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In quantum many-body systems with local interactions, quantum information and entanglement cannot
spread outside of a linear light cone, which expands at an emergent velocity analogous to the speed of light.
Local operations at sufficiently separated spacetime points approximately commute—given a many-body
state |y), O, (1)Oyly) = O,O,(t)|y) with arbitrarily small errors—so long as |x — y| X v, where v is
finite. Yet, most nonrelativistic physical systems realized in nature have long-range interactions: Two
degrees of freedom separated by a distance r interact with potential energy V(r) o 1/r% In systems with
long-range interactions, we rigorously establish a hierarchy of linear light cones: At the same @, some
quantum information processing tasks are constrained by a linear light cone, while others are not. In one
spatial dimension, this linear light cone exists for every many-body state |y/) when a > 3 (Lieb-Robinson
light cone); for a typical state |y) chosen uniformly at random from the Hilbert space when « >%
(Frobenius light cone); and for every state of a noninteracting system when a > 2 (free light cone). These
bounds apply to time-dependent systems and are optimal up to subalgebraic improvements. Our theorems
regarding the Lieb-Robinson and free light cones—and their tightness—also generalize to arbitrary
dimensions. We discuss the implications of our bounds on the growth of connected correlators and of
topological order, the clustering of correlations in gapped systems, and the digital simulation of systems
with long-range interactions. In addition, we show that universal quantum state transfer, as well as many-
body quantum chaos, is bounded by the Frobenius light cone and, therefore, is poorly constrained by all

Lieb-Robinson bounds.

DOI: 10.1103/PhysRevX.10.031009

I. INTRODUCTION

While nonrelativistic quantum systems do not possess
intrinsic absolute speed limits, their dynamics exhibit a form
of causality analogous to the speed of light. Lieb and
Robinson first deduced the existence of a finite velocity
for the propagation of information in quantum spin
systems with finite-range interactions [1]. This velocity
leads to ballistic dynamics, out of which a linear light cone
emerges.

“andrew. j-lucas@colorado.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOL.

2160-3308/20/10(3)/031009(29)

031009-1

Subject Areas: Quantum Physics, Quantum Information

For systems with power-law interactions, i.e., those that
fall off as 1/r* in the distance r between two degrees of
freedom, the story is much richer. Such long-range inter-
actions are exhibited in a variety of quantum simulators and
technological platforms, including ultracold atomic gases
[2], Rydberg atoms [3], one-dimensional chains of trapped
ions [4], polar molecules [5], color centers in solid-state
systems [6], and atoms trapped in photonic crystals [7].
More formally, most physical systems consist of objects
with electrical charges or electromagnetic dipoles, and so,
fundamentally, these systems also exhibit long-range inter-
actions. Since most developments in condensed matter
physics and statistical physics are based on systems with
short-range, local interactions, it is important to know to
what extent the canonical paradigms still hold in the
presence of long-range interactions. In addition to being
interesting from this fundamental-science perspective,
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long-range interactions can also be used to significantly
improve the performance of various quantum technologies,
such as quantum computing [8—10], quantum simulation
[11,12], and quantum metrology [13,14].

Until recently, it was unknown whether or not there
existed a critical value of the power-law exponent a above
which a linear light cone is present. Hastings and Koma
[15] first demonstrated a light cone whose velocity diverges
exponentially in distance for a greater than the lattice
dimension d. Progressive improvements yielded a series
of algebraic light cones for a > 2d, which tend to a linear
light cone in the limit as @ — oo [16,17]. After numerical
simulations suggested the existence of a sharp linear
light cone [18-20], a proof of generic linear light cones
was found for systems with interaction exponent
a>2d+1 [21,22].

Complementary to the Lieb-Robinson bounds are proto-
cols that achieve the (asymptotically) fastest allowable rates
of quantum information processing. One such dynamical
task is quantum state transfer, which is used experimentally
to demonstrate the transmission of entanglement in quantum
systems [23]. These protocols can be directly connected to
the Lieb-Robinson bound [8,24] and are a standard way to
benchmark the sharpness of these bounds.

The goal of this paper is to answer two important
questions: First, can the result in Refs. [21,22] be tight-
ened? In particular, does there exist a universal linear
light cone for some a < 2d + 1? Second, do the tightest
light-cone bounds imply correspondingly tight bounds on
interesting measures of information spreading, such as
quantum state transfer or scrambling? In other words,
are Lieb-Robinson bounds optimal in practice for con-
straining quantum information dynamics?

Surprisingly, the answer to both questions is “no.” In this
paper, we show that quantum information can spread at
arbitrarily large “velocities” once the power-law exponent
a < 2d + 1, thus proving the tightness of the recent bounds
[21,22]. We also show that a Frobenius bound can give
tighter constraints on quantum state-transfer tasks—as well
as many-body quantum chaos—than Lieb-Robinson bounds.
We prove that the light cone given by the Frobenius bound is
linear for a > % in d = 1 and conjecture the generalization
a> %d + 1 for higher dimensions. Additionally, in systems
that are described by noninteracting bosons or fermions, we
prove a linear free-particle light cone for a > d + 1. All of
these cutoffs in this hierarchy of linear light cones are tight;
see Fig. 1.

These results immediately demonstrate that the long-
observed mismatch between Lieb-Robinson bounds and
state-transfer protocols that aim to saturate the bounds, such
as that of Ref. [8], is not entirely a limitation of our creativity
or mathematical prowess but is rather linked to a fundamental
property of nature. There are, simply put, multiple notions of
locality in systems with long-range interactions. Furthermore,
the tensions among these localities manifest themselves
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FIG. 1. The hierarchy of linear light cones in one dimension;
we say that a light cone has exponent y if ||[Ao(?), B,]|| is large
only when ¢ 2 r”. The plot depicts the exponents of the Lieb-
Robinson light cone (solid line) [21], the Frobenius light cone
from Theorem 7 (dot-dashed line), and the free light cone from
Theorem 9 (dashed line) as functions of « in one dimension. The
free light cone is known to be a tight bound for all . We also
show that the Lieb-Robinson and Frobenius light cones are not
linear below a = 3 and a = %, respectively.

within a range of a that is easily accessible in experiment.
This unexpected result is the key finding of our paper.

The hierarchy of linear light cones we demonstrate is not
only a profound property of nature, but also has important
applications for quantum technologies. For example, sys-
tems with long-range interactions can be hard problems to
simulate, on both classical and quantum computers.
Proving the tightness of the linear Lieb-Robinson light
cone at a > 2d + 1 proves that a two-dimensional gas of
atoms with dipole-dipole interactions can never be simu-
lated as easily as one with local interactions with a provably
small error. At the same time, the hierarchy of light cones
reveals that some problems are much easier to simulate than
had previously been realized. As a specific example, the
Bose-Hubbard model (with long-range hopping) has been
argued to be so difficult that its efficient simulation would
serve as a demonstration of quantum supremacy [25]. Our
light cones show that it is not difficult to simulate the low-
density Bose-Hubbard model for a > d, whereas previ-
ously this simulation was known only for a > 2d [26]; as a
result, we substantially constrain the parameter space in
which quantum supremacy can be demonstrated. This
result constrains how and when atoms with dipole-dipole
interactions trapped in a two-dimensional optical lattice can
perform hard quantum computation or simulation.

High-fidelity quantum state transfer can be used to build
fast remote quantum gates, which can significantly speed
up a large-scale quantum computer. There is a growing
interest in designing fully connected quantum computers
that take advantage of long-range interactions among
physical qubits [9], and finding the optimal quantum
state-transfer protocols using long-range interactions is a
crucial part of the design. The hierarchy of light cones we
find reveals the fundamental inadequacy of Lieb-Robinson
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bounds for constraining universal state-transfer algorithms,
which transfer the state of a single qubit independently of
the states of other qubits. We develop a quantum walk
formalism for constraining universal state-transfer proto-
cols and obtain parametrically better bounds than the Lieb-
Robinson bound. Furthermore, the framework that is
initiated in this work also reveals novel state-transfer
protocols with desirable properties. Specifically, we present
a new method for using long-range interactions for state
transfer that has two experimentally desirable features.
First, our new protocol takes place in a constrained sub-
space of a many-body Hilbert space that is naturally
realized in atomic platforms with a conserved magnetiza-
tion. Second, the protocol is extraordinarily robust to
perturbations in the Hamiltonian, a desirable feature on
account of the low-precision tunable couplers present in
near-term quantum information processors.

Platforms with long-range interactions have been pro-
posed as natural quantum simulators which approximately
realize @ =0 (i.e., all-to-all) interactions. Systems with
such a complete breakdown of locality can be highly
desirable. For example, they may simulate quantum gravity
via the holographic correspondence [27] and may enable
the production of metrologically useful entanglement via
spin squeezing [13,28-31]. An important open question is
how small @ needs to be for locality to break down to a
degree sufficient for realizing a particular application or
particular physics. For example, are dipolar 1/7° inter-
actions in a given 1D, 2D, or 3D system sufficiently
nonlocal? Our results indicate that the answer to these
questions may depend on whether there are additional
constraints in the system. Indeed, in a highly constrained
subspace at high total spin in an SU(2)-symmetric model,
we expect that the constraints arising from locality are
stronger than the Lieb-Robinson light cone suggests,
similar to the stronger light cone that arises for non-
interacting particles. Therefore, in such constrained mod-
els, reaching nonlocality may require a lower value of «
compared to unconstrained models.

