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Recent thermal-conductivity measurements evidence a magnetic-field-induced non-Abelian spin-liquid
phase in the Kitaev material α-RuCl3. Although the platform is a good Mott insulator, we propose
experiments that electrically probe the spin liquid’s hallmark chiral Majorana edge state and bulk anyons,
including their exotic exchange statistics. We specifically introduce circuits that exploit interfaces between
electrically active systems and Kitaev materials to “perfectly” convert electrons from the former into
emergent fermions in the latter—thereby enabling variations of transport probes invented for topological
superconductors and fractional quantum-Hall states. Along the way, we resolve puzzles in the literature
concerning interacting Majorana fermions, and also develop an anyon-interferometry framework that
incorporates nontrivial energy-partitioning effects. Our results illuminate a partial pathway toward
topological quantum computation with Kitaev materials.
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I. INTRODUCTION

The field of topological quantum computation pursues
phases of matter supporting emergent particles known as
“non-Abelian anyons” to ultimately realize scalable, intrinsi-
cally fault-tolerant qubits [1,2]. This technological promise
derives from three deeply linked non-Abelian-anyon fea-
tures: First, nucleating well-separated non-Abelian anyons
generates a ground-state degeneracy consisting of states that
cannot be distinguished from one another by local measure-
ments. Qubits encoded in this subspace enjoy built-in
protection from environmental noise by virtue of local
indistinguishability. Second, they obeynon-Abelian braiding
statistics. That is, adiabatically exchanging pairs of non-
Abelian anyons effects “rigid” noncommutative rotations

within the ground-state manifold—thus producing fault-
tolerant qubit gates. And third, pairs of non-Abelian anyons
brought together in space can “fuse” to at least two different
types of particles; detecting the fusion outcome provides a
means of qubit readout.
Fulfilling this potential requires, at an absolute minimum,

synthesizing a non-Abelian host material and developing
practical means of controlling and probing the constituent
anyons. The observed fractional quantum-Hall phase at
filling factor ν ¼ 5=2 [3], widely expected to realize the
non-Abelian Moore-Read state or cousins thereof [4–8],
provided the first candidate topological-quantum-computing
medium. Non-Abelian anyons in this setting carry electric
charge (e.g., e=4), and hence, can be manipulated via gating
and probed using ingenious electrical interferometry
schemes [9–11]. While experimental efforts in this direction
continue [12], during the past decade intense experimental
activity has focused on “engineered” two-dimensional
(2D) and especially one-dimensional (1D) topological super-
conductors [13,14] as alternative platforms. These exotic
superconductors can be assembled from heterostructures
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involving ordinary, weakly correlated materials yet share
similar non-Abelian properties to the Moore-Read state (for
reviews, see Refs. [15–25]). Specifically, the charged non-
Abelian excitations in the Moore-Read state are replaced by
non-Abelian defects—i.e., domain walls and superconduct-
ing vortices—that bind Majorana zero modes. In a topo-
logical superconductor, Majorana zero modes are equal
superpositions of electrons and holes and thus carry no
net charge.They do carry a physical-fermion-parity degree of
freedom, however, and are thus amenable to electronic
probes including tunneling spectroscopy, interferometry,
Josephson measurements, etc.; see, e.g., Refs. [14,26–30].
In fact, detailed blueprints exist for scalable topological-
quantum-computation hardware based on 1D-topological-
superconductor arrays, relying largely on electrical tools for
operation [31].
Still more recently, experiments suggest the emergence

of yet another variant of the Moore-Read state, but in a
fundamentally different physical setting from those above:
the honeycomb “Kitaev material” α-RuCl3 [32,33]. As
background, consider a honeycomb lattice of spin-1=2
moments governed by a Hamiltonian of the form

H ¼ −
X
hrr0i

KSγrS
γ
r0 −

X
r

h · Sr þ � � � : ð1Þ

The first term encodes bond-dependent spin interactions,
with γ ¼ x on the green bonds of Fig. 1(a), γ ¼ y on red
bonds, and γ ¼ z on blue bonds; note the strong frustration
arising from these competing spin couplings, which sup-
presses the tendency for conventional symmetry-breaking
order. The second term in the Hamiltonian accounts for the
possible presence of a Zeeman field h, while the ellipsis
denotes additional allowed perturbations.

When only theK term is present, the Hamiltonian reduces
to Kitaev’s famed exactly solvable honeycomb model [34].
Here the ground state realizes a time-reversal-invariant
quantum spin liquid with gapless, emergent Majorana
fermions coupled to a Z2 gauge field. For this paper, it is
crucial to distinguish emergent Majorana fermions from
physicalMajorana fermions that appear as excitations at the
boundaries of two- and three-dimensional topological super-
conductors. The latter Majorana fermions are built from
ordinary electronic degrees of freedom, whereas the former
represent bona fide fractionalized quasiparticles born within
a purely bosonic spin system. It follows that physical
Majorana fermions can shuttle between the host topological
superconductor and a conventional electronic medium (e.g.,
a lead); conversely, emergent Majorana fermions live exclu-
sively in the spin liquid.
Breaking time-reversal symmetry generates even more

striking physics: A nonzero Zeeman field h gaps out the
Majorana fermions, yielding a non-Abelian spin liquid
exhibiting a fully gapped bulk and a gapless, chiral
Majorana fermion edge state that underlies quantized
thermal Hall conductance [34]. This phase supports two
nontrivial quasiparticle types: massive emergent Majorana
fermions and “Ising” non-Abelian anyons. The latter can be
viewed as electrically neutral counterparts of the non-
Abelian anyons in the Moore-Read state. Alternatively, they
comprise deconfined cousins of non-Abelian defects in
topological superconductors that bind Majorana zero modes
carrying an emergent rather than physical-fermion-parity
degree of freedom.
Jackeli and Khaliullin established that a class of strongly

spin-orbit-coupled Mott insulators can, quite remarkably,
be well modeled by Eq. (1) with inevitably present
corrections represented by the ellipsis being “small” [35].

(a) (b) (c) (d)

FIG. 1. (a) Lattice structure for the Kitaev honeycomb model. Spins exhibit bond-dependent nearest-neighbor interactions, with the x,
y, and z components, respectively, coupling along green, red, and blue bonds. Vectors e1;2;3 point from the A sublattice (solid circles) to
the B sublattice (open circles). (b) Sketch of the Majorana-fermion representation of the spin operators [Eq. (4)] used for the exact
solution. The bx;y;zr operators combine to form a Z2 gauge field, while the cr operators define itinerant Majorana fermions that hop
between nearest-neighbor sites. Hermiticity of the cr’s allows the kinetic energy to be expressed as a sum over momenta in the right half
of the Brilllouin zone (BZR, shaded region). (c) In the gapless spin-liquid phase, the fermionic spectrum features a single massless Dirac
cone. (d) Breaking time-reversal symmetry via an applied magnetic field opens a gap at the Dirac point, generating a non-Abelian spin-
liquid phase.
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Their pioneering result opened up the now experimentally
active field of Kitaev materials whose spins interact pre-
dominantly via bond-dependent spin interactions of the type
built into Kitaev’s honeycomb model [36–39]. All honey-
comb-lattice Kitaev materials studied to date—α-RuCl3
included [40]—magnetically order at zero field. Evidently,
perturbations beyond the K term in Eq. (1), while nominally
small, destabilize the gapless quantum spin liquid [41]
(various experiments nevertheless report residual fraction-
alization signatures at “high” energies [42–52]). In α-RuCl3,
applying an approximately 10 T in-plane magnetic field
destroys the zero-field magnetic ordering [53]. Numerous
experiments are consistent with the fascinating possibility
that the system then enters the non-Abelian spin-liquid phase
highlighted above [50,54–61]. Most strikingly, Kasahara
et al. [60] report thermal-Hall-conductance measurements
that agree well with the quantized value expected from the
hallmark chiral Majorana edge mode. This experiment
withstood some initial theoretical scrutiny [62,63], and
has very recently been extended in Ref. [64].
Can one plausibly exploit α-RuCl3 (or perhaps some

related Kitaev materials) for topological quantum compu-
tation? This question is well motivated on at least two
fronts. For one, the energy scales appear quite favorable. In
Refs. [60,64], quantized thermal Hall conductance persists
up to temperatures of roughly 5 K, suggesting a spin-liquid
bulk gap of similar magnitude—an encouraging figure
compared to the gap expected in most other candidate non-
Abelian platforms [65]. Moreover, α-RuCl3 affords a great
deal of materials-science flexibility [66–69]: It is exfoliat-
able, amenable to nanofabrication, can be readily interfaced
with other materials, etc.
Manipulating and probing the anyons as required for

advanced applications nevertheless poses a major out-
standing challenge. In essence, the detailed road maps
developed for quantum-Hall and topological superconduc-
tor platforms—which again heavily invoke electrical
tools—need to be largely rewritten for non-Abelian spin
liquids in Kitaev materials because they are electrically inert
Mott insulators. Two subclasses of problems naturally arise
here: (i) devising feasible techniques for creating, trans-
porting, and fusing Ising anyons on demand in Kitaev
materials and (ii) developing schemes for unambiguously
detecting individual emergent fermions and Ising anyons as
well as their nontrivial statistics. Vacancies and spin impu-
rities appear to be promising ingredients for item (i). At least
in the gapless spin-liquid phase of Kitaev’s honeycomb
model, both have been shown to trap Z2-flux excitations
[70–72], which evolve into Ising anyons upon entering the
non-Abelian phase. We leave detailed investigations of this
issue for future work, and instead propose a series of
experiments that directly tackle item (ii).
Our primary innovation is that, counterintuitively, low-

voltage electrical transport can be profitably employed to
probe the detailed structure of non-Abelian spin liquids,

theirMott-insulating character notwithstanding.We build off
of seminal theory works that highlight the possibility of
coherently converting physical fermions into emergent
deconfined quasiparticles in Abelian spin liquids [73] and
non-Abelian quantum-Hall phases [74] to probe fractionali-
zation [75]. We pursue a complementary approach that
closely relates to the physics of “fermion condensation”
put on rigorous mathematical foundation in a similar setting
inRef. [76]. Specifically, we introduce a series of circuits that
interface electronically active systems—notably proximi-
tized ν ¼ 1 integer quantum-Hall states, though other
choices are possible—with Kitaev materials realizing a
non-Abelian spin liquid. Strong interactions at their interface
can effectively “sew up” these very different subsystems,
leading to a striking and exceedingly useful phenomenon: A
physical electron injected at low energies on the electroni-
cally active side converts with unit probability into an
emergent fermion in the spin liquid.
Our circuits exploit this perfect conversion process to

electrically reveal (via universal conductance signatures)
the spin liquid’s chiral Majorana edge state, bulk emergent
fermions, and bulk Ising anyons, using variations of
transport techniques developed for topological supercon-
ductors and fractional quantum-Hall states. Figures 8–10
sketch the corresponding setups. The electrical conduct-
ance of these circuits changes qualitatively upon perturbing
the Kitaev material (again, an electrically inert element),
e.g., to add or remove even a single bulk emergent fermion
or Ising anyon; we argue that this feature makes our
predictions especially unambiguous. Moreover, the circuits
designed to detect individual bulk quasiparticles rely on
interferometric signatures that further unambiguously
reveal the non-Abelian statistics of Ising anyons as well
as the nontrivial mutual statistics between Ising anyons and
emergent fermions.
These results collectively establish a partial road map

toward utilizing Kitaev materials for topological quantum
computation. En route to putting our predictions on firm
footing, we introduce some nontrivial technical innovations
as well. First, we resolve an outstanding puzzle in the
literature concerning interacting Majorana fermions.
Specifically, the interaction strength required to induce an
instability in a self-dual Majorana chain has been found to
vary by orders of magnitude depending on subtle variations
in the microscopic interaction (for a recent review, see
Ref. [77]). We explain this peculiar behavior as arising from
interaction-dependent renormalization of kinetic energy for
the Majorana chain. Second, we analyze anyon interferom-
etry in a new regime using a phenomenological picture
combined with rigorous formalism that incorporates crucial
energy-partitioning effects. The framework that we develop
here could prove valuable in a variety of other contexts.
The remainder of the paper is organized as follows. We

begin in Sec. II by reviewing the phenomenology of the
Kitaev honeycomb model. Section III explores interacting
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helical Majorana fermions from several perspectives, and
then Sec. IV bootstraps off of those results to describe how
a ν ¼ 1 quantum-Hall state can be sewn (in a precise sense)
to a non-Abelian spin liquid with the aid of a super-
conductor. In the next three sections, we introduce circuits
that use this “sewing” to electrically interrogate a non-
Abelian spin liquid: Section V focuses on electrical
detection of the chiral Majorana edge state, Sec. VI
introduces a circuit that probes bulk Ising anyons, and
Sec. VII introduces an interferometer that probes both bulk
Ising anyons and emergent fermions, as well as non-
Abelian statistics. We conclude and highlight numerous
open questions in Sec. VIII. Several Appendixes provide
additional details and supplementary results on our circuits
as well as interacting Majorana-fermion models.

II. KITAEV HONEYCOMB MODEL
PHENOMENOLOGY

To set the stage, this section reviews the phenomenology
of the Kitaev honeycomb model [34], focusing in particular
on universal properties of the non-Abelian spin-liquid
phase. We also establish various conventions here that
are employed throughout.

A. Gapless spin liquid

We start with the “pure” Kitaev honeycomb model at
zero magnetic field:

HK ¼ −
X
hrr0i

KSγrS
γ
r0 : ð2Þ

Once again, we have γ ¼ x, y, and z respectively on green,
red, and blue bonds of Fig. 1(a). For any hexagonal
plaquette p, HK commutes with the operator

Wp ¼ Sx1S
y
2S

z
3S

x
4S

y
5S

z
6; ð3Þ

where sites 1; 2;…; 6 around plaquette p are labeled as in
Fig. 1(a). The resulting extensive number of conserved
quantities ultimately enables an exact solution. To this end,
we reexpress the spins via

Sαr ¼
i
2
bαrcr; ð4Þ

on the right side, bαr and cr denote Majorana-fermion
operators that are Hermitian, square to the identity, and
anticommute with one another. For an illustration, see
Fig. 1(b). Remaining faithful to the original spin-1=2
Hilbert space requires enforcing the local constraint
bxrb

y
rbzrcr ¼ þ1 at every site.
In the Majorana representation, the Hamiltonian

becomes

HK ¼ K
4

X
hrr0i

iûrr0crcr0 : ð5Þ

Above, we introduce link variables ûrr0 ≡ ibγrb
γ
r0 ∈ �1 that,

crucially, commute with each other and with the
Hamiltonian. The link variables can thus be treated as
classical parameters—thereby reducing the model to a free-
fermion problem in any fixed ûrr0 configuration [78].
Physically, ûrr0 is a Z2 gauge field whose flux around
plaquette p is proportional to the conservedWp operator in
Eq. (3) (hence, the absence of nontrivial dynamics).
The ground state of Eq. (5) arises in the sector with Z2

gauge flux of π through every hexagonal plaquette [79]. Let
us decompose the honeycomb lattice into A and B sub-
lattices, and also introduce vectors ej¼1;2;3 that link the two
sublattices; see Fig. 1(a). A convenient gauge encoding π
flux per plaquette is ûr;rþej ¼ þ1 for all r on sublattice A.
Inserting this gauge choice into Eq. (5) yields a
Hamiltonian

H̃K ¼ K
4

X
r∈A

X3
j¼1

icrcrþej ð6Þ

that describes the ground-state flux sector. One can view
Eq. (6) as an analog of graphene wherein Majorana
fermions hop between nearest-neighbor honeycomb sites.
To obtain the spectrum of HK, we pass to momentum
space, employing conventions such that

cr∈A=B ¼
ffiffiffiffiffiffiffiffiffi
2

Nu:c:

s X
k∈BZ

eik·rcA=Bk

¼
ffiffiffiffiffiffiffiffiffi
2

Nu:c:

s X
k∈BZR

ðeik·rcA=Bk þ e−ik·rc†A=BkÞ; ð7Þ

where Nu:c: is the number of unit cells. The momentum-
space operators so defined satisfy fcαk; c†βk0g ¼ δαβδk;k0

and cαk ¼ c†α−k (reflecting Hermiticity of cr). In the second
line of Eq. (7), we use the latter property to express cr as a
sum over momenta in the right half of the Brillouin zone
(BZR), i.e., k with kx > 0 as shown in Fig. 1(b). Defining a
two-component spinor C†

k ¼ ½c†Akc†Bk� and a function
ξðkÞ ¼ −iðK=2ÞPj e

−ik·ej , Eq. (6) becomes

H̃K ¼
X

k∈BZR

C†
k

�
0 ξ�ðkÞ

ξðkÞ 0

�
Ck: ð8Þ

The resulting single-particle energies are �jξðkÞj2, and the
many-particle ground state populates all negative energy
levels.
This ground state realizes the gapless spin-liquid phase

of Kitaev’s honeycomb model. Specifically, Eq. (8)
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describes gapless (emergent) fermion excitations with a
single massless Dirac cone centered at momentum
Q ¼ ð4π=3aÞx̂, with a the lattice constant. See Fig. 1(c).
We now focus on these gapless excitations by writing k ¼
Qþ q and retaining onlymodeswith “small”q. Equation (8)
then reduces to the following effective Dirac Hamiltonian
that captures low-energy fermionic excitations in the ground-
state flux sector:

Heff ¼ vbulk

Z
q
Ψ†

qðqxσy − qyσxÞΨq

¼ vbulk

Z
r
Ψ†ð−i∂xσ

y þ i∂yσ
xÞΨ: ð9Þ

Here, vbulk ¼
ffiffiffi
3

p
aK=4, Ψq ∝ CQþq, and in the last line we

Fourier transform back to real space. Furthermore, we
employ ℏ ¼ 1 units, and continue to do so throughout
(for clarity, however, we express the conductance quantum
as e2=h). This gapless spin-liquid phase also admits gapped
Z2-flux excitations that are not captured by Heff.
Suppose that we now supplement Eq. (2) with generic

perturbations that preserve translation symmetry and time-
reversal symmetry T , leading to a Hamiltonian of the form

H ¼ HK þ � � � : ð10Þ

Despite the loss of exact solvability, one can address the
stability of the gapless spin liquid from the viewpoint of the
effective low-energy theory. The original spin operators
transform under T according to Sr → −Sr. Within the
ground-state flux sector, T sends cr∈A → cr∈A and
cr∈B → −cr∈B, and in turn transforms the low-energy
Dirac field via Ψ → σzðΨ†Þt. The only translationally
invariant perturbation to Eq. (9) that can open an energy
gap is the mass term mΨ†σzΨ—which is odd under T and
cannot appear provided time-reversal symmetry persists.
Consequently, the gapless spin liquid constitutes a stable
symmetry-protected phase with some finite tolerance to the
ellipsis in Eq. (10).

