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In quantum many-body systems with local interactions, quantum information and entanglement cannot
spread outside of a linear light cone, which expands at an emergent velocity analogous to the speed of light.
Local operations at sufficiently separated spacetime points approximately commute—given a many-body
state jψi, OxðtÞOyjψi ≈OyOxðtÞjψi with arbitrarily small errors—so long as jx − yj ≳ vt, where v is
finite. Yet, most nonrelativistic physical systems realized in nature have long-range interactions: Two
degrees of freedom separated by a distance r interact with potential energy VðrÞ ∝ 1=rα. In systems with
long-range interactions, we rigorously establish a hierarchy of linear light cones: At the same α, some
quantum information processing tasks are constrained by a linear light cone, while others are not. In one
spatial dimension, this linear light cone exists for every many-body state jψi when α > 3 (Lieb-Robinson
light cone); for a typical state jψi chosen uniformly at random from the Hilbert space when α > 5

2

(Frobenius light cone); and for every state of a noninteracting system when α > 2 (free light cone). These
bounds apply to time-dependent systems and are optimal up to subalgebraic improvements. Our theorems
regarding the Lieb-Robinson and free light cones—and their tightness—also generalize to arbitrary
dimensions. We discuss the implications of our bounds on the growth of connected correlators and of
topological order, the clustering of correlations in gapped systems, and the digital simulation of systems
with long-range interactions. In addition, we show that universal quantum state transfer, as well as many-
body quantum chaos, is bounded by the Frobenius light cone and, therefore, is poorly constrained by all
Lieb-Robinson bounds.
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I. INTRODUCTION

While nonrelativistic quantum systems do not possess
intrinsic absolute speed limits, their dynamics exhibit a form
of causality analogous to the speed of light. Lieb and
Robinson first deduced the existence of a finite velocity
for the propagation of information in quantum spin
systems with finite-range interactions [1]. This velocity
leads to ballistic dynamics, out of which a linear light cone
emerges.

For systems with power-law interactions, i.e., those that
fall off as 1=rα in the distance r between two degrees of
freedom, the story is much richer. Such long-range inter-
actions are exhibited in a variety of quantum simulators and
technological platforms, including ultracold atomic gases
[2], Rydberg atoms [3], one-dimensional chains of trapped
ions [4], polar molecules [5], color centers in solid-state
systems [6], and atoms trapped in photonic crystals [7].
More formally, most physical systems consist of objects
with electrical charges or electromagnetic dipoles, and so,
fundamentally, these systems also exhibit long-range inter-
actions. Since most developments in condensed matter
physics and statistical physics are based on systems with
short-range, local interactions, it is important to know to
what extent the canonical paradigms still hold in the
presence of long-range interactions. In addition to being
interesting from this fundamental-science perspective,
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long-range interactions can also be used to significantly
improve the performance of various quantum technologies,
such as quantum computing [8–10], quantum simulation
[11,12], and quantum metrology [13,14].
Until recently, it was unknown whether or not there

existed a critical value of the power-law exponent α above
which a linear light cone is present. Hastings and Koma
[15] first demonstrated a light cone whose velocity diverges
exponentially in distance for α greater than the lattice
dimension d. Progressive improvements yielded a series
of algebraic light cones for α > 2d, which tend to a linear
light cone in the limit as α → ∞ [16,17]. After numerical
simulations suggested the existence of a sharp linear
light cone [18–20], a proof of generic linear light cones
was found for systems with interaction exponent
α>2dþ1 [21,22].
Complementary to the Lieb-Robinson bounds are proto-

cols that achieve the (asymptotically) fastest allowable rates
of quantum information processing. One such dynamical
task is quantum state transfer, which is used experimentally
to demonstrate the transmission of entanglement in quantum
systems [23]. These protocols can be directly connected to
the Lieb-Robinson bound [8,24] and are a standard way to
benchmark the sharpness of these bounds.
The goal of this paper is to answer two important

questions: First, can the result in Refs. [21,22] be tight-
ened? In particular, does there exist a universal linear
light cone for some α < 2dþ 1? Second, do the tightest
light-cone bounds imply correspondingly tight bounds on
interesting measures of information spreading, such as
quantum state transfer or scrambling? In other words,
are Lieb-Robinson bounds optimal in practice for con-
straining quantum information dynamics?
Surprisingly, the answer to both questions is “no.” In this

paper, we show that quantum information can spread at
arbitrarily large “velocities” once the power-law exponent
α < 2dþ 1, thus proving the tightness of the recent bounds
[21,22]. We also show that a Frobenius bound can give
tighter constraints on quantum state-transfer tasks—as well
asmany-body quantumchaos—thanLieb-Robinson bounds.
We prove that the light cone given by the Frobenius bound is
linear for α > 5

2
in d ¼ 1 and conjecture the generalization

α > 3
2
dþ 1 for higher dimensions. Additionally, in systems

that are described by noninteracting bosons or fermions, we
prove a linear free-particle light cone for α > dþ 1. All of
these cutoffs in this hierarchy of linear light cones are tight;
see Fig. 1.
These results immediately demonstrate that the long-

observed mismatch between Lieb-Robinson bounds and
state-transfer protocols that aim to saturate the bounds, such
as that of Ref. [8], is not entirely a limitation of our creativity
ormathematical prowess but is rather linked to a fundamental
property of nature. There are, simply put, multiple notions of
locality in systemswith long-range interactions. Furthermore,
the tensions among these localities manifest themselves

within a range of α that is easily accessible in experiment.
This unexpected result is the key finding of our paper.
The hierarchy of linear light cones we demonstrate is not

only a profound property of nature, but also has important
applications for quantum technologies. For example, sys-
tems with long-range interactions can be hard problems to
simulate, on both classical and quantum computers.
Proving the tightness of the linear Lieb-Robinson light
cone at α > 2dþ 1 proves that a two-dimensional gas of
atoms with dipole-dipole interactions can never be simu-
lated as easily as one with local interactions with a provably
small error. At the same time, the hierarchy of light cones
reveals that some problems are much easier to simulate than
had previously been realized. As a specific example, the
Bose-Hubbard model (with long-range hopping) has been
argued to be so difficult that its efficient simulation would
serve as a demonstration of quantum supremacy [25]. Our
light cones show that it is not difficult to simulate the low-
density Bose-Hubbard model for α > d, whereas previ-
ously this simulation was known only for α > 2d [26]; as a
result, we substantially constrain the parameter space in
which quantum supremacy can be demonstrated. This
result constrains how and when atoms with dipole-dipole
interactions trapped in a two-dimensional optical lattice can
perform hard quantum computation or simulation.
High-fidelity quantum state transfer can be used to build

fast remote quantum gates, which can significantly speed
up a large-scale quantum computer. There is a growing
interest in designing fully connected quantum computers
that take advantage of long-range interactions among
physical qubits [9], and finding the optimal quantum
state-transfer protocols using long-range interactions is a
crucial part of the design. The hierarchy of light cones we
find reveals the fundamental inadequacy of Lieb-Robinson

FIG. 1. The hierarchy of linear light cones in one dimension;
we say that a light cone has exponent γ if k½A0ðtÞ; Br�k is large
only when t ≳ rγ . The plot depicts the exponents of the Lieb-
Robinson light cone (solid line) [21], the Frobenius light cone
from Theorem 7 (dot-dashed line), and the free light cone from
Theorem 9 (dashed line) as functions of α in one dimension. The
free light cone is known to be a tight bound for all α. We also
show that the Lieb-Robinson and Frobenius light cones are not
linear below α ¼ 3 and α ¼ 5

2
, respectively.
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bounds for constraining universal state-transfer algorithms,
which transfer the state of a single qubit independently of
the states of other qubits. We develop a quantum walk
formalism for constraining universal state-transfer proto-
cols and obtain parametrically better bounds than the Lieb-
Robinson bound. Furthermore, the framework that is
initiated in this work also reveals novel state-transfer
protocols with desirable properties. Specifically, we present
a new method for using long-range interactions for state
transfer that has two experimentally desirable features.
First, our new protocol takes place in a constrained sub-
space of a many-body Hilbert space that is naturally
realized in atomic platforms with a conserved magnetiza-
tion. Second, the protocol is extraordinarily robust to
perturbations in the Hamiltonian, a desirable feature on
account of the low-precision tunable couplers present in
near-term quantum information processors.
Platforms with long-range interactions have been pro-

posed as natural quantum simulators which approximately
realize α ¼ 0 (i.e., all-to-all) interactions. Systems with
such a complete breakdown of locality can be highly
desirable. For example, they may simulate quantum gravity
via the holographic correspondence [27] and may enable
the production of metrologically useful entanglement via
spin squeezing [13,28–31]. An important open question is
how small α needs to be for locality to break down to a
degree sufficient for realizing a particular application or
particular physics. For example, are dipolar 1=r3 inter-
actions in a given 1D, 2D, or 3D system sufficiently
nonlocal? Our results indicate that the answer to these
questions may depend on whether there are additional
constraints in the system. Indeed, in a highly constrained
subspace at high total spin in an SU(2)-symmetric model,
we expect that the constraints arising from locality are
stronger than the Lieb-Robinson light cone suggests,
similar to the stronger light cone that arises for non-
interacting particles. Therefore, in such constrained mod-
els, reaching nonlocality may require a lower value of α
compared to unconstrained models.
Last, we emphasize that, given that there is a hierarchy of

different notions of locality, exquisite care must be taken to
analyze and interpret experimental results in long-range
interacting quantum systems.

II. SUMMARY OF RESULTS

We now provide a heuristic overview of why the
hierarchy of light cones arises, along with a myriad of
additional applications of these results in near-term quan-
tum simulation experiments. The remainder of the paper
then contains the rigorous proof of all results, along with a
brief conclusion.
For illustrative purposes, let us first consider a one-

dimensional spin-1
2
chain with two-body long-range inter-

actions. Such models naturally arise in experiments, for
example, using the nuclear spin 1

2
of an appropriate atom.

Letting Xβ
i ≔ ðXi; Yi; ZiÞ denote the three Pauli matrices

acting on the spin on the ith site, we can consider a very
broad family of time-dependent Hamiltonians of the form

HðtÞ ¼
X
i;β

hβi ðtÞXβ
i þ

X
i;j;β;γ

Jβγij ðtÞ
ji − jjα X

β
i X

γ
j: ð1Þ

Roughly speaking, if the coefficients Jβγij are all of the same
order, we call this Hamiltonian a model with long-range
interactions of power-law exponent α. Remarkably, even
though every spin is coupled with every other spin, this
model is, for many practical purposes, local for α suffi-
ciently large [21,22] (indeed, this Hamiltonian even
becomes finite range in the limit α → ∞). But, what do
we mean by locality? And how small can α get before
locality breaks down? We see that, in fact, there are
multiple notions of locality, depending on the specific
quantities of interest: Different information processing
tasks are sped up by long-range interactions at different
values of α.

A. Lieb-Robinson light cone

A sensible notion of locality is to demand that any local
perturbation acting at site x influences only physics at sites
within distance vt of the original site x, after an amount of
time t [32]. This notion of locality is imposed by the
original Lieb-Robinson bound [1], which implies a “linear
light cone”: The quantity k½X0ðtÞ; Xr�k is small for r > vt,
where X0 and Xr are local operators on lattice sites 0 and r,
respectively, and k · k denotes the operator norm (the
largest magnitude of the operator’s eigenvalues). More
precisely, a linear light cone here means that, for any small
(but finite) value of ϵ, we can find a finite velocity v such
that k½X0ðtÞ; Xr�k < ϵ for jtj < r=v.
As noted previously, recent works establish linear Lieb-

Robinson light cones for α > 2dþ 1 [21,22]. The first
main result of this work is to prove that linear Lieb-
Robinson light cones are guaranteed only for any
α > 2dþ 1. We prove this result by explicitly constructing
a Hamiltonian HðtÞ—of the form (1), generalized to any
d—such that

k½X0ðtÞ; Xr�k≳ t2dþ1

rα
ð2Þ

for two sites separated by a distance r (Theorem 5).
The construction of HðtÞ that achieves Eq. (2) can be

broken down into three steps. In the first step, we use time
Oð1Þ to expand the operator X0 to an operator A1 supported
on OðtdÞ sites located in a ball B1 of radius t (Fig. 2). We
then push this operator into another ball B2 of radius OðtÞ,
which is centered around site Xr, using the Hamiltonian
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H2ðtÞ ¼
X
i∈B1

X
j∈B2

ZiZj

ji − jjα : ð3Þ

Finally,we contract the operator onto siteXr in timeOðtÞ. By
a direct calculation, we show that, at the end of this process
and to the lowest order in t, k½X0ðtÞ; Xr�k is proportional to
the nested commutator tk½A2; ½H2ðtÞ; A1��k, where

A1;2 ¼
Y
i∈B1;2

Xi: ð4Þ

The nested commutator can be bounded:

k½A2; ½HðtÞ; A1��k ∼ td
����
�
A2;

X
j∈B2

Zj

rα

����� ∼
X
j∈B2

t2d

rα
; ð5Þ

and, hence, we obtain Eq. (2).We conclude that, in a time t, it
is faster to use long-range interactions than it is to use finite-
range ones to grow k½X0ðtÞ; Xr�k when α < 2dþ 1.
There are a number of important consequences of the

tightness of the linear light cone at α ¼ 2dþ 1. For
example, in Sec. IV C, we show that connected correlation
functions of the form

CðtÞ ¼ hψðtÞjX0XrjψðtÞi − hψðtÞjX0jψðtÞihψðtÞjXrjψðtÞi

≳ t2dþ1

rα
ð6Þ

can be achieved, even when the initial state jψð0Þi does not
have any entanglement between sites 0 and r. Because such
correlation functions are routinely measured in quantum
simulation experiments, this result resolves a long-standing
issue of when the nonlinear light cones for correlations can
occur with long-range interactions. For example, the
experiment in Ref. [33] suggests that α ≈ 1 marks the
transition between linear and nonlinear light cones for spin
correlations in an 11-site long-range Ising model. Our
result implies that other quantum systems with long-range
interactions can transmit information much faster than this
Ising model.