Last, we emphasize that, given that there is a hierarchy of
different notions of locality, exquisite care must be taken to
analyze and interpret experimental results in long-range
interacting quantum systems.

II. SUMMARY OF RESULTS

We now provide a heuristic overview of why the
hierarchy of light cones arises, along with a myriad of
additional applications of these results in near-term quan-
tum simulation experiments. The remainder of the paper
then contains the rigorous proof of all results, along with a
brief conclusion.

For illustrative purposes, let us first consider a one-
dimensional spin—% chain with two-body long-range inter-
actions. Such models naturally arise in experiments, for

example, using the nuclear spin % of an appropriate atom.

Letting X? = (X;,Y;,Z;) denote the three Pauli matrices
acting on the spin on the ith site, we can consider a very
broad family of time-dependent Hamiltonians of the form

I (1
. <->aX,ﬁX§- (1)
i—J| '

H(t) =Y W OX;+ ) =
i

i.j.By

Roughly speaking, if the coefficients ijy are all of the same
order, we call this Hamiltonian a model with long-range
interactions of power-law exponent a. Remarkably, even
though every spin is coupled with every other spin, this
model is, for many practical purposes, local for a suffi-
ciently large [21,22] (indeed, this Hamiltonian even
becomes finite range in the limit @ — o0). But, what do
we mean by locality? And how small can a get before
locality breaks down? We see that, in fact, there are
multiple notions of locality, depending on the specific
quantities of interest: Different information processing
tasks are sped up by long-range interactions at different
values of a.

A. Lieb-Robinson light cone

A sensible notion of locality is to demand that any local
perturbation acting at site x influences only physics at sites
within distance vf of the original site x, after an amount of
time ¢ [32]. This notion of locality is imposed by the
original Lieb-Robinson bound [1], which implies a “linear
light cone”: The quantity ||[X((7), X,]|| is small for r > vt,
where X, and X, are local operators on lattice sites 0 and r,
respectively, and |- || denotes the operator norm (the
largest magnitude of the operator’s eigenvalues). More
precisely, a linear light cone here means that, for any small
(but finite) value of €, we can find a finite velocity v such
that ||[Xo(7), X,]|| < e for |t| < r/v.

As noted previously, recent works establish linear Lieb-
Robinson light cones for a > 2d + 1 [21,22]. The first
main result of this work is to prove that linear Lieb-
Robinson light cones are guaranteed only for any
a > 2d + 1. We prove this result by explicitly constructing
a Hamiltonian H(z)—of the form (1), generalized to any
d—such that

l2d+1

IXo(2). X, 11 2 (2)

ra

for two sites separated by a distance r (Theorem 5).

The construction of H(t) that achieves Eq. (2) can be
broken down into three steps. In the first step, we use time
O(1) to expand the operator X, to an operator A, supported
on O(1%) sites located in a ball B; of radius ¢ (Fig. 2). We
then push this operator into another ball 5, of radius O(?),
which is centered around site X,, using the Hamiltonian
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FIG. 2. The norm of the interaction between two balls 3, , of size #, separated by a distance r, determines the shape of the light cone.
The critical values of a after which this norm becomes large differ depending on whether we use the operator or Frobenius norm and

whether the system is interacting or free.

Hy(1) =33 2% 3)

ieB, jeB, |i - j|a

Finally, we contract the operator onto site X, in time O(¢). By
a direct calculation, we show that, at the end of this process
and to the lowest order in ¢, ||[X,(?), X,]|| is proportional to

the nested commutator ¢||[A,, [H,(2),A,]]||, where
Ap =[] x 4)
i€B),

The nested commutator can be bounded:

5

JjEB,

[2d

~Y o )

JEB,

1Az [H(2). Ay]]]| ~ ¢/

and, hence, we obtain Eq. (2). We conclude that, in a time #, it
is faster to use long-range interactions than it is to use finite-
range ones to grow ||[Xo(7), X,]|| when a < 2d + 1.

There are a number of important consequences of the
tightness of the linear light cone at @ =2d + 1. For
example, in Sec. IV C, we show that connected correlation
functions of the form

C(1) = (w (D) XoX, |y (1)) = (w (1) Xoly (1)) (v ()X, [ (7))

t2d+1
(6)

~ re
can be achieved, even when the initial state [y/(0)) does not
have any entanglement between sites 0 and r. Because such
correlation functions are routinely measured in quantum
simulation experiments, this result resolves a long-standing
issue of when the nonlinear light cones for correlations can
occur with long-range interactions. For example, the
experiment in Ref. [33] suggests that @ ~ 1 marks the
transition between linear and nonlinear light cones for spin
correlations in an 11-site long-range Ising model. Our
result implies that other quantum systems with long-range
interactions can transmit information much faster than this
Ising model.

Another important application of Lieb-Robinson bounds
is to design efficient approximation algorithms for simulat-
ing quantum many-body dynamics, with either a classical
computer [34] or a quantum computer [35]. Given an initial
state [y) and Hamiltonian H of the form (1), we consider the
task of estimating the expectation value of the time-evolved
observable (A(1)) = (y|U(t)"AU(t)|y) on a quantum com-
puter, where U(t) = e~'H" is the time translation operator
generated by H (assuming it does not depend on time).
When A is a local operator, Lieb-Robinson bounds suggest
that (A(¢)) should depend only on the “local” information
stored in the wave function: One may as well trace out and
ignore the sites sufficiently far away. If a Lieb-Robinson
bound implies we can trace out all sites a distance > vt away
from the support of A, the computation of (A(¢)) requires a
small fraction of the resources needed to construct the full
U(t) acting on the entire many-body Hilbert space.
Proposition 6 makes this intuition precise and constrains
the computational resources needed for a faithful quantum
simulation.

In Sec. VII, we use Lieb-Robinson bounds to constrain
the minimum time 7z* it takes to create topologically ordered
states from topologically trivial ones. This result is of great
practical value for experiments either studying topological
matter or building topological quantum memories and
topological quantum computers. In finite-range interacting
systems, 7* scales linearly with the system size [36]. We
extend this result in Proposition 13 to power-law interacting
systems with a > 3d + 1.

In Sec. VIII, we bound the spatial decay of correlation
functions in a ground state of a gapped quantum phase with
long-range interactions. In Ref. [15], the authors show that,
in a time-independent power-law Hamiltonian with an
exponent o and a spectral gap between the ground state
and the first excited state, the correlations between distant
sites in the ground state of the system also decay with the
distance as a power law, with an exponent lower bounded
by & < a. Yet, no experiment and no numerical calculation
has found a gapped system demonstrating correlation decay
with an exponent strictly less than a. We prove that it is
indeed impossible to saturate this bound; we show that the
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correlation exponent is lower bounded by o = a when-
ever a > 2d.

More broadly, a sharper knowledge of Lieb-Robinson
light cones in quantum systems may improve previous
bounds on area laws for quantum entanglement [37] and
heating rates in periodically driven systems [11,17,38—41].

B. Frobenius light cone

In Sec. V, we turn to a stronger notion of light cone,
inspired by recent developments in the theory of many-
body quantum chaos [42,43]. Instead of the operator norm,
we consider the Frobenius norm

r T
1% (0). X += f (ol LS )

This Frobenius norm, normalized by dimension, can be
interpreted as the out-of-time-ordered correlation (OTOC)
function used to probe early-time chaos in many-body
systems [42,43] or, equivalently, as the “fraction” of the
operator X(z) that has support on the site r. More
intuitively, this OTOC can be understood by the following
thought experiment. Consider an initial quantum state |y),
and perturb this quantum state by two operators: first, the
local operator X, (which flips spin r in the conventional Z
basis) and then the Heisenberg-evolved operator X,
which amounts to flipping spin O at a later time ¢. Does
the order of these operations matter? Clearly, not if t = 0:
XoX, = X,X,. However, if the operations occur at different
times ¢, the effect could be significant: X (7) X, |w) might be
a very different quantum state than X,X,(7)|w). We can
quantify how far apart these two states are in Hilbert space
by asking for the typical length of [X((7),X,]|yw) or the
value of C = (y|[Xo(1), X,]"[Xo(7), X,]|w). A suitable
notion of “typical” is to choose a random initial state in
the Hilbert space. Averaging over all initial conditions
amounts to replacing tr(|y) (w| - --) — tw{[1/dim(H)]---}.
Hence, the average value of C is given by Eq. (7).
Mathematically, the Frobenius norm gives the average
of the squared eigenvalues, while the operator norm
used in Lieb-Robinson bounds is the maximal eigen-
value. Certainly, the Frobenius norm is always smaller:
1Xo(6)- X, < 1Xo(1). X,]].

Remarkably, in long-range interacting systems, we can
show that the Frobenius norm not only is smaller by a
constant prefactor but is rather constrained by parametri-
cally stronger bounds. Indeed, we prove in Sec. V that
1Xo(7), X,]|| r is bounded inside of an even stricter light
cone, which is linear in one-dimensional models with two-
body interactions so long as o > % When X, is replaced by
an operator on infinitely many sites 0, —1, -2, ..., we also
demonstrate the optimality of this bound, up to subalge-
braic corrections.