B. Non-Abelian spin liquid

In this paper, we are primarily interested in the physics
resulting when time-reversal symmetry is explicitly broken
by an applied magnetic field. The field modifies Eq. (10) to

H ¼ HK −
X
r

h · Sr þ � � � : ð11Þ

On symmetry grounds [80], the Zeeman term can be
expanded in terms of low-energy degrees of freedom as
h · Sr ∼ βΨ†σzΨþ � � �. Here, β ∝ jhj is a nonuniversal
constant that vanishes only for fine-tuned field orientations
]64 ], while the ellipsis denotes additional symmetry-

allowed terms that are unimportant for our purposes and

are henceforth dropped. The effective low-energy
Hamiltonian accordingly now reads

Heff ¼
Z
r
Ψ†½vbulkð−i∂xσ

y þ i∂yσ
xÞ þmσz�Ψ ð12Þ

with m ∝ jhj, and describes emergent fermions with a
gappedDirac spectrum illustrated in Fig. 1(d). [Without the
generic perturbations that we implicitly include in Eq. (11),
the Dirac gap would scale like hxhyhz instead of jhj. We
stress that this fine-tuned behavior is a pathology of
perturbating about the exactly solvable HK Hamiltonian
as Ref. [80] discusses in detail.]
The resulting field-induced phase realizes a non-Abelian

spin liquid with Ising topological order. Although the bulk
is fully gapped, the system’s boundary hosts a single
emergent chiral Majorana mode with central charge
c ¼ 1=2. (One can trace the edge state’s existence to the
quantized half-integer thermal Hall conductance that arises
from gapping out a single Dirac cone; for related problems,
see Refs. [81–84].) Low-energy edge excitations are
described by the continuum Hamiltonian

Hedge ¼
Z
x
ð−ivedgeγ∂xγÞ; ð13Þ

where vedge is a nonuniversal velocity [85], x is a coordinate
along the boundary, and γðxÞ is a Majorana-fermion field.
(For clarity, we employ subscripts that distinguish edge and
bulk velocities, though later we abandon such a notation.)
Here and below, we normalize continuum Majorana fields
such that

fγðxÞ; γðx0Þg ¼ 1

2
δðx − x0Þ: ð14Þ

With this choice, the energy for an edge excitation with
momentum k is simply vk. Note that Eq. (13) exhibits a
global Z2 symmetry that sends γ → −γ, which as we see in
Sec. III A has important practical consequences for the
interfaces that we exploit later in this paper.
The bulk of the non-Abelian spin liquid supports three

gapped quasiparticle types. First, there are nonfractional-
ized bosonic excitations—as in any phase of matter—that
we call trivial particles labeled by 1. Second, the system
hosts more exotic gapped emergent fermions (ψ particles)
captured by the effective Hamiltonian in Eq. (12). Third,
and most interestingly, gapped Z2-flux excitations bind
emergent Majorana zero modes and realize “Ising anyons”
(σ particles) with non-Abelian braiding statistics. These
quasiparticle types obey the following nontrivial “fusion
rules,”

ψ ⊗ ψ ≅ 1; σ ⊗ σ ≅ 1 ⊕ ψ ; ψ ⊗ σ ≅ σ; ð15Þ
which roughly describe how they behave when brought
together in space. That is, two emergent fermions coalesce
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into a local boson, two Ising anyons can combine to yield
either a local boson or an emergent fermion, and Ising
anyons can freely absorb emergent fermions without
changing their quasiparticle type. Viewed “in reverse,” a
local boson can fractionalize into a pair of emergent
fermions, an individual emergent fermion can further
fractionalize into a pair of Ising anyons, and pairs of
Ising anyons can be pulled out of the vacuum. Finally, ψ
and σ particles exhibit not only nontrivial self-statistics, but
also nontrivial mutual statistics: Taking a fermion all the
way around an Ising anyon, or vice versa, yields a statistical
phase of −1. The above quasiparticle characteristics
become essential for the circuits developed in Secs. VI
and VII. Figure 2 summarizes the bulk and edge content of
the non-Abelian spin liquid.

III. PRIMER: INTERACTING HELICAL
MAJORANA FERMIONS

As an illuminating warm-up, next we explore gapless
nonchiral-Majorana fermions propagating in 1D with
strong interactions. We proceed in two stages: first exam-
ining interfaces between non-Abelian spin liquids, and then
turning to one-dimensional lattice models that harbor
similar physics. Results obtained here carry over straight-
forwardly to the quantum-Hall–spin-liquid interfaces that
we introduce in Sec. IV and later exploit to electrically
detect chiral Majorana edge states and bulk anyons in
Kitaev materials (Secs. V through VII).

A. Sewing up non-Abelian spin liquids

Consider the setup from Fig. 3(a) consisting of two
non-Abelian spin liquids realized in adjacent Kitaev mate-
rials. Physically, it is natural to anticipate that suitable

hybridization between the subsystems can effectively sew
them together—producing a single, uninterrupted spin
liquid. Our goal here is to understand this sewing-up
process, both from effective field theory and microscopic
viewpoints.
When the two layers decouple as in Fig. 3(a), their

interface hosts helical Majorana modes whose kinetic
energy is described by the low-energy Hamiltonian

H0 ¼
Z
x
ð−ivγR∂xγR þ ivγL∂xγLÞ: ð16Þ

Here, x is a coordinate along the interface, v is the edge-
state velocity, and γR and γL respectively denote right- and
left-moving Majorana-fermion fields. Upon turning on
interactions between the adjacent layers, the Hamiltonian
becomes H ¼ H0 þ δH, where δH hybridizes the helical
Majorana modes. Crucially, the form of δH is constrained
by the fact that γR and γL represent emergent fermions
originating from disjoint spin liquids. In particular,
only pairs of emergent fermions—which together form a

(a)

(b)

FIG. 2. Non-Abelian spin-liquid synopsis. (a) The boundary
hosts a gapless chiral Majorana mode, while the bulk supports
two nontrivial gapped quasiparticle types: emergent neutral
fermions ψ and Ising non-Abelian anyons σ. Fermions acquire
a minus sign on crossing the wavy line (which represents a branch
cut) emanating from σ. (b) Summary of quasiparticle braiding
statistics.

(a) (b)

(c)

FIG. 3. (a) Decoupled non-Abelian spin liquids hosting emer-
gent chiral Majorana fermions γR and γL at their interface.
(b) Strong interactions between γR and γL [described by
Eq. (17) with κ > 0] gaps out these modes—thus sewing the
two phases into a single non-Abelian spin liquid. (c) Microscopic
view of the spin-liquid interface viewed as two Kitaev honey-
comb models coupled via vertical bonds of strength Jinter > 0
(dashed lines); see Eq. (19). The interface is fully gapped, as in
(b), when Jinter exceeds a critical value Jc, but otherwise hosts
gapless Majorana modes, as in (a).
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boson—can tunnel across the interface. The simplest such
interaction is given by

δH ¼ −κ
Z
x
ðγR∂xγRÞðγL∂xγLÞ; ð17Þ

where the two derivatives are necessitated by Fermi
statistics. Notice that H exhibits two independent Z2

symmetries, one corresponding to γR → −γR and the other
corresponding to γL → −γL. These symmetries can never
be broken explicitly by any physical perturbation, reflecting
the fact that individual Majorana fermions γR and γL live
only within their respective spin liquids.
The coupling κ is formally irrelevant at the fixed

point described by the quadratic Hamiltonian H0.
“Weak” κ thus has only perturbative effects, and most
importantly does not gap out the helical Majorana modes.
Evidently, sewing up the spin liquids requires strong
coupling. At “large” κ > 0, the system can lower its energy
by condensing hiγRγLi ≠ 0—thereby spontaneously break-
ing the two independent Z2 symmetries noted above (but
preserving their product). For rough intuition, consider the
term −ðκ=δx2Þ½iγRðxþδxÞγLðxþδxÞ�½iγRðxÞγLðxÞ�, which
upon Taylor expanding in the microscopic length δx
generates the interaction from Eq. (17). The discrete form
above clearly reveals that hiγRγLi ≠ 0 is favored provided κ
is positive. In the condensed regime, the interface can be
modeled by an effective mean-field Hamiltonian

HMF ¼
Z
x
ð−ivγR∂xγR þ ivγL∂xγL þ imγRγLÞ; ð18Þ

with m ∝ hiγRγLi a mass whose sign, importantly, is
chosen spontaneously. Equation (18) exhibits a fully
gapped spectrum, and thus describes a scenario where

the two spin liquids have been sewn into one as sketched in
Fig. 3(b).
Several consistency checks bolster the above picture.

First, one can view the ground state jΨMFi ofHMF as a trial
wave function and the massm as a variational parameter. In
Appendix A 1, we optimize hΨMFjH0 þ δHjΨMFi with
respect to m for varying κ. This analysis indeed captures
a nonzero mass m provided the dimensionless ratio κΛ2=v
exceeds a critical value, where Λ is an ultraviolet momen-
tum cutoff. (For κ < 0, the optimal mass always vanishes
within this treatment.)
Second, the two nontrivial bulk anyons of the non-Abelian

spin-liquid phase are encoded in the simple mean-field
Hamiltonian HMF describing the gapped interface [86].
Neutral fermions are clearly present as gapped excitations.
Ising non-Abelian anyons form at domain walls in which the
spontaneously chosenmassm changes sign; see Fig. 5(b) for
an illustration. Unpaired Majorana zero modes bind to such
domain walls, leading to the hallmark degeneracy associated
with Ising anyons. Furthermore, since the sign of the mass is
arbitrary, separating the domain walls by arbitrary distances
costs only finite energy—i.e., the Ising anyons are bona fide
deconfined quasiparticles. Additional insights into the
domain-wall structure can be gleaned from the lattice model
that we discuss in Sec. III B.
Third, the low-energy perspective that we present above

seamlessly connects to microscopics. Let us add a spin-spin
interaction
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FIG. 4. Dimerization order parameter hiγa−1γa − iγaγaþ1i ver-
sus U=t obtained from DMRG simulations of the model in
Eq. (20) with t0 ¼ 0. This order parameter corresponds to the
fermion mass in the continuum limit. For U=t ≳ 0.42799ð2Þ, our
simulations capture a gapped, spontaneously dimerized phase for
the chain, in agreement with Ref. [87]. At smaller U=t, the chain
instead realizes a critical state with central charge c ¼ 1=2. We
additionally verify that this critical state extends to large negative
U=t values.

(a)

(b)

FIG. 5. (a) Snapshot of domain-wall excitations at the exactly
solvable, spontaneously dimerized limit of Eq. (20) occurring for
t0 ¼ 0 and U ¼ t=2. Neighboring sites a, aþ 1 enclosed by
curved rectangles dimerize such that hγaγaþ1i ¼ −1. Domain
walls at which the dimerization pattern shifts by one site trap
unpaired Majorana zero modes [nonenclosed dots in (a)]. In the
low-energy limit, the dimerized chain is described at the mean-
field level by Eq. (18), which includes a spontaneously generated
mass m. Microscopic domain-wall excitations from (a) corre-
spond in continuum language to excitations at which the mass m
changes sign, as depicted in (b). Such domain walls constitute 1D
analogs of Ising anyons that arise at the spontaneously gapped
spin-liquid interface of Fig. 3(b).
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δH ¼ −Jinter
X
ðr;r0Þ

SzrS
z
r0 ð19Þ

that couples spins across bonds ðr; r0Þ [dashed lines in
Fig. 3(c)] that bridge the adjacent spin liquids. At Jinter ¼ 0,
one recovers decoupled spin liquids, and the interface hosts
gapless Majorana modes that are stable to weak perturba-
tions. On symmetry grounds, the boundary spin operators
relate to continuum Majorana fields via Szr ∼ hSzri þ
α∶iγR∂xγR∶ on the lower edge of the interface and Szr ∼
hSzri − α∶iγL∂xγL∶ on the upper edge. Here, angle brackets
indicate ground-state expectation values, α is a nonuniver-
sal constant, and ∶∶ denotes normal ordering; the relative
minus sign in the α pieces above reflects the opposite
chirality for the two modes. Using this continuum expan-
sion, the microscopic interaction δH indeed generates the
effective-Hamiltonian term in Eq. (17) with κ ∝ Jinter. At
Jinter ¼ J—corresponding to the strong-coupling limit—
the system forms a single, translationally invariant non-
Abelian spin liquid; here, all gapless modes at the interface
have clearly been vanquished. It follows that the spin
liquids are sewn up provided Jinter exceeds a critical value
Jc that satisfies 0 < Jc < J, in qualitative agreement with
our continuum analysis.

B. Insights from microscopic models

Complementary insights can be gleaned by examining a
strictly 1D toy lattice model that also realizes interacting
helical Majorana fermions. Consider an infinite chain of
physical (rather than emergent) Majorana fermions γa
living on lattice sites a and governed by the microscopic
Hamiltonian

H¼
X
a

ðitγaγaþ1þit0γaγaþ2−Uγa−2γa−1γaþ1γaþ2Þ; ð20Þ

we take t > 0 for concreteness throughout. References [87,
88] recently studied this model motivated in part by interest-
ing connections to supersymmetry; see also Ref. [89].
Importantly, H preserves an (anomalous [90]) translation
symmetry T that transforms γa → γaþ1. At t0 ¼ 0, the
Hamiltonian further preserves an antiunitary chiral sym-
metry C that sends γa → ð−1Þaγa and i → −i [91].
We first specialize to t0 ¼ 0. In the U ¼ 0 limit the chain

is gapless. Here, one can capture the low-energy physics by
writing

γa ∼ γL þ ð−1ÞaγR; ð21Þ

where γR and γL again denote right- and left-moving
Majorana fields, leading precisely to Eq. (16) with v ∝ t.
Translation symmetry T sends γR → −γR (just as for one of
the Z2 symmetries present for the spin-liquid interface
examined above), while C swaps γR ↔ γL. A mass term
imγRγL is odd under T, and thus can never be generated

explicitly by any T-preserving perturbation, similar to the
scenario encountered in Sec. III A.
Upon restoring nonzero U, the leading term that

couples right and left movers corresponds to Eq. (17) with
κ ∝ U [87]. Previous density-matrix renormalization-group
(DMRG) simulations of Eq. (20) (which we reproduce and
extend to include U < 0 in Fig. 4) indicate that for
U ≳ 0.428t, criticality is destroyed in favor of a gapped,
dimerized phase that spontaneously breaks T symmetry
[87]. In continuum language, here hiγRγLi ≠ 0 condenses
and the helical Majorana fermions are gapped via
generation of a mass m ∝ hiγRγLi with arbitrary sign.
Appendix A 2 analyzes Eq. (20) at t0 ¼ 0 using a varia-
tional approach that predicts spontaneous dimerization for
U ≳ 0.295t, in rough agreement with DMRG.
The gapped ground states at U ¼ t=2 are known exactly

[87] and can be recovered by postulating “perfect” dime-
rization with O≡ hiγ2aγ2aþ1i ¼ −1 and hiγ2a−1γ2ai ¼ 0.
Decoupling the U term using this ansatz generates a mean-
field Hamiltonian HMF ¼ t

P
a iγ2aγ2aþ1 for which O ¼

−1 in the ground state—indicating self-consistency. One
can similarly show that the shifted dimerization with
hiγ2a−1γ2ai ¼ −1 and hiγ2aγ2aþ1i ¼ 0 yields a degenerate
self-consistent solution. Using Eq. (21), we have

hiγaγaþ1i ∼ constþ ð−1ÞahiγRγLi; ð22Þ

it follows that these two dimerizations correspond to
opposite-sign masses in the continuum formulation.
In Sec. III A, we observe that the interface between two

sewn-up spin liquids [Fig. 3(b)] supports gapped emergent
fermionic excitations, and that domain walls at which the
mass m changes sign correspond to Ising anyons hosting
unpaired Majorana zero modes. The above mean-field
ansatz at U ¼ t=2, though operative in a physical-fermion
system, provides an intuitive picture for these fractionalized
quasiparticles [92]. The mean-field construction suggests
that low-energy states can be labeled by domains
exhibiting fixed dimerization—either hiγ2a−1γ2ai ¼ −1
or hiγ2aγ2aþ1i ¼ −1—along with fermionic excitations
within a given domain. Fermionic excitations arise from
flipping the sign of the dimerization expectation value at a
particular bond, e.g., replacing hγ2b−1γ2bi → þ1 for some
b. Figure 5(a) illustrates an excited configuration with
domain walls separating the two dimerization patterns,
while Fig. 5(b) shows the corresponding sign-changing
mass profile in the continuum description. The domain
walls clearly harbor unpaired Majorana zero modes as a
consequence of the dimerization shift. Pairs of domain
walls share a pair of Majorana zero modes, and therefore
nonlocally host a single complex fermionic mode. The
occupancy of this complex fermion dictates whether the
pair of domain walls fuse to the local vacuum or a fermion.
Comparing these quantum states to those at the interface of
Fig. 3(b), we can identify domain walls in the 1D model
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with Ising anyons in the spin liquid, and the excitations to
which they fuse as the local vacuum or the emergent
fermion.
More technically, we can also use this illustration to

relate the ground-state degeneracy of Eq. (20) with open
boundary conditions to the ground-state degeneracy of the
spin liquid on a cylinder. For this purpose, we identify the
1D chain governed by Eq. (20) with the degrees of freedom
along a path that connects the upper and lower cylinder
ends. We can then view U as a tuning potential that slices
open or resews the cylinder as U passes below or above the
critical interaction strength at which spontaneous mass
generation occurs. It is known that a topologically ordered
phase on a cylinder exhibits a ground-state degeneracy
given by the number of bulk anyons: three in the non-
Abelian spin liquid of interest here (corresponding to
anyons 1, σ, and ψ). Hence, we expect the gapped phase
of Eq. (20) to also admit three ground states, which is
indeed the case as can be seen readily at U ¼ t=2. In this
limit, two of the ground states arise from the dimerization
pattern that yields an unpaired Majorana at each end of the
open chain; these states, which we label j1i and jψi, can be
identified with 1 and ψ anyons. The third arises from the
shifted dimerization wherein the chain is fully gapped,
including at the ends; this state denoted jσi can be
identified with σ. As a sanity check, we can pass between
the two dimerization patterns by nucleating a pair of
domain walls in the bulk of the chain and then bringing
one to each boundary. If the chain begins in j1i or jψi, the
boundary Majorana zero modes pair up with those carried
by the domain walls and create jσi (or a locally related
excited state). Conversely, if the chain begins in jσi, the
domain walls shuttle unpaired Majorana zero modes to the
boundary and thus yield j1i or jψi.
Next, we restore t0 ≠ 0. At U ¼ 0, the chain remains

gapless, though the velocities vL and vR for left and right
movers now differ due to the loss of C symmetry. Explicitly,
we have

vR
vL

¼ t − 2t0

tþ 2t0
; ð23Þ

which vanishes as t0 → t=2. (For t0 > t=2, additional low-
energy modes appear; we consider only 0 ≤ t0 < t=2 here.)
Reference [87] found that velocity anisotropy very weakly
influences the critical interaction U above which the chain
spontaneously dimerizes. Our DMRG simulations confirm
this result: The critical U shifts by less than 0.6% for all
vR=vL > 0. For instance, we find Uc=t ≈ 0.4302ð1Þ
as t0=t → 0.5, compared to Uc=t ≈ 0.42799ð2Þ at t0 ¼ 0.
Figure 6 summarizes the phase diagram extracted from
DMRG.
A spontaneously dimerized gapped phase can also arise

in the modified model obtained by replacing the four-
fermion interaction in Eq. (20) with URγa−1γaγaþ1γaþ2.