Another important application of Lieb-Robinson bounds
is to design efficient approximation algorithms for simulat-
ing quantum many-body dynamics, with either a classical
computer [34] or a quantum computer [35]. Given an initial
state jψi and HamiltonianH of the form (1), we consider the
task of estimating the expectation value of the time-evolved
observable hAðtÞi ≔ hψ jUðtÞ†AUðtÞjψi on a quantum com-
puter, where UðtÞ ¼ e−iHt is the time translation operator
generated by H (assuming it does not depend on time).
When A is a local operator, Lieb-Robinson bounds suggest
that hAðtÞi should depend only on the “local” information
stored in the wave function: One may as well trace out and
ignore the sites sufficiently far away. If a Lieb-Robinson
bound implies we can trace out all sites a distance> vt away
from the support of A, the computation of hAðtÞi requires a
small fraction of the resources needed to construct the full
UðtÞ acting on the entire many-body Hilbert space.
Proposition 6 makes this intuition precise and constrains
the computational resources needed for a faithful quantum
simulation.
In Sec. VII, we use Lieb-Robinson bounds to constrain

the minimum time τ� it takes to create topologically ordered
states from topologically trivial ones. This result is of great
practical value for experiments either studying topological
matter or building topological quantum memories and
topological quantum computers. In finite-range interacting
systems, τ� scales linearly with the system size [36]. We
extend this result in Proposition 13 to power-law interacting
systems with α > 3dþ 1.
In Sec. VIII, we bound the spatial decay of correlation

functions in a ground state of a gapped quantum phase with
long-range interactions. In Ref. [15], the authors show that,
in a time-independent power-law Hamiltonian with an
exponent α and a spectral gap between the ground state
and the first excited state, the correlations between distant
sites in the ground state of the system also decay with the
distance as a power law, with an exponent lower bounded
by α0 < α. Yet, no experiment and no numerical calculation
has found a gapped system demonstrating correlation decay
with an exponent strictly less than α. We prove that it is
indeed impossible to saturate this bound; we show that the

FIG. 2. The norm of the interaction between two balls B1;2 of size t, separated by a distance r, determines the shape of the light cone.
The critical values of α after which this norm becomes large differ depending on whether we use the operator or Frobenius norm and
whether the system is interacting or free.
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correlation exponent is lower bounded by α0 ¼ α when-
ever α > 2d.
More broadly, a sharper knowledge of Lieb-Robinson

light cones in quantum systems may improve previous
bounds on area laws for quantum entanglement [37] and
heating rates in periodically driven systems [11,17,38–41].

B. Frobenius light cone

In Sec. V, we turn to a stronger notion of light cone,
inspired by recent developments in the theory of many-
body quantum chaos [42,43]. Instead of the operator norm,
we consider the Frobenius norm

k½X0ðtÞ; Xr�kF ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trf½X0ðtÞ; Xr�†½X0ðtÞ; Xr�g

trð1Þ

s
: ð7Þ

This Frobenius norm, normalized by dimension, can be
interpreted as the out-of-time-ordered correlation (OTOC)
function used to probe early-time chaos in many-body
systems [42,43] or, equivalently, as the “fraction” of the
operator X0ðtÞ that has support on the site r. More
intuitively, this OTOC can be understood by the following
thought experiment. Consider an initial quantum state jψi,
and perturb this quantum state by two operators: first, the
local operator Xr (which flips spin r in the conventional Z
basis) and then the Heisenberg-evolved operator X0,
which amounts to flipping spin 0 at a later time t. Does
the order of these operations matter? Clearly, not if t ¼ 0:
X0Xr ¼ XrX0. However, if the operations occur at different
times t, the effect could be significant: X0ðtÞXrjψimight be
a very different quantum state than XrX0ðtÞjψi. We can
quantify how far apart these two states are in Hilbert space
by asking for the typical length of ½X0ðtÞ; Xr�jψi or the
value of C ¼ hψ j½X0ðtÞ; Xr�†½X0ðtÞ; Xr�jψi. A suitable
notion of “typical” is to choose a random initial state in
the Hilbert space. Averaging over all initial conditions
amounts to replacing trðjψihψ j � � �Þ → trf½1= dimðHÞ� � � �g.
Hence, the average value of C is given by Eq. (7).
Mathematically, the Frobenius norm gives the average
of the squared eigenvalues, while the operator norm
used in Lieb-Robinson bounds is the maximal eigen-
value. Certainly, the Frobenius norm is always smaller:
k½X0ðtÞ; Xr�kF ≤ k½X0ðtÞ; Xr�k.
Remarkably, in long-range interacting systems, we can

show that the Frobenius norm not only is smaller by a
constant prefactor but is rather constrained by parametri-
cally stronger bounds. Indeed, we prove in Sec. V that
k½X0ðtÞ; Xr�kF is bounded inside of an even stricter light
cone, which is linear in one-dimensional models with two-
body interactions so long as α > 5

2
. When X0 is replaced by

an operator on infinitely many sites 0;−1;−2;…, we also
demonstrate the optimality of this bound, up to subalge-
braic corrections.

To understand how the Frobenius light cone is deduced,
let us revisit the argument for the Lieb-Robinson light
cone. Modifying Eq. (5) to use the Frobenius norm, we
observe that

tk½A2; ½H2ðtÞ; A1��kF ∼ t

����
�
A2;

X
j∈B2

tdZj

rα

�����
F

∼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j∈B2

�
td

rα

�
2

vuut ∼
tð3=2Þdþ1

rα
: ð8Þ

Hence, in d dimensions, the Frobenius norm of the operator
grows faster than in local models using long-range inter-
actions once α < 3

2
dþ 1. For d ¼ 1, Theorem 7 proves that

this intuition is correct: The Frobenius light cone is linear
when α > 5

2
. In between 3

2
< α < 5

2
, in d ¼ 1, this theorem

also guarantees that the Frobenius light cone expands no
faster than t ∼ rα−ð3=2Þ (up to logarithmic corrections).
The mathematical method used to prove the Frobenius

light cone is based on an interpretation of the time evolution
equation for operators as a many-body quantum walk
governing the time evolution of a probability distribution.
By bounding the growth of expectation values in this
probability distribution using techniques from classical
probability theory, we constrain the growth of Eq. (7).
This constraint represents a radical shift in perspective
compared with the conventional Lieb-Robinson theorem,
which is based on applying the triangle inequality in an
appropriate interaction picture (see, e.g., Refs. [16,22]).
Since the Frobenius norm (squared) gives infinite tem-

perature OTOCs, the Lieb-Robinson light cone is not
relevant for infinite-temperature many-body quantum
chaos and the growth of operators. A careful determination
of bounds on quantum chaos and operator spreading is
essential for building on recent experimental progress in
measuring OTOCs [44,45] and quantum information
scrambling [12] to design optimal information scramblers.
Such work is crucial in developing quantum simulators of
holographic quantum gravity [27].
As emphasized before, many quantum state-transfer

tasks, including a “background-independent” state transfer
where XiðtÞ ¼ Xj, YiðtÞ ¼ Yj, and ZiðtÞ ¼ Zj (hence, state
i is transferred to j independently of all other qubits), are
constrained by the Frobenius light cone, which is tighter
than the Lieb-Robinson light cone: See Theorem 7.

C. Free light cone

Finally, we consider the light cone in systems of non-
interacting particles. While these systems are rich enough
such that they sometimes lie beyond the regime of
computability for classical computers, their dynamics
can be essentially reduced to the motion of a single particle.
Returning to the same setup as Fig. 2, we may again
estimate when the linear light cone fails by computing the
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weight of a single particle hopping the distance ∼r from the
ball B1 to B2 after time t:

t

���� X
i∈B1;j∈B2

c†jci
rα

����≲ tdþ1

rα
: ð9Þ

Here, c†i and ci are the creation and the annihilation
operators, respectively, for the noninteracting particles.
Following our previous logic, the free particle is con-
strained within a linear light cone when α > dþ 1. We
rigorously prove that the free light cone is linear for
α > dþ 1 in Theorem 9 and prove that no linear light
cones exist for α < dþ 1 in Theorem 11. When combined,
these two theorems also prove that, for d < α < dþ 1, the
form of the light cone is no worse than t ∼ rα−d and that no
further improvement on the exponent α − d can be found.
Specifically, in Theorem 11 (Sec. VI D), we show that

this estimated growth rate is achieved by a novel quantum
state-transfer protocol involving a single particle. The
protocol works by successively spreading a particle to
larger and larger regions of the lattice, each time doubling
the number of sites sharing the particle (Fig. 3).
Specifically, after the kth step of the protocol at time tk,
an operator c†0 originally supported at the origin becomes

c†0ðtkÞ ∝
X

sites x in a cube of lengthOð2kÞ
c†x; ð10Þ

where the precise set of sites x is depicted in Fig. 3. After
spreading the particle to a square large enough to cover
both the origin and the target site, we simply reverse the
protocol to concentrate the particle on the target site. In
each step of the protocol, the weaker interactions due to the
power-law constraint are well compensated by the volume

of the squares, making the protocol superlinear for all
α < dþ 1. As emphasized in the introduction, this state-
transfer protocol has (at least) two appealing features for
experimental implementation and could enhance the per-
formance of quantum computing architectures assisted by
long-range interactions [9].
The free light cone is also relevant for early-time

dynamics in low-density models of interacting fermions
or bosons, which are readily realized in experiment.
The observed slowdown of dynamics between the Lieb-
Robinson and free light cones makes the Hubbard model
exponentially easier to simulate in experimentally relevant
regimes (e.g., polar molecules) at early times, with impli-
cations for demonstrating quantum supremacy (Sec. VI E).

III. FORMAL PRELIMINARIES

We now more carefully introduce the problem that we
address in this paper. First, we give a precise definition of a
many-body quantum system with long-range interactions.
We need to first define the distance between two points.
Formally, we do so as follows. Let Λ be the vertex set of a
d-dimensional lattice graph with edge set EΛ. A lattice
graph ðΛ; EΛÞ is a graph which is invariant under
d-dimensional discrete translations: Mathematically speak-
ing, Zd ⊆ AutðΛ; EΛÞ, where Aut denotes the group of
graph isomorphisms from ðΛ; EΛÞ to itself. We assume that
all vertices have a finite degree in EΛ and that jΛ=Zdj < ∞;
i.e., the unit cell has a finite number of vertices, and every
vertex has a finite number of (nearest) neighbors. This
graph imbues a natural notion of distance, which we use for
the rest of the paper. Let D∶Λ × Λ → Zþ denote the
shortest path length between two vertices, also known as
the Manhattan metric.
A many-body quantum system is then defined by placing

a finite-dimensional quantum system (e.g., a qubit) on

FIG. 3. An illustration of our single-particle state-transfer protocol in d ¼ 2 dimensions. Through four steps, we redistribute a particle

initially at 0 to the square Bð0Þ
1 , then to Bð0Þ

2 and Bð0Þ
3 , and finally to Bð0Þ

4 , each time doubling the size of the region sharing the particle. We
use different colors to mark the additional sites that the particle spreads to in different steps. We then reverse the process to concentrate
the particle on the target site x and thereby achieve a perfect state transfer. The protocol is enhanced by the volume rd of the squares, with
r being a typical size of the squares. This enhancement offsets the penalty 1=rα due to the power-law constraint, resulting in a superlinear
state-transfer protocol when α < dþ 1.
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every vertex inΛ. Formally, we define a many-body Hilbert
space

H ≔ ⨂
i∈Λ

Hi; ð11Þ

where we assume that dimðHiÞ < ∞. In this paper, we are
especially interested in the dynamics of the operators acting
onH. Let B denote the set of all Hermitian operators acting
on H. B is a real vector space, and we denote operators
O ∈ B with jOÞ whenever we wish to emphasize that they
should be thought of as vectors. A basis for B can be found
as follows: Let Ta

i denote the generators of U( dimðHiÞ),
where a ¼ 0 denotes the identity operator, which gives a
complete basis for Hermitian operators on the local Hilbert
space Hi. B is simply the tensor product of all these local
bases of Hermitian operators:

B ¼ span
n
⨂
i∈Λ

Tai
i for all faig

o
: ð12Þ

For subset X ⊂ Λ, we define BX to be the set of all basis
vectors which act nontrivially only on the sites of X:

BX ≔ span
n
⨂
i∈X

Tai
i for all fai ≠ 0g

o
: ð13Þ

We define the projectors [46]

Pij⊗Tak
k Þ ≔

� j⊗Tak
k Þ ai ≠ 0;

0 ai ¼ 0;
ð14Þ

which return the part of the operator that acts nontrivially
on site i:

PiO ¼ O −
1

dimðHiÞ
tr
i
O: ð15Þ

For a general subset X ⊂ Λ, the projectors

PX ≔
X

Y⊂ZX
2
∶jYj>0

ð−1ÞjYjþ1
Y
j∈Y

Pj ð16Þ

act similarly and return the part of the operator which acts
nontrivially on the subset X. It is proven in Ref. [21] that,
when jXj < ∞,

kPXOk∞ ≤ 2kOk∞; ð17Þ

where k·k∞ is again the operator norm. We often drop the
∞ subscript for convenience. In addition, we can relate the
commutator in the Lieb-Robinson bound to the projection
of an operator using the identity

k½OX;OY �k ≤ 2kOXkkPXOYk; ð18Þ

which holds for all operators OX ∈ BX and OY ∈ BY .
We define the Hamiltonian H∶R → B as

HðtÞ ≔
X
X⊂Λ

HXðtÞ; ð19Þ

where HXðtÞ∶R → BX. HðtÞ is said to be q local if
HXðtÞ ¼ 0 for all jXj > q: Physically speaking, the
Hamiltonian operator contains at most q-body interactions.
The Hamiltonian generates time evolution on B according
to the Heisenberg equation of motion for operators:
We define the Liouvillian LðtÞ as the generator of time
evolution:

LðtÞjOÞ ≔ ji½HðtÞ;O�Þ: ð20Þ

We define the time-evolved operator OðtÞ∶R → B as the
solution to the differential equation

dOðtÞ
dt

≔ LðtÞOðtÞ; Oð0Þ ≔ O: ð21Þ

We say that the Hamiltonian H has long-range inter-
actions with exponent α if

α ¼ sup

�
α0 ∈ ð0;∞Þ∶ there exists 0 < h < ∞ such that

X
X∶fi;jg⊆X

kHXðtÞk ≤
h

Dði; jÞα0 for all t ∈ R

	
; ð22Þ

where Dði; jÞ denotes the distance between i and j.
In physics, we often say that the interaction has exponent
α when, assuming only two-body interactions, Hfi;jg≲
hDði; jÞ−α; strictly speaking, though, any Hamiltonian with
exponent α2, according to this loose definition, also has
exponent α1 < α2. The formal definition Eq. (22) avoids

this unwanted feature and assigns a unique exponent α to
every problem.
The following identities, which we state without proof,

are useful in the discussion that follows.
Proposition 1. sums over power laws [15,17].—If

α>d, for any Λ and D, there exist 0<C1, C2<∞ such that
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X
j∈Λ∶Dði;jÞ>r

1

Dði; jÞα <
C1

rα−d
; ð23Þ

X
k∈Λnfi;jg

1

Dði; kÞαDðj; kÞα <
C2

Dði; jÞα : ð24Þ

IV. LIEB-ROBINSON LIGHT CONE

We begin by presenting the strictest light cone on the
commutators of local operators, representing the generali-
zation of the Lieb-Robinson theorem [1] to systems with
long-range interactions.