To understand how the Frobenius light cone is deduced,
let us revisit the argument for the Lieb-Robinson light
cone. Modifying Eq. (5) to use the Frobenius norm, we
observe that

t[[Az, [Ha (1), Ayl p ~

7.
J
Sy

£(3/2)d+1

— (8

F

Hence, in d dimensions, the Frobenius norm of the operator
grows faster than in local models using long-range inter-
actions once @ < 3d + 1. For d = 1, Theorem 7 proves that
this intuition is correct: The Frobenius light cone is linear
when a > 3. In between 3 < @ < 3, in d = 1, this theorem
also guarantees that the Frobenius light cone expands no
faster than 1 ~ r*~3/2) (up to logarithmic corrections).

The mathematical method used to prove the Frobenius
light cone is based on an interpretation of the time evolution
equation for operators as a many-body quantum walk
governing the time evolution of a probability distribution.
By bounding the growth of expectation values in this
probability distribution using techniques from classical
probability theory, we constrain the growth of Eq. (7).
This constraint represents a radical shift in perspective
compared with the conventional Lieb-Robinson theorem,
which is based on applying the triangle inequality in an
appropriate interaction picture (see, e.g., Refs. [16,22]).

Since the Frobenius norm (squared) gives infinite tem-
perature OTOCs, the Lieb-Robinson light cone is not
relevant for infinite-temperature many-body quantum
chaos and the growth of operators. A careful determination
of bounds on quantum chaos and operator spreading is
essential for building on recent experimental progress in
measuring OTOCs [44,45] and quantum information
scrambling [12] to design optimal information scramblers.
Such work is crucial in developing quantum simulators of
holographic quantum gravity [27].

As emphasized before, many quantum state-transfer
tasks, including a “background-independent” state transfer
where X;(t) = X;, Y;(t) = Y;, and Z(t) = Z; (hence, state
i is transferred to j independently of all other qubits), are
constrained by the Frobenius light cone, which is tighter
than the Lieb-Robinson light cone: See Theorem 7.

C. Free light cone

Finally, we consider the light cone in systems of non-
interacting particles. While these systems are rich enough
such that they sometimes lie beyond the regime of
computability for classical computers, their dynamics
can be essentially reduced to the motion of a single particle.
Returning to the same setup as Fig. 2, we may again
estimate when the linear light cone fails by computing the
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weight of a single particle hopping the distance ~r from the
ball B, to B, after time r:

i d+1
cic; t
Jt
t T S s (9)
ieB,.jeb,
Here, ¢/ and c; are the creation and the annihilation

l
operators, respectively, for the noninteracting particles.
Following our previous logic, the free particle is con-
strained within a linear light cone when a > d + 1. We
rigorously prove that the free light cone is linear for
a>d—+1 in Theorem 9 and prove that no linear light
cones exist for ¢ < d + 1 in Theorem 11. When combined,
these two theorems also prove that, for d < a < d + 1, the
form of the light cone is no worse than ¢ ~ r*~¢ and that no
further improvement on the exponent o — d can be found.

Specifically, in Theorem 11 (Sec. VID), we show that
this estimated growth rate is achieved by a novel quantum
state-transfer protocol involving a single particle. The
protocol works by successively spreading a particle to
larger and larger regions of the lattice, each time doubling
the number of sites sharing the particle (Fig. 3).
Specifically, after the kth step of the protocol at time 7y,

an operator cg originally supported at the origin becomes

> ck, (10)

sites xin a cube of length O(2%)

Cg(tk) X

where the precise set of sites x is depicted in Fig. 3. After
spreading the particle to a square large enough to cover
both the origin and the target site, we simply reverse the
protocol to concentrate the particle on the target site. In
each step of the protocol, the weaker interactions due to the
power-law constraint are well compensated by the volume

of the squares, making the protocol superlinear for all
a < d+ 1. As emphasized in the introduction, this state-
transfer protocol has (at least) two appealing features for
experimental implementation and could enhance the per-
formance of quantum computing architectures assisted by
long-range interactions [9].

The free light cone is also relevant for early-time
dynamics in low-density models of interacting fermions
or bosons, which are readily realized in experiment.
The observed slowdown of dynamics between the Lieb-
Robinson and free light cones makes the Hubbard model
exponentially easier to simulate in experimentally relevant
regimes (e.g., polar molecules) at early times, with impli-
cations for demonstrating quantum supremacy (Sec. VIE).

III. FORMAL PRELIMINARIES

We now more carefully introduce the problem that we
address in this paper. First, we give a precise definition of a
many-body quantum system with long-range interactions.
We need to first define the distance between two points.
Formally, we do so as follows. Let A be the vertex set of a
d-dimensional lattice graph with edge set E,. A lattice
graph (A,E,) is a graph which is invariant under
d-dimensional discrete translations: Mathematically speak-
ing, Z? C Aut(A, E,), where Aut denotes the group of
graph isomorphisms from (A, E, ) to itself. We assume that
all vertices have a finite degree in E and that |A/Z¢| < oo;
i.e., the unit cell has a finite number of vertices, and every
vertex has a finite number of (nearest) neighbors. This
graph imbues a natural notion of distance, which we use for
the rest of the paper. Let D:Ax A — Z* denote the
shortest path length between two vertices, also known as
the Manhattan metric.

A many-body quantum system is then defined by placing
a finite-dimensional quantum system (e.g., a qubit) on

FIG. 3.
initially at O to the square B (10), then to Bg)) and Bg())

An illustration of our single-particle state-transfer protocol in d = 2 dimensions. Through four steps, we redistribute a particle
, and finally to B

, each time doubling the size of the region sharing the particle. We

use different colors to mark the additional sites that the particle spreads to in different steps. We then reverse the process to concentrate
the particle on the target site x and thereby achieve a perfect state transfer. The protocol is enhanced by the volume ¢ of the squares, with
r being a typical size of the squares. This enhancement offsets the penalty 1/r* due to the power-law constraint, resulting in a superlinear
state-transfer protocol when a < d + 1.
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every vertex in A. Formally, we define a many-body Hilbert
space

H = QH,. (11)

ieA

where we assume that dim(7;) < co. In this paper, we are
especially interested in the dynamics of the operators acting
on H. Let B denote the set of all Hermitian operators acting
on H. B is a real vector space, and we denote operators
O € B with |O) whenever we wish to emphasize that they
should be thought of as vectors. A basis for 3 can be found
as follows: Let T¢ denote the generators of U(dim(%;)),
where a = 0 denotes the identity operator, which gives a
complete basis for Hermitian operators on the local Hilbert
space H;. B is simply the tensor product of all these local
bases of Hermitian operators:

B= span{®T?"

ieA

for all {ai}}. (12)

For subset X C A, we define By to be the set of all basis
vectors which act nontrivially only on the sites of X:

By = span{@T?"

ieX

for all {a; # 0}}. (13)

We define the projectors [46]

|®T}")

14
0 a; = 0, ( )

Pisry) = {

which return the part of the operator that acts nontrivially
on site i

P,.O=0 0. (15)

1
dim(H;) i

For a general subset X C A, the projectors

> )R, (16)

ycz¥:|Y|>0 jeY

H:DX =

a= sup{ao € (0,00): there exists0 < & < oo such that Z |Hx(1)]] <

where D(i,j) denotes the distance between i and ;.
In physics, we often say that the interaction has exponent
a when, assuming only two-body interactions, Hy; ;<
hD(i, j)~%; strictly speaking, though, any Hamiltonian with
exponent a,, according to this loose definition, also has
exponent a; < a,. The formal definition Eq. (22) avoids

act similarly and return the part of the operator which acts
nontrivially on the subset X. It is proven in Ref. [21] that,
when [X| < oo,

IPxOlle < 2[|0] (17)

where ||-||, is again the operator norm. We often drop the
oo subscript for convenience. In addition, we can relate the
commutator in the Lieb-Robinson bound to the projection
of an operator using the identity

1[Ox, Oylll < 2[|0x||[|PxOy

: (18)

which holds for all operators Oy € By and Oy € By.
We define the Hamiltonian H:R — B as

H(1) ="y Hx(1), (19)

XCA

where Hy(t):R — By. H(t) is said to be ¢ local if
Hyx(t) =0 for all |X|> q: Physically speaking, the
Hamiltonian operator contains at most g-body interactions.
The Hamiltonian generates time evolution on B according
to the Heisenberg equation of motion for operators:
We define the Liouvillian £(r) as the generator of time
evolution:

L(1)|0) = |i[H(1), O]). (20)

We define the time-evolved operator O(r):R — B as the
solution to the differential equation

0(0) = 0. (21)

We say that the Hamiltonian H has long-range inter-
actions with exponent a if

h
— for alltelR}, (22)
x:{ijlex D(i, j)*

|
this unwanted feature and assigns a unique exponent @ to
every problem.

The following identities, which we state without proof,
are useful in the discussion that follows.