This seemingly innocuous microscopic modification, how-
ever, boosts the required interaction strength by 3 orders of
magnitude: UR ≳ 250t [93,94]. In Appendix B, we explain
this curious observation (among other aspects of this
model’s phase diagram) as arising from kinetic energy
renormalization by the UR interaction. In continuum
language, increasing UR both generates the interaction in
Eq. (17) and increases the velocity in Eq. (16), thereby
sharply suppressing the onset of the strong-coupling limit
where interactions dominate over kinetic energy.

IV. SEWING A NON-ABELIAN SPIN LIQUID TO
AN ELECTRONIC QUANTUM HALL PHASE

We have now seen two examples wherein strong
interactions catalyze a condensation transition with
hiγRγLi ≠ 0. At the interface between two non-Abelian
spin liquids examined in Sec. III A, γR and γL both
represent emergent fermions residing in initially separate
fractionalized bosonic systems that are stitched together by
the condensation. In the strictly 1D model from Sec. III B,
by contrast, both fields represent physical fermions. Next,
we explore a system in which a very similar condensation
arises, but instead from the combination of a physical and
emergent Majorana fermion—providing a means of coher-
ently converting one into the other.
Figure 7(a) illustrates the setup consisting of an elec-

tronic integer quantum-Hall system at filling factor ν ¼ 1
adjacent to a non-Abelian spin liquid. Additionally, the
quantum-Hall edge couples to a conventional supercon-
ductor; here and in similar setups that we study in later
sections, we assume fully gapped superconductivity,
though we briefly discuss the role of low-lying excitations
deriving from vortices and/or disorder in Sec. VIII. We first
present a qualitative picture for the physics that arises from
interactions between these subsystems.

FIG. 6. Schematic phase diagram of Eq. (20) as a function of
U=t and velocity anisotropy induced by t0. Here, vR and vL,
respectively, denote the velocities for right- and left-moving
Majorana fermions at U ¼ 0; Eq. (23) specifies their ratio. We
assume 0 < vR=vL ≤ 1 for simplicity, though clearly the same
physics arises when vR ↔ vL. Crucially, the phase boundary
separating the critical c ¼ 1=2 state and the spontaneously
dimerized gapped phase depends very weakly on vR=vL—as
we find in our DMRG calculations. This observation suggests
that unequal Majorana-fermion velocities, which would be
expected for right and left movers of distinct physical origin
(see, e.g., Fig. 7), do not obstruct the formation of a gapped
phase.

ELECTRICAL PROBES OF THE NON-ABELIAN SPIN … PHYS. REV. X 10, 031014 (2020)

031014-9



The quantum-Hall edge hosts a chiral mode that can be
viewed as a pair of copropagating chiral Majorana fermions
(hence, double arrows employed in our illustrations).
Beneath the superconductor, the loss of charge conserva-
tion generically allows those copropagating Majorana
fermions to displace from one another as shown in
Fig. 7(a). Microscopic interactions can backscatter only
electrically neutral bosons—e.g., energy—between the
quantum-Hall and spin-liquid edge states because the latter
edge modes reside in an electrical insulator that hosts only
emergent fermions. More precisely, a charge-2ne excitation
(n is an integer) from the quantum-Hall edge can neutralize
by shedding its charge into the superconducting condensate
[95], and then backscatter into the spin-liquid edge mode.
Sufficiently strong backscattering events of this nature
partially sew up the quantum-Hall state and non-Abelian
spin liquid. That is, the emergent chiral Majorana fermion
from the latter spin-liquid edge gaps out with “half” of the
ν ¼ 1 edge mode, leaving a single physical chiral Majorana
edge mode behind. As sketched in Fig. 7(b), an electron
injected at low energies into the “naked” part of the
quantum-Hall edge then splinters into a pair of Majorana
fermions, one of which unavoidably enters the non-Abelian
spin liquid as an emergent fermion.
For a more formal analysis, we write the effective

Hamiltonian for the interface as

H ¼ HSL þHQH þ δH: ð24Þ

The first term

HSL ¼
Z
x
ðivLγL∂xγLÞ ð25Þ

describes the spin liquid’s emergent chiral Majorana edge
state with velocity vL. The second governs the proximitized
ν ¼ 1 edge and takes the form

HQH ¼
Z
x
½−iuRψ†

R∂xψR þ ΔðiψR∂xψR þ H:c:Þ�; ð26Þ

where ψR is a complex fermion operator that removes
electrons from the edge state, uR is the associated velocity,
and Δ is the proximity-induced pairing amplitude. Passing
to a Majorana representation via ψR ¼ γR þ iγ0R, one can
equivalently write [96]

HQH ¼
Z
x
ð−ivRγR∂xγR − iv0Rγ

0
R∂xγ

0
RÞ; ð27Þ

the velocities for the constituent copropagating Majorana
fermions γR and γ0R are vR ¼ uR − 2Δ and v0R ¼ uR þ 2Δ,
respectively.
The final term in Eq. (24) encodes interactions between

the spin-liquid and quantum-Hall edge states. Suppose that
γR resides closest to γL as in Fig. 7. It is then reasonable to
assume that interactions predominantly couple these fer-
mions, so we take δH to be given precisely by Eq. (17).
Useful insight follows from reexpressing δH in terms of
complex fermions ψR: δH ¼ − 1

4
κ
R
xðγL∂xγLÞðψ†

R∂xψR þ
ψR∂xψR þ H:c:Þ. Here we see that interactions transfer
electrically neutral dipoles as well as Cooper pairs from the
quantum-Hall edge to the spin liquid, consistent with our
preceding physical picture.
The full Hamiltonian in Eq. (24) reduces to the model

studied in the previous subsections, supplemented by a
decoupled sector for the γ0R chiral Majorana fermion. We
immediately conclude that strong interactions can condense
hiγRγLi ≠ 0 and partially gap out the interface, again in line
with the above physical picture. This conclusion holds even
if the velocities vL and vR—which bear no relation—differ
significantly; recall Sec. III B.
In the present context, the transition to a state with

hiγRγLi ≠ 0 is sometimes referred to as fermion condensa-
tion since the condensed object involves only one physical
fermion (specifically, γR). A precise mathematical formu-
lation of this striking phenomenon can be found in Ref. [76];
see also Refs. [73,74,97] for related earlier applications. The
essential role played by proximity-induced superconductiv-
ity also becomes clear from this vantage point. The con-
densate hiγRγLi ∼ hiðψR þ ψ†

RÞγLi ≠ 0 clearly does not
preserve U(1) charge conservation for the physical fermions.
Without externally imposed superconductivity, interactions
would thus need to spontaneously break U(1) in order to
partially gap the interface, which cannot transpire due to the
quasi-1D nature of the interface. Finally, we note that

(a) (b)

FIG. 7. (a) Interface between a non-Abelian spin liquid and a
proximitized ν ¼ 1 integer quantum-Hall system. The bare ν ¼ 1
edge state—indicated by double arrows—generically separates
into two copropagating Majorana fermions γR and γ0R beneath the
superconductor (SC) in the central region. (b) Strong interactions
can gap out γR and the spin liquid’s edge Majorana fermion γL via
formation of a fermion condensate that partially sews the two
subsystems together. Physical Majorana fermions (black half-
circles) and emergent Majorana fermions (red half-circles) are
then identified at the interface; see enlargement for an illustration.
A striking consequence follows: An electron injected at low
energies into the ν ¼ 1 edge splinters into a pair of Majorana
fermions, one of which unavoidably enters the spin liquid.
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essentially the same fermion condensation transition can
arise from interfacing a non-Abelian spin liquid with other
electronic platforms, including conventional spinful 1D
wires. We discuss alternative setups further in Sec. VIII.

V. ELECTRICAL DETECTION OF CHIRAL
MAJORANA EDGE MODES IN NON-ABELIAN

SPIN LIQUIDS

As a first application of the phenomena that we develop
in Sec. IV, we introduce a scheme for electrically detecting
the spin liquid’s emergent chiral Majorana edge state.
Figure 8(a) sketches the relevant circuit. Here, a pair of
ν ¼ 1 quantum-Hall systems flank a non-Abelian spin
liquid. The interfaces are partially gapped by fermion
condensation, facilitated by superconductors that are float-
ing but exhibit negligible charging energy; note that the
superconductors connect on the bottom end. A source on
the far left is biased with voltage V, while a drain on the far
right is grounded. We stress that no electrical current flows
through spin liquid—which still realizes a good Mott
insulator. Any current instead passes between the quan-
tum-Hall systems via the intervening floating supercon-
ductor in the form of Cooper pairs. Nevertheless, the spin
liquid is by no means a spectator: Electrons from the source
propagate chirally along the ν ¼ 1 edge, then partially
convert into emergent chiral Majorana fermions in the spin
liquid, and finally reenter the ν ¼ 1 edge as physical
fermions on the other end. This inevitable conversion
between physical and emergent fermions ultimately dic-
tates the circuit’s electrical transport characteristics as we
will see.
We focus on vanishingly small temperature T and bias

voltage V, where the conductance attains a universal
quantized value of G ¼ ðe2=2hÞ. To understand this value,
first observe that the left and right halves constitute
identical resistors in series; hence, G ¼ g=2 with g the
conductance for (say) the left half. One can deduce g as
follows. An incident electron from the source splits up
into an emergent Majorana fermion in the spin liquid
and a physical Majorana fermion that reflects back to the
source [see Fig. 8(a)]. The physical Majorana fermion is,
by definition, equal part electron and equal part hole,
implying probability 1=2 for Andreev reflection. Thus,
g ¼ 1

2
× ð2e2=hÞ, where the factor of 2 in the numerator

arises because each Andreev process injects a Cooper pair
into the superconductor. The overall conductance is then
G ¼ ðe2=2hÞ as advertised. Although we focus on V → 0

here, the conductance remains G ≈ ðe2=2hÞ for voltages
below the gap scale of the fermion condensate.
What happens if the emergent chiral Majorana fermions

disappear entirely from the setup? One can readily arrange
this scenario, e.g., by changing the magnetic field such that
the Kitaev material exits the non-Abelian spin-liquid phase.
The resulting circuit—which furnishes an essential control

experiment—appears in Fig. 8(b). Most importantly, fer-
mion condensation is now precluded, so that both ν ¼ 1
edge states must simply “turn around” at the interface with
the central trivial region. In this case, the probability for
Andreev reflection vanishes at asymptotically low energies,
yielding conductance G ¼ 0.
The absence of Andreev processes can be most simply

understood as a consequence of Fermi statistics: The induced
pairing term for the ν ¼ 1 edge state ΔðiψR∂xψR þ H:c:Þ
necessarily contains a derivative and thus vanishes with the
incident electron’s momentum. Alternatively, as the two
copropagatingMajorana fermions traverse the superconduc-
tor, they generally acquire different phase factors, in turn
“rotating” the incident electron in particle-hole space and
generating Andreev processes. The phase difference explic-
itly reads δϕ ¼ ðk − k0ÞL, where k and k0 denote the wave
vectors of the two Majorana fermions as they pass through
the superconducting region of length L. At finite incident
energy, the wave vectors differ, i.e., k ≠ k0, due to unequal
velocities for the Majorana fermions in that region; recall

(a)

(b)

FIG. 8. (a) Circuit that electrically detects the spin liquid’s
emergent chiral Majorana edge state. Any electrical current that
flows between the source (S) and drain (D) necessarily passes
through the central superconductor (and not the spin liquid).
Nevertheless, the perfect conversion between physical and
emergent fermions at the quantum-Hall–spin-liquid interfaces
dictates the conductance—which at zero bias is quantized at
G ¼ ðe2=2hÞ. (b) Control circuit in which the spin liquid is
replaced with a trivial phase (e.g., a magnetically ordered state).
Elimination of the physical-fermion ↔ emergent-fermion con-
version processes that underlie transport in (a) leads to vanishing
zero-bias conductance G ¼ 0 in this case.
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Eq. (27). As the incident-electron energy vanishes, however,
k; k0 → 0 and hence, δϕ → 0 [98]. An incoming electron
must then exit the superconductor as an electron, yielding
zero net current across the circuit in Fig. 8(b). In this control
scenario the conductance remains G ≈ 0 up to voltages
V ∼ ð1=eLÞðvRv0R=jvR − v0RjÞ, at which δϕ becomes
appreciable [96].
The contrast between the two circuits in Fig. 8 is

particularly striking given that they differ solely in the
properties of an electrically inert element. Nontrivial
conductance quantization for Fig. 8(a) relies on emergent
chiral Majorana fermions in the non-Abelian spin liquid
together with fermion condensation, and thus constitutes an
electrical signature of both phenomena. As an aside, local
heat capacity measurements at the quantum-Hall–spin-
liquid interface may serve as a complementary probe of
fermion condensation. The local heat capacity per unit
length is cv ¼ ðπ2k2BT=3hvÞðcL þ cRÞ, where cL and cR
denote the central charges for the “left” and “right” movers
at the interface. Decoupled edges yield cL þ cR ¼ 3=2,
while fermion condensation reduces the sum to cL þ cR ¼
1=2 via partial gapping of the interface. Note, however, that
backing out the central charges from this approach requires
(rough) knowledge of the edge velocity v.
Figure 8(a) closely resembles the quantum anomalous

Hall–superconductor heterostructures studied theoretically
in Refs. [30,99–104] and experimentally in Ref. [105],
where precisely the same quantized conductance was
proposed as a signature of physical chiral Majorana edges
states at the boundary of a two-dimensional topological
superconductor. In that context, alternative quantization
mechanisms that do not invoke chiral Majorana modes
have also been introduced (e.g., disorder and dephasing, or
if the superconductor behaves as a normal contact [106–
108]; see also the critical discussion in Ref. [109]). If
operative in our setups, such trivial mechanisms would—at
most—depend weakly on the precise phase of matter
realized in the Kitaev material, thus yielding similar trans-
port characteristics for both circuits in Fig. 8. Observing the
qualitatively different conductances predicted for Figs. 8(a)
and 8(b) would therefore strongly suggest against these
alternative interpretations.
We now briefly discuss the feasibility of the experiment

shown in Fig. 8. We require a superconductor that can
survive the high magnetic fields necessary to bring the left
and right sides into the quantum-Hall regime, and in
particular into the ν ¼ 1 state. Let us consider for con-
creteness a structure that consists of monolayer graphene in
the quantum-Hall regime, coupled on both sides to
α-RuCl3. The magnetic field necessary to bring α-RuCl3
into the gapped spin-liquid state is roughly 10 T applied
at 45° to the plane, resulting in a 7-T out-of-plane field and
7-T in-plane field [60]. This field scale is advantageous for
the graphene ν ¼ 1 state, which is readily attainable in
clean samples at fields much lower than 7 T, and is

stabilized by a large in-plane field because it is a spin-
polarized state [110]. Nearly transparent contacts have been
made between superconducting MoRe (Hc2 ∼ 10 T) and
graphene in experiments designed specifically to study the
interface between superconductors and quantum-Hall edge
states (including the ν ¼ 1 state) [111,112]. Higher out-of-
plane critical fields could be attained by using NbN or
NbTiN, both of which have been used to make contact to
graphene [113,114] and have Hc2 exceeding 10 T, or even
by integrating a layered van der Waals superconductor such
as FeSexTe1−x, which can have Hc2 in excess of 28 T at
T ¼ 0 [115].