A. The linear light cone

The following proposition controls the growth of com-
mutator norms in a Hamiltonian system with long-range
interactions.
Proposition 2. Let X, Y ⊂ Λ be disjoint with

DðX; YÞ ≔ r; OX be an operator supported on X obeying
kOXk ¼ 1; and OXðtÞ be the time-evolved version of
OX under a power-law Hamiltonian with an exponent
α > 2dþ 1. There exist constants 0 < v̄, c < ∞ such that,
for time evolutions generated by Eq. (20) obeying
Eq. (22),

kPY jOXðtÞÞk ≤ cjXj t
dþ1log2dr
ðr − v̄tÞα−d : ð25Þ

Proof.—We begin by recalling the following theorem
(recast in the language of projectors).
Theorem 3: linear light cone [22].—Equation (25)

holds for a single-site operator, i.e., when jXj ¼ 1.
While the proof presented in Ref. [22] applies only to

time-independent Hamiltonians, the generalization to time-
dependent models is immediate from their results. Next, we
show the following general result.
Lemma 4.—If for all x ∈ X, kPY jOxðtÞÞk≤

f(t;Dðx;YÞ), then there exist 0 < K < ∞ such that

kPY jOXðtÞÞk ≤ K
X
x∈X

f(t;Dðx; YÞ): ð26Þ

Proof.—For pedagogical reasons, we demonstrate the proof
on a system of spin-1=2 particles with K ¼ 9=2. However,
the proof applies to any system with finite local Hilbert
space dimensions [21]. Let fSj∶j ¼ 1;…; dY − 1g denote
thedY − 1 ¼ 4jYj − 1 nontrivial Pauli strings supported onY.
Then [21]

kPY jOXðtÞÞk ¼
���� 1

2dY

XdY−1
j¼1

½Sj; ½Sj;OXðtÞ��
����

≤
1

2dY

XdY−1
j¼1

2 kSjk|ffl{zffl}
¼1

k½Sj;OXðtÞ�k

≤
1

dY

XdY−1
j¼1

k½OX; Sjð−tÞ�k

≤
2

dY

XdY−1
j¼1

kPXjSjð−tÞÞk: ð27Þ

Next, we prove that

kPXjSjð−tÞÞk ≤ 3
X
x

kPxjSjð−tÞÞk: ð28Þ

To do so, we assign an (arbitrary) ordering of the sites in X;
i.e., ifX ¼ fx1;…; xng, we choose x1 < x2 < � � � < xn. Let
X̃x ¼ fx0 ∈ X∶x0 > xg be a subset ofX consisting of sites in
X that are greater than x. We rewrite

PX ¼
X
x

ð1 − PX̃x
ÞPx; ð29Þ

and, therefore, we have

kPXjSjð−tÞÞk ≤
X
x

kð1 − PX̃x
ÞPxjSjð−tÞÞk

≤
X
x

3kPxjSjð−tÞÞk: ð30Þ

In the last line,weuse that kPXOk≤2kOkwhenever jXj<∞
[21], along with the triangle inequality. Plugging this result
back into the earlier equation, we have

kPY jOXðtÞÞk ≤
6

dY

XdY−1
j¼1

X
x

kPxjSjð−tÞÞk

≤
6

dY

XdY−1
j¼1

X
x

1

8

X
Px

k½Px; ½Px; Sjð−tÞ��k

≤
3

2

1

dY

XdY−1
j¼1|fflfflffl{zfflfflffl}

≤1

X
x

X
Px

kPSjPxðtÞk

≤
9

2

X
x

f(t;Dðx; YÞ); ð31Þ

where Px ∈ fXx; Yx; Zxg denotes one of the three Pauli
matrices on site x. In the second from the last line, we use the
assumption kPSjPxðtÞk ≤ f(t;Dðx; YÞ). ▪
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Combining Theorem 3 with Lemma 4 proves Eq. (25),
which is tighter than a result of Ref. [22] when applied to
general operators that are supported on many sites. ▪

B. Fast operator-spreading protocol

Proposition 2 proves that the support of an operatorOiðtÞ
is large inside of a linear light cone only when α > 2dþ 1.
Our first main result is the following theorem, which proves
the optimality (up to subalgebraic corrections) of that
result.
Theorem 5. Let dimðHiÞ ¼ 2 for all i ∈ Λ, and let X0

and Xr be two Pauli-X operators supported on two sites i
and j, respectively, obeying Dði; jÞ ¼ r. For all α > d,
there exists a time-dependent Hamiltonian HðtÞ obeying
Eq. (22) and constants 0 < K, K0 < ∞ such that, for
3 < t < K0rα=ð1þ2dÞ,

k½X0ðtÞ; Xr�k ≥ K
t1þ2d

rα
: ð32Þ

Proof.—We prove the theorem by constructing a fast
operator-spreading protocol, which follows three steps, as
depicted in Fig. 4. In each step, we evolve the operator
using a power-law Hamiltonian for time t=3. For simplicity,
we assume t=3 ≔ l ∈ Zþ and assume that l < 1

2
r.

Step 1.—In time t=3, we use a unitary U1 to spread the
operator X0 to

Q
i∈Bl

Xi, where Bl is a ball of radius l
centered at site 0. We denote the volume of this ball by
V ≔ jBlj. The unitary U1 can be implemented using a
series of controlled-NOT (CNOT) operators among nearest
neighbors in the lattice. Note that a CNOT gate UCNOT;i;j for
neighbors i and j acts as follows:

U†
CNOT;i;jXiUCNOT;i;j ≔ XiXj: ð33Þ

Under the conditions of Eq. (22), this CNOT gate can be
implemented in a time step of Oð1Þ.
Step 2.—In the next t=3 interval, we apply U2 ¼Q
j∈Bl

UjðτÞ on the operator, where

UjðτÞ ≔ cosðτΘÞ þ i sinðτΘÞZj; ð34aÞ

Θ ≔
X
k∈B̃l

Zk; ð34bÞ

B̃l is another ball of radius d centered around the site at
distance r, and

τ ¼ t
3ð2rÞα : ð35Þ

It is straightforward to verify that UjðτÞ is a unitary, since

UjðτÞ ¼ exp

�
−iτ

X
y∈B̃l

ZjZy

�
: ð36Þ

Since ZjZy commutes with Zj0Zy0 for all j, j0 ∈ Bl and y,
y0 ∈ B̃l, UjðτÞ and Uj0 ðτÞ can be implemented simulta-
neously. In other words, the unitary U2 can be generated by
a power-law Hamiltonian within time t=3: The factor of 2r
in Eq. (35) is present because the maximal distance
between two sites in Bl and B̃l is rþ 2l < 2r. The
evolved version of the operator under this unitary is

FIG. 4. A protocol for rapid growth of the commutator norm using two-body long-range interactions. Step 1: We use CNOT gates
between nearest-neighbor sites to spread a single Pauli X0 to a Pauli string XX…X supported on every site inside a ball of radius OðtÞ
centered at X0. Step 2: We use pairwise ZZ interactions between all sites in the two balls, located distance OðrÞ apart, which adds an
operator of norm ∼Oðt2dþ1=rαÞ into the second ball a distance r away. Step 3: We invert step 1 in the outer ball, pushing all of the
operator weight in the outer ball onto a single site.

HIERARCHY OF LINEAR LIGHT CONES WITH LONG-RANGE … PHYS. REV. X 10, 031009 (2020)

031009-9



U†
2

�Y
j∈Bl

Xj

�
U2 ¼

Y
j∈Bl

½cosð2τΘÞXj þ sinð2τΘÞYj�: ð37Þ

Step 3.—In the final t=3, we apply a unitary U3 which is
the inverse of U1, up to its action on B̃l instead of Bl. It is
easier to instead think of evolving the final operator Xr

under U−1
3 , which does not change the commutator norm

k½X0ðtÞ; Xr�k. Therefore, after time t, we get the commu-
tator norm:

k½X1ðtÞ;Xr�k¼ k½U†
2U

†
1X0U1U2;U3XrU

†
3�k

¼ k½
Y
j∈Bl

½cosð2τΘÞXjþ sinð2τΘÞYj�;
Y
k∈B̃l

Xk�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡C

k:

ð38Þ

To lower bound the norm of C, we consider the matrix
elements of C in the eigenbasis of Pauli Z operators. We

observe that hejCj00…0i ¼ 0 for all computational basis
states jei of the two balls except for jei ¼ j11…1i. Hence,

h11…1jCj00…0i ¼ ½cosð2τVÞ − i sinð2τVÞ�V
− ½cosð2τVÞ þ i sinð2τVÞ�V

¼ −2
XV
k odd

�
V
k

�
ik sinð2τVÞk cosð2τVÞV−k

≔ a: ð39Þ

Therefore, C is block diagonal and has eigenvalues �jaj in
the sector fj00…0ig; fj11…1ig. We note that, to the
lowest order, jaj≈V2τ∝ t2dþ1=rα. Therefore, this operator-
spreading protocol saturates the Lieb-Robinson bound in
Proposition 2.
To make the statement rigorous, we lower bound the

norm of C:

kCk ≥ jaj ≥ 2V sinð2τVÞ cosð2τVÞV−1 −
XV

k odd;k≥3

�
V
k

�
sinð2τVÞk cosð2τVÞV−k

≥ 2V sinð2τVÞ cosð2τVÞV−1 − V3

6
sinð2τVÞ3

XV−3
k even

�
V − 3

k

�
sinð2τVÞk cosð2τVÞV−3−k

≥ 2V sinð2τVÞ cosð2τVÞV−1 − V3

6
sinð2τVÞ3½sinð2τVÞ þ cosð2τVÞ�V−3: ð40Þ

Now we require that V2τ ¼ ϵ < 1=2, which is equivalent to
t2dþ1 ≲ rα. Under this condition,

cosð2τVÞV−1 ≥ ð1 − τ2V2ÞV ¼
�
1 −

ϵ2

V2

�
V

≥
1

2

ðfor all V ≥ 1 > ϵ2=10Þ; ð41aÞ

½sinð2τVÞþ cosð2τVÞ�V−3 ≤ ð1þ2τVÞV ≤
�
1þ2ϵ

V

�
V
≤ e2ϵ;

ð41bÞ

τV ≤ sinð2τVÞ ≤ 2τV: ð41cÞ

Therefore,

kCk ≥ 2VðτVÞ
�
1

2
−
V2

12
ð2τVÞ2e2ϵ

�
≥ V2τ

�
1 −

2

3
ϵ2e2ϵ

�

≥
1

2
V2τ ≥

1

2

�
td

3d

�
2 t
3ð2rÞα ≥

1

31þ2d21þα

t2dþ1

rα
: ð42Þ

This protocol shows that if the light cone of a Lieb-
Robinson bound is t≳ rκ, then κ ≤ α=ð1þ 2dÞ. ▪
Last, we note that it is trivial to remove the restriction

dimðHiÞ ¼ 2 from the assumptions of Theorem 5 by
simply making HðtÞ act trivially on all but two of the
basis states in each Hi.

C. Growth of connected correlators

In this subsection, we explore how fast connected
correlators can be generated using a power-law
Hamiltonian. In particular, we use the Lieb-Robinson
bounds to show that the growth of connected correlators
is constrained to linear light cones for all α > 2dþ 1. In
contrast, for α < 2dþ 1, we construct—based on our
protocol in Theorem 5—an explicit example where the
growth of connected correlators is not contained within any
linear light cone.
We consider a d-dimensional lattice Λ and a power-law

HamiltonianHðtÞwith an exponent α. Let C denote a plane
that separates Λ into two disjoint subsets L and R, with
L ∪ R ¼ Λ. Let A and B be two unit-norm operators
supported on single sites x ∈ L and y ∈ R, respectively,
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such that Dðx; CÞ, Dðy; CÞ > r=2. Finally, let jψi be a
product state between the sublattices L and R. Our object is
the connected correlator

Cðt; rÞ ¼ hAðtÞBðtÞi − hAðtÞihBðtÞi; ð43Þ

where h·i ¼ hψ j · jψi and AðtÞ is the time-evolved
version of A under H. While the correlator vanishes
at time zero due to the disjoint supports of A and B, it
may grow with time as the operators spread under the
evolution.
First, we show that Cðt; rÞ obey a linear light cone for

all α > 2dþ 1. Our strategy is to approximate AðtÞ by
an operator Ã supported on a ball of radius r=2 centered
on x and BðtÞ by B̃ supported on a ball of the same
radius but centered on y. Since Ã and B̃ have dis-
joint supports, the connected correlator between them
vanishes. Therefore, the connected correlator between
AðtÞ and BðtÞ is upper bounded by the errors of the
approximations:

Cðt; rÞ ≤ kAðtÞ − Ãk þ kBðtÞ − B̃k; ð44Þ

which, in turn, depend on the constructions of Ã and B̃.
Let SA contain sites that are at most a distance r=2

away from x and ScA be all other sites in the lattice. We
construct Ã by simply tracing out the part of AðtÞ that lies
outside SA [36]:

Ã ¼ trScA ½AðtÞ�; ð45Þ

where the partial trace is taken over ScA. It follows
from the definition that Ã is supported entirely on SA.
Proposition 2 provides a bound on the error in approxi-
mating AðtÞ by Ã: There exists a velocity u such that,
when r > ut,

kAðtÞ − Ãk ≤ K
tdþ1 log2d r

rα−d
; ð46Þ

for some constant 0 < K < ∞. Upper bounding the
error in approximating BðtÞ by B̃ in a similar way,
we obtain a bound on the connected correlator:

Cðt; rÞ ≤ 2K
tdþ1log2dr

rα−d
: ð47Þ

As a result, the light cone of the connected correlator is
linear, with a velocity no larger than u, for α > 2dþ 1.
We now provide an example of superlinear growth of

connected correlators for α < 2dþ 1 using a slightly
altered protocol than that discussed in Sec. IV B. In
particular, we consider initial operators A ¼ Xx and

B ¼ Zy supported on x and y, respectively, such that
Dðx; yÞ ¼ r.
The protocol works as follows. In the first step of the

protocol (again in time t=3), we still apply U1 in order
to spread Xx to

Q
i∈Bl

Xi, where Bl is a ball of radius

l ¼ t=3 centered on x. Since U1 acts trivially on B̃l (the
ball of radius l centered on y), we can simultaneously
apply a locally rotated version of U1 in B̃l to spread
Zy to