Proposition 1. sums over power laws [15,17].—If
a>d, for any A and D, there exist 0 <Cy, C, < oo such that
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~—

1 C,
—, 23
Z_ D(i,j)a < ra—d (

. . < —.
D(i,k)*D(j.k)*  D(i,j)*

keA\{i.j}

IV. LIEB-ROBINSON LIGHT CONE

We begin by presenting the strictest light cone on the
commutators of local operators, representing the generali-
zation of the Lieb-Robinson theorem [1] to systems with
long-range interactions.

A. The linear light cone

The following proposition controls the growth of com-
mutator norms in a Hamiltonian system with long-range
interactions.

Proposition 2. Let X, Y CA be disjoint with
D(X,Y) :=r; Ox be an operator supported on X obeying
(t) be the time-evolved version of
Oy under a power-law Hamiltonian with an exponent
a > 2d + 1. There exist constants 0 < », ¢ < oo such that,
for time evolutions generated by Eq. (20) obeying
Eq. (22),

td+110g2dr

IPy|Ox ()]l < CPﬂW

(25)

Proof—We begin by recalling the following theorem
(recast in the language of projectors).

Theorem 3: linear light cone [22].—Equation (25)
holds for a single-site operator, i.e., when |X| = 1.

While the proof presented in Ref. [22] applies only to
time-independent Hamiltonians, the generalization to time-
dependent models is immediate from their results. Next, we
show the following general result.

Lemma 4.—If for all xeX, |Py|O,(1))]<
f(#,D(x,Y)), then there exist 0 < K < oo such that

IPy[Ox ()] <K _f(t.D(x.Y)). (26)

xeX

Proof.—For pedagogical reasons, we demonstrate the proof
on a system of spin-1/2 particles with K = 9/2. However,
the proof applies to any system with finite local Hilbert
space dimensions [21]. Let {S;:j = 1,...,dy — 1} denote
the dy — 1 = 4" — 1 nontrivial Pauli strings supported on Y.
Then [21]

| 4l
Py 1Ox () :HgZ[s,-, 55-Ox0)
Yj:l
dy—1
<34 Z2||S L[S, Ox (0]
| el
Zn O, S(=1)|
5 dy=]
< d—z IPx[S; (=)l (27)
Yj:1
Next, we prove that
IPx[S; (=)l < 3ZHP 1S;(= (28)

To do so, we assign an (arbitrary) ordering of the sites in X;
ie,if X = {x,...,x,}, wechoose x; <x, <--- < x,. Let
X, = {¥ € X:x' > x} be asubset of X consisting of sites in
X that are greater than x. We rewrite

Px =) (1-Pg )P, (29)

X

and, therefore, we have

IPx[S; (=)l < ZH(I =Pz )P.S; (=)

< Z3||P 1S;(=))]. (30)

In the last line, we use that || Px O|| <2||O|| whenever | X|< oo
[21], along with the triangle inequality. Plugging this result
back into the earlier equation, we have

6 4]

IPy|Ox ()] <—ZZIIP |S;(=

6 4!

ZZ ZH o [P S;(=0)]]l

%d—dYZIZZHPs

\.v.z
<1

IA

< g;m D(x.7)). (31)

where P, € {X,,Y,,Z,} denotes one of the three Pauli
matrices on site x. In the second from the last line, we use the
assumption [|Ps P (¢)|| < f(z, D(x,Y)). n

031009-8



HIERARCHY OF LINEAR LIGHT CONES WITH LONG-RANGE ...

PHYS. REV. X 10, 031009 (2020)

Combining Theorem 3 with Lemma 4 proves Eq. (25),
which is tighter than a result of Ref. [22] when applied to
general operators that are supported on many sites. m

B. Fast operator-spreading protocol

Proposition 2 proves that the support of an operator O; ()
is large inside of a linear light cone only when a > 2d + 1.
Our first main result is the following theorem, which proves
the optimality (up to subalgebraic corrections) of that
result.

Theorem 5. Let dim(H;) =2 for all i € A, and let X,
and X, be two Pauli-X operators supported on two sites i
and j, respectively, obeying D(i,j) = r. For all a > d,
there exists a time-dependent Hamiltonian H(¢) obeying
Eq. (22) and constants 0 < K, K’ < oo such that, for
3 <t < K po/0+2d)

t1+2d

[[Xo(2). X, ]| = K (32)

re

Proof.—We prove the theorem by constructing a fast
operator-spreading protocol, which follows three steps, as
depicted in Fig. 4. In each step, we evolve the operator
using a power-law Hamiltonian for time /3. For simplicity,
we assume £/3 := ¢ € Z* and assume that £ < %r.

Step 1.—In time ¢/3, we use a unitary U/, to spread the
operator X to [[;ep, Xi, where B, is a ball of radius #
centered at site 0. We denote the volume of this ball by
V= |B,|. The unitary U, can be implemented using a
series of controlled-NOT (CNOT) operators among nearest
neighbors in the lattice. Note that a CNOT gate Ucnor,;,j for
neighbors i and j acts as follows:

Step 1

UENOT.i.inUCNOT,i.j = XX (33)

Under the conditions of Eq. (22), this CNOT gate can be
implemented in a time step of O(1).

Step 2.—In the next 7/3 interval, we apply U, =
[I;e5, U;j(7) on the operator, where

U;(7) = cos(0) + isin(z0)Z;,

0 := sz,

keB,

(34a)

(34b)

Ef is another ball of radius d centered around the site at
distance r, and

(35)
It is straightforward to verify that U;(z) is a unitary, since

(36)

Uj(r) = exp [—iTZZij] :

yeB,

Since Z;Z,

y € B,, U;(r) and Ujy(z) can be implemented simulta-
neously. In other words, the unitary ¢/, can be generated by
a power-law Hamiltonian within time #/3: The factor of 2r
in Eq. (35) is present because the maximal distance
between two sites in B, and B, is r+2¢ < 2r. The
evolved version of the operator under this unitary is

commutes with Z,Z,, for all j, j’ € B, and y,

,\\
D)) |

) &
RS
—p-

Step 3

~

FIG. 4. A protocol for rapid growth of the commutator norm using two-body long-range interactions. Step 1: We use CNOT gates
between nearest-neighbor sites to spread a single Pauli X, to a Pauli string XX...X supported on every site inside a ball of radius O(¢)
centered at X,). Step 2: We use pairwise ZZ interactions between all sites in the two balls, located distance O(r) apart, which adds an
operator of norm ~O(#2*! /%) into the second ball a distance r away. Step 3: We invert step 1 in the outer ball, pushing all of the

operator weight in the outer ball onto a single site.
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[ [ [cos(2:0)x; + sin(2:©)Y].  (37)

JjE€B,

u;(HX,)uz =

JjEB,

Step 3.—In the final /3, we apply a unitary U3 which is
the inverse of U/, up to its action on B, instead of B,. It is
easier to instead think of evolving the final operator X,
under U3, which does not change the commutator norm
[Xo(), X,]||. Therefore, after time 7, we get the commu-
tator norm:

1X1(0), X, || = | AU X old U, Us X U] |

- ||[H [cos(270)X; +sin(270)Y ka
i keB,

Il
a

(38)

To lower bound the norm of C, we consider the matrix
elements of C in the eigenbasis of Pauli Z operators. We
|

v
|C|| > |a| > 2Vsin(27V) cos(27V)V!

kodd,k>3

3
> 2Vsin(27V) cos(27V) V-

3
> 2Vsin(27V) cos(27V) V!

Now we require that V> = e < 1/2, which is equivalent to
24+1 < y# Under this condition,

2\V 1
cos(2tV)V71 > (1 = H?)Y = (1 __) >

(for all V > 1 > €2/10),

2
[sin(27V) +cos(27V)]V 3 < (1+27V)V < <1 + €> <e*,

7V <sin(27)) < 27V,
Therefore,
Cll=2V(V) |z —— ZTV Ze?| > V27| 1 —%e2e2€
3

Sl >1 td o1 Pl
) T—2 3d 3(2},)(1—31+2d21+a I :

(42)

observe that (¢|C|00...0) = 0 for all computational basis
states |e) of the two balls except for |e) = |11...1). Hence,

(11...1]CJ00...0) = [cos(2zV) — isin(2zV)]V

— [cos(22V) + isin(2zV)]Y

=-2 Z( )l sin(27V)k cos(27V)V*

fcodd
= aq. (39)

Therefore, C is block diagonal and has eigenvalues +|a| in
the sector {|00...0)}, .1)}. We note that, to the
lowest order, |a|~)V?r o 1?41 /r®. Therefore, this operator-
spreading protocol saturates the Lieb-Robinson bound in
Proposition 2.

To make the statement rigorous, we lower bound the
norm of C:

Cj) sin(27V)* cos(27V)"*

V-3

V3o V-=3\ . 3
! —Fsm(ZTV)3 Z ( . ) sin(27V)* cos(27V) V3K

keven

- % sin(27V)3[sin(27)) + cos(27V)]V 3. (40)

I
This protocol shows that if the light cone of a Lieb-
Robinson bound is 7 = ¥, then x < a/(1 + 2d). n

Last, we note that it is trivial to remove the restriction
dim(H;) =2 from the assumptions of Theorem 5 by
simply making H(r) act trivially on all but two of the
basis states in each H;.

