is shown in Fig. 8. This
calculation is performed with a fixed number of electrons,

at h ¼ 1=8, with U ¼ 8. The calculation with a free-
electron trial wave function is consistent with earlier results
from CP-AFQMC on square lattices [35,36]. The calcu-
lation with a number-projected BCS trial wave function, as
mentioned, employs a new method [81], which allows
direct computation and backpropagation in the Hubbard
model working in the canonical ensemble. For both free-
electron and BCS trial wave functions, the pair-pair
correlations from AFQMC are seen to decay to 0 within
the statistical resolution beyond a few lattice spacings. The
BCS wave function itself has very large pair-pair correla-
tion, as shown in the inset. However, in the AFQMC result,
using it as a trial wave function, the pair-pair correlation
is suppressed by 2 orders of magnitude and decays to 0
beyond a few lattice spacings. While the agreement
between the two trial wave functions is not perfect, their
consistent behavior at large pair separation provides
another corroboration of the results from the pairing order
parameter.
We next employ AFQMC to calculate the pairing order

parameter, by applying Ĥp as in Eq. (5), with the pairing
fields chosen to match the dx2−y2 structure and applied
throughout the supercell. The pairing order parameter Δ
(averaged over all bonds) is calculated as a function of hp.
The chemical potential μ ¼ 1.75 is chosen such that the
hole density is h ¼ 1=8 in the ground state when hp ¼ 0,
and it is held fixed for all hp. To detect possible long-range
SC pairing order in the pure Hubbard model (hp ¼ 0), we
need to reach the TDL at each hp first and then extrapolate
hp to zero. This procedure is parallel to what is illustrated in
Fig. 1, and it is shown in Fig. 9. Following the procedure
discussed in Sec. II B, AFMQC calculations are performed
on various system sizes up to 32 × 8. We focus on the
small-hp region where the behavior determines whether
long-range SC pairing order exists. In this region, the self-
consistent trial wave function gives the same results as the

FIG. 8. Pair-pair correlation from QMC for a 32 × 6 system
with U ¼ 8, 1=8 doping and PBC. Different trial wave functions
are used. In the inset, the results from trial wave functions
themselves are shown. Comparing to the variational result in the
BCS wave function, the pair-pair correlation in the QMC
calculation, using it as a trial wave function, is largely suppressed.

(a) (b) (c)

FIG. 9. Finite-size scaling of the SC pairing order parameter, at U ¼ 8 and h ¼ 1=8. In panel (a), the computed pairing order
parameters Δ are shown for a variety of system sizes in the small-hp region. In panel (b), an extrapolation of the results in panel (a) is
performed with respect to the width in the periodic direction (linear in 1=Ly) for each value of hp. The lines, from top to bottom, are
for hp ¼ 0.064, 0.049, 0.035, 0.021, 0.014, and 0.0078, respectively. The resulting pairing order parameter Δ∞ðhpÞ is shown on the left.
(A slight shift in the horizontal position has been applied to some of the data points for better visibility of the results and error bars.)
In panel (c), the result from the fit in panel (b), Δ∞ðhpÞ, is plotted versus hp. A quadratic fit is then performed, which yields a value
Δ∞ð0Þ ¼ 0.003ð6Þ, as indicated by the black star at hp ¼ 0. A linear fit of the last few points is also shown. Weighted least-squares fits
are used to account for the statistical errors.
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noninteracting trial wave function; the latter form is used
here, which is obtained by setting U ¼ 0 in Eq. (1) and
tuning the chemical potential to give a doping of h ¼ 1=8.
The computed pairing order parameters as a function of hp
are shown in Fig. 9(a). For the lengths studied here
(Lx > 16), the results are not sensitive to Lx, as can be
seen by comparing the 16 × 6 and 24 × 6 results, and also
the 16 × 8 and 32 × 8 results. On the other hand, the order
increases when the system becomes wider, although the
dependence on system size becomes weak beyond Ly ¼ 6.
To obtain the order parameters at the TDL,Δ∞ðhpÞ, a linear
extrapolation with 1=Ly is performed for each value of hp,
as shown in Fig. 9(b). The resulting Δ∞ðhpÞ and the
statistical uncertainties are shown in Fig. 9(c). A quadratic
fit is then performed, which yields a value Δ∞ð0Þ ¼
0.003ð6Þ, as indicated by the symbol at hp ¼ 0. A linear
fit for hp < 0.05 is also shown, which gives a statistically
consistent result. We thus conclude that there is no long-
range SC pairing in this system in the TDL.