Q
ĩ∈B̃l

Zĩ. In the next time t=3, we again apply
U2, which takes

Q
i∈Bl

Xi to the expression in Eq. (37).
Note that this evolution does not change

Q
ĩ∈B̃l

Zĩ as it
commutes with U2. For the last t=3, we simply do
nothing.
Define the state jψi ¼ jϕiBl

jϕiB̃l
, where

jϕiBl
¼ 1ffiffiffi

2
p ðj0…0iBl|fflfflfflfflffl{zfflfflfflfflffl}

≡j0̄iBl

þ ij1…1iBl|fflfflfflfflffl{zfflfflfflfflffl}
≡j1̄iBl

Þ ð48Þ

is a state of the sites in Bl. Throughout our analysis, we
often dispense with the subscripts, but the Hilbert space in
question should be clear from context, and we always list
the state on Bl before that for B̃l.
We calculate the connected correlator

Cðt; rÞ ¼ hZyðtÞXxðtÞi − hZyðtÞihXxðtÞi; ð49Þ

where h·i ¼ hψ j · jψi and XxðtÞ, ZyðtÞ are the operators
evolved under the unitaries described above. Assume
for simplicity that t is such that V—the volume of Bl—
is odd. It is straightforward to show that hZyðtÞi ¼ 0

and, therefore, the second term Cðt; rÞ vanishes. Next,
we have

XxðtÞjψi ¼
Y
j∈Bl

½cosð2τΘÞXj þ sinð2τΘÞYj�jψi

¼ 1ffiffiffi
2

p
Y
j∈Bl

½cXj þ sYj�jϕij0̄i

þ iffiffiffi
2

p
Y
j∈Bl

½cXj − sYj�jϕij1̄i

¼ 1

2
½ðcþ isÞV j1̄ij0̄i þ iðc − isÞV j0̄ij0̄i

þ iðc − isÞV j1̄ij1̄i − ðcþ isÞV j0̄ij1̄i�; ð50Þ

where c ¼ cosð2τVÞ and s ¼ sinð2τVÞ. Next, note that
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hψ jZyðtÞ ¼
1ffiffiffi
2

p ðhϕjh0̄j − ihϕjh1̄jÞZyðtÞ

¼ 1ffiffiffi
2

p ðhϕjh0̄j þ ihϕjh1̄jÞ

¼ 1

2
ðh0̄jh0̄j þ ih0̄jh1̄jÞ − ih1̄jh0̄j þ h1̄jh1̄jÞ: ð51Þ

Thus,

Cðt; rÞ ¼ hZyðtÞXxðtÞi ¼
i
2
½ðc − isÞV − ðcþ isÞV �

≥
1

31þ2d22þα

t2dþ1

rα
; ð52Þ

where we use the bound Eq. (42). Therefore, this result
demonstrates that the connected correlators may grow
along a superlinear light cone for all α < 2dþ 1.
We note that, in our setting, we assume only the

initial state is a bipartite product state across the cut C.
Our bound, therefore, also applies to a more restrictive
scenario where the initial states are fully product.
However, it is not clear whether the bound can be
saturated in this scenario.

D. Simulation of local observables

In this subsection, we use the Lieb-Robinson bounds
to improve the estimation of local observables in time-
evolved states. Given an initial state jψi and a power-law
Hamiltonian H, we consider the task of estimating the
expectation value of the time-evolved observable hAðtÞi ≔
hψ jUðtÞ†AUðtÞjψi, where UðtÞ is the unitary generated by
H at time t, for a local operator A. The ability to perform
this task for any arbitrary local observable is equivalent to
the ability to compute local density matrices of the time-
evolved state UðtÞjψi or the ability to sample local
observables in UðtÞjψi.
A typical approach to estimating hAðtÞi is as follows.

First, the unitary evolution UðtÞ on the entire system is
decomposed into a more tractable sequence of elementary
unitaries that are supported on a smaller number of sites to
produce an approximation to the time-evolved state jψðtÞi.
The expectation value hAðtÞi is then computed by simulat-
ing measurements of A on this state. The number of
elementary unitaries in the decomposition of UðtÞ typically
increases with both time t and the number of sites N in the
system.
However, in the Heisenberg picture, the intuition from

the Lieb-Robinson bounds suggests that the dynamics of
AðtÞ ¼ UðtÞ†AUðtÞ is mostly confined inside some light
cones, and, therefore, it should be sufficient to simulate
the unitary generated by the Hamiltonian inside the light
cones alone. The following result provides such an
approximation.

Proposition 6. Let H be a 2-local power-law
Hamiltonian [i.e., the sets X in Eq. (19) obey jXj ¼ 2]
of exponent α > 2dþ 1, and Hr be a Hamiltonian
constructed from H by taking only interaction terms
supported entirely on sites inside a ball of radius r ≥
4v̄t ≥ 1 around the support of the single-site operator
A (where v̄ is the same constant as in Proposition 2).
Let AðtÞ and ÃðtÞ be the versions of A evolved for
time t under H and Hr, respectively. Then there exists
0 < K < ∞ such that

kAðtÞ − ÃðtÞk ≤ K
tdþ2log2dr

rα−d
: ð53Þ

Proof.—Without loss of generality, assume that A is
initially supported at the origin. Using the triangle inequal-
ity, we bound the difference between AðtÞ and ÃðtÞ:

kAðtÞ − ÃðtÞk ≤
Z

t

0

dsk½H −Hr; ÃðsÞ�k

≤
Z

t

0

ds
X

i∶Dði;0Þ≤r

����
� X
j∶Dðj;0Þ>r

hi;j; ÃðsÞ
�����:

ð54Þ
We then use the bounds in Refs. [15,40] to bound the
commutator norm k½Pj∶Dðj;0Þ>r hi;j; ÃðsÞ�k. For that, we
separate the sums over i into terms corresponding to i’s
inside and outside the linear light cone defined by
Dði; 0Þ ¼ 2v̄s.
For i such that Dði; 0Þ ≤ 2v̄s, we simply use another

triangle inequality for the sum over j and bound
k½hi;j; ÃðsÞ�k ≤ 2=Dði; jÞα. Note that, in this case, we
have Dði; jÞ ≥ Dðj; 0Þ − 2v̄s ≥ Dðj; 0Þ=2. Therefore, we
have X

j∶Dðj;0Þ>r

X
i∶Dði;0Þ≤2v̄s

k½hi;j; ÃðsÞ�k

≤ 4d2αþ1v̄d
X

j∶Dðj;0Þ>r

sd

Dð0; jÞα ≤
Ksd

rα−d
; ð55Þ

for some constant 0 < K < ∞. On the other hand, for i
such that r ≥ Dði; 0Þ > 2v̄s, we further divide into two
cases: s ≥ 1 and s < 1. For s ≥ 1, we use Proposition 2
(note that A is a single-site operator):

X
i∶r≥Dði;0Þ>2v̄s

����
� X
j∶Dðj;0Þ>r

hi;j; ÃðsÞ
�����

≤ K1

X
i∶r≥Dði;0Þ>2v̄s

1

½r −Dði; 0Þ�α−d
sdþ1log2dr
Dði; 0Þα−d

≤ K2sdþ1
log2dr
rα−d

; ð56Þ
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where we use Eq. (24) and define another set of constants
0 < K1;2 < ∞. Similarly, for s < 1, we use a bound
from Ref. [15] to show that there exists 0 < K3 < ∞
such that

X
j∶Dðj;0Þ>r

X
i∶Dði;0Þ>2v̄s

k½hi;j; ÃðsÞ�k ≤
K3

rα−d
: ð57Þ

Substituting Eqs. (55)–(57) into Eq. (54) and integrating
over time, we obtain Eq. (53). ▪
We now analyze the cost of estimating hAðtÞi using

quantum algorithms, although we note that Proposition 6
applies equally well to classical simulation algorithms.
For simplicity, we assume that the Hamiltonian is time
independent and kAk ¼ Oð1Þ in the following discus-
sion. In order for the error of the approximation to be at
most a constant, we choose

r ∝ max ftðdþ2Þ=ðα−dÞ log t; tg: ð58Þ

Therefore, to estimate hAðtÞi, it is sufficient to simulate
the evolution of ÃðtÞ on Nr ∝ rd sites (instead of
simulating the entire lattice).
We then compute hÃðtÞi by simulating e−iHrt using one

of the existing quantum algorithms. Using the pth-order
product formula for simulating power-law Hamiltonians
[47], we need

O(ðNrtÞ½α=ðα−dÞ�þoð1Þ)

¼maxfOðt½αðαþdþd2Þ=ðα−dÞ2�þoð1ÞÞ;Oðt½αð1þdÞ=ðα−dÞ�þoð1ÞÞg
ð59Þ

elementary quantum gates, where oð1Þ denotesp-dependent
constants that can be made arbitrarily small by increasing
the orderp. For allα > 2dþ 1, this gate count is less than the
estimate without using the Lieb-Robinson bound in
Ref. [47]. In particular, in the limit α → ∞, the gate count
reduces toOðt1þdþoð1ÞÞ, which corresponds to the space-time
volume inside a linear light cone.
We note that, in estimating the gate count for computing

hAðtÞi, we implicitly assume that we have access to many
quantum copies of the initial state jψi. However, in
scenarios where only a classical description of jψi is
provided, we need to add the cost of preparing jψi to
the total gate count of the simulation.

V. FROBENIUS LIGHT CONE

We now turn to the Frobenius light cone. To motivate
the development, let us consider the early-time expansion
of a time-evolving operatorOi, initially supported on lattice
site i:

OiðtÞ ¼
X∞
n¼0

ðLtÞn
n!

Oi

¼ Oi þ it½H;Oi� −
t2

2
½H; ½H;Oi�� þ � � � : ð60Þ

For illustrative purposes, we temporarily assume H is
time independent. Suppose further that H contains
only nearest-neighbor interactions. Then, ½H;Oi� can
contain only operators of the form Oi−1OOiþ1, and
½H; ½H;Oi�� can contain terms no more complicated than
Oi−2Oi−1OOiþ1Oiþ2, and so on. It is natural to ask “how
much” of the operator can be written as a sum of products
of single-site operators restricted to some given subset of
the lattice Λ. This question is naturally interpreted as
follows. Upon expanding jOiðtÞÞ in terms of the basis
vectors of Eq. (12):

jOiðtÞÞ ≔
X
fakg

cfakgðtÞj⊗
k
Tak
k Þ; ð61Þ

the coefficients cfakgðtÞ are analogous to the probability
amplitudes of an ordinary quantum mechanical wave
function. As we see, the coefficients cfakgðtÞ must be
sufficiently small if any ak are nonidentity, when the
sites i and k are sufficiently far apart, at any fixed time t:
This result is, intuitively, what we call the Frobenius
light cone.
For mathematical convenience in the discussion that

follows, we restrict our analysis to finite lattices. It appears
straightforward, if slightly tedious, to generalize to infinite
lattices through an appropriate limiting procedure. More
significantly, we focus our discussion to one-dimensional
lattices, as only in one dimension have we developed the
machinery powerful enough to qualitatively improve upon
the results in Sec. IV.

A. A vector space of operators

We define a one-dimensional lattice

Λ ≔ fi ∈ Z∶0 ≤ i ≤ Lg: ð62Þ

For every site i ∈ Λ, we assume a finite-dimensional local
Hilbert space Hi, obeying dimðHiÞ < ∞. The global
Hilbert space is

H ≔ ⨂
i∈Λ

Hi: ð63Þ

Let B denote the set of Hermitian operators acting onH.
We equip this space with the Frobenius inner product

ðAjBÞ ≔ trðABÞ
dimðHÞ ; ð64Þ

upon which B becomes a real inner product space; we
denote elements of this vector space O ∈ B as jOÞ. When
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A ¼ B, the inner product reduces to the squared Frobenius
norm of A: ðAjAÞ ¼ kAk2F. Note that, for traceless operators
A and B, this inner product corresponds to the value of the
thermal two-point connected correlation function at an
infinite temperature. Let fTa

i g denote the generators of
U( dimðHiÞ), with a ¼ 0 denoting the identity matrix.
These generators form a complete basis for B:

B ≔ span
n
⨂
i∈Λ

Tai
i g ≔ spanfja0…aLÞ

o
: ð65Þ

We define the projectors

Qxja0…aLÞ≔
� ja0…aLÞ ax ≠ 0 and ay ¼ 0 if y > x;

0 otherwise:

ð66Þ

Hence, Qx selects the parts of an operator which all act on
x, but on no site to the right of x. Observe that we have
orthogonality and completeness:

QiQj ¼ δijQj;
X
i∈Λ

Qi ¼ 1: ð67Þ

Time evolution is generated by a (generally time-
dependent) Hamiltonian HðtÞ∶R → B. We assume that
H is 2-local:

HðtÞ ¼
X

fi;jg⊂Λ
HijðtÞ; ð68Þ

with power-law interactions of exponent α. By unitarity,

ðOjLðtÞjOÞ ¼ 0; ð69Þ
where LðtÞ is defined in Eq. (20); hence, LðtÞ generates
orthogonal transformations on B and leaves the length of all
operators invariant.

B. The operator quantum walk

Our goal is to understand the following scenario (Fig. 5):
Given an operator jOÞ starting at the leftmost site, i.e.,
obeyingQ0jOÞ ¼ jOÞ, how long does it take before most of
the operator jOðtÞÞ consists of operator strings that act on
sites ≥ x? More precisely, define

tδ2ðxÞ ≔ inf

�
t > 0∶ for any Q0jO0Þ ¼ jO0Þ; δ <

P
y∶x≤y≤LðO0ðtÞjQyjO0ðtÞÞ

ðO0jO0Þ
	

ð70Þ

to be the shortest time for which a fraction δ of the operator
jOðtÞÞ can be supported on sites ≥ x. The assumption
that the operator starts only on the leftmost site is not
restrictive—for an initial site k ∈ Λ, we can identify the

lattice sites kþm ∼ k −m in order to “fold” the one-
dimensional lattice to put the initial point k at one
boundary; such a change cannot modify Eq. (22), except
to adjust the value of h by a factor of <4.