C. Growth of connected correlators

In this subsection, we explore how fast connected
correlators can be generated using a power-law
Hamiltonian. In particular, we use the Lieb-Robinson
bounds to show that the growth of connected correlators
is constrained to linear light cones for all @ > 2d + 1. In
contrast, for a <2d + 1, we construct—based on our

growth of connected correlators is not contained within any
linear light cone.

We consider a d-dimensional lattice A and a power-law
Hamiltonian H () with an exponent a. Let C denote a plane
that separates A into two disjoint subsets L and R, with
LUR=A. Let A and B be two unit-norm operators
supported on single sites x € L and y € R, respectively,
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such that D(x,C), D(y,C) > r/2. Finally, let |y) be a
product state between the sublattices L and R. Our object is
the connected correlator

C(z,r) = (A(1)B(1)) = (A(1))(B(1)), (43)

where (-) = (y|-|w) and A(¢) is the time-evolved
version of A under H. While the correlator vanishes
at time zero due to the disjoint supports of A and B, it
may grow with time as the operators spread under the
evolution.

First, we show that C(z, r) obey a linear light cone for
all @ > 2d + 1. Our strategy is to approximate A(¢) by
an operator A supported on a ball of radius r/2 centered
on x and B(t) by B supported on a ball of the same
radius but centered on y. Since A and B have dis-
joint supports, the connected correlator between them
vanishes. Therefore, the connected correlator between
A(r) and B(r) is upper bounded by the errors of the
approximations:

C(t.r) < ||A(r) = Al + [|B(¢) - B, (44)

which, in turn, depend on the constructions of A and B.

Let S, contain sites that are at most a distance r/2
away from x and S9 be all other sites in the lattice. We
construct A by simply tracing out the part of A(7) that lies
outside S, [36]:

A = trg [A(1)], (45)

where the partial trace is taken over S4. It follows
from the definition that A is supported entirely on S,.
Proposition 2 provides a bound on the error in approxi-
mating A(f) by A: There exists a velocity u such that,
when r > ut,

(46)

for some constant 0 < K < oo. Upper bounding the
error in approximating B(f) by B in a similar way,
we obtain a bound on the connected correlator:

ld+110g2d7‘

C(t,r) <2K —
-

(47)

As a result, the light cone of the connected correlator is
linear, with a velocity no larger than u, for a > 2d + 1.

We now provide an example of superlinear growth of
connected correlators for a <2d+ 1 using a slightly
altered protocol than that discussed in Sec. IV B. In
particular, we consider initial operators A = X, and

B =Z, supported on x and y, respectively, such that
D(x,y)=r.

The protocol works as follows. In the first step of the
protocol (again in time t/3), we still apply U, in order
to spread X, to [[;cp, X;» where B, is a ball of radius
¢ = t/3 centered on x. Since U, acts trivially on B, (the
ball of radius # centered on y), we can simultaneously
apply a locally rotated version of U, in B, to spread
Z, to nggf Z;. In the next time #/3, we again apply
U,, which takes [[,cp, X; to the expression in Eq. (37).
Note that this evolution does not change H?GB,« Z; as it
commutes with U,. For the last 7/3, we simply do
nothing.

Define the state [y) = [¢)g,|#)5,, where

1

|¢>B; \/i

(10...0)5, +i[1...1)5,) (48)
— ——

E@Bf Emsf

is a state of the sites in B,. Throughout our analysis, we
often dispense with the subscripts, but the Hilbert space in
question should be clear from context, and we always list
the state on B, before that for Bf.

We calculate the connected correlator

where (-) = (|- |y) and X,(), Z,(r) are the operators
evolved under the unitaries described above. Assume
for simplicity that 7 is such that V—the volume of B,—
is odd. It is straightforward to show that (Z,(¢)) =0
and, therefore, the second term C(t,r) vanishes. Next,
we have

X,(O)ly) = [] lcos(2¢0)X; + sin(2:©)Y ] w)

JjEB,
1 _
S| G
- s e s

= 2l +is)I0) +ie - i) 0)[0)
Tile—iVIDIT) - (e + iDL (50)

where ¢ = cos(27V) and s = sin(27)). Next, note that
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(wlzy(1) = 7(<¢|<0l—l<¢|< )Zy(1)
7(<¢|<Ol+l<¢|<1|)
(01O + #(OI(T]) = (T|O] + (T[CT]).  (51)

~.

[(c —is)V = (c +is)Y]

1 t2d+1

2

Z31—%—2d22-§—0: I ’ (52)

where we use the bound Eq. (42). Therefore, this result
demonstrates that the connected correlators may grow
along a superlinear light cone for all a < 2d + 1.

We note that, in our setting, we assume only the
initial state is a bipartite product state across the cut C.
Our bound, therefore, also applies to a more restrictive
scenario where the initial states are fully product.
However, it is not clear whether the bound can be
saturated in this scenario.

D. Simulation of local observables

In this subsection, we use the Lieb-Robinson bounds
to improve the estimation of local observables in time-
evolved states. Given an initial state |y) and a power-law
Hamiltonian H, we consider the task of estimating the
expectation value of the time-evolved observable (A(¢)) :=
(w|U(t)TAU(t)|y), where U(t) is the unitary generated by
H at time ¢, for a local operator A. The ability to perform
this task for any arbitrary local observable is equivalent to
the ability to compute local density matrices of the time-
evolved state U(f)ly) or the ability to sample local
observables in U(1)|y).

A typical approach to estimating (A(z)) is as follows.
First, the unitary evolution U(r) on the entire system is
decomposed into a more tractable sequence of elementary
unitaries that are supported on a smaller number of sites to
produce an approximation to the time-evolved state |y/(z)).
The expectation value (A(¢)) is then computed by simulat-
ing measurements of A on this state. The number of
elementary unitaries in the decomposition of U(¢) typically
increases with both time ¢ and the number of sites N in the
system.

However, in the Heisenberg picture, the intuition from
the Lieb-Robinson bounds suggests that the dynamics of
A(t) = U(1)’AU(t) is mostly confined inside some light
cones, and, therefore, it should be sufficient to simulate
the unitary generated by the Hamiltonian inside the light
cones alone. The following result provides such an
approximation.

Proposition 6. Let H be a 2-local power-law
Hamiltonian [i.e., the sets X in Eq. (19) obey |X|= 2]
of exponent a > 2d+ 1, and H, be a Hamiltonian
constructed from H by taking only interaction terms
supported entirely on sites inside a ball of radius r >
4vt > 1 around the support of the single-site operator
A (where 7 is the same constant as in Proposition 2).
Let A(t) and A(f) be the versions of A evolved for
time ¢ under H and H,, respectively. Then there exists
0 < K < oo such that

IA() - A(n)] < K (53)
Proof.—Without loss of generality, assume that A is

initially supported at the origin. Using the triangle inequal-
ity, we bound the difference between A(7) and A(z):

40 =40 < [ dsller - . A
<J/on 22 e

i:D(i,0)<r
(54)

We then use the bounds in Refs. [15,40] to bound the
commutator norm [|[37 . 0)=, - A(s)]||. For that, we
separate the sums over i into terms corresponding to i’s
inside and outside the linear light cone defined by
D(i,0) = 27s.

For i such that D(i,0) < 27s, we simply use another
triangle inequality for the sum over j and bound
;. A(s)]|| <2/D(i.j)® Note that, in this case, we
have D(i, j) > D(j,0) — 2vs > D(j,0)/2. Therefore, we
have

)P

Jj:D(j.0)>ri:D(i,0)<2vs

d Ks
< 4d2a+l =d s < ; (55)
P % D(0, j)* ~ red

A As)]|

for some constant 0 < K < c0. On the other hand, for i
such that r > D(i,0) > 2vs, we further divide into two
cases: s > 1 and s < 1. For s > 1, we use Proposition 2
(note that A is a single-site operator):

o P

i:r>D(i,0)>2ps'" Lj:D(j,0)>

<K, z [

i:r>D(i,0)>2vs r

sdJrllOgZdr
- D(z, 0)]“-4 D(i, 0)*~4
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where we use Eq. (24) and define another set of constants
0 < K|, < oo. Similarly, for s <1, we use a bound
from Ref. [15] to show that there exists 0 < K3 < o0
such that

S A S 657

Jj:D(j,0)>ri:D(i,0)>2zs

Substituting Egs. (55)-(57) into Eq. (54) and integrating
over time, we obtain Eq. (53). (]

We now analyze the cost of estimating (A()) using
quantum algorithms, although we note that Proposition 6
applies equally well to classical simulation algorithms.
For simplicity, we assume that the Hamiltonian is time
independent and ||A|| = O(1) in the following discus-
sion. In order for the error of the approximation to be at
most a constant, we choose

r o« max {42/ (=) jog ¢, 1}, (58)

Therefore, to estimate (A(7)), it is sufficient to simulate
the evolution of A(f) on N, xr? sites (instead of
simulating the entire lattice).