VI. ELECTRICAL DETECTION OF BULK ISING
NON-ABELIAN ANYONS

One can also employ electrical transport to detect
individual bulk Ising anyons in a non-Abelian spin
liquid—in fact using a slightly simpler circuit compared
to Fig. 8. Consider now the setups shown in Fig. 9. There,
a single ν ¼ 1 quantum-Hall system is partially sewn to a
spin liquid via fermion condensation mediated by a
grounded superconductor. A source at bias voltage V on
the left generates a current I that flows through the
superconductor to ground. More precisely, electrons ema-
nating from the source (i) propagate along the lower ν ¼ 1
edge, then (ii) fragment into emergent and physical
Majorana fermions that acquire a phase difference δϕ upon
encircling the spin liquid, and finally (iii) recombine into
either electrons, holes, or superpositions thereof depending
on δϕ. Recombination into a hole in this final step indicates
absorption of a Cooper pair into the superconductor,
thereby contributing to the current I. We are interested
in the conductance G ¼ dI=dV in the limit T, V → 0 (but
see the next section for an extension to finite V). Just as we
see in Sec. V, the spin liquid—although electrically inert—
plays a decisive role in electrical transport: One of two
distinct universal quantized conductances emerges depend-
ing on the quasiparticle configuration in the spin liquid.
Suppose first that the spin liquid’s interior is devoid of

Ising non-Abelian anyons as in Fig. 9(a). Here, the phase
difference acquired in stage (ii) is simply

δϕ ¼ kpLp − keLe; ð28Þ

with kp the momentum of the physical Majorana fermion
as it travels the distance Lp between the lower and upper
ν ¼ 1 edge, and ke and Le the analogous quantities for the
emergent Majorana fermion. The limit kp, ke → 0 yields
δϕ → 0, implying that at asymptotically low energies,
incident electrons recombine into outgoing electrons with
unit probability. To summarize, stages (i) through (iii) pro-
ceed according to

ψ electron → γphysical þ iγemergent → ψ electron; ð29Þ
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as Fig. 9(a) illustrates. No current flows into the super-
conductor, and therefore, G ¼ 0. Note the similarity to the
physics encountered for the control circuit in Fig. 8(b).
Next, imagine nucleating a pair of Ising non-Abelian

anyons and then dragging one of those anyons to a gapless
part of the spin-liquid edge [116]. The resulting setup

shown in Fig. 9(b) contains a single Ising anyon in the bulk.
At asymptotically low incident-electron energies, the
emergent Majorana fermion in stage (ii) acquires an addi-
tional minus sign upon crossing the Ising anyon absorbed at
the edge [i.e., at the termination of the wavy line in the inset
of Fig. 9(b); see below for further details]. This all-
important minus sign reflects the nontrivial mutual statistics
between emergent fermions and Ising anyons in the spin
liquid (recall Sec. II B). It follows that δϕ → π as kp,
ke → 0, implying that at low energies, incident electrons
recombine into outgoing holes with unit probability. Stages
(i) through (iii) can then be summarized as

ψ electron → γphysical þ iγemergent

→ γphysical − iγemergent → ψhole; ð30Þ

see Fig. 9(b). The perfect “Andreev conversion” of elec-
trons into holes yields nontrivially quantized conduct-
ance G ¼ ð2e2=hÞ.
More generally, if the fragmented emergent and physical

Majorana fermions encircle nσ Ising anyons in the interior
of the spin liquid, the phase difference at low energies is
δϕ ¼ πnσ, yielding zero-bias conductance

G ¼ mod ðnσ; 2Þ
2e2

h
: ð31Þ

The even-odd effect encoded in Eq. (31) represents a
“smoking gun” electrical transport signature of bulk
Ising non-Abelian anyons. We stress that one can, at least
in principle, toggle between the two quantized conductan-
ces by locally perturbing the spin liquid far from any
electrically active circuit components. Trivial origins for
such exotic behavior would appear to require almost divine
intervention. At present, however, it remains unclear how to
feasibly manipulate Ising anyons so as to probe the even-
odd effect in a systematic experiment. A worthwhile
preliminary study could instead rely on thermal fluctuations
and/or noise to stochastically drag Ising anyons on and off
of the gapless spin-liquid edge (for related studies in a
quantum-Hall context, see, e.g., Refs. [117–120]). Such
processes would change nσ as a function of time, leading to
telegraph noise with the conductance switching between
G ¼ 0 and ð2e2=hÞ as sketched in Fig. 9(c) [121].
The circuits in Figs. 9(a) and 9(b) can be viewed as

cousins of “Z2 interferometers” designed to electrically
probe physical Majorana fermions in proximitized
topological-insulator surfaces [26,27]. In that context,
the conductance exhibits an analogous even-odd effect,
but in the number of superconducting ðh=2eÞ vortices
threaded through the device. Similar to Sec. V, fermion
condensation allows us to adapt such techniques developed
for exotic superconductors to probe non-Abelian quasipar-
ticles in a Mott insulator.

(a)

(b)

(c)

FIG. 9. (a),(b) Electrical detection of bulk Ising anyons via
quantized zero-bias conductance G. Current flows from the
source to the grounded superconductor. In (a), the spin liquid
contains no Ising anyons in the bulk. Here, electrons injected at
zero energy along the lower ν ¼ 1 edge splinter into physical and
emergent Majorana fermions, but simply recombine into elec-
trons at the upper ν ¼ 1 edge. No current flows into the
superconductor and hence, G ¼ 0. In (b), a pair of bulk Ising
anyons is pulled out of the vacuum, with one of those anyons
dragged to the gapless edge. Nontrivial mutual statistics between
emergent fermions and the single remaining bulk Ising anyon
causes incident zero-energy electrons to recombine perfectly into
holes at the upper ν ¼ 1 edge. Each injected electron transmits a
Cooper pair into the superconductor, yielding G ¼ ð2e2=hÞ.
Enlargement: The Ising anyon dragged to the boundary couples
to the chiral Majorana edge state with strength λ [see Eq. (32)].
(c) If random thermal processes toggle the system between
configurations (a) and (b), G exhibits telegraph noise as a
function of time, switching stochastically between G ¼ 0

and ð2e2=hÞ.
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As a technical aside, above we envision creating
Fig. 9(b) by dragging an Ising anyon to the gapless
boundary of the spin liquid. But if this Ising anyon resides
some “small” distance from the edge [see enlargement in
Fig. 9(b)], how can one quantify whether the fragmented
physical and emergent Majorana fermions encircle only the
bulk Ising anyon (corresponding to nσ ¼ 1), or also the
Ising anyon near the boundary (corresponding to nσ ¼ 2)?
Following Ref. [116], this question can be addressed using
a minimal model in which the gapless edge hybridizes with
the Majorana zero mode γ localized to the adjacent Ising
anyon. The Hamiltonian reads

H ¼
Z
x
½−ivγR∂xγR þ iλγRγδðxÞ�; ð32Þ

where γR describes the emergent gapless Majorana fer-
mion, and λ is the coupling strength to γ, assumed to reside
at position x ¼ 0. Note that λ2=v defines an energy scale for
the hybridization.
Reference [116] showed that an incident Majorana

fermion with energy E acquires a phase shift

eiϕðEÞ ¼ 2Eþ iλ2=v
2E − iλ2=v

ð33Þ

due to the λ coupling. The “high-” and “low-” energy limits
of this result can be captured intuitively as follows. At
incident energies E ≫ λ2=v, the gapless edge and the
adjacent Ising anyon essentially decouple; in this “high-
energy” regime the physical and Majorana fermions should
be viewed as encircling both Ising anyons in Fig. 9(b). No
additional π phase shift arises, though finite, nonuniversal
conductance generically emerges due to Andreev processes
(which freeze out only at low energies). At E ≪ λ2=v, one
can project onto Hamiltonian eigenstates by sending
γRðxÞ → sgnðxÞγ̃RðxÞ, where γ̃RðxÞ is a slowly varying
chiral Majorana fermion. In terms of γ̃R, the λ term in
Eq. (32) disappears due to the sign change introduced
above, so that H →

R
xð−ivγ̃R∂xγ̃RÞ. In this precise sense,

the adjacent Ising anyon has been absorbed by the gapless
edge—its only trace is the π phase shift inherent in the
definition of γ̃R. Hence, the physical and emergent
Majorana fermions should now be viewed as encircling
only the bulk Ising anyon in Fig. 9(b). Our transport
analysis focuses on the asymptotic low-energy limit, where
the latter scenario prevails. Both extremes captured above
are consistent with the general formula in Eq. (33).

VII. INTERFEROMETRIC DETECTION OF
NEUTRAL FERMIONS, ISING ANYONS, AND

NON-ABELIAN STATISTICS

The circuit introduced in Sec. VI reveals bulk Ising
anyons but is oblivious to the presence of bulk neutral
fermions. This dichotomy arises because an emergent

fermion living at the boundary acquires a statistical minus
sign upon encircling an Ising anyon, in turn influencing the
electrical conductance, whereas encircling a neutral fer-
mion yields a trivial statistical phase. Here we study an
interferometer that enables emergent fermions injected
from a lead (with the aid of fermion condensation) to
splinter into unpaired Ising anyons—which exhibit non-
trivial braiding statistics with both bulk Ising anyons and
neutral fermions, leading to conductance signatures of both
quasiparticle types.
The device we consider appears in Fig. 10(a) and can be

viewed as Fig. 9(a) with a constriction. At the constriction,
the upper and lower spin-liquid edges couple via a
Hamiltonian

(a)

(b)

FIG. 10. (a) Interferometer that electrically detects both bulk
Ising anyons and bulk emergent fermions. The geometry can be
viewed as Fig. 9 with a constriction in the spin liquid, governed
by Htun in Eq. (34). At the constriction, incident emergent
Majorana fermions can either tunnel across (tψ process) or
fractionalize into a pair of Ising anyons (tσ process)—one
hopping across and the other encircling a bulk quasiparticle of
type a ¼ I, ψ , or σ. Nontrivial braiding statistics among the
anyons in the spin liquid yields a-dependent electrical conduc-
tances [Eqs. (57) and (59)] that enable readout of the quasiparticle
type. Most notably, non-Abelian statistics between Ising anyons
vanquishes first-order conductance corrections from tσ events.
(b) Illustration of the five paths taken by incident emergent
fermions up to first order in Htun. For details, see Secs. VII A
and VII B. The ellipsis denotes higher-order contributions not
included here.
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Htun ¼ e−iπhσ tσσðx2Þσðx1Þ þ e−iπhψ tψγðx2Þγðx1Þ ð34Þ

with σðxÞ the Ising conformal field theory (CFT) field and
tσ , tψ ≥ 0 real couplings. The tσ and tψ terms respectively
shuttle Ising anyons and emergent fermions between
positions x1 on the lower edge and x2 on the upper edge.
(For a detailed discussion of the tσ term, see Ref. [122].)
The phase factors in Eq. (34) involve the topological spin
hσ ¼ 1=16 of an Ising anyon and hψ ¼ 1=2 of a fermion,
and are required for Hermiticity. Note that e−iπhψ ¼ −i
represents the usual imaginary coefficient accompanying a
Majorana-fermion bilinear in the Hamiltonian; we employ
this form simply to parallel the tσ term.
Ising-anyon tunneling constitutes a relevant perturba-

tion to the fixed point describing decoupled edges, and in
the asymptotic low-energy limit effectively chops the
spin liquid in two at the constriction [122]. Fermion
tunneling, by contrast, is marginal. Throughout, we work
in a regime—to be quantified below—where both tunnel-
ing terms can be regarded as weak. Incident fermions at the
lower edge then bypass the constriction and take “the long
way around” with nearly unit probability, enabling a
perturbative treatment of Htun.
Let us then examine Fig. 10(a) at temperatures T → 0

and finite bias voltages V below the gap scale for the
fermion condensate. We are interested in the conductance
GðVÞ when a quasiparticle of type a ¼ 1, σ, or ψ resides in
the right half of the interferometer. Figure 10(b) sketches
the five contributing processes up to first order in tψ and tσ.
Path (i) corresponds to the dominant process whereby the
incident edge emergent fermion bypasses the constriction
and goes around quasiparticle a (as necessarily occurs in
Fig. 9). In path (ii), the incident fermion shortcuts across
the constriction via the fermion-tunneling term tψ . In path
(iii), the fermion travels to the upper side of the constriction
before similarly tunneling via tψ . Paths (iv) and (v) invoke
Ising-anyon tunneling tσ. In (iv), the incident fermion
travels to the lower end of the constriction, then splinters
into a pair of Ising anyons that recombine at the upper edge
into either a trivial particle or an emergent fermion depend-
ing on a. And in (v), the incident fermion travels to the
upper side of the constriction before similarly splintering
into Ising anyons. In what follows, we examine these
processes within a phenomenological treatment that we
eventually connect to more formal analyses given in
Appendixes C and D (see also the analyses of related
interferometers, e.g., in Refs. [123–125]). We start with the
case a ¼ 1 or ψ and then consider a ¼ σ.

A. Interferometer with a= 1 or ψ

When a ¼ 1 or ψ, the splintered Ising anyons from paths
(iv) and (v) of Fig. 10(b) necessarily recombine into an
outgoing emergent fermion at the upper edge (braiding σ
around either 1 or ψ preserves the Ising anyons’ fusion

channel). Thus, in all five paths, emergent Majorana
fermions incident from below necessarily exit the interfer-
ometer as fermions. The conductance simply follows from
the phase accumulated en route. We now separately
examine each path from Fig. 10(b).
Path (i). Consider an emergent Majorana fermion with

momentum ke that travels a distance Le the long way
around the interferometer. The associated quantum ampli-
tude reads

Ai ¼ eikeLe ; ð35Þ

which is simply the phase acquired by the fermion.
For the remaining cases, it is useful to express the

amplitude for path (p) as Ap ¼ wpeiϕp ; here, wp encodes
local physics at the constriction and eiϕp captures the phase
accumulated due to propagation along the boundary. Note
that wii and wiii are proportional to tψ while wiv and wv are
proportional to tσ .
Path (ii). If the fermion propagates to the lower end of the

constriction and then tunnels across, the amplitude is

Aii ¼ wiieikeðLe−LaÞ; ð36Þ

where La is the perimeter of the region enclosing a as
sketched in Fig. 10(a).
Path (iii). Let Lc be the distance between the constriction

and either end of the fermion condensate [see Fig. 10(a)].
The amplitude for path (iii) can then be written

Aiii ¼ wiiieikeðLcþLaÞeikeðLaþLcÞ: ð37Þ

The first exponential represents the phase acquired upon
traveling to the upper part of the constriction, and the
second is the phase acquired by the fermion after tunneling
across the constriction and returning to the fermion con-
densate. Noting that Le ¼ 2Lc þ La, we can simplify
Eq. (37) to

Aiii ¼ wiiieikeðLeþLaÞ: ð38Þ

Path (iv). When the incident Majorana fermion splinters
in path (iv), its momentum ke can partition among the
resulting pair of Ising anyons in various ways that are
compatible with energy conservation [126]. Suppose for
now that the Ising anyon tunneling across the constriction
carries momentum k1, while the Ising anyon that takes the
long way around carries k2 ¼ ke − k1. The amplitude for
this event is

Aivðk1Þ ¼ wivðke; k1ÞeikeLceik1Lceik2ðLaþLcÞð−1Þnψ
¼ wivðke; k1ÞeikeLee−ik1Lað−1Þnψ : ð39Þ

Here, the factor wiv generically depends on both ke and k1
as a consequence of the relevance of the Ising-anyon
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tunneling term. The first exponential on the top line is the
phase acquired by the fermion as it travels to the con-
striction; the second is the phase acquired by the Ising
anyon that tunnels across the constriction and travels to the
upper end of the fermion condensate, and the third is the
phase acquired by the Ising anyon that travels the long way
around. In the last factor, nψ is the number of bulk neutral
fermions (mod 2) enclosed in the right half of the
interferometer, i.e., nψ ¼ 0 if a ¼ 1, while nψ ¼ 1 if
a ¼ ψ . The all-important additional π phase that arises
when nψ ¼ 1 reflects the nontrivial mutual statistics
between Ising anyons and neutral fermions, and ultimately
allows the interferometer to detect the latter bulk quasi-
particle type.
Events corresponding to distinct, physically permissible

k1 values must be integrated over since the wave function
will consist of a weighted sum over all such energy
partitionings. In particular, the pair of splintered Ising
anyons must both carry positive momentum and energy,
yielding the inequality 0 ≤ k1 ≤ ke for path (iv).
Path (v). Suppose now that an incident emergent

Majorana fermion in path (v) similarly splinters into one
Ising anyon carrying momentum k1 across the constriction
and another that carries momentum k2 ¼ ke − k1 past the
constriction. The corresponding amplitude is

Avðk1Þ ¼ wvðke; k1ÞeikeðLcþLaÞeik1ðLaþLcÞeik2Lcð−1Þnψ
¼ wvðke; k1ÞeikeLeeik1Lað−1Þnψ : ð40Þ

The first three exponentials in the top line respectively
denote the phase acquired by the fermion prior to splinter-
ing, the Ising anyon that tunnels across the constriction, and
the Ising anyon that bypasses the constriction. The ð−1Þnψ
factor once again reflects the braiding statistics between
Ising anyons and neutral fermions.
Physically permissible k1 values must be integrated over,

as in path (iv), but now the allowed range differs. Indeed,
here the Ising anyon that tunnels across the constriction can
carry arbitrary positive momentum since the pair of Ising
anyons that combines on the upper end of the interferom-
eter always carries total momentum ke regardless of the
magnitude of k1. For path (v), we thus have the inequality
0 ≤ k1 < ∞ (neglecting an ultraviolet momentum cutoff
for simplicity).
Upon summing over the five paths, the amplitude

describing the arrival of the emergent Majorana fermion
at the upper end of the fermion condensate is

A ¼ Ai þ Aii þ Aiii

þ
Z

ke

0

dk1 Aivðk1Þ þ
Z

∞

0

dk1 Avðk1Þ: ð41Þ

Inserting the above expressions for Ai through Av yields

A ¼ eikeLe

�
1þ ½wiie−ikeLa þ wiiieikeLa �

þ ð−1Þnψ
�Z

ke

0

dk1wivðke; k1Þe−ik1La

þ
Z

∞

0

dk1wvðke; k1Þeik1La

��
: ð42Þ

We can further constrain the form of the amplitude using
dimensional analysis. Since the scaling dimension of
the Majorana fermion γðxÞ is 1=2, tψ has units of
energy × length; similarly, the Ising field σðxÞ scaling
dimension is 1=16, and so tσ has units of energy×
ðlengthÞ1=8. Thus, we can write

wii;iii ¼
�
tψ
ve

�
αii;iii; ð43Þ

wiv;vðke; k1Þ ¼
�

tσ
vek

7=8
e

�
fiv;vðk1=keÞ

ke
ð44Þ

with ve the emergent-fermion edge-state velocity, αii and
αiii numerical factors, and fiv and fv dimensionless scaling
functions. Notice that the bracketed factors above are
dimensionless.
Determining the remaining unspecified quantities in A

requires explicit calculations. For the fermion-tunneling
paths, Appendix C presents a standard Heisenberg-picture
analysis that yields

αii ¼ −αiii ¼ −
1

2
: ð45Þ

Equations (43) through (45) then allow us to express the
amplitude as

A ¼ eikeLe

�
1þ i

tψ
ve

sinðkeLaÞ

þ ið−1Þnψ 2tσL
7=8
a

ve
gðkeLaÞ

�
; ð46Þ

where we define

gðuÞ ¼ 1

2iu7=8

�Z
1

0

dy e−iuyfivðyÞ þ
Z

∞

0

dy eiuyfvðyÞ
�
:

ð47Þ

Treating the Ising-anyon tunneling paths demands a more
sophisticated conformal field theory analysis carried out in
Appendix D. There we show that

gðuÞ ¼ πu
4 1F2

�
1

2
; 1; 2

���� − 1

4
u2
	

ð48Þ
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with 1F2 a generalized hypergeometric function. Figure 11(a)
plots gðkeLaÞ versus keLa. The perturbative regime stipulated
earlier requires [128]

tψ
ve

≪ 1 and
tσL

7=8
a

ve
≪ 1 ð49Þ

so that fermion and Ising-anyon tunneling across the con-
striction contribute only small corrections to the amplitude
in Eq. (46).
To make contact with our phenomenological picture, we

can invert Eq. (47) to extract the fivðk1=keÞ and fvðk1=keÞ
scaling functions that quantify the energy partitioning.
Appendix F pursues this (nontrivial) exercise; for a sum-
mary, see Fig. 11(b). Both scaling functions exhibit a
leading divergence at k1 → 0 and a subleading divergence
at k1 → ke. It follows that Ising anyons tunnel across the
constriction primarily carrying “small” momentum and
secondarily carrying momentum near ke. More explicitly,

fiv;vðk1=keÞ ∼ ðk1=keÞ−15=8 at small k1; the exponent
implies that the ke dependence of the weights defined in
Eq. (44) drops out at k1 → 0; i.e., in this regime, the Ising-
anyon tunneling probability becomes independent of the
incident fermion momentum. Furthermore, fivðk1=keÞ ∼
ð1 − k1=keÞ−7=8 as k1 approaches ke from below and
fvðk1=keÞ ∼ ðk1=ke − 1Þ−7=8 as k1 approaches ke from
above. Notice that fvðk1=keÞ does not diverge as k1
approaches ke from below—hence, for path (v), Ising
anyons tunnel far more efficiently with momentum slightly
larger than ke compared to momentum just below ke.
It is instructive to examine some limits of the function

gðkeLaÞ. At small arguments, one finds

gðkeLa ≪ 1Þ ≈ π

4
keLa; ð50Þ

i.e., the amplitude correction from Ising-anyon tunneling
vanishes linearly with the fermion momentum. In this limit
of our perturbative analysis, one can use an operator
product expansion (OPE) to fuse the Ising CFT fields in
Eq. (34), yielding

e−iπhσ tσσðx2Þσðx1Þ → const × tσL
15=8
a γ∂xγ: ð51Þ

The term on the right side (which is a descendent of the
identity) is irrelevant, which explains the linear vanishing
of the amplitude correction as keLa → 0.
At keLa ≫ 1, one instead finds

gðkeLa ≫ 1Þ ≈ 1 −
cosðkeLaÞ

keLa
: ð52Þ

Contrary to the purely oscillatory amplitude correction
from fermion tunneling, the amplitude correction from
Ising-anyon tunneling thus tends to an La-dependent
constant as keLa → ∞, with subdominant oscillations that
decay with a 1=ðkeLaÞ prefactor. The former feature
reflects the propensity of Ising anyons to tunnel across
the constriction with vanishingly small momentum.
Oscillations in the latter piece come from Ising anyons
that tunnel with momentum near ke, while the decay arises
because of the finite spread in the allowed momentum
carried.
The tunneling Hamiltonian invoked in Eq. (34) could of

course be amended in various ways, e.g., by allowing
fermions and Ising anyons to tunnel over a finite range of
positions between the upper and lower sides of the
constriction (as opposed to discrete points x1;2) or by
adding derivatives that effectively make the tunnel cou-
plings momentum dependent. It is thus important to address
which features of the amplitude correction in Eq. (46) are
generic. The linear vanishing of both the tψ and tσ
corrections with ke [cf. Eq. (50)] is certainly universal
(though the prefactor of course is not). At ke → 0, one can
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FIG. 11. (a) Plot of gðkeLaÞ [Eq. (48)] versus keLa, where ke
denotes the incoming emergent-fermion momentum and La is the
length defined in Fig. 10(a). This function determines the tσ
correction to the fermion transmission amplitude [Eq. (46)], and
thus also the conductance [Eq. (57)], for the interferometer in
Fig. 10(a) when a ¼ I or ψ. (b) Magnitude of the scaling
functions fiv (red dashed line) and fv (blue line) obtained by
inverting Eq. (47) as carried out in Appendix F. These scaling
functions govern energy partitioning associated with Ising-anyon
tunneling in paths (iv) and (v) summarized in Fig. 10(b) and
discussed in Sec. VII A; recall Eq. (44). In the horizontal axis k1
is the momentum carried by an Ising anyon that tunnels across the
constriction. The limiting scaling behavior displayed above
implies that Ising anyons tunnel primarily carrying momentum
≪ke and secondarily carrying momentum very near ke.
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exploit an OPE similar to Eq. (51) to reduce arbitrary
fermion-tunneling and Ising-anyon tunneling terms to
irrelevant descendants of the identity. The leading irrelevant
term is γ∂xγ, and the derivative ensures amplitude correc-
tions ∝ke as ke → 0.
We further expect that the exponents governing the

power-law divergences in the fiv;v scaling functions shown
in Fig. 11(b) are universal. At keLa ≫ 1, these divergences
determine the leading and subleading keLa dependence of
the tσ correction specified by Eq. (52)—which would then
also be universal. Note, however, that the prefactors of the
two terms in Eq. (52) will depend on details of the
tunneling Hamiltonian. The generic saturation of the tσ
correction to an La-dependent constant at keLa → ∞
admits an intuitive explanation: Energy partitioning invar-
iably suppresses oscillations as keLa increases, whereas
processes for which Ising anyons tunnel across the con-
striction carrying vanishingly small momentum naturally
leave a ke-independent correction. [Again, the Ising-anyon
tunneling weights in Eq. (44) do not depend on the incident
fermion momentum in the k1 → 0 limit.]
We are now ready to extract the conductance. The net

phase acquired by an incident emergent Majorana fermion
is given by

eiϕemergent ¼ A
jAj : ð53Þ

Moreover, the phase acquired by a physical Majorana
fermion with momentum kp that travels the length Lp of
the fermion condensate is

eiϕphysical ¼ eikpLp ; ð54Þ

yielding a phase difference

δϕa¼1;ψðke; kpÞ

¼ kpLp − keLe −
tψ
ve

sinðkeLaÞ − ð−1Þnψ 2tσL
7=8
a

ve
gðkeLaÞ

ð55Þ

to first order in tψ , tσ; cf. Eq. (28). Suppose next that an
incident electron injected from the lead into the lower ν ¼ 1
edge of Fig. 10(a) carries energy E. The Majorana-fermion
momenta are then ke ¼ E=ve and kp ¼ E=vp, where vp is
the physical Majorana fermion’s edge velocity. As reviewed
in Appendix G, the conductance at bias voltage V is

Ga¼1;ψðVÞ ¼
e2

h

�
1 − cos

�
δϕa¼1;ψ

�
eV
ve

;
eV
vp

	��
: ð56Þ

Finally, expanding in tψ and tσ yields

Ga¼1;ψðVÞ

≈
e2

h

�
1 − cos

�
eV

�
Lp

vp
−
Le

ve

	�

−
tψ
2ve

cos

�
eV

�
Lp

vp
−
Le þ La

ve

	�

þ tψ
2ve

cos

�
eV

�
Lp

vp
−
Le − La

ve

	�

− ð−1Þnψ 2tσL
7=8
a

ve
g

�
eV

La

ve

	
sin

�
eV

�
Lp

vp
−
Le

ve

	��
:

ð57Þ

In the first line, the oscillatory voltage dependence reflects
the periodic revival and destruction of Andreev processes as
the phase difference accumulated by the physical and
emergent Majorana fermions varies in path (i). The next
two lines encode corrections from fermion tunneling across
the constriction; hence, the dependence on the shifted path
lengthsLe � La. And by farmost importantly, the correction
from Ising-anyon tunneling in the last line reveals the
presence of individual emergent fermions by virtue of the
nψ dependence.

B. Interferometer with a= σ

Suppose now that a ¼ σ (which turns out to be far
simpler to analyze compared to the a ¼ 1 or ψ cases). We
assume that the bulk Ising anyon’s “partner” has been
dragged to an adjacent gapless part of the edge in the right
half of the interferometer. Path (i) acquires an additional π
phase relative to Eq. (35) due to the nontrivial mutual
statistics between fermions and Ising anyons. By contrast,
the phases from paths (ii) and (iii)—wherein the edge
fermion encircles the bulk Ising anyon an even number of
times—conform exactly to Eqs. (36) and (38), respectively
[129]. In paths (iv) and (v), the incident emergent fermion
splinters into two Ising anyons at the constriction, one of
which now encircles a bulk Ising anyon. This braiding
process changes the fusion channel for the splintered edge
Ising anyons from ψ to 1. More physically, in paths (iv) and
(v) the incident emergent fermion exits the interferometer
as a trivial boson, and hence, these paths no longer
contribute to the electrical conductance.
The amplitude from Eq. (46) accordingly becomes

A ¼ eikeLe

�
−1þ i

tψ
ve

sinðkeLaÞ
�
: ð58Þ

Following precisely the same steps outlined in the preced-
ing section, one obtains a conductance
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Ga¼σðVÞ ≈
e2

h

�
1þ cos

�
eV

�
Lp

vp
−
Le

ve

	�

−
tψ
2ve

cos

�
eV

�
Lp

vp
−
Le þ La

ve

	�

þ tψ
2ve

cos

�
eV

�
Lp

vp
−
Le − La

ve

	��
: ð59Þ

In the limit tσ ¼ tψ ¼ 0, the interferometer effectively
reduces to the setup in Figs. 9(a) and 9(b) that allow
electrical detection of Ising anyons. Indeed, Eqs. (57) and
(59), respectively, yield G ¼ 0 and G ¼ ð2e2=hÞ at V → 0,
in agreement with the analysis from Sec. VI. Allowing
quasiparticle tunneling across the constriction additionally
reveals the non-Abelian statistics of Ising anyons as
manifested by the disappearance of the oscillatory tσ
correction in Eq. (57) when a bulk Ising anyon sits in
the interferometer loop. Qualitatively similar physics
appears in quantum-Hall interferometers introduced in
Refs. [9–11].

VIII. DISCUSSION

A growing body of evidence supports the realization of a
non-Abelian spin-liquid phase in the Kitaev material
α-RuCl3 [50,54–61,64]. This remarkable development
strongly motivates proposals for probing individual frac-
tionalized excitations in honeycomb Kitaev materials, as
required for eventual topological-quantum-computing
applications. The Mott-insulating nature of the host plat-
form renders the problem both interesting and nontrivial.
We introduce a strategy based, counterintuitively, on
universal low-voltage electrical transport in novel circuits
designed to perfectly convert electrons into emergent
Majorana fermions born in the spin liquid, and vice versa.
Similar techniques can be adapted to any bosonic topo-
logically ordered phase hosting gapless emergent-fermion
edge states.
Perfect physical-fermion ↔ emergent-fermion conver-

sion transpires when the non-Abelian spin liquid’s chiral
Majorana edge state gaps out with a counterpropagating
1D electronic channel—forming a fermion condensate.
Throughout this paper, we consider proximitized ν ¼ 1
integer quantum-Hall systems as the source of 1D electrons
participating in fermion condensation. We adopt this choice
due to the wide availability of ν ¼ 1 states and for
convenience in defining electrical transport quantities.
As a possible variation, one could replace the quantum-
Hall system with a spinless 2D pþ ip superconductor,
which supports “half” of a ν ¼ 1 edge state and thus admits
a fully gapped interface with the spin liquid. Alternatively,
one could employ proximitized 1D wires instead of 2D
topological phases at the expense of introducing additional
electronic channels. For illustrations, see Fig. 12. Exploring

transport characteristics of circuits employing such varia-
tions would certainly be worthwhile.
Moreover, developing a detailed microscopic under-

standing of the interaction mediating fermion condensation
[recall the κ term from Eq. (17)] remains an important open
problem even for our quantum-Hall-based setups. We
anticipate that spin-spin interactions between the quan-
tum-Hall edge and spin-liquid edge (mediated, for instance,
by an interplay between Coulomb repulsion and electron
tunneling between the subsystems) constitute one natural
microscopic mechanism that contributes to κ. In Sec. III A,
we show on symmetry grounds that microscopic spin
operators at the Kitaev-material boundary project onto the
kinetic energy operator in the chiral Majorana edge theory.
We expect that spin operators at the quantum-Hall boundary
similarly project onto the kinetic energy for the proximitized
quantum-Hall edge—in turn yielding the desired κ term.
Working out detailed dependences on factors such as
Zeeman fields, structure and sign of the spin-spin interaction,
and spin-orbit effects—and how they impact the all-impor-
tant sign of κ—would be very interesting.
In Sec. V, we see that quantum-Hall–Kitaev-material–

quantum-Hall circuits (Fig. 8) reveal the spin liquid’s
emergent chiral Majorana edge state via quantized zero-
bias charge conductance. This purely electrical fingerprint
complements the well-known quantized thermal Hall sig-
nature of a Majorana edge mode [34,60,64], and relies
critically on the fermion condensation that underlies our

(a) (b)

FIG. 12. Variations on Fig. 7 in which the ν ¼ 1 quantum-Hall
system is replaced by (a) a 2D spinless pþ ip superconductor
and (b) a proximitized 1D wire. Both alternatives also enable
physical-fermion ↔ emergent-fermion conversion via fermion
condensation. In (a), the physical chiral Majorana edge state of a
spinless 2D pþ ip superconductor gaps out with the spin liquid’s
emergent chiral Majorana edge mode—yielding a fully gapped
interface between the two subsystems. Physical Majorana fer-
mions from the pþ ip superconductor thus invariably enter the
spin liquid as emergent Majorana fermions. In (b), right- and left-
moving electron channels (double arrows) separate into Majorana
modes beneath the proximitizing superconductor. Fermion con-
densation arises when one of those Majorana modes gaps out
with the spin liquid’s edge state. (Among the three remaining
modes beneath the superconductor, only one must be gapless.)
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anyon-detection schemes. Section VI explores a somewhat
simpler quantum-Hall–Kitaev-material device (Fig. 9)
designed to electrically detect bulk Ising non-Abelian
anyons. In particular, the circuit admits zero-bias conduct-
ance quantized at eitherG ¼ 0 orG ¼ 2e2=h depending on
whether an even or odd number of Ising anyons resides in
the bulk. This striking even-odd effect reflects the non-
trivial mutual braiding statistics between Ising anyons and
emergent fermions. Taking the same circuit and adding a
constriction within the spin liquid leads to the interferom-
eter that we explore in Sec. VII (Fig. 10). At the
constriction, an emergent fermion can splinter into a pair
of Ising anyons—one taking a shortcut across the pinch and
the other continuing along the spin-liquid edge. The
electrical conductance is then sensitive to the presence
of bulk Ising anyons and bulk emergent fermions since
Ising anyons exhibit nontrivial braiding statistics upon
encircling either quasiparticle type. Notably, non-Abelian
braiding statistics is manifested as a vanishing of certain
conductance corrections when an odd number of bulk Ising
anyons sits in the interferometer [cf. Eqs. (57) and (59)]—
similar to the physics encountered in fractional quantum-
Hall architectures [9–11].
Analyzing circuits with realistic imperfections poses

another worthwhile direction for future investigation. For
instance, the superconductors in practice will likely contain
low-energy degrees of freedom due to disorder and/or
vortices. Electrons from the ν ¼ 1 edge could directly hop
onto these low-lying modes without encountering the
fermion condensate or Andreev reflecting, thereby provid-
ing a parallel conduction channel that modifies the con-
ductances predicted in this paper. Thermally excited
quasiparticles in the spin liquid can also produce unwanted
errors, e.g., due to processes wherein an edge emergent
fermion splinters into Ising anyons that enclose a thermally
excited bulk quasiparticle residing near the boundary. For
our purposes, these corrections must be sufficiently small
that (i) a sharp contrast remains between the nontrivial and
control circuits in Fig. 8, and (ii) the quasiparticle-depen-
dent conductances predicted for Figs. 9 and 10 remain
discernible.
For initial anyon-detection experiments, one could rely on

nature to thermally cycle between various bulk quasiparticle
configurations—leading to telegraph noise wherein the
conductance randomly cycles among the predicted values
as a function of time [see, e.g., Fig. 9(c)]. Deterministic, real-
time anyon control is nevertheless clearly desirable. To this
end, it is essential to develop practical means of trapping
Ising anyons and emergent fermions in the spin liquid. We
anticipate that this subtle energetics issue can be profitably
addressed by studying the Kitaev honeycomb model sup-
plemented by generic symmetry-allowed perturbations.
Finally, developing complementary methods of detecting
individual bulk anyons that mitigate the experimental
requirements of our scheme poses a key challenge. We hope

that this work helps stimulate such efforts with the ultimate
aim of crafting a realistic road map toward topological
quantum computation with Kitaev materials.

ACKNOWLEDGMENTS

It is a pleasure to thank Chao-Ming Jian, Stevan Nadj-
Perge, Achim Rosch, Ady Stern, and especially Paul
Fendley for stimulating conversations. This work is sup-
ported by a postdoctoral fellowship from the Gordon and
Betty Moore Foundation, under the EPiQS initiative, Grant
No. GBMF4304; the Army Research Office under Grant
No. W911NF-17-1-0323; the National Science Foundation
through Grants No. DMR-1723367 (J. A.) and No. DMR-
1848336 (R. M.); the Caltech Institute for Quantum
Information and Matter, a NSF Physics Frontiers Center
with support of the Gordon and Betty Moore Foundation
through Grant No. GBMF1250; the Walter Burke Institute
for Theoretical Physics at Caltech, and the Gordon and
Betty Moore Foundation’s EPiQS Initiative, Grant
No. GBMF8682 to J. A. B. M. H. acknowledges support
from the Department of Energy under the Early Career
program (Grant No. DE-SC0018115). D. M. acknowledges
support from the Gordon and Betty Moore Foundation
EPiQS Initiative, Grant No. GBMF9069. Finally, we
acknowledge the 2018 Erice Conference on Majorana
Fermions and Topological Materials Science, where this
work was initiated.