FIG. 5. The 4L-dimensional space of operators can be decomposed into the direct sum of L subspaces fQig by the position of the
rightmost occupied site. By keeping track of only the “average value” of the rightmost site (depicted above), keeping in mind that an
exponential number of orthogonal operators (depicted below) are contained on most of the sites, we reduce the quantum walk of many-
body operators from an exponentially large space to a one-dimensional line.
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We note that

sup
Ox∈Bx

tr

�
½O0ðtÞ;Ox�†½O0ðtÞ;Ox�

�
dimðHÞðO0jO0Þ

≤4
ðO0ðtÞjPxjO0ðtÞÞ

ðO0jO0Þ
≤4

X
y∶x≤y≤L

ðO0ðtÞjQyjO0ðtÞÞ
ðO0jO0Þ

; ð71Þ

where the leftmost side corresponds to the OTOC of an
infinite-temperature state—a quantity known to herald the
onset of many-body quantum chaos [42,43]. From Eq. (71),
it follows that a lower bound on tδ2ðxÞ also bounds the
evolution time of the OTOC and the growth of chaos.
The second main result of this paper is the following

theorem.
Theorem 7. Given Hamiltonian evolution on H obey-

ing Eqs. (22) and (68), for any x ∈ Λ, 0 < δ ∈ R, and
3
2
< α ∈ R, there exist constants 0 < K, K0 < ∞ such that

tδ2ðxÞ ≥ K ×

�
x α > 5

2
;

xα−3=2ð1þ K0 log xÞ−1 3
2
< α ≤ 5

2
:

ð72Þ

Proof.—We prove this theorem using the “operator
quantum walk” formalism introduced in Ref. [48]. For
simplicity, we first prove the theorem when α > 5

2
and then

generalize to α ≤ 5
2
afterward. Consider the operator F

acting on B defined by

F ≔
X
j∈Λ

jQj: ð73Þ

Our goal is to show that

lim
L→∞

k½F ;LðtÞ�k∞ ≤ C < ∞: ð74Þ

The reason Eq. (74) is desirable is the following. Without
loss of generality, we normalize ðOjOÞ ¼ 1. We then define
a time-dependent probability distribution Pt on Λ as

Ptði ∈ ΛÞ ≔ ðOðtÞjQijOðtÞÞ; ð75Þ

since by Eq. (67) the probability distribution is properly
normalized: PtðΛÞ ¼ 1. We may then reinterpret tδ2ðxÞ as
the first time where the probability that i ≥ x on the
measure Pt is sufficiently large:

tδ2ðxÞ ¼ inf ft > 0∶δ < Ptði ≥ xÞg: ð76Þ

We may then interpret F for α > 5
2
as a classical random

variable that gives i with probability PtðiÞ. By Markov’s
inequality,

Ptði ≥ xÞ ≤ Et½F �
x

; ð77Þ

where Et½·� denotes the expectation value on the measure
Pt. If Eq. (74) holds, then for any operatorO0 in the domain
of Q0,

Et½F � ¼
Z

t

0

ds
d
ds

ðO0ðsÞjF jO0ðsÞÞ

¼
Z

t

0

dsðO0ðsÞj½F ;LðsÞ�jO0ðsÞÞ

≤
Z

t

0

dsjðO0ðsÞj½F ;LðsÞ�jO0ðsÞÞj ≤ Ct: ð78Þ

Combining Eqs. (77) and (78), we see that Eq. (72) holds
with

K ¼ δ

C
: ð79Þ

Hence, it remains to prove Eq. (74). To do so, it is useful
to define

Λ̃ ≔ Λ − f0g ð80Þ

and a more refined set of complete, orthogonal projectors:
For S ⊆ Λ̃,

RSja0…aLÞ

≔
� ja0…aLÞ i > 0 and ai ≠ 0 if and only if i ∈ S;

0 otherwise;

ð81Þ

which projects onto the operators whose support is exactly
the subset S. We also define

F S ≔ max
i∈S

i ð82Þ

to be the rightmost occupied site. Observe that F SRS ¼
RSFRS. Since

X
S∈ZΛ̃

2

RS ¼ 1; ð83Þ

we may write, for any O ∈ B,
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ðOj½F ;L�jOÞ ¼
X

S;Q∈ZΛ̃
2

ðOjRS½F ;L�RQjOÞ

≤
X

S;Q∈ZΛ̃
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðOjRSjOÞðOjRQjOÞ

q

× sup
O;O0∈B

���� ðF S − FQÞðOjRSLRQjO0ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðOjOÞðO0jO0Þp ����:
ð84Þ

Next, we observe that the 2-locality of the Hamiltonian
implies that RSLRQ ≠ 0 if and only if there exists a site
i ∈ Λ such that S ∪ fig ¼ Q or Q ∪ fig ¼ S.
Suppose that Q ∪ fig ¼ S, that FQ ¼ j, and that i > 0.

Then, if i < j, F S ¼ FQ ¼ j; the rightmost occupied site
in S and Q has not changed, and, hence, the supremum in
Eq. (84) vanishes. Therefore, the supremum is nontrivial
only when i > j. By submultiplicativity of the operator
norm, there exists 0 < A < ∞ such that

sup
O;O0∈B

���� ðF S − FQÞðOjRSLRQjO0ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðOjOÞðO0jO0Þp ����
≤ 2ji − jj

����X
k∈Q

Hki

����
∞
≤ 2ji − jj

X
k∈Q

h
ji − kjα

≤
A

ji − FQjα−2
; ð85Þ

where A is a constant and, in the last step, we overestimate
the sum by assuming all sites ≤ j are included in the set Q.
A similar argument holds when S ∪ fig ¼ Q.
It is now useful to interpret Eq. (84) as an auxiliary linear

algebra problem. Let us define φ ∈ RZΛ̃
2 as

φS ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðOjRSjOÞ

p
ð86Þ

and M ∈ RZΛ̃
2 ×RZΛ̃

2 as

MSQ ¼ MQS ≔
�
AjF S − FQj2−α F S ≠ FQ and S ¼ Q ∪ fmg or Q ¼ S ∪ fmg;
0 otherwise:

ð87Þ

Since

ðOj½F ;L�jOÞ ≤ sup
φ∶kφkF¼1

X
S;Q

φSMSQφQ ¼ kMk∞; ð88Þ

it suffices to show that kMk∞ < ∞.
To bound the maximal eigenvalue of M, we use the

min-max Collatz-Weiland theorem [49]. To do that, we
must first establish that M is an irreducible matrix [non-
negativity of the entries is guaranteed by Eq. (87)]. To show
irreducibility, we observe that

ðMjSjÞ∅S ≠ 0; ð89Þ

the sequence of subsets which satisfies this identity
corresponds to sequentially adding the elements of S from
smallest to largest. We conclude that (by non-negativity of
allMn) there exists an n ∈ Zþ such that ðMnÞSQ > 0 for all
sets S and Q.
We are now ready to apply the min-max Collatz-Weiland

theorem:

kMk∞ ¼ inf
φ∈RZΛ̃

2 ∶φS>0

max
S

1

φS

X
Q∈ZΛ̃

2

MSQφQ: ð90Þ

Clearly, an upper bound to the maximal eigenvalue comes
from choosing any trial vector φ that we desire. We make
the following choice: Writing

S ¼ fn1;…; nlg; with ni < niþ1; ð91Þ

we take φ∅ ¼ 1 and then define n0 ¼ 0 and

φS ≔
YjSj
i¼1

ðni − ni−1Þ−β; ð92Þ

where β is a tunable parameter we fix shortly. Now, we
evaluate the right-hand side of Eq. (90), defining j ¼ F S:

1

φS

X
Q∈ZΛ̃

2

MSQφQ¼MS;S−fjg
φS−fjg
φS

þ
X

k∈Λ∶k>j

MS;S∪fkg
φS∪fkg
φS

:

ð93Þ

Using Eq. (87) and assuming that j� ¼ F S−fjg,

MS;S−fjg
φS−fjg
φS

≤ Aðj − j�Þβþ2−α: ð94Þ

We hence take

β ¼ α − 2 ð95Þ

to ensure that this first term is finite. Evaluating the second
term of Eq. (93),

MINH C. TRAN et al. PHYS. REV. X 10, 031009 (2020)

031009-16



X
k∈Λ∶k>j

MS;S∪fkg
φS∪fkg
φS

≤ A
X∞
k¼jþ1

ðk − jÞ2−α−β ≤ A�; ð96Þ

where

A� ≔ A
2αþβ−3

αþ β − 3
< ∞; ð97Þ

so long as α > 5
2
. We conclude that C ≤ Aþ A� < ∞,

proving the theorem when α > 5
2
.

We now return to the case 3
2
< α ≤ 5

2
. The proof is

essentially identical with a few minor changes. First, we
set F f0g ¼ 0, and for nonempty sets we define

F S ≔ max
j∈S

jγ

1þ K0 log j
; ð98Þ

for a parameter γ ∈ ð0; 1Þ that we fix shortly. We choose the
parameter K0 such that F i is a convex function on Zþ:
jF i − F jj ≤ F ji−jj. Such a K0 can be shown to exist by
extending F to act on ½1;∞Þ, after which we use elemen-
tary calculus to demand that

0<
dF ðxÞ
dx

¼ 1

x1−γð1þK0 logxÞ
�
γ−

K0

1þK0 logx

�
; ð99Þ

along with

0 >
d2F ðxÞ
dx2

¼ −
1

x2−γð1þ K0 log xÞ
��

1 − γ þ K0

1þ K0 log x

��
γ −

K0

1þ K0 log x

�
−
�

K0

1þ K0 log x

�
2
�
: ð100Þ

Equations (99) and (100) are both satisfied by the choice

K0 ¼ γ

4
: ð101Þ

We then find that convexity of F i leads to the replacement of Eq. (87) with

MSQ ¼ MQS ≔
�
AjF S − FQjγþ1−αð1þ K0 log jF S − FQjÞ−1 F S ≠ FQ;

0 otherwise:
ð102Þ

Last, we replace Eq. (92) with

φS ≔
YjSj
i¼1

ðni − ni−1Þγþ1−α

1þ K0 logðni − ni−1Þ
: ð103Þ

These choices guarantee that

MS;S−fjg
φS−fjg
φS

¼ A; ð104Þ

as in the prior setting. Then, we find that

X
k∈Λ∶k>j

MS;S∪fkg
φS∪fkg
φS

≤ A
X∞
k¼jþ1

1

ðk − jÞ2ðα−1−γÞ½1þ K0 logðk − jÞ�2 : ð105Þ

Upon choosing γ ¼ α − 3
2
, we obtain that the sum

above is finite. Note that the logarithmic factors are
required to obtain finiteness of Eq. (105). Hence, we obtain
kMk∞ < ∞. Last, we mimic the arguments of Eq. (78) to
complete the proof. ▪

We conjecture that, in d > 1, the Frobenius light cone is
always linear if and only if

α >
3d
2
þ 1: ð106Þ

We expect that, for q-local Hamiltonians with q > 2,
Eq. (106) holds only when a slightly stricter requirement
than Eq. (22) is obeyed: for example, if kHfn1;…;nqgk≲Q

i jni − niþ1j−α in one dimension.
The Frobenius light cone of Theorem 7 is tight up to

subalgebraic corrections, when applied to arbitrarily large
operators. This result can be seen by considering a large
operator of the form

O0 ¼
YL=3
i¼0

Xþ
i þ H:c: ð107Þ

supported on the leftmost L=3 sites of the lattice, where
Xþ
i ¼ Xi þ iYi. We would like to spread this operator

to the rightmost L=3 sites of the lattice, which are at
least a distance L=3 away from the initial support. If the
Hamiltonian is
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H ¼
X

0≤j≤L=3

X
2L=3<k≤L

ZjZk

Lα ; ð108Þ

it is straightforward to show that the fraction of O0ðtÞ
supported beyond 2L=3 is (up to the first order in t)

X
k>L=2

QkO0ðtÞ ¼
t

3Lα−1 O0

X
2L=3<k≤L

Zk: ð109Þ

The Frobenius norm of this fraction is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
3

�
t

3Lα−1

�
2

s
∝

t

Lα−3=2 : ð110Þ

Therefore, our bound in Theorem 7 is tight up to Oð1Þ
factors.

C. Quantum state transfer

An immediate consequence of this theorem is that the
Lieb-Robinson light cone is not relevant for infinite-
temperature many-body quantum chaos and the growth
of operators. A more practical application of the Frobenius
light cone are tighter constraints on at least two different
kinds of quantum state transfer. For simplicity, we assume
that dimðHiÞ ¼ 2 and denote j0ii and j1ii as the eigenstates
of the Pauli matrix Zi on Hi.
A universal notion of quantum state transfer from i ∈ Λ

to j ∈ Λ, which is independent of the background state, is
to demand that there exist a Hamiltonian protocol HðtÞ and
a time τ ∈ R such that

Xα
i ðτÞ ¼ Xα

j : ð111Þ

It is obvious that Theorem 7 constrains the time at which
Eq. (111) may hold; hence, Eq. (111) cannot be performed
at a time τ which scales slower than linearly in the distance
Dði; jÞ when α > 5

2
, d ¼ 1.

Another interesting scenario arises when we restrict to a
time evolution operator UðtÞ that obeys

UðtÞ
�
⨂
k∈Λ

j0ki


¼ ⨂

k∈Λ
j0ki: ð112Þ

Many protocols, including our own (Theorem 11) and that
of Ref. [8], are compatible with Eq. (112). With Eq. (112),
we now consider a quantum system whose initial con-
dition is

jψð0Þi ≔ jϕii ⊗ ⨂
k∈Λ−fig

j0ki ð113Þ

for arbitrary jϕii ∈ Hi. Our goal is to find a time evolution
operator UðtÞ and a time τ, such that jψðtÞi ¼ UðtÞjψð0Þi
and

hψðτÞjZjjψðτÞi ¼ hϕijZijϕii: ð114Þ

In particular, the probability of measuring a 0 or 1 on site j
at time τ is given by the probability of measuring it at time
t ¼ 0 on site i. This property must hold for all jϕii for a
fixed UðtÞ, since the protocol must be able to transfer
arbitrary states.
Corollary 8 Let 3

2
< α ∈ R and x ¼ Dði; jÞ. Assuming

Eq. (112), there exist 0 < K, K0 < ∞ such that any state-
transfer algorithm runs in a time τ obeying

τ > K ×

�
x α > 5

2
;

xα−3=2ð1þ K0 log xÞ−1 3
2
< α ≤ 5

2
:

ð115Þ

Proof.—We begin by observing that we may assume
jϕii ¼ j1ii without loss of generality, since Eq. (114) is
trivially obeyed by Eq. (112). Now the proof largely
mirrors that of Theorem 7. Without loss of generality,
we may define lattice sites such that i ¼ 0 and j > 0, as
explained above. Define

jSi ≔ ⨂
k∈S

j1ki ⊗ ⨂
k∈Sc

j0ki ð116Þ

and the observable F which acts on the mutual eigenbasis
of Zi as

F jSi ≔ F SjSi; ð117Þ

for any S ⊆ Λ; here, F S is given by Eq. (82) when α > 5
2

and Eq. (98) when 3
2
< α ≤ 5

2
. For simplicity, we describe

explicitly only the case α > 5
2
, as the other case follows

from identical considerations. We evaluate���� ddt hψðtÞjF jψðtÞi
���� ≤ j−ihψðtÞj½F ; HðtÞ�jψðtÞij

≤ k½F ; HðtÞ�k∞: ð118Þ

As before, our goal is to show that k½F ; HðtÞ�k∞ < ∞.
Since H is 2-local, we know that HijðtÞj0iij0ji ∝ j0iij0ji
by Eq. (112). This result implies that, as before, ½F ; H� can
be nonvanishing only when H serves to either add a new
j1i to the right end of the state or delete the rightmost
j1i. Hence, hSj½F ; HðtÞ�jQi ≠ 0 only if jS − S ∩ Qj ≤ 1
and jQ − S ∩ Qj ≤ 1. We define the matrix MSQ ≔
suphSj½F ; HðtÞ�jQi, which equals
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MSQ ¼ MQS ≔

8>>><
>>>:

AjF S − FQj2−α S ¼ Q ∪ fmg or Q ¼ S ∪ fmg;
AjF S − FQj1−α there existsR with S ¼ R ∪ fmg and Q ¼ R ∪ fng;

and Q ≠ S and FR < minðF S;FQÞ;
0 otherwise:

ð119Þ

We bound the maximal eigenvalue of M using the Collatz-
Weiland inequality Eq. (90), using the trial vector φS given
Eq. (92). Observe that the first line of Eq. (119) is identical
to Eq. (87); as such, these terms inMSQφQ are bounded by
a constant as before. The new terms we must deal with arise
from the second line of Eq. (119). If S is given by Eq. (91),
we find that

1

φS

X
Q∶jQj¼jSj

MSQφQ

<A
X∞

m¼nl−1þ1

�
nl−nl−1
m−nl−1

�
α−2 1−δm;nl

ðm−nl−1Þα−1
<Ast; ð120Þ

for some constant 0 < Ast < ∞, so long as α > 5
2
. We

conclude that M has a bounded maximal eigenvalue,
independently of the lattice size. We conclude there exists
0 < K < ∞ such that hψðtÞjF jψðtÞi ≤ Kt.
At time τ, we must have

jψðτÞi ¼ j1ji ⊗ jψ 0
Λ−fjgi; ð121Þ

for arbitrary state jψ 0i acting on sites other than j.
Therefore,

hψðτÞjF jψðτÞi ≥ j: ð122Þ

UsingMarkov’s inequality as in the proof of Theorem 7, we
obtain Eq. (115). The case α < 5

2
is proved analogously. ▪

VI. FREE LIGHT CONE

In this section, we discuss bounds on the quantum
dynamics of noninteracting many-body systems.