We then compute (A(¢)) by simulating e using one
of the existing quantum algorithms. Using the pth-order
product formula for simulating power-law Hamiltonians
[47], we need

—iH,t

O((N,1)le/(a=+0(1))

_ max{O(t“ [a(a+d+d?)/(a—d)? ]+0(1))7 O(I[a(]er)/(a—d)]Jro(]))}

(59)

elementary quantum gates, where o(1) denotes p-dependent
constants that can be made arbitrarily small by increasing
the order p. Forall @ > 2d + 1, this gate count is less than the
estimate without using the Lieb-Robinson bound in
Ref. [47]. In particular, in the limit @ — oo, the gate count
reduces to O(¢'*4+(1)), which corresponds to the space-time
volume inside a linear light cone.

We note that, in estimating the gate count for computing
(A(1)), we implicitly assume that we have access to many
quantum copies of the initial state |w). However, in
scenarios where only a classical description of |y) is
provided, we need to add the cost of preparing |y) to
the total gate count of the simulation.

V. FROBENIUS LIGHT CONE

We now turn to the Frobenius light cone. To motivate
the development, let us consider the early-time expansion
of a time-evolving operator O, initially supported on lattice
site i

= O, +itlH O] -=[H,[H O] +--. (60)

I
For illustrative purposes, we temporarily assume H is
time independent. Suppose further that H contains
only nearest-neighbor interactions. Then, [H, ;] can
contain only operators of the form O,_ 00, ;, and
[H,[H, O;]] can contain terms no more complicated than
0,,0,.100,;,,0;,,, and so on. It is natural to ask “how
much” of the operator can be written as a sum of products
of single-site operators restricted to some given subset of
the lattice A. This question is naturally interpreted as
follows. Upon expanding |O;(¢)) in terms of the basis
vectors of Eq. (12):

Zc{ak} ‘®Tk (61)
{ar}

the coefficients ¢y, () are analogous to the probability
amplitudes of an ordinary quantum mechanical wave
function. As we see, the coefficients c(,,;(¢) must be
sufficiently small if any a; are nonidentity, when the
sites i and k are sufficiently far apart, at any fixed time t:
This result is, intuitively, what we call the Frobenius
light cone.

For mathematical convenience in the discussion that
follows, we restrict our analysis to finite lattices. It appears
straightforward, if slightly tedious, to generalize to infinite
lattices through an appropriate limiting procedure. More
significantly, we focus our discussion to one-dimensional
lattices, as only in one dimension have we developed the
machinery powerful enough to qualitatively improve upon
the results in Sec. IV.

A. A vector space of operators

We define a one-dimensional lattice
A={ieZ:0<i<L}. (62)

For every site i € A, we assume a finite-dimensional local
Hilbert space H;, obeying dim(H;) < co. The global
Hilbert space is

H = ®Hl (63)
ieA
Let B denote the set of Hermitian operators acting on H.
We equip this space with the Frobenius inner product
tr(AB)
dim(H)’

(A|B) = (64)

upon which B becomes a real inner product space; we
denote elements of this vector space O € B as |O). When
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A = B, the inner product reduces to the squared Frobenius
norm of A: (A|A) = ||A||%. Note that, for traceless operators
A and B, this inner product corresponds to the value of the
thermal two-point connected correlation function at an
infinite temperature. Let {7T¢} denote the generators of
U(dim(H;)), with a =0 denoting the identity matrix.
These generators form a complete basis for 5:

B:= span{®Tf"} = span{|a0...aL)}. (65)
i€
We define the projectors
ay...a a,#0 and a,=0 if y>x,
@x|a0...aL)=={| 0---aL) _ ! Y
0 otherwise.
(66)

Hence, Q, selects the parts of an operator which all act on
x, but on no site to the right of x. Observe that we have
orthogonality and completeness:

5(x) := inf {t > 0: for any Qy|Oy) = |0y), 6

to be the shortest time for which a fraction 6 of the operator
|O(1)) can be supported on sites > x. The assumption
that the operator starts only on the leftmost site is not
restrictive—for an initial site k € A, we can identify the

QQ;=6,;Q;, > Q=1 (67)

ieA

Time evolution is generated by a (generally time-
dependent) Hamiltonian H(¢):R — B. We assume that

H is 2-local:
Z H(1)
{ijteA

(68)

with power-law interactions of exponent a. By unitarity,

(OI£(1)|0) =0, (69)

where L£(t) is defined in Eq. (20); hence, £() generates
orthogonal transformations on 3 and leaves the length of all
operators invariant.

B. The operator quantum walk

Our goal is to understand the following scenario (Fig. 5):
Given an operator |O) starting at the leftmost site, i.e.,
obeying Qy|O) = |O), how long does it take before most of
the operator |O(7)) consists of operator strings that act on
sites > x? More precisely, define

(70)

< Zy:xﬁysL(OO(t)|@y|()0(t))}
(O0|0)

|
lattice sites k +m ~k —m in order to “fold” the one-
dimensional lattice to put the initial point k at one
boundary; such a change cannot modify Eq. (22), except
to adjust the value of & by a factor of <4.

3 4.5 6
E; []: } g |

Xo

@1\0

7

YoZ, I,Ys vl
2l oY1 .Xo
IOII 2 ZOIlXQ

8 9 10 11 12 13 14

Q2|0)

Q30)
g Q4]0)

FIG. 5. The 4L-dimensional space of operators can be decomposed into the direct sum of L subspaces {Q;} by the position of the
rightmost occupied site. By keeping track of only the “average value” of the rightmost site (depicted above), keeping in mind that an
exponential number of orthogonal operators (depicted below) are contained on most of the sites, we reduce the quantum walk of many-
body operators from an exponentially large space to a one-dimensional line.
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We note that

tr([oo@),oxw[omox])
ooy dim(H)(Og|O)

(Oo(1)|P4|Oo (1))
< ((90|(90)0 S4yé;ﬂ

(0o(1)[Q,|0(1))
(00l0g)

(71)

where the leftmost side corresponds to the OTOC of an
infinite-temperature state—a quantity known to herald the
onset of many-body quantum chaos [42,43]. From Eq. (71),
it follows that a lower bound on #5(x) also bounds the
evolution time of the OTOC and the growth of chaos.

The second main result of this paper is the following
theorem.

Theorem 7. Given Hamiltonian evolution on H obey-
ing Egs. (22) and (68), for any x € A, 0 <6 € R, and
3

5 < a € R, there exist constants 0 < K, K’ < oo such that

X

a
x232(1+ K'logx)™! 3

’

R nIL

5(x) > K x { <> < (72)

[\SJ194)

Proof.—We prove this theorem using the “operator
quantum walk” formalism introduced in Ref. [48]. For
simplicity, we first prove the theorem when o > % and then
generalize to a S% afterward. Consider the operator F
acting on B defined by

F = Z jQ;. (73)
jeA
Our goal is to show that

Jim [, (0] < € < . (74)

The reason Eq. (74) is desirable is the following. Without
loss of generality, we normalize (O|O) = 1. We then define
a time-dependent probability distribution [°, on A as

P.(i € A) = (O(1)|Qi|O(1)), (75)

since by Eq. (67) the probability distribution is properly
normalized: P,(A) = 1. We may then reinterpret #5(x) as
the first time where the probability that i > x on the
measure P, is sufficiently large:

B(x) = inf {r> 0:6 < P,(i > x)}. (76)

We may then interpret F for a > % as a classical random
variable that gives i with probability P,(i). By Markov’s

inequality,

E|7]

P.(i>x) <
(i>x) < X

(77)

where [E,[-] denotes the expectation value on the measure
P,. If Eq. (74) holds, then for any operator O, in the domain
of @(),

(7] = [ ds 1 (Ou(5)FI0s)

_ / ds(Oy(5)|[F. £(5)]|Oo(s))

0

< ['as©OusIF LoD < cr (78)

Combining Eqgs. (77) and (78), we see that Eq. (72) holds
with

K= (79)

J
-

Hence, it remains to prove Eq. (74). To do so, it is useful
to define

A=A -{0} (80)

and a more refined set of complete, orthogonal projectors:
For S C A,

Rs‘ao...aL)
{ lag...a;y) i>0and a; # 0 if and only if i € S,
o

otherwise,

(81)

which projects onto the operators whose support is exactly
the subset S. We also define

Fg=max i (82)

ieS

to be the rightmost occupied site. Observe that FsRg =
RgFRg. Since

D> Rg=1, (83)

sezh

we may write, for any O € B,
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(O[[F, L]|O) = Z_(@RS[}_’E]RQW)
s.0e7}
< Y J(ORs0)(OR,[0)
s.0ez}
w su (Fs = Fo)(OIRLR,|O")
0.0¢eB (0]0)(0'|0)

(84)

Next, we observe that the 2-locality of the Hamiltonian
implies that RgLR, # 0 if and only if there exists a site
ieAsuchthat SU{i} =Qor Qu{i} =S8

Suppose that Q U {i} = S, that 7, = j, and that i > 0.
Then, if i < j, Fg = F = J; the rightmost occupied site
in § and Q has not changed, and, hence, the supremum in
Eq. (84) vanishes. Therefore, the supremum is nontrivial
only when i > j. By submultiplicativity of the operator
norm, there exists 0 < A < oo such that

(Fs = Fo)(OIRsLRy|O')

0.0eB (0|0)(0'0)
<20i= I3 Hul| <=7 p k‘a
€0 kEQ
A
<—— 85
T i=Fol? (®3)

where A is a constant and, in the last step, we overestimate
the sum by assuming all sites < j are included in the set Q.
A similar argument holds when Su {i} = Q

It is now useful to interpret Eq. (84) as_an auxiliary linear
algebra problem. Let us define ¢ € RZ as

s =/ (O|Rs|0) (36)

and M € R% x R% as

A|.7:S_»7: |2—O{ FS#‘F andS:QU{m}OrQ:SU{m}7
MSQ:MQS = { © . © (87)

0 otherwise.