C. Competition between stripe
and superconducting orders

In Fig. 10, we examine the trend of the stripe and SC
pairing orders when the strength of the applied pairing field
is varied. The stripe order amplitude is defined as the
intensity of hole modulation in the stripe state (i.e., the
maximum value minus the minimum value of hole density
along the longer direction of the cylinder). Results are
presented for two systems, a 16 × 4 cylinder computed by
DMRG and a 32 × 8 cylinder computed by AFQMC. Both
results are for U ¼ 8, with h ¼ 1=8. We can see that, when
hp is decreased, the pairing order parameter becomes
smaller while the stripe order increases. The two orders
thus compete against each other in the Hubbard model. The
results of the previous subsection show that, at the zero

pairing field limit, the stripe order dominates and no pairing
order survives in this parameter region.

D. U dependence, and the case of U = 4

In this section, we study the pairing order at different
interaction strengthsU. In Fig. 11, we plot the pairing order
parameter for U ¼ 4, 6, and 8 at 1=8 doping. These
calculations follow the same procedure as in Fig. 2,
performed on a 16 × 4 system, with pairing fields of
d-wave structure applied to the entire system. In the
large-hp region, we find that the SC pairing order parameter
increases asU decreases. In the small-hp region, the pairing
order parameter varies little with the decrease of U.
Given the tendency for the pairing susceptibility to

increase as U is reduced, we next focus on a lower but
still physically relevant value ofU ¼ 4. In Fig. 12, we show
the pair-pair correlation function for 1=8 doping from
DMRG. The study at U ¼ 4 is similar to the one in Fig. 7
at U ¼ 8. Consistent with the result from Sec. III C, the
pairing correlation amplitude is substantially larger than
forU ¼ 8. Both exponential and algebraic fits are performed
for the correlation function computed with the largest
bond dimension kept,m ¼ 30 000. Here, the results are less
definitive. The exponential is a slightly better fit to the data,
but the algebraic fit cannot be ruled out conclusively.
We next study the pairing order parameter at U ¼ 4,

using AFQMC to approach the TDL. We target h ¼ 1=6,
near optimal doping. In this parameter regime, no stripe or
spin-density wave state is observed in the ground state of
the Hubbard model [51]. This system is the one in which
extensive cross-checks between DMRG and AFQMC were
performed in Sec. II B (Fig. 3). The computed pairing order
parameters for a variety of system sizes are shown in
Fig. 13. The same procedure as in Fig. 9 is performed.

FIG. 10. Strengths of the stripe and pairing orders versus the
applied pairing field, hp. The upper and lower panels show results
from 16 × 4 and 32 × 8 cylinders, respectively, both at U ¼ 8
with h ¼ 1=8.

FIG. 11. Dependence of the pairing order parameter on inter-
action strength U. Calculations were done in the same manner as
in Fig. 2, on 16 × 4 systems, varying only U. In the inset, the
pairing order parameters are plotted versusU for two values of hp
as indicated by the vertical lines in the main graph, hp ¼ 0.38
and 0.58.
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We first carry out an extrapolation with the width Ly at each
hp, to reach the TDL. In contrast to the U ¼ 8 case, the
pairing order parameter here is seen to either decrease or
saturate very quickly with system width as Ly grows. The
results for width-four cylinders (24 × 4) are seen to be
nonmonotonic with wider systems, so they are not included
in the fit. The final result extrapolated to the hp ¼ 0 limit is
Δ∞ð0Þ ¼ 0.006ð4Þ, statistically compatiblewith a vanishing
order parameter.
Of course, based on this result and the pairing correlation

results above, we cannot fully rule out the possibility of a
finite pairing order in the ground state atU ¼ 4. (See also the
discussion on weak coupling in Sec. I.) Our results put a
rather stringent bound on the strength of the pairing order,
which is considerably smaller than indicated by the best
previous calculations with affirmative results on supercon-
ductivity. The small magnitude of this bound suggests that,
even if the pure Hubbard model is superconducting in some
regime of the parameter space further from the most relevant
physical parameters, it is likely missing key ingredients as a
fundamental model for cuprate superconductors.