A. Noninteracting Hamiltonians

Consider a many-body quantum system defined on
a d-dimensional lattice graph Λ; we assume the same
properties of Λ as in Sec. III. Suppose that the many-body
Hamiltonian takes the form

HðtÞ ¼
X
i;j∈Λ

hijðtÞc†i cj; ð123Þ

where hðtÞ∶R → CΛ×Λ is a Hermitian matrix and c†i
and ci represent either fermionic creation and annihilation
operators:

fcj; c†i g ≔ δij; ð124Þ

or bosonic creation and annihilation operators:

½cj; c†i � ≔ δij: ð125Þ

The on-site Hilbert space Hi obeys dimðHiÞ ¼ 2 in the
fermionic case and dimðHiÞ ¼ ∞ in the bosonic case. We
note, however, that, in isolated bosonic systems, Hi can
often be truncated so that dimðHiÞ is at most the number of
excitations on the lattice and is, therefore, finite.
As is well known, the evolution of all operators in

such a noninteracting theory is controlled by the Green’s
function of the single-particle problem on the Hilbert
space CΛ. Time evolution on this space is generated by
the Hamiltonian

HspðtÞ ≔
X
i;j∈Λ

hijðtÞjiihjj; ð126Þ

where jii denotes the state that has exactly one excitation at
site i ∈ Λ. The single-particle time evolution matrix obeys
the differential equation

d
dt

UspðtÞ ≔ −iHspðtÞUspðtÞ; ð127Þ

together with the initial condition Uspð0Þ ¼ 1. For
example, in the fermionic model,

ciðtÞ ¼
X
j∈Λ

Usp;ijðtÞcj; ð128Þ

which follows from observing that

d
dt

ci ≔ i½HðtÞ; ci� ¼
X
j∈Λ

ihijðtÞ½c†i cj; ci� ¼ −i
X
j∈Λ

hijðtÞcj:

ð129Þ

For simplicity in the discussion that follows, we drop the
“sp” subscript on H and U.

B. Quantum walks of a single particle

Consider a normalized wave function jψðtÞi ≔
UðtÞjψi ∈ CΛ, along with its canonical probability distri-
bution Pt on Λ:
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PtðAÞ ≔
X
i∈A

jhijψðtÞij2
hψ jψi : ð130Þ

Let us label an origin 0 ∈ Λ and assume that jψð0Þi ¼ j0i.
We now use the quantum walk framework to prove our
third main result, on the concentration of Pt on lattice sites
close to the origin.
Theorem 9. If α > dþ 1, ϵ > 0, and r ∈ Zþ, there

exist constants 0 < K, u < ∞ such that

X
y∈Λ∶Dðy;xÞ≥r

PtðyÞ ≤
Kt

ðr − utÞα−d−ϵ : ð131Þ

When d < α ≤ dþ 1, Eq. (131) holds with u ¼ 0.
Proof.—We first prove Eq. (131) when α > dþ 1.

Define the Hermitian operator

hxjF ðtÞjyi ≔ δxyF ðx; tÞ; ð132aÞ

F ðx; tÞ ≔ min ½0;Dðx; 0Þ − ut�: ð132bÞ

Our goal is to follow the proof of Theorem 7, first
bounding the rate of change of an expectation value and
then employing Markov’s inequality. The operator whose
expectation value we bound in the time-evolved wave
function is F β; ultimately, we see that β ¼ α − d − ϵ.
First, let us bound

jF ðxÞβ−F ðyÞβj≤ βmax½F ðxÞ;F ðyÞ�β−1jF ðyÞ−F ðxÞj
≤ βDðx;yÞ½F ðxÞβ−1þF ðyÞβ−1�: ð133Þ

Then,

d
dt

hψðtÞjF βjψðtÞi ¼ −ihψðtÞj½F β; HðtÞ�jψðtÞi
− uβhψðtÞjF β−1jψðtÞi: ð134Þ

Let us first bound the first term, using Eqs. (133) and (134):

jψðtÞj½F β; HðtÞ�jψðtÞij
≤ 2

X
fx;yg⊂Λ

jhxj½F β; HðtÞ�jyijjhxjψihyjψij

≤
X
x∈Λ

X
y∈Λ−fxg

½PtðxÞ þ PtðyÞ�jhxj½F β; HðtÞ�jyij

≤ β
X
x∈Λ

X
y∈Λ−fxg

PtðxÞ
2h

Dðx; yÞα−1 ½F ðxÞβ−1 þ F ðyÞβ−1�:

ð135Þ

In the last line, we use the symmetry of the sum under
exchanging x and y to remove PtðyÞ. Then, we observe that

F ðyÞβ−1 ≤ ½F ðxÞ þDðx; yÞ�β−1
≤ 2β−1½F ðxÞβ−1 þDðx; yÞβ−1�: ð136Þ

Hence, so long as we choose

β ¼ α − d − ϵ; ð137Þ

we conclude that there exist constants 0 < K, A < ∞
such that

jψðtÞj½F β; HðtÞ�jψðtÞij
≤ ð2þ 2βÞ

X
x∈Λ

PtðxÞ

×
X

y∈Λ−fxg

�
h

Dðx; yÞα−β þ
h

Dðx; yÞα−1F ðxÞβ−1
�

≤
X
x∈Λ

PtðxÞ½K þ AF ðxÞβ−1� ¼ K þ AhψðtÞjF β−1jψðtÞi;

ð138Þ

where K and A are constants. Upon choosing

u ¼ A
β
; ð139Þ

Eq. (134) implies that

hψðtÞjF βjψðtÞi ≤ Kt: ð140Þ

Using Markov’s inequality and assuming r > ut,

X
y∈Λ∶Dðy;xÞ≥r

PtðyÞ ≤
Et½F β�
ðr − utÞβ ≤

Kt
ðr − utÞβ : ð141Þ

Combining Eqs. (137) and (141), we obtain Eq. (131).
Second, we study the case α ≤ dþ 1. Now we define

hxjF jyi ≔ δxyDðx; 0Þβ; ð142Þ

with β given by Eq. (137). Observe that β < 1. In this limit,

d
dt

Et½F � ≤
X
x∈Λ

PtðxÞ
X

y∈Λ−fxg

h
Dðx; yÞα jDðx; 0Þβ −Dðy; 0Þβj

≤
X
x∈Λ

PtðxÞ
X

y∈Λ−fxg

h
Dðx; yÞα−β ; ð143Þ

where in the last inequality we use the convexity of F as a
function of the distance. For any ϵ > 0, the sum over y
converges; hence, there exists a K < ∞ such that

d
dt

Et½F � ≤
X
x∈Λ

PtðxÞ × K ¼ K: ð144Þ
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Another application of Markov’s inequality implies
Eq. (131). ▪

C. Local simulation of a single particle

An immediate application of Theorem 9 is to bound the
error made by approximating time evolution via a trun-
cated, local Hamiltonian, analogous to the discussion in
Sec. IV D.
Corollary 10. For any i ∈ Λ, define Br

i ≔
fj ∈ Λ∶Dðj; iÞ ≤ rg, and define H̃ðtÞ to be the restriction
of a free bosonic Hamiltonian HðtÞ [Eq. (123)] to Br

i ⊂ Λ.
Then, for any ϵ > 0, there exists 0 < K, K0 < ∞ such that,
for times

t <
K0

n
rmin½1;ðα−d−ϵÞ=3�; ð145Þ

we have

kb†i ðtÞ − b̃†i ðtÞk ≤ Kn3=2
�

t
rα−d

þ t3=2

rðα−d−ϵÞ=2

�
; ð146Þ

where the norm is estimated in the subspace that has at most
n ≥ 1 excitations across the lattice and b̃†i ðtÞ denotes time
evolution with the restricted Hamiltonian H̃ðtÞ.
Proof.—Without loss of generality, we assume i ¼ 0, the

origin. Observe that

kb†0ðtÞ− b̃†0ðtÞk≤
Z

t

0

dsk½b̃†0ðtÞ;HðtÞ−H̃ðtÞ�k

≤
Z

t

0

ds

����
�
b̃†0ðtÞ;

X
i∶Dði;0Þ≤r

X
j∶Dðj;0Þ>r

hijbib
†
j

�����:
ð147Þ

Using Theorem 9,

b̃†0ðtÞ ¼
X

i∶Dði;0Þ≤r
fiðtÞb†i ; ð148Þ

where the coefficients fiðtÞ satisfy, for some 0 < C < ∞
and arbitrary ϵ > 0,

X
i∶Dði;0Þ≥x

jfiðtÞj2 ≤
Ct

xα−d−ϵ
; ð149Þ

for all x > 0 and all t obeying Eq. (145).
We separate the sum over i in Eq. (147) according to

Dði; 0Þ ≤ r=2 and r=2 < Dði; 0Þ ≤ r. In the former case,
we have

����
�
b̃†0ðtÞ;

X
i∶Dði;0Þ≤r=2

X
j∶Dðj;0Þ>r

hijbib
†
j

�����
≤ 2

ffiffiffi
n

p ���� X
i∶Dði;0Þ≤r=2

X
j∶Dðj;0Þ>r

hijbib
†
j

����
≤ 2n3=2 max

i∶Dði;0Þ≤r=2

X
j∶Dðj;0Þ>r

1

Dði; jÞα ≤
C1n3=2

rα−d
; ð150Þ

where 0 < C1 < ∞ is a constant. We use the fact that
jhijj ≤ 1=Dði; jÞα and that Dðj; iÞ ≥ r=2 for all i such
that Dði; 0Þ ≤ r=2.
On the other hand, for r=2 < Dði; 0Þ ≤ r,

����
�
b̃†0ðtÞ;

X
i∶r=2≤Dði;0Þ≤r

X
j∶Dðj;0Þ>r

hijbib
†
j

�����
≤ 2

���� X
i∶r=2<Dði;0Þ≤r

fiðtÞb†i
����
���� X
i∶r=2<Dði;0Þ≤r

X
j∶Dðj;0Þ>r

hijbib
†
j

����
≲

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i∶r=2<Dði;0Þ≤r

jfiðtÞj2n
s �

max
i∶r=2<Dði;0Þ≤r

X
j∶Dðj;0Þ>r

n
Dði;jÞα

�

≤C2

n3=2t1=2

rðα−d−ϵÞ=2
; ð151Þ

for 0 < C2 < ∞. Replacing Eqs. (150) and (151) into
Eq. (147) and integrating over time, we arrive at Eq. (146). ▪

D. Single-particle state transfer

Our next goal is to prove the tightness of Theorem 9, up
to subalgebraic corrections. This proof is achieved by the
following theorem, which provides a rapid state-transfer
protocol for a single particle.
Theorem 11. For every x∈Λ−f0g with Dðx;0Þ>2,

there exist a constant 0 < K < ∞ and a Hermitian
matrix hðtÞ∶R → CΛ×Λ obeying Eq. (22), such that
hxjUðτÞj0i ¼ 1 at

τ ≔ K ×

8>>><
>>>:

Dðx; 0Þ α ≥ dþ 1;

Dðx; 0Þα−d d < α < dþ 1;

logDðx; 0Þ α ¼ d;

1 α < d:

ð152Þ

Proof.—For α ≥ dþ 1, in order to transfer an excitation
from 0 to x, we simply use a sequence of nearest-neighbor
hoppings,whichwould take time proportional to the distance
Dð0; xÞ. Specifically, let ðy0 ≔ 0; y1;…; yl−1; yl ≔ xÞ be a
sequence of length 1þDðx; 0Þ such that the edge ðyi; yiþ1Þ
is an edge of nearest neighbors in Λ; here, l ≔ Dðx; 0Þ. We
then apply
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HðtÞ ≔
�
ihjyjihyj−1j− ihjyj−1ihyjj t ∈ ½ðj− 1Þ π

2h ; j
π
2hÞ;

0 elsewhere;

ð153Þ

where h is defined in Eq. (22). It is straightforward to verify
that the Hamiltonian takes jyj−1i to jyji at the end of the
interval ½ðj − 1Þðπ=2hÞ; jðπ=2hÞ�, for all j ¼ 1;…;l. As a
result, we achieve perfect state transfer from site 0 to site x
at t ¼ ðπ=2hÞDð0; xÞ. Therefore, Theorem 11 holds for
α > dþ 1 with

K ¼ π

2h
: ð154Þ

For α < dþ 1, we use a state-transfer scheme depicted
in Fig. 3. The scheme, as depicted, assumes that the lattice
is a simple cubic lattice; however, this protocol is easily
applied to an arbitrary lattice graph, since we may always
arrange the unit cells of the graph in the structure shown
above. As the generalization to other lattices is obvious, we
describe only the case of a simple cubic lattice below.
We further assume the sites 0 and x are on the same axis of
the lattice; more precisely, we assume that the path of
shortest length connecting 0 and x is unique. If 0 and x ¼
ðx1;…; xdÞ do not satisfy this property, we use the protocol
described below to transfer the excitation from 0 to
ðx1; 0;…; 0Þ, all the way to ðx1;…; xdÞ in d separate steps,
increasing the total transfer time by at most a factor of d
compared to the protocol we describe below.
We define q ∈ Zþ as

q ≔ blog2 Dðx; 0Þc þ 1: ð155Þ

Let Bq ⊂ Rd denote a cube of size Dðx; 0Þ such that the
sites 0 and x are at two different corners of Bq. We then
recursively define a sequence of q − 1 cubes, namely,

Bð0Þ
q−1;…; Bð0Þ

1 , satisfying

f0g ⊂ Bð0Þ
1 ⊂ Bð0Þ

2 ⊂ � � � ⊂ Bð0Þ
q−1 ⊂ Bð0Þ

q ≔ Bq; ð156Þ

and the size of Bð0Þ
s is 2s½Dðx; 0Þ=2q� for all s ¼ 1;…; q.