Since S={ny,....,ns}, with n; <nj, (91)

(O|[F.L]|0) < Hsqu Z(PSMSQ(PQ =[M[l.  (88)  we take ¢z = 1 and then define ny = 0 and

¢:llollF=1"s.0
s
it suffices to show that |M|, < . 0 = H (n; = ni_y) ", (92)

To bound the maximal eigenvalue of M, we use the
min-max Collatz-Weiland theorem [49]. To do that, we
must first establish that M is an irreducible matrix [non-
negativity of the entries is guaranteed by Eq. (87)]. To show
irreducibility, we observe that

(M) g5 # 0; (89)

the sequence of subsets which satisfies this identity
corresponds to sequentially adding the elements of S from
smallest to largest. We conclude that (by non-negativity of
all M™) there exists an n € Z* such that (M")g, > 0 for all
sets S and Q.

We are now ready to apply the min-max Collatz-Weiland
theorem:

|M = inf

max— E Msopo.  (90)
2},
PER™ (>0

QeZA

Clearly, an upper bound to the maximal eigenvalue comes
from choosing any trial vector ¢ that we desire. We make
the following choice: Writing

i=1

where f is a tunable parameter we fix shortly. Now, we
evaluate the right-hand side of Eq. (90), defining j = F:

Ps- {J}

Psuik
_ZMSQfPQ Ms.s—q5 + > Mysu U{}

S pezt kEA k>
(93)
Using Eq. (87) and assuming that j, = Fg_gj,
Ps—{;j «
Wai-jee (94
Ps
We hence take
p=a=-2 (95)

to ensure that this first term is finite. Evaluating the second
term of Eq. (93),
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Psu{k = N2
Z M suixy U <A Z (k=j) 7P <A (%)
kEATk>) Ps k=jt1

where

Da+p=3

¥ .—Am<00, (97)

so long as a > % We conclude that C <A+ A, < oo,

proving the theorem when o > %
We now return to the case % <a< % The proof is

essentially identical with a few minor changes. First, we
set F gy = 0, and for nonempty sets we define

d*F(x) 1
0> = —
dx? x*7(1 + K'log x)

Equations (99) and (100) are both satisfied by the choice

K' =

7
Fe=max— 2
s r?§§(1+K’logj

(98)
for a parameter y € (0, 1) that we fix shortly. We choose the
parameter K’ such that F; is a convex function on Z%:
|Fi = F,| £ Fji—j- Such a K’ can be shown to exist by
extending F to act on [1, o), after which we use elemen-
tary calculus to demand that

dF(x) 1 K’
0 - - ,
= dx x'7(1+ K'logx) <}/ 1+K logx> (99)

along with

K’ K’ K’ 2
l—y+—"F— - - . 100
y+1+K’10gx> <7 1+K’10gx> (1+K’10gx> ] (100)

e (101)

We then find that convexity of F; leads to the replacement of Eq. (87) with

MSQ:MQS = {0

Last, we replace Eq. (92) with

N (ni _ ni_l)y+l—(1

Qs = . 103
g ,11 1+ K'log(n; = n;i_y) (103)
These choices guarantee that
Ps—{j
Mgy —h — 4, (104)
Ps
as in the prior setting. Then, we find that
Psu{k
Z My suixy vk
kEATk>) Ps
= 1
<A (105)

S (k= P+ K log(k — j)?

Upon choosing y =a — % we obtain that the sum
above is finite. Note that the logarithmic factors are
required to obtain finiteness of Eq. (105). Hence, we obtain
||M]|, < oo. Last, we mimic the arguments of Eq. (78) to
complete the proof. =

A|fS—fQ|7+l_a(1 +K’10g|FS—fQ|)_1

Fs#Fo.

) (102)
otherwise.

We conjecture that, in d > 1, the Frobenius light cone is
always linear if and only if

3d

a>?+1. (106)

We expect that, for g-local Hamiltonians with ¢ > 2,
Eq. (106) holds only when a slightly stricter requirement
than Eq. (22) is obeyed: for example, if ||Hy,, | <
[1; |n; = niy | in one dimension.

The Frobenius light cone of Theorem 7 is tight up to
subalgebraic corrections, when applied to arbitrarily large
operators. This result can be seen by considering a large
operator of the form

..... ng}

L/3
i=0

=l

(107)

supported on the leftmost L/3 sites of the lattice, where
X = X;+iY;. We would like to spread this operator
to the rightmost L/3 sites of the lattice, which are at
least a distance L/3 away from the initial support. If the
Hamiltonian is
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Z,7,

H =
0<,j<L/32L/3<k<L

(108)

a

it is straightforward to show that the fraction of Oy(¢)
supported beyond 2L/3 is (up to the first order in 7)

t
k>L/)2 2L/3<k<L
The Frobenius norm of this fraction is
L t \2 t
3 <3L“‘1> I =Tk (110)

Therefore, our bound in Theorem 7 is tight up to O(1)
factors.

C. Quantum state transfer

An immediate consequence of this theorem is that the
Lieb-Robinson light cone is not relevant for infinite-
temperature many-body quantum chaos and the growth
of operators. A more practical application of the Frobenius
light cone are tighter constraints on at least two different
kinds of quantum state transfer. For simplicity, we assume
that dim(;) = 2 and denote |0;) and |1;) as the eigenstates
of the Pauli matrix Z; on H,.

A universal notion of quantum state transfer from i € A
to j € A, which is independent of the background state, is
to demand that there exist a Hamiltonian protocol H(¢) and
a time 7 € R such that

X¢(z) = X7. (111)
It is obvious that Theorem 7 constrains the time at which
Eq. (111) may hold; hence, Eq. (111) cannot be performed
at a time 7 which scales slower than linearly in the distance
D(i,j) when a > %, d=1.

Another interesting scenario arises when we restrict to a
time evolution operator U(7) that obeys

v (®100)) = ®10y). (112)

ke keA

Many protocols, including our own (Theorem 11) and that
of Ref. [8], are compatible with Eq. (112). With Eq. (112),
we now consider a quantum system whose initial con-
dition is

w(0) =1¢) @ & [04)

keA—{i}

(113)

for arbitrary |¢;) € H;. Our goal is to find a time evolution
operator U(¢) and a time 7, such that |y(¢)) = U(t)|w(0))
and

(W (D)|Z;ly (7)) = (il Zil s)- (114)
In particular, the probability of measuring a O or 1 on site j
at time 7 is given by the probability of measuring it at time
t = 0 on site i. This property must hold for all |¢;) for a
fixed U(¢), since the protocol must be able to transfer
arbitrary states.

Corollary 8 Let 2 < a € R and x = D(i, j). Assuming
Eq. (112), there exist 0 < K, K’ < oo such that any state-
transfer algorithm runs in a time 7 obeying

X a
7> K X {
x*32(1 4+ K'logx)™! 3

El

- 115
cus< (115)

QR win

[ Lo}

Proof.—We begin by observing that we may assume
|p;) = |1;) without loss of generality, since Eq. (114) is
trivially obeyed by Eq. (112). Now the proof largely
mirrors that of Theorem 7. Without loss of generality,
we may define lattice sites such that i =0 and j > 0, as
explained above. Define

1S) = Q1) ® @ [0x)

keS keS¢

(116)

and the observable F which acts on the mutual eigenbasis
of Z; as

F|S) == FglS), (117)
for any S C A; here, F is given by Eq. (82) when a > %
and Eq. (98) when 3 < a < 3. For simplicity, we describe
explicitly only the case o > % as the other case follows
from identical considerations. We evaluate

)

< =il (O[F, H@)]lw (1)

< |[[F7 H(1)] (118)

lo-
As before, our goal is to show that ||[F, H(1)]||, < .
Since H is 2-local, we know that H;;(7)|0;)[0;)  |0;)|0;)
by Eq. (112). This result implies that, as before, [F, H| can
be nonvanishing only when H serves to either add a new
|1) to the right end of the state or delete the rightmost
|1). Hence, (S|[F,H(1)]|Q) #0 only if |S—SnQ|<1
and [Q—-SNQ|<1. We define the matrix Mg, :=
sup(S|[F, H(1)]|Q), which equals
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AlFs=Fol™® S=Qu{m}or Q=Su{m},
AlF¢—Fo|'™® there exists R with S = R U and Q = R U {n},
Myp = Mg = { N5 =Tl HEmaE RU {m} and Q tn} (119)
and Q # S and Fp < min(Fs, Fp),
0 otherwise.
We bound the maximal eigenvalue of M using the Collatz- {Cj, c:} = 51‘]‘, (124)
Weiland inequality Eq. (90), using the trial vector ¢g given '
Eq. (92). Observe that the first line of Eq. (119) is identical  or bosonic creation and annihilation operators:
to Eq. (87); as such, these terms in Mgy are bounded by
a constant as before. The new terms we must deal with arise [c,-, CZT] = 5. (125)

from the second line of Eq. (119). If S is given by Eq. (91),
we find that

> Msong

(”SQ FER
nf —I’lf_l a=2 1 _5m.n
a Y (M)
m=m, 41 N (m—ny_y)

for some constant 0 < Ay < o0, so long as a > % We
conclude that M has a bounded maximal eigenvalue,
independently of the lattice size. We conclude there exists
0 < K < oo such that (y(7)|F|y(t)) < Kt.