IV. SUMMARY AND PERSPECTIVE

In summary, we have carried out a detailed study of the
superconducting pairing properties in the ground state of
the 2D pure Hubbard model, using two of the most accurate
ground-state many-body computational methods available
at present. With both methods, we have presented technical
advances that enabled new capabilities in probing the
superconducting order. The DMRG calculations of pairing
correlation functions were performed on up to width-six
cylinders, with unprecedented accuracy. For the first time,
the AFQMC computations were able to compute pairing
order parameters relying on total energy calculations.
Meticulous comparisons were made between the two
methods. Their complementary application allowed us to
maintain high accuracy and reach the thermodynamic limit.
In the parameter regime relevant to the cuprates

(U ∼ 6–8), we found that the pure Hubbard model does
not have a superconducting ground state. We also found
that the lack of superconductivity is due to a competition
with stripe order, with stripes dominating. At smaller
U ∼ 4, the tendency for striped ground states is much
weaker. In this case, we still find a pairing response
consistent with zero. While we cannot rule out a small
nonzero pairing order parameter, our results place an upper
bound on its strength, which is very small.
In the early days of high-temperature cuprate super-

conductivity, when no numerical approach was adequate to
accurately probe the low-temperature doped regime in large
system sizes, it was natural to expect that if one could get
past the fermion sign problem, one would quickly have a
clear picture of the physics involved. Now that we can
study this regime, new obstacles have been revealed. A key
obstacle is the close competition of a number of different
phases, with small Hamiltonian terms mediating which
phase is favored. This situation makes simulations more
difficult, but equally important is that it is very difficult
to know reliably which sets of small terms and parameters
(such as next-nearest-neighbor hopping t0) describe the
actual materials. Our work can be viewed as a key initial

FIG. 12. SC pair-pair correlation on the vertical bonds for
U ¼ 4 at h ¼ 1=8 on a 48 × 4 cylinder, computed by DMRG
with Uð1Þ × SUð2Þ symmetry and the single-site update. The
reference bond is a vertical bond at x ¼ 5. Both exponential (red
line) and algebraic (blue curve) fits are shown; the solid (dashed)
region indicates the region (not) used in the fits.

(a) (b) (c)

FIG. 13. Finite-size scaling of the SC pairing order parameter, at U ¼ 4 and doping of h ≃ 1=6. The layout is the same as in Fig. 9. In
panel (a), the pairing order parameter computed from DMRG for 24 × 4 (see Fig. 3) are also shown for comparison. In panel (b), the
width-four data (black symbols) were not included in the linear fits, as they are nonmonotonic with larger Ly results. In panel (c), the
extrapolation yields a value Δ∞ð0Þ ¼ 0.006ð4Þ, as indicated by the symbol at hp ¼ 0.
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step, where the iconic simplest-to-define model with only
U and t is found not to exhibit superconductivity. To go
beyond this step, one can study phases and superconduc-
tivity in generalized models, including a broad range of
parameters. Simultaneously, it is important to improve our
techniques for both deriving accurate models and for
simulating real systems with very strong correlation with-
out introducing models.
It is also important to note that the pure Hubbard model

does get much of the physics right, including antiferro-
magnetism and its destruction upon doping, and a tendency
for stripes to occur and to compete with d-wave super-
conductivity. It also produces the crucial physics that there
are many intertwined states separated by tiny energy scales,
a key part of the reason that the complete nature of
superconductivity in the cuprates remains to be resolved.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with E. Gull, M.
Imada, and A. J. Millis. M. Q. and S. Z. were supported by
the Simons Foundation. The Flatiron Institute is a division
of the Simons Foundation. S. R.W. acknowledges the
support of the NSF through Grant No. DMR-1812558.
C.-M. C. and U.S. acknowledge support by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy 426
EXC-2111 390814868. Parts of the calculations were carried
out at the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National
Science Foundation Grant No. ACI-1053575, and the
computational facilities at the College of William and
Mary. C. H. acknowledges funding through ERC Grant
QUENOCOBA, ERC-2016-ADG (Grant No. 742102).