Note that our definition ensures the size of B1 is in [1, 2).

Similarly, we define the cubes BðxÞ
1 ;…; BðxÞ

q that contain x:

fxg ⊂ BðxÞ
1 ⊂ BðxÞ

2 ⊂ � � � ⊂ BðxÞ
q−1 ⊂ BðxÞ

q ≔ Bq: ð157Þ

Our strategy is to first expand the state jψð0Þi ¼ j0i to a

coherent uniform superposition on Bð0Þ
1 , which is sub-

sequently expanded to coherent uniform superpositions on

larger and larger cubes Bð0Þ
2 ;…; Bð0Þ

q . After that, we reverse
the process and contract the uniform superposition on

Bð0Þ
q ¼ BðxÞ

q onto the cubes BðxÞ
q−1;…; BðxÞ

1 and finally onto

site fxg. We argue that each expansion or contraction
involving cubes of size l takes time lα−d, where lα is the
penalty due to the power-law constraint and ld is the
enhancement coming from the volumes of the cubes.
Summing over the values of l results in a transfer time
that scales as Dð0; xÞα−d for d < α < dþ 1.
To calculate the time it takes for each expansion or

contraction, we invoke the following lemma.
Lemma 12. Let A and B be two disjoint subsets of Λ,

and 0 < C < ∞. Then, if

jψð0Þi ¼ 1ffiffiffiffiffiffijAjp X
i∈A

jii; ð158Þ

there exists a free-particle Hamiltonian HðtÞ defined in
Eq. (123) with jhijj ≤ C for all i; j ∈ Λ such that, for any
θ ∈ R,

jψðTÞi ∝ cos θffiffiffiffiffiffijAjp X
i∈A

jii þ sin θffiffiffiffiffiffijBjp X
i∈B

jii; ð159Þ

at time

T ≤
π

2C
ffiffiffiffiffiffiffiffiffiffiffiffijBjjAjp : ð160Þ

Proof.—We prove the lemma by construction. Consider
the Hamiltonian

HðtÞ ≔ sgnðtan θÞ
X
k∈A

X
j∈B

iCðjjihkj − jkihjjÞ: ð161Þ

Without loss of generality, we take θ ∈ ½0; ðπ=2Þ�; the
generalization to other θ is straightforward. By permutation
symmetry, the wave function takes the form Eq. (159) with
θðtÞ a function of time. Pick any j ∈ B. We can explicitly
evaluate

dθ
dt

¼
ffiffiffiffiffiffijBjp

cos θ
dhjjψðtÞi

dt
¼ −i

ffiffiffiffiffiffijBjp
cos θ

hjjHjψðtÞi ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffi
jBjjAj

p
:

ð162Þ
Since the value of θ at which jψðtÞi is given by
Eq. (159) is in ½0; ðπ=2Þ�, we conclude that Eq. (162)
implies Eq. (160). ▪
By construction, the time τ of our perfect state-transfer

algorithm is given by

τ ¼ 2
Xq
s¼1

TB;s; ð163Þ

where TB;s is the time it takes to expand from Bð0Þ
s−1 to Bð0Þ

s ,

which is also the time it takes to contract BðxÞ
s into BðxÞ

s−1.
To evaluate these times, we use Lemma 12 with C ¼ 1=2sα

to get
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TB;s≤π
2sαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðs−1Þdð2sd−2ðs−1ÞdÞ
q ¼ 2dπffiffiffiffiffiffiffiffiffiffiffi

2d−1
p 2sðα−dÞ; ð164Þ

for all s ¼ 1;…; q. Here, we have lower bounded the

number of sites in Bð0Þ
s by 2sd=2.

For α ≠ d, summing over s gives

τ ≤
2dþ1πffiffiffiffiffiffiffiffiffiffiffiffiffi
2d − 1

p 2ðqþ1Þðα−dÞ − 1

2α−d − 1

≤

( 2dþ3πffiffiffiffiffiffiffiffi
2d−1

p 1
2α−d−1Dðx; 0Þα−d ðα > dÞ;

2dþ1πffiffiffiffiffiffiffiffi
2d−1

p 1
1−2α−d ðα < dÞ:

ð165Þ

On the other hand, at α ¼ d, we have

τ ≤ q ×
2dπffiffiffiffiffiffiffiffiffiffiffiffiffi
2d − 1

p ≤
2dπffiffiffiffiffiffiffiffiffiffiffiffiffi
2d − 1

p ½1þ logDðx; 0Þ�: ð166Þ

Therefore, Theorem 11 follows. ▪
There are two important consequences of Theorem 11.

First, even a single quantum mechanical degree of freedom
can perform state transfer as asymptotically well as the
previously best-known protocol in an interacting many-
body system [8] for α ≥ d. Second, Theorem 11 proves that
any possible improvement to Theorem 9 must be subalge-
braic. Both the linear light cone and the superlinear
polynomial light cones we prove for free quantum systems
with long-range interactions are now known to be optimal.
Theorem 11 is also applicable to spin systems, since the
spin degrees of freedom may be treated as hard-core
bosons. Similarly, the protocol applies to Hamiltonians
with on-site and particle-number-conserving interactions
such as the Bose-Hubbard model: The interactions have no
effect, since at all times during the protocol there is at most
a single particle in the system.
As noted in the introduction, this state-transfer protocol

is naturally realized in experiments whenever there is a
conserved quantity. For example, in a spin system with
z-spin conservation, we can prepare the system in a highly
polarized state with a single up spin; the location of the up
spin represents the location of the single quantum degree of
freedom, and our state-transfer protocol immediately
applies. In trapped ion crystals, it is natural to use a large
transverse magnetic field to help restrict to this subspace
[50]. In addition, decoherence rates are greatly reduced in
the single-particle subspace, when compared to the GHZ
states employed by Ref. [8].
A key feature of this state-transfer protocol is its

remarkable robustness to error. Here, we give a heuristic
argument for this robustness; a complete analysis is
provided elsewhere [51]. At step n of the protocol above,
there are N n ¼ 2dn sites in each domain which are all
mutually coupled; the coherent state-transfer process leads
to an enhancement in the transfer rate by a factor of N n.

Now, suppose that there is an uncorrelated random error in
the coefficients of jjihkj in Eq. (161). Using random matrix
theory [52], we estimate that these errors introduce lead to
dephasing rates of the order of

ffiffiffiffiffiffiffi
N n

p
. If jxi is the target site

for the state-transfer protocol, we estimate the loss in
fidelityF ¼ jhψðτÞjxij2 by summing up the error after each
step:

1 − F ∼
Xm
n¼1

ϵffiffiffiffiffiffiffi
N n

p ∼ ϵ
Xm
n¼1

2−dn=2 <
ϵ

2d=2 − 1
: ð167Þ

Here, ϵ is related to the error in a single coupling in the
state-transfer process. Therefore, the quantum coherent
hopping of this state-transfer protocol renders it highly
immune to imperfections in tunable coupling constants
which are inevitable in any near-term quantum simulator.
As ϵ → 0, the fidelity F → 1.

E. Efficient early-time classical boson sampling

The boson sampling problem was proposed by Aaronson
and Arkhipov [25] as a potential candidate for the demo-
nstration of quantum supremacy. While simulating the
dynamics of bosons hopping on a lattice is generally a
difficult task for classical computers, early-time evolutions
where the bosons do not have enough time to hop too far
from their initial positions can be simulated efficiently
[10,26,53]. In particular, Ref. [10] considers a scenario
where bosons are initially located at equal distances on a
lattice and allowed to move in the lattice using only nearest-
neighbor hoppings. Using the Lieb-Robinson bounds, the
authors construct an early-time classical sampler that
efficiently captures the dynamics of the bosons up to time
t� that scales polynomially with the system size and,
thereby, demonstrate a dynamical phase transition in the
computational complexity.
The early-time classical sampler was later generalized to

more complicated systems with power-law hoppings [26].
However, the easiness timescale t� in this case scales
polynomially only with the system size for α > 2d and
scales logarithmically with the system size when
dþ 1 < α < 2d. In this section, we show that the tight
free-particle bound in this paper immediately imply that t�
scales polynomially with the system size for all α > d, i.e.,
an exponentially longer easiness timescale in the regime
α ∈ ðd; 2d� compared to the previous results [26].
For pedagogical reasons, we describe here only the high-

level ideas behind the construction of the early-time boson
sampler and argue for its efficiency using the technical
results of Ref. [26]. We consider N bosons hopping on
a d-dimensional lattice under the Hamiltonian

HðtÞ ¼
X
i;j

Ji;jðtÞb†i bj; ð168Þ
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where bi is the bosonic annihilation operator on site i,
Ji;jðtÞ ≤ 1=Dði; jÞα are the hopping strengths, and the sums
are over all sites i, j on the lattice. We assume that the
lattice hasM ∝ Nβ sites in total, where β ≥ 1 is a constant.
The bosons are initially located on evenly spaced sites on

the lattice so that the minimum distance between nearest
occupied sites is 2L ∝ ðM=NÞ1=d ∝ Nðβ−1Þ=d, as shown in
Fig. 6. Denote these initial positions by j1;…; jN. We can
write the initial state in terms of the creation operators:

jψð0Þi ¼
YN
k¼1

b†jk jvaci; ð169Þ

where jvaci is the vacuum state.
The aim of boson sampling is to sample the positions of

the bosons at a later time t. The idea of the early-time boson
sampler in Refs. [10,26] is that each boson primarily hops
within its causal light cone, i.e., a bubble of radius rðtÞ
centered on its initial position. For a small enough time,
rðtÞ < L and the bosons do not interfere with each other.
The state of the system at this time can be approximated by
a product state over the bubbles, and, therefore, the
positions of the bosons can be efficiently simulated by
simulating the dynamics of each boson independently.
LetUðtÞ ¼ T exp½−i R t

0 dsHðsÞ� be the evolution unitary
generated by H at time t. By inserting pairs of I ¼ U†U in
between the creation operators, the state of the system at
time t can be written as

jψðtÞi ¼
YN
k¼1

UðtÞb†jkU†ðtÞjvaci: ð170Þ

Here, the evolution of the state can be simplified
into independent evolutions of the creation operators

b†jkðtÞ≡UðtÞb†jkU†ðtÞ. Using our free-particle bound in

Theorem 9, we can approximate b†jkðtÞ by its evolution
within a light cone originated from jk:

b†jkðtÞ ≈UkðtÞb†jkU†
kðtÞ≡ b̃†jkðtÞ; ð171Þ

where UkðtÞ ¼ T exp½−i R t
0 dsHkðsÞ� and Hk is the

Hamiltonian constructed from H by taking only the
hoppings between sites that are at most a distance L from
jk. Using Corollary 10, the error of this approximation is
O(ðNtÞ3=2=Lðα−d−ϵÞ=2), where ϵ is an arbitrarily small
positive constant and we assume t ≥ 1 without loss of
generality. Repeating the approximations for all k ¼
1;…; N, we thereby show that the state jψðtÞi is approx-
imately jϕðtÞi ¼ Q

k b̃jkðtÞjvaci.
Since the operators b̃jkðtÞ are supported on distinct

regions, the bosons from different regions do not interfere
with each other. Therefore, the probability distribution for
the positions of the bosons in jϕðtÞi is simply the product of
probability distributions of each boson hopping independ-
ently. Thus, at a later time, the positions of the bosons in
jϕðtÞi can be efficiently sampled on a classical computer.
Note that the state jϕðtÞi only approximates jψðtÞi up to

some time t�. To estimate t�, we calculate the total error of
the approximation. A simple calculation [26] shows that the
total error of approximating the N original bosons fb†ðtÞg
by the confined ones fb̃†ðtÞg is OðN5=2t3=2=Lðα−d−ϵÞ=2Þ–N
times the error of approximating each b†ðtÞ by the
corresponding b̃†ðtÞ.
Requiring that the total error of the approximation is at

most a small constant, we obtain

t� ∝ Lðα−d−ϵÞ=3N−5=3 ∝ N½ðβ−1Þðα−d−ϵÞ�=3d−ð5=3Þ; ð172Þ

where we replace L ∝ Nðβ−1Þ=d from our assumption.
Therefore, by choosing a small enough ϵ, the easiness
time t� increases polynomially with N for all α >
df1þ ½5=ðβ − 1Þ�g. In particular, the condition becomes
α > d in the limit of large β. Therefore, our free-particle
bound improves the easiness time t� exponentially com-
pared to Ref. [26] in the regime α ∈ ðd; 2d�.