APPENDIX A: VARIATIONAL ANALYSIS OF
INTERACTING MAJORANA FERMIONS

1. Continuum model

Here we employ a variational approach to study the
interacting continuum Hamiltonian H0 þ δH defined in
Eqs. (16) and (17). Specifically, we view the ground state of
the free-fermion Hamiltonian HMF from Eq. (18) as a trial
wave function for the interacting problem, treating the mass
m as a variational parameter. Note that sending γR → −γR
leaves the interacting Hamiltonian invariant but sends
m → −m. Without loss of generality, we therefore consider
trial wave functions with m ≥ 0 below.
The analysis is most conveniently carried out in terms of

momentum-space Majorana fermions defined with Fourier-
transform conventions

γAðxÞ ¼
1ffiffiffi
2

p
Z

dk
2π

eikxγA;k; ðA1Þ

γA;k ¼
ffiffiffi
2

p Z
dxe−ikxγAðxÞ ðA2Þ

for A ¼ L or R. The corresponding commutation relations
are given by
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fγAðxÞ; γBðyÞg ¼ 1

2
δABδðx − yÞ; ðA3Þ

fγA;k; γB;qg ¼ 2πδABδðkþ qÞ: ðA4Þ

Upon passing to momentum space, the free-fermion
Hamiltonian HMF can be readily diagonalized, yielding
single-particle excitation energies EðkÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvkÞ2þðm=2Þ2

p
and correlation functions

hγR;kγR;qi ¼ 2πδðkþ qÞ 1
2

�
1þ vk

EðkÞ
�
; ðA5Þ

hγL;kγL;qi ¼ 2πδðkþ qÞ 1
2

�
1 −

vk
EðkÞ

�
; ðA6Þ

hγR;kγL;qi ¼ 2πδðkþ qÞ i
4

m
EðkÞ : ðA7Þ

Here and in the remainder of this Appendix, expectation
values are taken with respect to the ground state of HMF.
Equations (A5) through (A7) allow one to efficiently

evaluate the trial energy density Etrial ≡ hH0 þ δHi=L (L is
the length of the interface). The results are conveniently
expressed in terms of integrals

Iα ¼
Z

2vΛ=m

−2vΛ=m
du

uαffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ; ðA8Þ

where Λ is a momentum cutoff for the interacting Majorana
fermions. The kinetic energy piece reads

hH0i
L

¼ −
m2

16πv
I2: ðA9Þ

For the interactions, we first write

hδHi
L

¼ κ

4

Z
q1;q2;q3;q4

q2q4hγR;q1γR;q2γL;q3γL;q4i; ðA10Þ

and then evaluate the expectation value in the integrand
using Wick’s theorem:

hγR;q1γR;q2γL;q3γL;q4i ¼ hγR;q1γR;q2ihγL;q3γL;q4i
− hγR;q1γL;q3ihγR;q2γL;q4i
þ hγR;q1γL;q4ihγR;q2γL;q3i: ðA11Þ

Some algebra yields

hδHi
L

¼ −
κm4

1024π2v4
ðI22 þ I0I2Þ: ðA12Þ

Summing the contributions above gives our trial energy
density,

Etrial ¼ −
m2

16πv
I2 −

κm4

1024π2v4
ðI22 þ I0I2Þ: ðA13Þ

We now minimize Eq. (A13) with respect to m. For
κ < 0, the minimization always yields m ¼ 0. With κ > 0,
however, a nontrivial solution does arise beyond a critical
interaction strength. It is convenient to examine

ΔEtrial ≡ Etrial − Etrialjm¼0; ðA14Þ

which quantifies the change in energy density due to a
nonzero mass m. Figure 13(a) plots ΔEtrial=ðvΛ2Þ versus
m=ðvΛÞ for varying dimensionless interaction strengths
κΛ2=v, while Fig. 13(b) displays the optimized mass as a
function of κΛ2=v. A first-order jump in the optimal mass
appears at a critical interaction strength

ðκΛ2=vÞc ≈ 102: ðA15Þ
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FIG. 13. (a) Variational energy difference ΔEtrial [Eq. (A14)]
versus mean-field mass m for varying interaction strengths κ
in the continuum model given by Eqs. (16) and (17). For
κΛ2 ≳ 102v, the variational energy is minimized with nonzero
m, signaling the spontaneous opening of a gap. (b) Optimal mass
as a function of interaction strength. In the normalizations
adopted above, v is the velocity and Λ is the cutoff.
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The large numerical factor on the right-hand side naively
suggests that spontaneous mass generation requires implau-
sibly large interactions. We stress that such a conclusion is
generally incorrect. In the next subsection, we see that
lattice models with microscopic interaction strength
Umicroscopic yield κ ¼ cUmicroscopic, where c is a number
in the range 102 − 103. Thus, even modest microscopic
interactions translate into “large” κ values that can exceed
the threshold in Eq. (A15), consistent with conclusions
from more rigorous microscopic analyses reviewed in
Secs. III A and III B.

2. One-dimensional lattice model

Next, we similarly study interacting Majorana fermions
on an N-site chain with periodic boundary conditions
governed by a Hamiltonian

H ¼ H0 þ ΔH; ðA16Þ

H0 ¼ it
X
a

γaγaþ1; ðA17Þ

δH ¼ −g
X
a

γaγaþmγaþnγaþp ðA18Þ

with t > 0 and 0 < m < n < p. We are specifically inter-
ested in quantifying the regime of interaction strength over
which the chain spontaneously dimerizes. To this end, we
employ a trial wave function given by the ground state of
the free-fermion Hamiltonian

HMF ¼ i
X
a

½tþ ð−1Þam̄�γaγaþ1; ðA19Þ

where m̄ is a variational parameter that, when nonzero,
indicates spontaneous dimerization. Note that the trans-
lation γa → γaþ1 leaves H invariant but flips the sign of m̄
in HMF. The energies for configurations with m̄ and −m̄
thus necessarily match, so that we need consider only
variational wave functions with m̄ ≥ 0 in what follows.
The spectrum and eigenstates of Eq. (A19) can be readily

constructed by going to momentum space. For our pur-
poses here, it suffices to report correlation functions of
Majorana bilinears hγaγbi, from which all other correlations
can be deduced using Wick’s theorem. (All expectation
values presented in this Appendix are taken with respect to
the ground state of HMF.) In particular, we find

hγaγbi ¼ δab þ ½ð−1Þaþb − 1�4itfs;a−b
þ ½ð−1Þa − ð−1Þb�4im̄fc;a−b: ðA20Þ

Above, we introduce functions

fs;x ¼
Z

π=2

−π=2

dk
2π

sin k sinðkxÞ
EðkÞ ; ðA21Þ

fc;x ¼
Z

π=2

−π=2

dk
2π

cos k cosðkxÞ
EðkÞ ; ðA22Þ

where EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4t sin kÞ2 þ ð4m̄ cos kÞ2

p
are the single-

particle excitation energies for HMF.
We can now straightforwardly obtain our trial energy

density Etrial ¼ hH0 þ δHi=N. The hopping contribution is
simply

hH0i
N

¼ −8t2fs;1: ðA23Þ

The interaction term can be treated using the decomposition

hγaγaþmγaþnγaþpi ¼ hγaγaþmihγaþnγaþpi
− hγaγaþnihγaþmγaþpi
þ hγaγaþpihγaþmγaþni; ðA24Þ

yielding

hδHi
N

¼ −16gðFmnp − Fnmp þ FpmnÞ; ðA25Þ

where

Fxyz ¼ ½ð−1Þx − 1�f½ð−1Þyþz − 1�t2fs;xfs;y−z
þ ½ð−1Þy − ð−1Þz�m̄2fc;xfc;y−zg: ðA26Þ

Our total trial energy density is then

Etrial ¼ −8t2fs;1 − 16gðFmnp − Fnmp þ FpmnÞ: ðA27Þ

Below, it is also useful to consider the difference

ΔEtrial ≡ Etrial − Etrialjm̄¼0: ðA28Þ

Let us specialize to the lattice model in Eq. (20) with
t0 ¼ 0, for which g ¼ U and m ¼ 1, n ¼ 3, p ¼ 4. In this
case, the trial energy density explicitly reads

Etrial ¼ −8t2fs;1 − 64U½t2ðf2s;3 − f2s;1Þ þ m̄2ðf2c;1 − f2c;3Þ�:
ðA29Þ

At this point, it is instructive to relate Eq. (A29) to the energy
density in Eq. (A13) for the continuum Hamiltonian. This
exercise proceeds by (i) introducing a momentum cutoff in
the fs;x and fc;x integrals, (ii) expanding the numerator in the
integrands toorderk2, (iii) replacing sin k → k and cos k → 1

in EðkÞ, and (iv) dropping a term proportional to m̄6I22 that
can arise only upon including higher-momentum terms in the
continuum model. Some algebra yields the relations

v ¼ 4t; m ¼ 8m̄; κ ¼ 512U: ðA30Þ
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Note especially the large numerical prefactor in front ofU in
connection with the discussion at the end of Appendix A 1.
We now minimize Eq. (A29) with respect to m̄.

Figure 14(a) plots ΔEtrial=t versus m̄=t for several U=t
values. The optimized m̄ as a function of U=t appears in
Fig. 14(b). Our variational analysis predicts spontaneous
dimerization—now via a continuous transition in contrast
to the continuum model—for U ≳ 0.29t. This prediction
agrees reasonably well with DMRG, which yields sponta-
neous dimerization for U ≳ 0.428t [87]. Interestingly, for
U ¼ t=2 our variational ansatz actually becomes exact
since in this limit the interaction admits an exact self-
consistent mean-field decoupling; recall the discussion in
Sec. III B. Figure 14(c) shows the optimized variational
energy density together with the exact energy density
extracted from Ref. [87], which indeed agree at U ¼ t=2.
Finally, suppose that we instead take g ¼ −UR and

m ¼ 1, n ¼ 2, p ¼ 3. This choice corresponds to a differ-
ent interaction in which four adjacent Majorana fermions
interact with strength UR. We consider only UR > 0 in our
variational analysis since negative UR values generate
additional gapless modes beyond those in Eqs. (16) and
(17) (see Appendix B for a synopsis); our trial wave
functions are thus not expected to adequately capture the
physics at UR < 0. The trial energy density for this model
becomes

Etrial ¼ −8t2fs;1 − 64UR½t2ðf2s;1 þ fs;1fs;3Þ
þ m̄2ðf2c;1 − fc;1fc;3Þ�: ðA31Þ

Upon connecting to the continuum energy density as we
outline above, one finds the relations

v ¼ 4t; m ¼ 8m̄; κ ¼ 256UR: ðA32Þ

Once again, a large prefactor appears in the expression for κ
in agreement with the alternative derivation from Ref. [93].
Based on our continuum analysis, one might therefore
expect that a spontaneous-dimerization transition sets in
once UR=t > 0 becomes of order unity, as arises for the
alternative interaction U. Curiously, however, minimizing
the lattice energy density in Eq. (A31) yields an optimal m̄
that vanishes for any UR > 0. Figure 15 illustrates this
conclusion by plotting ΔEtrial=t versus tan−1ðm̄=tÞ for
varying UR=t values. More rigorous DMRG simulations
do capture a dimerization transition but only at extremely
large UR=t. The following Appendix resolves the apparent
discrepancy between our continuum and lattice analyses
and explains the curious suppression of the instability for
the UR interaction.
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FIG. 14. Variational results for the lattice model given by
Eqs. (A16) through (A18) with m ¼ 1, n ¼ 3, p ¼ 4, and
g ¼ U. (a) Variational energy difference ΔEtrial [Eq. (A28)]
versus mean-field dimerization order parameter m̄ for varying
interaction strengths U. At U ≳ 0.29t, the variational energy is
minimized by nonzero m̄, indicating spontaneous dimerization
(as captured by DMRG, but at slightly larger interaction
strengths U ≳ 0.428t [87]). (b) Optimal variational m̄ as a
function of interaction strength. (c) Variational ground-state
energy Etrial (solid red line) and exact ground-state energy Eexact

(dashed blue line) [87] versus U=t. The two converge at
U ¼ t=2, at which point the variational approach becomes
exact.
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APPENDIX B: INTERACTING MAJORANA
FERMIONS IN AN ALTERNATIVE

MICROSCOPIC MODEL

Consider the microscopic model

HR ¼ H0 þ δH; ðB1Þ

H0 ¼ it
X
a

γaγaþ1; ðB2Þ

δH ¼ UR

X
a

γa−1γaγaþ1γaþ2 ðB3Þ

defined with periodic boundary conditions. This model
preserves both translation symmetry T and chiral symmetry
C defined in Sec. III B. References [93,94,130] extensively
studied the phase diagram; here we note the following
features: (i) A single pair of gapless, counterpropagating
Majorana fermions [Eq. (16)] captures the low-energy
physics over the broad interval −0.28≲ UR=t≲ 250.
Throughout, the central charge is c ¼ 1=2. (ii) The chain
spontaneously dimerizes, thus gapping the Majorana fer-
mions, for UR=t≳ 250—which again reflects a vastly
stronger interaction strength compared to that required for
dimerization in Eq. (20). (iii) For − 2.86≲ UR=t≲ −0.285,
the chain remains gapless, but the low-energy physics is
described by three pairs of counterpropagating Majorana
fermions. The central charge accordingly becomes c ¼ 3=2.
Below, we explain, within a unified framework, both the
extreme robustness of the c ¼ 1=2 phase to interactions as
well as the onset of the c ¼ 3=2 phase.

Let us start from the noninteracting limit, UR ¼ 0.
Here, the chain is diagonalized by passing to momentum
space via

γa ¼
ffiffiffi
2

pffiffiffiffi
N

p
X
k

eikaγk; ðB4Þ

with N the number of Majorana sites in the chain. In
our conventions, fγk; γk0g ¼ δk;−k0 . Note also that self-
Hermiticity of γa implies that γk ¼ γ†−k; this relation allows
a complete description of the chain using operators acting
in half of the Brillouin zone. In particular, one finds

H0 ¼
X

−π<k<0

ϵ0ðkÞγ†kγk; ðB5Þ

where

ϵ0ðkÞ ¼ 4tj sin kj ðB6Þ

is the Majorana-fermion kinetic energy. The ground state
follows by taking γ†kγk ¼ 0 for all momenta in the left half
of the Brillouin zone. Single-particle excitations are
obtained by taking γ†pγp ¼ 1 for some momentum p,
incurring an energy cost of ϵ0ðpÞ. In the low-energy theory,
left- and right-moving Majorana fermions correspond to
excitations near momentum 0 and −π, respectively.
Interactions can generate additional symmetry-allowed

hopping processes, as already observed in Ref. [94], which
in turn, renormalize the kinetic energy. Reference [94]
explored these effects within self-consistent mean-field
theory. We instead capture kinetic energy renormalization
via an exact rewriting of interactions analogous to normal
ordering. Specifically, we organize four-fermion terms so
that all matrix elements vanish identically in the subspace
consisting of states with either zero or one single-particle
excitation. To obtain this form, one can first express δH in
terms of Majorana operators with momenta in the left
Brillouin zone half, and then use anticommutation relations
to move all γ†k operators to the left of γk. The final
expression takes the form

δH ¼ δHint þ δHKE; ðB7Þ

where δHint vanishes within the zero- and one-excitation
subspace as desired and δHKE contains the kinetic energy
renormalization. After some algebra, we explicitly find

δHKE ¼
X

−π<k<0

δϵðkÞγ†kγk; ðB8Þ

δϵðkÞ ¼ UR

�
56

3π
j sin kj − 8

π
sinð3kÞ

�
: ðB9Þ
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FIG. 15. Variational energetics for the lattice model given by
Eqs. (A16) through (A18) with m ¼ 1, n ¼ 2, p ¼ 3, and
g ¼ −UR. The plot shows the variational energy difference
ΔEtrial [Eq. (A28)] versus tan−1ðm̄=tÞ, with m̄ the mean-field
dimerization order parameter, at various interaction strengths. For
any UR, the variational energy is minimized at m̄ ¼ 0—preclud-
ing a transition at the mean-field level. DMRG calculations do
capture a dimerization instability, but only at extremely strong
interactions strengths UR=t≳ 250 [93,94]. Appendix B explains
the striking difference between the behavior of the two models
examined here and in Fig. 14.
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The first term in Eq. (B9) reflects renormalization of the
nearest-neighbor hopping amplitude t, while the second
represents an interaction-induced third-neighbor hopping.
The decomposition of interactions employed above is very

useful, at least for sufficiently small jURj=t, since the
expectation value of the energy for single-excitation states
can be read off immediately. Specifically, upon including the
bare component, the total kinetic energy for an excitation
with momentum k becomes ϵðkÞ≡ ϵ0ðkÞ þ δϵðkÞ. The
dispersion for right- and left-moving Majorana fermions
in the continuum limit follows from expanding ϵðkÞ near
k ¼ −π and 0; one finds ϵ ∼�vk with

v ¼ 4tþ 128

3π
UR ðB10Þ

the renormalized velocity.
For UR < 0, interactions reduce v, and at a critical value

U�
R ¼ −ð3π=32Þt ≈ −0.295t the velocity vanishes. Below

this value, the renormalized kinetic energy ϵðkÞ supports
additional pairs of gapless Majorana fermions—changing
the central charge from c ¼ 1=2 to 3=2. Remarkably, the
critical interaction strengthU�

R extracted from our treatment
agrees quantitatively with DMRG predictions. We note that
the mean-field treatment performed in Ref. [94] recovers
similar quantitative agreement.
For UR > 0, interactions instead enhance v. Recall from

Sec. III A that in the low-energy description, the critical
phase with central charge c ¼ 1=2 becomes unstable to
spontaneous mass generation when κΛ2=v becomes of
order unity, where Λ is a momentum cutoff and κ is the
coupling from Eq. (17). In the present context, we have
κ ∝ UR. Upward renormalization of v clearly boosts the
robustness of the c ¼ 1=2 phase against interactions,
though we are unable to quantitatively obtain the critical
value of UR ∼ 250 at which DMRG finds an instability.
We can, nevertheless, stringently test the scenario

above. If kinetic energy renormalization indeed pushes
the spontaneous-dimerization transition to extremely
large UR values, then removing this renormalization
should reduce the critical UR by 3 orders of magnitude.
Remarkably, we indeed find such a dramatic reduction.
Consider the modified Hamiltonian

H0
R ¼ HR − δHKE; ðB11Þ

which is identical to Eq. (B1) except that the kinetic energy
renormalization is subtracted off, thus yielding a UR-
independent velocity. DMRG simulations find a transition
to a gapped phase in this model at UR=t ≈ 0.48098ð1Þ,
comparable to the critical interaction strength obtained from
the alternative model in Eq. (20) at t0 ¼ 0. See Fig. 16.
Furthermore, at least over the range of UR shown in the
figure, the transition to a c ¼ 3=2 phase at UR < 0 has also
been removed (as expected upon removal of the kinetic
energy renormalization).