APPENDIX A: PARTICLE-HOLE
TRANSFORMATION

When the pairing fields in Eq. (5) are applied, the
Hamiltonian contains fluctuations of the total particle
number. The usual ground-state AFQMC is formulated
in the canonical ensemble with fixed Ne. However, we can
apply a partial particle-hole transformation as follows:

ĉi↑ → d̂i↑; ĉ†i↑ → d̂†i↑;

ĉi↓ → d̂†i↓ð−1Þi; ĉ†i↓ → d̂i↓ð−1Þi: ðA1Þ

Then, the Hamiltonian in Eq. (1) is transformed to

Ĥ ¼ −t
X
hi;jiσ

d̂†iσd̂jσ þ U
X
i

ðm̂i↑ − m̂i↓m̂i↑Þ

− μ
X
i

ðm̂i↑ þ 1 − m̂i↓Þ; ðA2Þ

where m̂i;σ ¼ d̂†i;σd̂i;σ. The pairing operator in Eq. (5) is

transformed from Eq. (2) to Δ̂ij ¼ ðð−1Þjþ1d̂†j↓d̂i↑−
ð−1Þid̂†i↓d̂j↑Þ=

ffiffiffi
2

p
, which now describes spin-flip hopping

terms. The chemical potentials for electrons with up and
down spin are now μ −U and −μ, respectively, introducing
spin imbalance in the system. The sign of interaction
strength U is flipped, which means the interaction becomes
attractive after the transformation. In CP-AFQMC calcu-
lations, walkers (Slater determinants) are now represented
as a 2N × Ne matrix [8], and each orbital in the Slater
determinant is now a spin orbital with a mixture of up and
down orbitals. This case is similar to the treatment of
Hamiltonians with spin-orbit coupling terms [96]. Other
details remain unchanged in the CP-AFQMC calculation.

APPENDIX B: COMPARISON OF ENERGIES
BETWEEN THE PAIRING STATE AND

THE STRIPE STATE

In Fig. 14, we show the comparison of energies between
the pairing state and the stripe state. The systems are 16 × 4
cylinders, with a d-wave pairing field applied to the whole
system. The energy for the pairing state at hp ¼ 0 (denoted
by triangles in Fig. 14) is obtained from a quadratic fit with
energies at large hp. The stripe energy (denoted by the open
square and cycle in Fig. 14) is the actual value calculated
at hp ¼ 0. We find that the energy of the pairing state
is slightly higher than that of the stripe state, by about
0.01 per site.

FIG. 14. Comparison of the ground-state energies from CP-
AFQMC (red) and DMRG (blue), as a function of the pairing
field strength hp. The system is a 16 × 4 cylinder. A fixed value
of μ ¼ 1.75 is used with which the doping is 1=8 when hp ¼ 0.
A quadratic fit is applied to each set of energies using only values
at large hp (points to the right of the vertical bar). The triangular
symbols at hp ¼ 0 show the intercept result from the fit, while
the open symbols are those obtained from actual calculations
done at hp ¼ 0. In the inset, a zoom of the main plot near hp ¼ 0

is shown.
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APPENDIX C: FURTHER INVESTIGATION OF
DOPING DEPENDENCE