VII. GENERATING TOPOLOGICALLY
ORDERED STATES

In this section, we study the minimum time it takes to
create topologically ordered states from topologically
trivial ones. Before we present our result, we define
topologically ordered states and topologically trivial states
following the definitions in Refs. [36,54]. Suppose that the
finite lattice Λ has diameter L and consists of OðLdÞ sites.
Let fjψ1i;…; jψkig be a set of orthonormal quantum
many-body states and define

FIG. 6. A depiction of the initial state in Ref. [10]. Empty
circles represent empty lattice sites, and filled circles represent
initially occupied sites.
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ϵ ¼ sup
O

max
1≤i;j≤k

fjhψ ijOjψ ii − hψ jjOjψ jij; 2hψ ijOjψ jig;

ð173Þ

where the supremum is taken over unit-norm operators O
supported on a subset of the lattice with diameter l ≤ L=2.
Roughly speaking, ϵ quantifies the ability to distinguish
between the states fjψ1i;…; jψkig using observables that
are supported on only a fraction of the lattice. We say that
the states are topological if there exist constants c; β > 0

such that ϵ ≤ cL−β and are trivial if ϵ is independent of L
[55]. We now use the Lieb-Robinson bound to bound the
minimum time it takes to convert between topological and
trivial states.
Proposition 13. Consider a time-dependent Hamiltonian

H with long-range interactions of exponent α onΛ. LetUðtÞ
be the evolution unitary generated by H at time t, let
fjψ1i;…; jψkig be a set of topologically ordered states,
and let fjϕ1i;…; jϕkig be a set of topologically trivial states.
If α > 2dþ 1 and there is a time 0 < τ < ∞ such that
jψ ii ¼ UðτÞjϕii, then there exists an L-independent con-
stant 0 < K < ∞ such that τ > Kτ�, where

τ� ≔
�
L when α > 3dþ 1;

Lðα−2dÞ=ðdþ1Þ= log2d L when 2dþ 1 ≤ α ≤ 3dþ 1:

ð174Þ

Proof.—Consider an arbitrary operator O with a support
diameter of l ≤ L=2 and let OðtÞ≡UðtÞOU†ðtÞ be the
evolved version of O. We further introduce Oðt; l0Þ ¼
trBc

l0
OðtÞ as the version of OðtÞ truncated to a ball Bl0 of

diameter l0 > l such that l0 − l is of the order of L. Using
the triangle inequality, we have

jhϕijOðτ; l0Þjϕii − hϕjjOðτ; l0Þjϕjiij
≤ 2kOðτÞ −Oðτ; l0Þk þ jhϕijOðτÞjϕii− hϕjjOðτÞjϕjiij:

ð175Þ

By our assumptions on the presence of topological order in
jψki and the absence of topological order in jϕki, there
exist constants 0 < β, a1;2 < ∞ such that

a1 −
a2
Lβ ≤ 2kOðτÞ −Oðτ; l0Þk: ð176Þ

On the other hand, using Proposition 2 for α>2dþ1 and
τ < L=v̄, where v̄ is a constant, there exists 0<C1;2<∞
such that

kOðtÞ −Oðτ; l0Þk ≤ C1Ld τ
dþ1log2dl0

l0α−d
≤ C2τ

dþ1
log2dL
Lα−2d ;

ð177Þ

where the factor Ld accounts for the support size of O. For
all α > 2dþ 1, Eq. (177) vanishes as L increases, in
contradiction with Eq. (176), unless τ ¼ Oðτ�Þ. The proof
is complete. ▪

VIII. CLUSTERING OF CORRELATIONS

In addition to the dynamics of quantum systems, the
Lieb-Robinson bounds also have implications for the
eigenstates of a Hamiltonian. In Ref. [15], the authors
show that, if a time-independent power-law Hamiltonian
with an exponent α has spectral gap Δ > 0, the correlations
between distant sites in the ground state of the system also
decay with the distance as a power law with an exponent
lower bounded by

α0 ¼ α

1þ ṽΔ−2 ; ð178Þ

where ṽ is a constant that depends on α.
The bound in Ref. [15] has a undesirable feature: For a

given value of α, varying the gap Δ also changes the
minimum exponent α0. Although this feature leads to an
intuitive implication that larger energy gaps result in faster
correlation decay, there is no known example where
ground-state correlations decay at a slower rate than a
power law with an exponent α. Indeed, we show that the
cause of this problem is tied to the previous lack of an
algebraic light cone in the quench dynamics. In particular,
by using the Lieb-Robinson bounds with algebraic light
cones [11,16,21,22,56], we show for all α > 2d that the
ground-state correlations must decay as a power law with
the exponent lower bounded by the exponent of the
Hamiltonian.
Proposition 14. Let H be a power-law Hamiltonian

with an exponent α; let A and B be local operators obeying
kAk; kBk ≤ 1, supported on X and Y such that jXj¼jYj¼1
and DðX; YÞ ¼ r > 0. Assume that H has a unique ground
state jψ0i and spectral gap Δ to the first excited state.
Define CðrÞ ≔ hψ0jABjψ0i − hψ0jAjψ0ihψ0jBjψ0i to be
the connected correlator between A and B in the ground
state. Then

jCðrÞj ≤
�
2γ−1cΓðγ

2
Þ

π

αγ=2

Δγ þ 1

�
logγ=2r
rα

; ð179Þ

where c is a constant independent of α, γ ¼ αðα − dþ 1Þ=
ðα − 2dÞ, and Γð·Þ is the Gamma function.
Proof.—First we rewrite

CðrÞ ¼
X
k>0

hψ0jAjψkihψkjBjψ0i; ð180Þ

where the sum is over the excited states jψki of the
Hamiltonian. Our strategy is to relate CðrÞ to the commu-
tator norm k½AðtÞ; B�k, which we then bound using

HIERARCHY OF LINEAR LIGHT CONES WITH LONG-RANGE … PHYS. REV. X 10, 031009 (2020)

031009-25



a Lieb-Robinson bound. To relate CðrÞ to k½AðtÞ; B�k, it is
natural to first consider the value of ½AðtÞ; B� in the ground
state, whose magnitude is bounded by k½AðtÞ; B�k:

hψ0j½AðtÞ; B�jψ0i ¼ hψ0jAðtÞBjψ0i − H:c:

¼
X
k>0

eiEkthψ0jAjψkihψkjBjψ0i − H:c:;

ð181Þ
where Ek are the eigenvalues of the Hamiltonian and we set
ground-state energy E0 ¼ 0 so that Ek > 0 for all k > 0.
Note that the k ¼ 0 terms cancel between the first term and
its Hermitian conjugate.
By observation, we note that if we could replace the

terms eiEkt in Eq. (181) by a unit step function ΘðEkÞ that
satisfies ΘðEkÞ ¼ 1 and Θð−EkÞ ¼ 0, we immediately
obtain the expression of CðrÞ in Eq. (180). In fact, this
replacement is easy to achieve using the identity

lim
ϵ→0þ

1

2πi

Z
∞

−∞
dt

eiEkt

t − iϵ
¼ ΘðEkÞ: ð182Þ

Therefore, we have

lim
ϵ→0þ

1

2πi

Z
∞

−∞
dt

hψ0j½AðtÞ; B�jψ0i
t − iϵ

¼ CðrÞ; ð183Þ

and we obtain the relation

jCðrÞj ¼
���� lim
ϵ→0þ

1

2πi

Z
∞

−∞
dt

hψ0j½AðtÞ; B�jψ0i
t − iϵ

����
≤
1

π

Z
∞

0

dt
k½AðtÞ; B�k

t
: ð184Þ

Unfortunately, this relation is not useful; the right-hand
side of Eq. (184) diverges even when the commutator
k½AðtÞ; B�k does not increase with time. The failure of such
a simple treatment is not surprising, as we do not use the
crucial assumption on the existence of a finite energy
gap (Ek ≥ Δ).
Intuitively, to make the integral in Eq. (184) converge,

we can multiply the integrand by a function that decays
quickly with t. A natural choice is a Gaussian function
e−ðυt=2Þ2 , where υ > 0 is an adjustable parameter; it decays
with time quickly enough to make the integral converge,
and its Fourier transformation is rather easy to handle. By
multiplying this function to the integrand in Eq. (182), we
arrive at a convolution of the step function with the
Gaussian function:

lim
ϵ→0þ

1

2πi

Z
∞

−∞
dt

eiEkte−ðυt=2Þ2

t − iϵ

¼ 1ffiffiffi
π

p
υ

Z
∞

−∞
ΘðEk − EÞe−E2=υ2dE≕ fðEkÞ: ð185Þ

It is easy to verify that fðEkÞ ¼ 1 − gðEkÞ and fð−EkÞ ¼
0þ gðEkÞ for some positive function gðEkÞ ≤ 1

2
e−ðEk=υÞ2 .

Thus, fðEkÞ closely resembles the step function ΘðEkÞ,
albeit with a smoother transition from 0 to 1.
Inserting this convolution into Eq. (183), we have

lim
ϵ→0þ

1

2πi

Z
∞

−∞
dt
hψ0j½AðtÞ;B�jψ0ie−ðυt=2Þ2

t− iϵ

¼ CðrÞ−
X
k>0

gðEkÞ½hψ0jAjψnihψnjBjψ0iþH:c:�: ð186Þ

Using a Cauchy-Schwarz inequality, we can then bound the
absolute value of the sum over k in the right-hand side by

X
k>0

2gðEkÞjhψ0jAjψnihψnjBjψ0ij ≤ e−ðΔ=υÞ2 ; ð187Þ

where we use that Ek ≥ Δ. Thus, we arrive at our desired
relation:

jCðrÞj ≤ 1

π

Z
∞

0

dt
e−ðυt=2Þ2

t
k½AðtÞ; B�k þ e−ðΔ=υÞ2 : ð188Þ

Finally, we bound the commutator norm using the Lieb-
Robinson bound in Ref. [16]:

k½AðtÞ; B�k ≤ c
tγ

rα
; ð189Þ

where c is a constant and γ ¼ αðα − dþ 1Þ=ðα − 2dÞ. We
obtain

jCðrÞj ≤ 2γ−1cΓðγ
2
Þ

π

1

υγrα
þ e−ðΔ=υÞ2 ; ð190Þ

where Γð·Þ is the Gamma function. By choosing υ ¼
Δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α log r

p
, we get

jCðrÞj ≤
�
2γ−1cΓðγ

2
Þ

π

αγ=2

Δγ þ 1

�
logγ=2r
rα

: ð191Þ

Therefore, the correlators in the ground state of a power-
law Hamiltonian with α > 2d also decay with the distance
as a power law (up to a logarithmic correction) with the
same exponent α as that of the Hamiltonian. In particular,
this exponent is independent of the energy gap Δ, in
contrast to the previous result in Ref. [15]. ▪
Note that, in Eq. (190), we use an algebraic light cone

bound from Ref. [16] instead of the tighter bounds in recent
works [11,21,22,56], because the bounds inRefs. [11,21,56]
decay with the distance slower than 1=rα while the bound in
Ref. [22] does not hold for 2d < α ≤ 2dþ 1.
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IX. CONCLUSION

We have demonstrated a hierarchy of linear light cones—
a sequence of metrics and protocols under which the
emergent locality that arises in local quantum many-body
systems breaks down at different exponents α of long-range
interactions. The most general such light cone—the Lieb-
Robinson light cone that bounds commutator norms—can
become superlinear for any α < 2dþ 1. We conjectured that
the Frobenius light cone that controls many-body chaos and
state transfer can be superlinear only when α < 1þ 3

2
d and

proved this result in d ¼ 1 using the operator quantum walk
formalism. Finally, in noninteracting systems, we proved
both linear (α > dþ 1) and superlinear (d < α ≤ dþ 1)
light cones along with the optimality of these bounds. As
such, we close a number of long-standing questions in the
literature on the limits and capabilities of quantum dynamics
with long-range interactions.
Besides state transfer and many-body chaos, we have

also demonstrated a wide range of applications of these
(nearly) tight light cones. We proved that the growth of
connected correlations obeys the same light cone as that of
the Lieb-Robinson bound. In the context of digital quantum
simulation, we used the Lieb-Robinson bound to construct
an approximation for the time-evolved version of a local
observable and, thereby, reduced the cost of simulating the
observable on quantum computers for all α > 2dþ 1.
Similarly, using the free light cone, we constructed an
efficient early-time classical boson sampler for all α > d,
exponentially improving the previous best estimate in some
regime of α. Additionally, we bounded the time it takes to
generate topologically ordered states using power-law
interactions. Finally, we tightened the minimum correla-
tion-decay rate in the ground state of a gapped power-law
Hamiltonian.
The hierarchy of linear light cones revealed in this paper

has important implications both on the capabilities of
quantum technologies exploiting long-range interactions
as well as on the nature of quantum information dynamics
and thermalization in these systems. A complete under-
standing of quantum chaos and state transfer, at the very
least, requires the construction of a new mathematical
framework beyond the Lieb-Robinson bounds, perhaps
along the lines of our operator quantum walk. It is an
interesting open question whether and how the hierarchy of
different notions of locality revealed in this manuscript
reveals itself in aspects of quantum chaos besides OTOCs,
perhaps including entanglement dynamics or eigenvalue
statistics. The tightness of the superlinear polynomial light
cone t ∼ rα−1, found in d ¼ 1 for 2 < α < 3 in Ref. [21] as
well as the existence of algebraic light cone below α ¼ 2d
in [11,16,56], remains an open problem. Last, it also
remains an important future challenge to obtain the
Frobenius light cone in two or more dimensions, as well
as to rigorously study the light cone that controls the
decoherence of a quantum system subject to long-range

random noise, which was conjectured to be linear for
α > dþ 1

2
[57].
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Note added in proof.—Recently, we became aware that a
second version of Ref. [22] appeared, which includes
an analysis like Theorem 5 involving applying a very
similarHðtÞ to a particular initial state where all qubits are
in j0i, except for the qubit at site 0, which starts in an
arbitrary state aj0i þ bj1i. The result, up to a Hadamard
gate, is an encoding of the initial qubit into state
aj000…iBl

j0if þ bj111…iBl
j1if, where site f is distance

r away from site 0, Bl contains sites within a ball of radius
l around site 0, and all other qubits [22].
We add that, upon undoing the Greenberger–Horne–

Zeilinger-like state on Bl with nearest-neighbor CNOTs, one
obtains aj0i0j0if þ bj1i0j1if, where all other qubits are in
j0i. Reversing this full procedure with the roles of 0 and f
exchanged, one obtains single-qubit state transfer from 0 to
r; i.e., all qubits end up in j0i, except for qubit f, which
ends up in state aj0i þ bj1i. Using the language defined in
the introduction, this state transfer, like that in Ref. [8], is
not universal in that it assumes that all qubits involved,
except for the one at site 0, start in j0i. This protocol takes
time Oðrα=ð2dþ1ÞÞ and is faster than that of Ref. [8] for
dþ 1

2
< α < 2dþ 1. In particular, for these values of α,

this protocol can be used to shorten, relative to the result of
Ref. [8], the preparation time of multiscale entanglement
renormalization ansatz (MERA) states of linear size L
down to OðLα=ð2dþ1ÞÞ.
For d < α < dþ 1, the state-transfer protocol

just presented can be sped up with the help of the
protocol of Ref. [8]. In particular, we can use the
protocol from Ref. [8] to encode in time t a qubit
aj0i þ bj1i at site 0 into a GHZ-like state aj000…i þ
bj111…i of ∼td=ðα−dÞ qubits, as compared to ∼td qubits
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in the original protocol above. The same procedure
can be used to prepare the GHZ state around site f,
while the reverse of the procedure can be used to
undo the preparation of these GHZ-like states around
both site 0 and site f. With this enhancement on the
preparation and the undoing of the GHZ-like states, the
state-transfer protocol takes time t ∼ rαðα−dÞ=ðαþdÞ, is
faster than both of the original protocols, and can be
used to prepare MERA states of linear size L in
time OðLαðα−dÞ=ðαþdÞÞ.
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