Conspicuously, Fig. 16 also reveals a reentrant c ¼ 1=2
critical phase for UR=t ¼ 0.64585ð3Þ. We can explain this
feature as well by examining Eq. (B11), which can
equivalently be written as

H0
R ¼ it

X
a

γaγaþ1 þUR

X
a

�
γa−1γaγaþ1γaþ2

−
2i
π

�
7

3
γaγaþ1 þ γaγaþ3

	�
: ðB12Þ

Up to moderate values of UR=t, it is natural to interpret the
second line—which is just δHKE expressed in real space—
as a correction to the bare kinetic energy on the first line.
However, at sufficiently large UR=t this “correction” over-
whelms the bare piece, suggesting the following alternative
viewpoint. Let us trivially rewrite H0

R as

H0
R ¼

X
a

�
itγaγaþ1 −

4i
π
UR

�
7

3
γaγaþ1 þ γaγaþ3

	�

þ UR

X
a

�
γa−1γaγaþ1γaþ2

þ 2i
π

�
7

3
γaγaþ1 þ γaγaþ3

	�
; ðB13Þ

and view the top line as our new “bare” kinetic term. For
UR=t > 3π=16 ≈ 0.59, all of the corresponding kinetic
energy eigenvalues flip sign compared to the kinetic energy
from the t term alone—thus completely changing the
character of the associated noninteracting ground state.
The second and third lines represent an interaction that has
no nontrivial matrix elements in the subspace with zero or

–1.0 –0.5 0.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

UR/t

FIG. 16. Dimerization order parameter hiγa−1γa − iγaγaþ1i
versus UR=t obtained from DMRG simulations of the Hamil-
tonian in Eq. (B11). This Hamiltonian is the same as Eq. (B1) but
with the interaction-induced kinetic energy renormalization
subtracted off. The subtraction reduces the critical interaction
strength required for spontaneous dimerization by 3 orders of
magnitude—from UR=t ≈ 250 down to UR=t ≈ 0.48. Outside of
the dome-shaped dimerized region, the system realizes a gapless
state with central charge c ¼ 1=2 (at least over the UR=t window
shown). Reentrance of the c ¼ 1=2 critical state at UR=t ≳ 0.65
can also be understood from the subtraction, as we explain in
Appendix B.
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one single-particle excitations about that modified ground
state. [Note the relative sign between the final terms in
Eqs. (B12) and (B13).] In this UR=t regime, the top line
yields a velocity for right and left movers of
v ¼ ð256=3πÞUR − 4t. Once again, we end up with a
kinetic energy scale that grows with UR, so that the
dimerization instability is naturally suppressed beyond a
critical value of UR=t as observed in DMRG.
As an additional sanity check, one can extract kinetic

energy renormalization arising from the four-fermion
interaction in Eq. (20) via exactly the same procedure
leading to Eq. (B7) above. The result takes the form in
Eq. (B8) where now

δϵðkÞ ¼ −
64

3π
Uj sin3 kj: ðB14Þ

Near k ¼ 0 and −π, δϵðkÞ ∝ k3, indicating that velocity
renormalization vanishes in this model. Thus, no such
suppression of the dimerization instability is expected in
our scenario [131], and indeed, a transition occurs at the
modest value U ≈ 0.428t [87]. Reference [87] further
studied Eq. (B1) with δH replaced by yet another inter-
action,

δH0 ¼ Uy

X
a

ðγa−2γaγaþ1γaþ2 − γa−2γa−1γaγaþ2Þ: ðB15Þ

In this case, we find that δϵðkÞ ¼ 0—i.e., Uy produces no
kinetic energy renormalization at all. DMRG simulations
find a transition at a similarly modest value Uy ≈ 0.45t
[87]. Together, the results above strongly support our
explanation for the anomalously strong interaction strength
required for dimerization in Eq. (B1), which has heretofore
remained enigmatic.
Zooming out, we see from this discussion that micro-

scopic details matter when dealing with instabilities arising
from “strong” interactions that are irrelevant at weak
coupling. The insights we obtain here can potentially be
exploited to concoct new models that, depending on the
desired outcome, either enhance or suppress the effects of
such strong irrelevant interactions.

APPENDIX C: ANALYSIS OF FERMION
TUNNELING ACROSS A CONSTRICTION

Here we study the interferometer in Fig. 10 in the limit
where only fermions are allowed to tunnel across the
constriction. That is, we take the fermion-tunneling ampli-
tude tψ ≠ 0 but set tσ ¼ 0 in Eq. (34)—in which case, we
arrive at a free-fermion scattering problem that admits an
exact solution. Our goal is to deduce the phase eiϕemergent

acquired by an emergent fermion that travels from position
x0 before the constriction to position x3 after the con-
striction. Figure 17(a) illustrates the interferometer geom-
etry, while Fig. 17(b) shows an “unfolded” version. For

simplicity, we consider the case where no nontrivial
quasiparticles reside in the bulk of the interferometer;
i.e., we assume a ¼ I in Fig. 10.
Evaluating the Heisenberg equation of motion ∂tγ ¼

i½H0 þHtun; γ�, with H0 the chiral Majorana kinetic
energy, one finds

∂tγðx; tÞ ¼ −ve∂xγðx; tÞ þ
i
2
tψe−iπhψ ½δðx − x1Þγðx2; tÞ

− δðx − x2Þγðx1; tÞ�: ðC1Þ

As before, ve is the emergent-fermion edge velocity, while
x1 and x2 respectively denote positions on the lower and
upper sides of the constriction (see again Fig. 17). By
solving the equation of motion, one can relate γðx3; tÞ to
γðx0; 0Þ. The phase of interest follows from the equal-time
relation γðx3; 0Þ ¼ eiϕemergentγðx0; 0Þ, so hereafter we focus
on the solution at t ¼ 0.
Away from x ¼ x1;2, Eq. (C1) reduces to a standard

chiral wave equation. Suppose that xþj denotes a coordinate
slightly larger than xj, while x−j denotes a coordinate
slightly smaller than xj, and let ke be the incident
emergent-fermion momentum. One immediately finds

γðx−1 ; 0Þ ¼ eikeðx1−x0Þγðx0; 0Þ; ðC2Þ

γðx−2 ; 0Þ ¼ eikeðx2−x1Þγðxþ1 ; 0Þ; ðC3Þ

(a)

(b)

FIG. 17. (a) Geometry and coordinates used to explicitly
analyze the emergent-fermion transmission amplitude in the
interferometer from Fig. 10. Appendixes C and D, respectively,
treat the cases where only fermions tunnel (with coupling tψ ) and
only Ising anyons tunnel (with coupling tσ) across the constric-
tion. (b) Unfolded version of (a), not to scale. In terms of lengths
shown in Fig. 10(a), we have x2 − x1 ¼ La and x3 − x0 ¼ Le.
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γðx3; 0Þ ¼ eikeðx3−x2Þγðxþ2 ; 0Þ: ðC4Þ

(In the exponentials above, we replace x�j → xj since the
difference is inconsequential.) Next, integrating Eq. (C1)
over a small region enclosing x1 and similarly for x2 yields
the linear relations

0 ¼ γðxþ1 ; 0Þ − γðx−1 ; 0Þ þ t̃ψ ½γðxþ2 ; 0Þ þ γðx−2 ; 0Þ�; ðC5Þ

0 ¼ γðxþ2 ; 0Þ − γðx−2 ; 0Þ − t̃ψ ½γðxþ1 ; 0Þ þ γðx−1 ; 0Þ�; ðC6Þ

where t̃ψ ¼ −iðtψ=4veÞe−iπhψ . Combining with Eq. (C3)
and defining eiχ ¼ eikeðx2−x1Þ, one obtains

γðxþ2 ; 0Þ ¼ eiχ
1þ 2e−iχ t̃ψ þ t̃2ψ
1þ 2eiχ t̃ψ þ t̃2ψ

γðx−1 ; 0Þ: ðC7Þ

Finally, Eqs. (C2), (C4), and (C7) together imply that
γðx3; 0Þ ¼ eiϕemergentγðx0; 0Þ with

eiϕemergent ¼ eikeðx3−x0Þ
1þ 2e−iχ t̃ψ þ t̃2ψ
1þ 2eiχ t̃ψ þ t̃2ψ

: ðC8Þ

To make contact with Sec. VII A from the main text, we
now set x3 − x0 ¼ Le and x2 − x1 ¼ La. Additionally, we
expand Eq. (C8) to first order in t̃ψ and use ie−iπhψ ¼ 1,
leading to

eiϕemergent ≈ eikeLe

�
1þ tψ

2ve
ð−e−ikeLa þ eikeLaÞ

�
: ðC9Þ

The three terms in brackets respectively correspond to paths
(i), (ii), and (iii) discussed in Sec. VII A. From this explicit
calculation, we can trace the relative minus sign between
the terms for paths (ii) and (iii) to the anticommutation
relations obeyed by the Majorana fermions. Comparing to
Eqs. (42) and (53), the weights wii and wiii are given by
Eq. (43) with αii ¼ −αiii ¼ −1=2, as quoted in Eq. (45).

APPENDIX D: ANALYSIS OF ISING-ANYON
TUNNELING ACROSS A CONSTRICTION

In this Appendix, we continue to study the interferometer
in Fig. 10, but now allowing only Ising anyons to tunnel
across the constriction. The geometry and coordinates used
are again given in Fig. 17. We evaluate the transmission
amplitude describing propagation of an emergent fermion
from position to x0 to x3 perturbatively in Ising-anyon
tunneling, assuming that the interferometer does not con-
tain any nontrivial bulk quasiparticles as in Appendix C.

1. Hamiltonian and conventions

We set tψ ¼ 0 but take tσ ≠ 0 in Eq. (34), so that the full
Hamiltonian becomes

H ¼ H0 þHtun;

Htun ¼ e−iπhσ tσσðx2Þσðx1Þ: ðD1Þ

Precisely as in Appendix C, H0 describes a chiral right-
moving free Majorana fermion. In the tunneling term,
hσ ¼ 1=16 is the conformal weight (spin) of the σ field and
tσ ∈ R is the coupling coefficient. For the remainder of this
Appendix we set the velocity ve ¼ 1.
We choose σ to be Hermitian and normalized such that

hσðx0; t0Þσðx; tÞi0 ¼
1

ðit0 − ix0 − itþ ixÞ1=8 : ðD2Þ

The subscript of the correlation function h� � �i0 indicates
that the correlator is computed with respect to the free CFT
Hamiltonian H0. [The choice of phase on the right side of
Eq. (D2) guarantees that the correlator hσð0;−iβÞσð0Þi ¼
Tr½σð0Þe−βHσð0Þ�=Tre−βH is positive—a necessary condi-
tion for σ ¼ σ†.] It is straightforward to check that Htun is
indeed Hermitian. Likewise, we define the normalized
Majorana field

ψ ¼
ffiffiffiffiffiffi
4π

p
γ; ðD3Þ

such that

hψðx0; t0Þψðx; tÞi0 ¼
1

ðit0 − ix0 − itþ ixÞ : ðD4Þ

2. Scattering states

Next, we specify the formalism used to compute the
transmission amplitude. We quantize the CFT along slices
at fixed positions x; wave functions are written on “position
slices” that live for all of time. (One should contrast to the
usual framework wherein states live on fixed time slices.)
Such a reformulation is, in principle, applicable to all field
theories, but is particularly convenient for CFTs due to the
symmetry between space and time coordinates [132]. An
interaction term may manifest itself in different ways
within this rotated frame. For example, a point defect
localized in space become a global (instantaneous) quan-
tum quench.
In the same spirit as Eq. (D1), we decompose the action

into its free part and an interaction part:

S ¼
Z

P0dxþ Stun: ðD5Þ
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The operator P0 generates spatial translations of the free
CFT, while Stun consists of a spatially nonlocal global term
(spanning all of time),

Stun ¼ −
Z

∞

−∞
dtHtunðtÞ

¼ −e−iπhσ tσ
Z

∞

−∞
dtσðx2; tÞσðx1; tÞ: ðD6Þ

For the problem at hand, the tunnel junction “teleports”
particles between positions x1 and x2 and can be interpreted
as a wormhole allowing “time travel” between the two
positions. (This nonlocality makes it difficult to write the
corresponding momentum operator for the tunneling term.)
We choose to work in the interaction picture, where
operators are related to those in the Schrödinger picture via

Oðx; tÞ ¼ e−iP0xOðtÞeiP0x: ðD7Þ

The state describing an incoming emergent fermion with
positive frequency ω is written as

jψωi ¼
1

2π

Z
∞

−∞
dte−iωtψðtÞj0i; ðD8Þ

where j0i is the ground state of P0. This state exhibits the
normalization

hψω0 jψωi ¼ δðω − ω0Þ ðD9Þ

and carries momentum

P0jψωi ¼ ωjψωi: ðD10Þ

Recall that we set the pesky velocity to unity; hence, here
and below, ω corresponds to ke from Sec. VII A.
Let Aðω; x0; x3Þ denote the amplitude for transmission of

the Majorana fermion from position x0 to x3 at frequencyω.
In terms of the field theory, A is the quantum amplitude
associated with the spatial strip ½x0; x3� with boundary
conditions set by the incoming/outgoing states. Formally,
the amplitude is defined via

Aðω; x0; x3Þδðω − ω0Þ ¼ hψω0 jPeiSjx3x0 jψωi
hPeiSjx3x0 i

; ðD11Þ

where Sjyx is the action [Eq. (D5)] restricted to the spatial
interval ½x; y�, and P denotes path ordering (of the position
coordinates). We expand A in powers of tσ,

A ¼ Að0Þ þ tσAð1Þ þ t2σAð2Þ þ…; ðD12Þ

so that AðnÞ captures the nth-order correction in the
perturbative series.
The zeroth-order piece follows from free propagation of

the scattering states, i.e., evolving ψðx; tÞ with the tσ ¼ 0
Hamiltonian:

Að0Þðω; x3; x0Þδðω − ω0Þ ¼ hψω0 jeiP0ðx3−x0Þjψωi0
heiP0ðx3−x0Þi0

¼ eiωðx3−x0Þhψω0 jψωi0: ðD13Þ

We thus obtain the expected result Að0Þðω; x3; x0Þ ¼
eiωðx3−x0Þ.

The first-order correction to the amplitude is

tσAð1Þðω; x3; x0Þδðω − ω0Þ ¼ −ihψω0 ðx3Þj
Z

∞

−∞
dt0½Htunðt0Þ − hHtuni0�jψωðx0Þi

0

¼ −itσe−iπhσhψω0 ðx3Þj
Z

∞

−∞
dt0½σðx2; t0Þσðx1; t0Þ − Δ�jψωðx0Þi

0

: ðD14Þ

Here, Δ is a constant, defined through tσe−iπhσΔ ¼ hHtuni0, chosen to cancel off the phase correction to the vacuum. We
also let jψωðxÞi ¼

R ðdt=2πÞe−iωtψðx; tÞj0i denote a (temporal) plane wave at position x. Expanding the scattering states in
terms of their integral definitions and the operators in the Schrödinger picture yields

Að1Þðω; x3; x0Þδðω − ω0Þ ¼ −ie−iπhσ
ð2πÞ2

Z
t2;t1;t0

eiðω0t2−ωt1Þhψðt2ÞeiPðx3−x2Þ½σðt0ÞeiPLaσðt0Þ − ΔeiPLa �eiPðx1−x0Þψðt1Þi0: ðD15Þ

Above, we use x2 − x1 ¼ La. As the scattering states are eigenstates of the momentum operator, we can replace eiPðx3−x2Þ

and eiPðx1−x0Þ with their respective eigenvalues eiω0ðx3−x2Þ and eiωðx1−x0Þ. In addition, we can eliminate the factor δðω − ω0Þ on
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the left-hand side by integrating over ω on both sides; doing so fixes t1 ¼ 0 and eliminates one of the integrals on the right-
hand side. With some simple substitution of variables, the first-order amplitude correction can now be written as

Að1Þðω; x3; x0Þ ¼ −
ie−iπhσeiωðx3−x0−LaÞ

2π

Z
t2;t0

eiωt2hψðt2Þ½σðt0ÞeiPLaσðt0Þ − ΔeiPLa �ψð0Þi0: ðD16Þ

From Eq. (D2), one finds Δ ¼ hσðt0ÞeiPLaσðt0Þi0 ¼ ð−iLaÞ−1=8.