In the main text, we have shown the pairing order
induced by the pairing field hp ¼ 0.05 for different doping
in Fig. 5. Here, we illustrate that the pairing field amplitude
hp ¼ 0.05 only slightly changes the original ground state,
and thus the induced SC order properly represents the
response of the original ground state. In Fig. 15, we
compare the local hole densities of two 16 × 4 systems.
One is a system with pairing field hp ¼ 0.05 and μ ¼ 1.72,
corresponding to overall particle density of approximately
0.872. The other is a system of conserved particle density
0.875 without a pairing field. The stripe order can be clearly
seen in both systems, and the pairing fields only slightly
change the local densities.
To further examine the doping dependence of the pairing

order, we study, using DMRG, a 64 × 4 cylinder with local
chemical potential μðxÞ linearly changing from 1.4 to 2.1
along the longitudinal (x) direction. Since the local density
will vary with x, we obtain information about different
dopings in a single calculation. We use DMRG without
conserving total particle number to allow SC orders to
develop. The local densities and the local SC orders along
the longitudinal direction are shown in Fig. 16. The SC
orders on the horizontal and vertical bonds are symmetric
with opposite signs, showing the d-wave symmetry. The
maximum SC order appears around the density n ≈ 0.875
(1=8 hole doping), and it decays for both higher and lower
densities. This result is further confirmation of the doping
dependence of the SC order observed in Sec. III A, and it
validates the choice of doping h ∼ 1=8 as a representative
case in studying the SC response.
The optimal doping μopt ≈ 1.73 is actually at the boun-

dary between two different stripe fillings. For μ < μopt, the
ground states are filled stripes (four holes per stripe in the
width-four cylinder), and for μ > μopt, the ground states are
half-filled stripes (two holes per stripe). This case can be
seen from the more abrupt change in density at μopt (top
panel in Fig. 16), and it was further confirmed by our

calculations with uniform chemical potentials (not shown
here). This picture is consistent with the idea that fluctua-
tions between different stripe fillings can help induce
SC orders.
Note that, strictly speaking, the SC order should be zero

here in a finite-size system since the Hamiltonian does not
break (total) particle number conservation without an
applied pairing field. However, in the DMRG calculation,
the variational ground states often break the symmetry due
to the finite bond dimensions kept. This feature has been

FIG. 15. Comparison of the local hole densities on different
rungs for 16 × 4 systems with hp ¼ 0.05 and with zero pairing
field. The system with the pairing field is the same as in Fig. 5
with μ ¼ 1.72.

FIG. 16. The system is a 64 × 4 cylinder with local chemical
potential μ linearly changing along the longitudinal direction.
(Upper panel) Particle densities along the longitudinal direction.
The x axis has been replaced by the local μ on the corresponding
position. (Lower panel) The local SC orders on the vertical (blue)
and horizontal (red) bonds along the longitudinal direction. The
results are obtained by using DMRG without conserving total
particle number (grand canonical ensemble).

FIG. 17. The density dependence on μ for a 16 × 4 cylinder
with pairing field hp ¼ 0.25 at the left edge. The numbers in the
parentheses are the number of holes in each stripe, from left to
right. For example, (4,4) means two filled stripes (with four
holes). The red color indicates the mixture of different stripe
fillings.
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used in the past to study the magnetization and now the SC
pairing order.
In Fig. 17, we show the particle density (number of

holes) as a function of chemical potential μ for a 16 × 4
cylinder with pinning pairing field hp ¼ 0.25 at the left
edge. The density is consistent with the local density in
Fig. 16, confirming the reliability of the analysis. The
number of holes in each stripe is shown in parentheses.
Note that the number of holes in a stripe is even for all μ.
This result indicates that, although there is no long-range
SC order as we conclude in the main text, short-range
pairing exists in the stripes.

APPENDIX D: FILLED AND 2=3-FILLED
STRIPES ON SIX-LEG CYLINDERS

Besides the filled stripes, we also considered the 2=3-
filled stripes on width-six cylinders. The filled and 2=3-
filled stripes are the only two striped states that can be
stabilized on width-six cylinders in DMRG. In Fig. 18, we
show the pair-pair correlations for the 2=3-filled stripes on a
48 × 6 system. The correlations for both the finite bond
dimensionm and the infinitem are shown. The detail of the
extrapolation will be shown in the next section. Both
the power-law and the exponential fittings are shown. As
in the filled stripes, the correlations decay exponentially
with distance. The inset shows the absolute values of the
correlations on both the vertical bonds and the horizontal
bonds. The correlations on the horizontal bonds again are
perfectly symmetric with the vertical bonds at the same
location but with opposite sign, consistent with the d-wave
symmetry.