3. Evaluation of the first-order correction

We now evaluate the first-order contribution Að1ÞðωÞ by first integrating over t0 and then integrating over t2. Let

Iðt0Þ ¼ hψðt2 − iϵÞ½σðt0ÞeiPLaσðt0Þ − ΔeiPLa �ψðiϵÞi0
¼ hψðt2 − La − iϵÞσðt0 − LaÞσðt0ÞψðiϵÞi0 − hσðt0 − LaÞσðt0Þi0hψðt2 − La − iϵÞψðiϵÞi0 ðD17Þ

be the regulated form the integrand in Eq. (D16) (without the eiωt2 factor). We take ϵ → 0þ at the end of the calculation. The
correlation function I can be computed via standard CFT techniques [4,133]. For instance, one can evaluate
hψðz1Þσðz2Þσðz3Þψðz4Þi using a conformal transformation that maps the plane to a cylinder, placing the σ fields at
t ¼ �∞. The correlator then reduces to computing the two-point correlation function hψðx; tÞψðx0; t0Þicyl with the fermion
field ψ having periodic boundary conditions. Undoing the conformal transformation yields the desired result:

Iðt0Þ ¼ ð−iLaÞ−1=8
2ð2ϵþ it2 − iLaÞ

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵþ it2 − it0Þðϵþ it0Þ

ðϵþ it2 − iLa − it0Þðϵ − iLa þ it0Þ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵþ it2 − iLa − it0Þðϵ − iLa þ it0Þ

ðϵþ it2 − it0Þðϵþ it0Þ

s
− 2

3
75: ðD18Þ

Notice that
R
t0 I is absolutely convergent since Iðt0Þ decays as Oððt0Þ−4Þ for large t0. This convergence results from the Δ

subtraction (corresponding to the −2 term in brackets), which eliminates the leading contribution in Iðt0Þ.
The function Iðt0Þ has four branch points at t2 − La − iϵ, t2 − iϵ, iϵ, and La þ iϵ. Observe that the first two sit below the

real axis, while the latter two sit above the real axis. The
R
dt0 integral is to be evaluated with a branch cut connecting the

two upper branch points, and a branch cut connecting the two lower points, such that I is analytic along the real line. To
simplify the terms in brackets, we introduce a shift of variables t0 ↦ t0 þ ðt2=2Þ:

I
�
t0 þ t2

2

	
¼ 1

2ð−iLaÞ1=8ð2ϵþ it2 − iLaÞ

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0Þ2 þ a2

ðt0Þ2 þ b2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0Þ2 þ b2

ðt0Þ2 þ a2

s
− 2

3
75 ðD19Þ

with a ¼ ϵþ it2=2, b ¼ ϵþ it2=2 − iLa. At this point, we can utilize the integral identity in Eq. (E5) from Appendix E to
write

Z
∞

−∞
dt0I

�
t0 þ t2

2

	
¼ 1

2ð−iLaÞ1=8ð2ϵþ it2 − iLaÞ
× 4ðaþ bÞ

�
K
�
a − b
aþ b

	
− E

�
a − b
aþ b

	�
:

¼ 2i1=8

L1=8
a

�
K

�
La

t2 − La − 2iϵ

	
− E

�
La

t2 − La − 2iϵ

	�
; ðD20Þ

where K and E are complete elliptic integrals of the first and second kind, respectively. Inserting this result into Eq. (D16)
yields

Að1Þðω; x3; x0Þ ¼ lim
ϵ→0þ

−
ie−iπhσeiωðx3−x0−LaÞ

2π

Z
∞

−∞
dt2eiωt2

2i1=8

L1=8
a

�
K

�
La

t2 − La − 2iϵ

	
− E

�
La

t2 − La − 2iϵ

	�

¼ lim
ϵ0→0þ

2iL7=8
a eiωðx3−x0Þ

Z
∞

−∞

dy
2π

eiðωLaÞy
�
E

�
1

y − iϵ0

	
− K

�
1

y − iϵ0

	�
: ðD21Þ
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From the first to the second line, we substitute t2 ¼
Laðyþ 1Þ and introduce ϵ0 ∝ ϵ as the small parameter to be
taken to zero. Finally, we write the amplitude as

Að1Þðω; x3; x0Þ ¼ 2iL7=8
a eiωðx3−x0ÞgðωLaÞ; ðD22Þ

where gðuÞ is defined as a Fourier transform via

gðuÞ ¼ lim
ϵ→0þ

Z
∞

−∞

dy
2π

eiuyg̃ðy − iϵÞ; ðD23aÞ

g̃ðyÞ ¼ E

�
1

y

	
− K

�
1

y

	
: ðD23bÞ

States jψωi with negative frequencies do not exist in a
chiral CFT, so strictly speaking, the amplitude is ill-defined
for ω < 0, and hence, gðu < 0Þ is ill-defined as well.
Nevertheless, it is convenient to now extend the domain
of gðuÞ defined in Eq. (D23a) to all real u. [We caution that
one should not confuse this continuation with that adopted
later in Eq. (F6), which serves a quite different purpose.]
The function gðuÞ extended in this way vanishes for u < 0,
since g̃ðyÞ has no singularities in the lower half plane
(Imy < 0). In addition, limϵ→0þ Reg̃ðy − iϵÞ is symmetric in
y, while limϵ→0þ Img̃ðy − iϵÞ is antisymmetric. Together,
these properties allow us to write gðuÞ over the physical
domain u ≥ 0 in terms of simply the imaginary part of g̃:

gðu ≥ 0Þ ¼ 2

π

Z
∞

0

dy sinðuyÞg̃iðyÞ; ðD24aÞ

g̃iðyÞ ¼ − lim
ϵ→0þ

Img̃ðy − iϵÞ: ðD24bÞ

For y > 1 or y < −1, g̃ðyÞ is purely real because 1=y lies
within the interval −1 < ð1=yÞ < 1 (cf. Appendix E).
Using Eqs. (E2) and (E3), the imaginary component g̃i
can be written as

g̃iðyÞ ¼
8<
:

0; jyj > 1;
1
y Eð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
Þ; jyj ≤ 1;

ðD25Þ

which is supported on the finite interval −1 ≤ y ≤ 1. From
Eqs. D 3 we can now reexpress gðu ≥ 0Þ as

gðu ≥ 0Þ ¼ 2

π

Z
1

0

dy
sinðuyÞ

y
E

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q 	
: ðD26Þ

Evidently, g is a purely real function. As we show in
Appendix E 2, it can be written in terms of a generalized
hypergeometric function,

gðu ≥ 0Þ ¼ πu
4 1F2

�
1

2
; 1; 2

���� − 1

4
u2
	

ðD27Þ

plotted in Fig. 11(a).
Upon replacing ω → ke to match the notation from

Sec. VII A and setting x3 − x0 ¼ Le, the zeroth- and
first-order terms in the transmission amplitude are

Að0ÞðkeÞ ¼ eikeLe ; ðD28aÞ

tσAð1Þðke; x3; x0Þ ¼ eikeLe × 2itσL
7=8
a gðkeLaÞ: ðD28bÞ

Restoring ve factors recovers precisely the tσ correction
quoted in Eqs. (46) and (48) in the nψ ¼ 0 case.

APPENDIX E: A FEW FACTS REGARDING
COMPLETE ELLIPTIC INTEGRALS

Let KðkÞ and EðkÞ denote the complete elliptic integrals
of the first and second kind, respectively. For jkj < 1, they
are defined as

KðkÞ ¼ 1

4

Z
2π

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 cos2 θ

p ; ðE1aÞ

EðkÞ ¼ 1

4

Z
2π

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 cos2 θ

p
; ðE1bÞ

beyond the unit circle they are defined via analytical
continuation. Both are even [e.g., Kð−kÞ ¼ KðkÞ] and
have branch cuts along the real line at k ≤ −1 and k ≥ 1.
Define x̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
. For 0 < x < 1, these functions

satisfy the algebraic identities [134–137]

lim
ϵ→0þ

Kð1x þ iϵÞ − Kð1x − iϵÞ
2

¼ ixKðx̄Þ; ðE2Þ

lim
ϵ→0þ

Eð1x þ iϵÞ − Eð1x − iϵÞ
2

¼ i

�
xKðx̄Þ − 1

x
Eðx̄Þ

�
; ðE3Þ

along with the differential and integral identities

d
dx

Eðx̄Þ ¼ x
1 − x2

½Kðx̄Þ − Eðx̄Þ�; ðE4aÞ

d
dx

½Eðx̄Þ − Kðx̄Þ� ¼ 1

x
Eðx̄Þ; ðE4bÞ

Z
1

0

dxEðx̄Þ ¼
Z

1

0

dx
x
x̄
EðxÞ ¼ π2

8
: ðE4cÞ

1. An integral identity

Suppose that a, b are complex numbers such that
Rea > 0 and Reb > 0. Following hours of struggle with
Mathematica, one can show that
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Z
∞

−∞
dz

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

z2 þ b2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

z2 þ a2

s
− 2

#

¼ 4ðaþ bÞ
�
K

�
a − b
aþ b

	
− E

�
a − b
aþ b

	�
: ðE5Þ

To be precise, the integrand has branch points at �ia and
�ib; the integral is evaluated assuming branch cuts between
ia ↔ ib and −ia ↔ −ib with one pair above the real line
and the other pair below.

2. A different integral identity

Here we show that the integral

gðuÞ ¼def 2
π

Z
1

0

dy
sinðuyÞ

y
Eð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
Þ ðE6Þ

can be expressed as a generalized hypergeometric function

gðuÞ ¼? πu
4 1F2

�
1

2
; 1; 2

���� − 1

4
u2
	

¼ πu
4

X∞
m¼0

1

m!

ð1
2
Þð3

2
Þ � � � ð2m−1

2
Þ

m!ðmþ 1Þ!
�
−
1

4
u2
	

m

¼ πu
4

X∞
m¼0

ð−1Þmð2m − 1Þ!!
4mm!ðmþ 1Þ!ð2mÞ!! u

2m: ðE7Þ

To do so, we Taylor expand Eq. (E6) in powers of u and
show that it takes the form of Eq. (E7).
Notice that terms with even powers vanish in Eq. (E6).

The coefficients for odd powers u2mþ1 are given by

c2mþ1 ¼
2

π

ð−1Þm
ð2mþ 1Þ!Mm ðE8Þ

with

Mm ¼
Z

1

0

dy y2mEð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
Þ: ðE9Þ

One can evaluateMm as follows. Performing integration by
parts twice and using Eqs. (E4a) and (E4b) yields Mm ¼
ð2mþ 1Þ2Mm − ð4m2 − 1ÞMm−1, implying the recursion
relation

Mm ¼ ð2mþ 1Þð2m − 1Þ
4mðmþ 1Þ Mm−1: ðE10Þ

Since M0 ¼ ðπ2=8Þ from Eq. (E4c), we can deduce
that 4mm!ðm þ 1Þ!Mm ¼ ðπ2=8Þð2m − 1Þ!!ð2m þ 1Þ!!.
Therefore,

c2mþ1 ¼
π

4
ð−1Þm ð2m − 1Þ!!

4mm!ðmþ 1Þ!ð2mÞ!! ; ðE11Þ

which indeed matches the coefficients in the series expan-
sion in Eq. (E7).

APPENDIX F: EXTRACTION OF ISING-ANYON
TUNNELING WEIGHTS

Here we formally invert Eq. (47) to extract the scaling
functions fiv and fv that quantify energy partitioning in
Ising-anyon tunneling events. First we define

GðuÞ ¼ 2igðuÞu7=8 ðF1Þ

and

FðyÞ ¼

8>><
>>:

fvðyÞ; y > 0;

fivð−yÞ; −1 < y < 0;

0 y < −1;
ðF2Þ

so that Eq. (47) can be compactly expressed as

GðuÞ ¼
Z

∞

−1
dy eiuyFðyÞ: ðF3Þ

Since GðuÞ is defined only for u > 0, one cannot exploit
standard plane-wave orthogonality to isolate FðyÞ. To
proceed, we continue GðuÞ to u < 0. For clarity, we denote
the resulting function defined for all real u by GcðuÞ.
Care must be taken in defining this continuation to

ensure that Fðy < −1Þ remains zero as demanded by our
physical system. Consider the integral

F ðyÞ≡
Z

∞

0

du
2π

e−iuye−ϵuGðuÞ; ðF4Þ

where we introduce a regulator with ϵ → 0þ for conver-
gence, which is necessary given that GðuÞ ∼ u7=8 as
u → ∞. Evaluating this integral gives a result in terms
of a generalized hypergeometric function. Here we simply
note that

jF ðyÞj ¼ jF ð−yÞj; ðF5aÞ

F ðy > 1Þ ¼ −eiðπ=16ÞjF ðy > 1Þj; ðF5bÞ

F ðy < −1Þ ¼ e−iðπ=16ÞjF ðy < −1Þj: ðF5cÞ

These crucial properties imply that the desired continuation
is given by

GcðuÞ ¼
�
GðuÞ; u > 0;

e−iðπ=8ÞGðjujÞ; u < 0:
ðF6Þ

It follows that
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Z
∞

−∞

du
2π

e−iuye−ϵjujGcðuÞ ¼ F ðyÞ þ e−iðπ=8ÞF ð−yÞ ¼ FðyÞ;

ðF7Þ

where again we introduce a regulator with ϵ → 0þ. By
virtue of Eqs. (F5a) through (F5c), we see that Fðy < −1Þ
indeed vanishes. Taking the ϵ → 0þ limit allows us to
explicitly deduce

eið9π=16ÞfivðyÞ

¼2Γð15
8
Þ

πy15=8 3
F2

�
−
1

2
;
1

2
;
1

2
;−

7

16
;
1

16

����y2
	

−
72

ffiffiffi
π

p
Γð 1

16
Þ

225=8×15Γð 9
16
Þ3 3F2

�
7

16
;
23

16
;
23

16
;
1

2
;
31

16

����y2
	

þ215=8×152
ffiffiffi
π

p
Γð 9

16
Þy

7×23Γð 1
16
Þ3 3F2

�
15

16
;
31

16
;
31

16
;
3

2
;
39

16

����y2
	

ðF8Þ

and

eið9π=16Þfvðy < 1Þ

¼ 2 cosðπ
8
ÞΓð15

8
Þ

πy15=8 3F2

�
−
1

2
;
1

2
;
1

2
;−

7

16
;
1

16

����y2
	

−
72

ffiffiffi
π

p
Γð 1

16
Þ

225=8 × 15Γð 9
16
Þ3 3F2

�
7

16
;
23

16
;
23

16
;
1

2
;
31

16

����y2
	

þ 215=8 × 152
ffiffiffi
π

p
Γð 9

16
Þy

7 × 23Γð 1
16
Þ3 3F2

�
15

16
;
31

16
;
31

16
;
3

2
;
39

16

����y2
	
;

ðF9Þ

eið9π=16Þfvðy > 1Þ ¼ sinðπ
8
ÞΓð23

8
Þ

2y23=8 3F2

�
1

2
;
23

16
;
31

16
; 1;

���� 1y2
	
:

ðF10Þ
[Recall that fivðyÞ is defined for 0 < y < 1, while fvðyÞ is
defined for y > 0.] We thus complete the desired inversion.
Figure 11(b) from the main text plots the magnitude of the
scaling functions fiv and fv.
Some limits of FðyÞ can be deduced from the asymp-

totics specified in Eqs. (50) and (52). The small-y singu-
larities follow from the leadingGðu ≫ 1Þ behavior and can
be obtained by simply replacing GðuÞ → 2iu7=8 in
Eq. (F7). One finds

Fðjyj ≪ 1Þ ≈ Γð15
8
Þ

π

�
eiðπ=2Þ

ðϵþ iyÞ15=8 þ
eið3π=8Þ

ðϵ − iyÞ15=8
�

≈

8<
:

−ie−iðπ=16Þ
h
2
π cosðπ8ÞΓð158 Þ

i
y−15=8; y > 0;

−ie−iðπ=16Þ
h
2
π Γð158 Þ

i
jyj−15=8; y < 0:

ðF11Þ

In the bottom lines, we take the ϵ → 0þ limit. We caution,
however, that inserting the bottom lines of Eq. (F11) into
Eq. (F3) would produce an unphysical infrared divergence;
hence, in the top line we explicitly display the regulariza-
tion that circumvents this problem. Elsewhere, we are free
to send ϵ → 0þ as no such issues arise. The singularities at
y → �1þ instead follow from the subleading Gðu ≫ 1Þ
behavior; they can be captured by replacing GðuÞ →
−2iu−1=8ðcos uÞ in Eq. (F7), yielding

Fðy → �1þÞ ≈ −ie−iðπ=16Þ
�

1

Γð1
8
Þ
�
ðy ∓ 1Þ−7=8: ðF12Þ

Finally, the asymptotic decay at y ≫ 1 encodes the
Gðu ≪ 1Þ behavior and follows from replacing GðuÞ →
iðπ=2Þu15=8 in Eq. (F3):

Fðy ≫ 1Þ ≈ −ie−iðπ=16Þ
�

π

2Γð− 15
8
Þ
�
y−23=8: ðF13Þ

Figure 11(b) indicates the scaling behaviors cap-
tured above.

APPENDIX G: CONDUCTANCE FROM
MAJORANA PHASE ACCUMULATION

For completeness, we briefly review how electrical
conductance follows from the relative phases acquired
by Majorana fermions propagating in the circuits from
Figs. 9 and 10. We denote the part of the wave function
describing an electron incident at the lower edge of the
ν ¼ 1 quantum-Hall system by

Z
x0

−∞
dx eiEx=uc†ðxÞj0i: ðG1Þ

Here, j0i is the ground state, E is the incident energy, u is
the edge velocity in the region without induced pairing,
c†ðxÞ adds the electron to position x of the edge, and x0 is
the location at which the edge state meets the proximitizing
superconductor. (In this Appendix, we use coordinates
consistent with those in Fig. 17.) Employing a Majorana
representation via c ¼ γ1 þ iγ2, Eq. (G1) equivalently
becomes

Z
x0

−∞
dx eiEx=u½γ1ðxÞ − iγ2ðxÞ�j0i: ðG2Þ

Beyond position x0, the constituent Majorana fermions
γ1 and γ2 follow diverging paths that eventually recombine
at position x3 at the upper edge of the ν ¼ 1 quantum-Hall
system. En route, they generally acquire different phase
factors; hence, at the upper ν ¼ 1 edge, the outgoing part of
the wave function becomes
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eiϕ̄ðEÞ
Z

−∞

x3

dx eiEx=u½γ1ðxÞ − ieiδϕðEÞγ2ðxÞ�j0i; ðG3Þ

where ϕ̄ðEÞ denotes a possible phase common to both
Majorana fermions (which is unimportant here) and δϕðEÞ
is the accumulated phase difference. Reverting back to
complex fermions by writing γ1 ¼ ðcþ c†Þ=2 and
γ2 ¼ −iðc − c†Þ=2, Eq. (G3) reads

eiϕ̄ðEÞ
Z

−∞

x3

dx eiEx=u
��

1þ eiδϕðEÞ

2

	
c†ðxÞ

þ
�
1 − eiδϕðEÞ

2

	
cðxÞ

�
j0i: ðG4Þ

Thus, with probability

PAðEÞ ¼
���� 1 − eiδϕðEÞ

2

����2 ¼ 1 − cos½δϕðEÞ�
2

; ðG5Þ

the incident electron returns at the upper edge as a hole—
transmitting a Cooper pair into the superconductor. The
conductance at bias voltage V arising from such Andreev
processes is

GðVÞ ¼ 2e2

h
PAðeVÞ: ðG6Þ
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