In Fig. 19, we show the linear extrapolation of the
energies with the two-site variance for both the filled and
the 2=3-filled stripes. The clearly linear behaviors typically
indicate the stability of the MPS toward the zero-variance
limit. In other words, the MPS basically stays in the same
state for the considered bond dimensions. The crossing of
the lines shows that the filled stripes are lower in energy
only when the bond dimension is sufficiently large. The
filled stripes need larger bond dimension than the 2=3-filled
stripes to achieve the same variance because it contains
higher entanglement.

APPENDIX E: PAIR-PAIR CORRELATION
EXTRAPOLATIONS

Here, we discuss some details of the DMRG simulations.
In the simulations preserving SUð2Þ symmetry, i.e., the
simulations on the systems without any pairing field,
temporary local chemical potentials are applied in the first
few sweeps on the expected locations of the stripes to
stabilize the states and improve convergence. One often
also applies the magnetic pinning field to stabilize the
stripes; however, in our cases, the magnetic field will
break the SUð2Þ symmetry, so no magnetic pinning field
is used. For the filled and the 2=3-filled stripes, the
temporary chemical potentials are applied up to m ¼
4000 (m ¼ 1400), and then they are switched off for the
further sweeps of larger m.
For the same systems, the single-site update is used in

DMRG. To eliminate the finite bond-dimension effect,
we employ the extrapolations of physical quantities (for
example, energy and pair-pair correlations) with the two-
site energy variances [88]. In two-site DMRG, one usually
extrapolates the physical quantities with the so-called

FIG. 18. SC pair-pair correlation for the 2=3-filled stripes with
1=8 hole doping on 48 × 6 cylinders. Different curves are for
different bond dimensions m, as well as the extrapolation to the
infinite bond dimension. The pair separation ðx0 − xÞ is measured
with respect to the reference bond, a vertical bond at x ¼ 5. Both
exponential (red line) and algebraic (blue curve) fits are shown;
solid (dashed) region indicates the region (not) used in the fits.
The correlation length is approximately 1.9 from the fitting.
The inset shows the (negative) correlations on the vertical (k)
[horizontal (⊥)] bonds for m ¼ 15 000.

FIG. 19. Linear extrapolation of ground-state energy with the
two-site energy variances for the filled and the 2=3-filled stripes
on 48 × 6 cylinders. The MPS bond dimensions shown for the
filled stripes are from 8500 to 22 000, and for the 2=3-filled
stripes, they are from 7000 to 15 000. The extrapolated energy
is −0.7581ð6Þ for the filled stripes and −0.7574ð4Þ for the
2=3-filled stripes.
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truncation error (alternatively called discarded weight).
However, in single-site DMRG, the truncation errors are
not well defined. Thus, we extrapolate the physical quan-
tities with the two-site energy variance, which is an
approximation of the full variance hðĤ − EÞ2i=N2.
Physically, the variance is a perfect quantity to extrapolate
with since it measures the distance of the variational state to
an eigenstate. In practice, this extrapolation scheme was
demonstrated to be as reliable as the extrapolation by the
truncation error [88].
At the largest bond dimension we can achieve, which to

our knowledge is also the largest bond dimension that has
been achieved to date, the pair-pair correlation vs energy
variance has not yet reached the linear region. We thus
perform cubic extrapolations to best fit the data, as shown
in Figs. 20 and 21. Since the correlations on different
distances have quite different scales, we show the results

only for part of the distance, which is long enough but
far enough away from the boundary. Although here we
showed only the cubic extrapolations, we also tested other
extrapolations—for example, the linear extrapolation of the
last three data points. The results are very similar to what is
presented, and they lead to the same conclusion (exponen-
tial decays).
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