At time 7, we must have

(120)

w(@) = 11,) ® Wh_,))- (121)

for arbitrary state |yp’) acting on sites other than j.
Therefore,

(w(@)|Fly (7)) 2 J.

Using Markov’s inequality as in the proof of Theorem 7, we
obtain Eq. (115). The case a < 2 5 is proved analogously. m

(122)

VI. FREE LIGHT CONE

In this section, we discuss bounds on the quantum
dynamics of noninteracting many-body systems.

A. Noninteracting Hamiltonians

Consider a many-body quantum system defined on
a d-dimensional lattice graph A; we assume the same
properties of A as in Sec. III. Suppose that the many-body
Hamiltonian takes the form

H(t) =Y hy(t)c]c;,

i.jJEA

(123)

where h(t):R — CM* is a Hermitian matrix and c]
and c; represent either fermionic creation and annihilation
operators:

The on-site Hilbert space H; obeys dim(7#;) =2 in the
fermionic case and dim(;) = oo in the bosonic case. We
note, however, that, in isolated bosonic systems, H; can
often be truncated so that dim(;) is at most the number of
excitations on the lattice and is, therefore, finite.

As is well known, the evolution of all operators in
such a noninteracting theory is controlled by the Green’s
function of the single-particle problem on the Hilbert
space C*. Time evolution on this space is generated by
the Hamiltonian

(126)

)= D hy(0)]i) ()

ijeA

where |i) denotes the state that has exactly one excitation at
site i € A. The single-particle time evolution matrix obeys
the differential equation

d

U = ity (U0, (120

together with the initial condition Ug,(0) = 1. For
example, in the fermionic model,

= Ugpii(t)e, (128)
jen
which follows from observing that
ic,- =i[H(t),c;] = Zth (Dclejie] = Zh’/
dt
JEA JjeA
(129)

For simplicity in the discussion that follows, we drop the
“sp” subscript on H and U.

B. Quantum walks of a single particle

Consider a normalized wave function |y(1)) :=
U(t)|y) € CA, along with its canonical probability distri-
bution P, on A:
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(il
Z w|w (130)

i€eA

Let us label an origin 0 € A and assume that |y (0)) = |0).
We now use the quantum walk framework to prove our
third main result, on the concentration of P, on lattice sites
close to the origin.

Theorem 9. If a >d+ 1, e >0, and r € Z*, there
exist constants 0 < K, u < oo such that
Kt
P, e 131
> RS e (3D

YEA:D(y.x)>r

When d < a <d+ 1, Eq. (131) holds with u = 0.
Proof.—We first prove Eq. (131) when a > d+ 1.
Define the Hermitian operator

(x| F(D)]y) =06, F (x.1), (132a)

F(x, ) :==min [0, D(x,0) — ut]. (132b)
Our goal is to follow the proof of Theorem 7, first

bounding the rate of change of an expectation value and

then employing Markov’s inequality. The operator whose

expectation value we bound in the time-evolved wave

function is F7; ultimately, we see that f =a —d —e.
First, let us bound

| F(x)) = F ()| < pmax[F (x), F (») 1 F (y) = F (%)
<PD(x,y)[FPF +Fy)-]. (133)
Then,
%(w(t)IFﬂIW(I» = —i{w()|[F’, H(0)]lw (1))
— up(y ()| 7P~y (1)) (134)

Let us first bound the first term, using Egs. (133) and (134):

wOIF?. H(1)]Jw(0)))|
<2 ) [IFLHOI) (el ()|

{x.y}cA

<2, ). P

XEA yeA—{x}

<IY X P g PP+ F )

XEN yeA—{x}

(OIF? H@D)]]y)]

(135)

In the last line, we use the symmetry of the sum under
exchanging x and y to remove P,(y). Then, we observe that

FO)Y < [F () + Dl y))!

<27 Fx)P1 + D(x,y)f-1. (136)
Hence, so long as we choose
p=a—-d-e, (137)

we conclude that there exist constants 0 < K, A < co
such that

wOIFP, H (Ol (1))
<(2+29)) Py(x)

XEA
> h

= <D<x y 7 D)

)

< D PIK + AF ) = K+ Al (01 (),
XEN
(138)
where K and A are constants. Upon choosing
A
u=—, 139
5 (139)
Eq. (134) implies that
w(O)|F (1)) < Kt. (140)
Using Markov’s inequality and assuming r > uf,
E,[F7] Kt
P < < . 141
Z 0) = (r—ut)’ = (r—ut)’ (141)

YEA:D(y.x)>r

Combining Egs. (137) and (141), we obtain Eq. (131).
Second, we study the case @ < d + 1. Now we define
(x|Fly) = 6,,D(x,0), (142)

with g given by Eq. (137). Observe that # < 1. In this limit,

1<) P D proyalPex0) D00y
XEA yeEA— {x}
h
< lp[(x) N v Na-B° (143)
; yeAZ_{x} D(x’ y) P

where in the last inequality we use the convexity of F as a
function of the distance. For any ¢ > 0, the sum over y
converges; hence, there exists a K < oo such that

<Zuﬂ> )x K =K.

xXEA

(144)
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Another application of Markov’s inequality implies
Eq. (131). n

C. Local simulation of a single particle

An immediate application of Theorem 9 is to bound the
error made by approximating time evolution via a trun-
cated, local Hamiltonian, analogous to the discussion in
Sec. IVD.

Corollary 10. For any i€ A, define Bj:=
{j € A:D(j,i) < r}, and define H(t) to be the restriction
of a free bosonic Hamiltonian H(z) [Eq. (123)] to B} C A.
Then, for any e > 0, there exists 0 < K, K’ < oo such that,
for times

p < & il (a-d-e)/3), (145
n

~—

we have

t P2
I8} = 510 < KR (gt ). (40

where the norm is estimated in the subspace that has at most
n > 1 excitations across the lattice and l;j(t) denotes time
evolution with the restricted Hamiltonian H ().

Proof.—Without loss of generality, we assume i = 0, the
origin. Observe that

IIbS(t)—ES(t)IIS/tdsll[BS(I),H(t)—H(t)JII
/ ds [bg(t Z Z h,-jb,-bj}
0 (1.0)<rj:D(j.0)>r

(147)

Using Theorem 9,

(148)

where the coefficients f;(¢) satisfy, for some 0 < C < oo
and arbitrary € > 0,

C
S P S e

i:D(i.0)>x

(149)

for all x > 0 and all ¢ obeying Eq. (145).

We separate the sum over i in Eq. (147) according to
D(i,0) < r/2 and r/2 < D(i,0) < r. In the former case,
we have

{Z)g(t), Z Z h,lb bT] ‘
i:D(i,0)<r/2 j:D(j,0)>
<2vn| > > h,]b b’

i:D(i,0)<r/2 j:D(j,0)>

Z 1 < Cll’l3/2
(l j)a— ra—d ’

j:D(j,O)>rD ’

<21n3?  max

150
i:D(i.0)<r/2 (150)

where 0 < C; < o0 is a constant. We use the fact that
|hij| <1/D(i, j)* and that D(j,i) > r/2 for all i such
that D(i,0) < r/2.

On the other hand, for r/2 < D(i,0) <r,

H by (1), Z hijbibj‘-]'
i1r/2<D(i,0)<r j:D(j,0)>r
< > el > S we
i:r/2<D(i,0)< iir/2<D(i,0)<rj:D(j,0)>
n
<[y |f,-<z>2( max Y )
itr/2<D(i,0)<r ir/2<D(i.0)<r j:D(j, 0)>,D(l’.])
1324172

= 2,.(0(—[1—6)/2’ (151)

for 0 < C, < . Replacing Egs. (150) and (151) into
Eq. (147) and integrating over time, we arrive at Eq. (146). m

D. Single-particle state transfer

Our next goal is to prove the tightness of Theorem 9, up
to subalgebraic corrections. This proof is achieved by the
following theorem, which provides a rapid state-transfer
protocol for a single particle.

Theorem 11. For every xe A—{0} with D(x,0)>2,
there exist a constant 0 < K < oo and a Hermitian

matrix h(t):R — C™A obeying Eq. (22), such that
(x|U(2)|0) =1 at
D(x,0) a>d-+1,
Dx, 004 d<a<d+1,
7:=Kx (x.0) : (152)
logD(x,0) a=d,
1 a<d.

Proof.—For a > d + 1, in order to transfer an excitation
from O to x, we simply use a sequence of nearest-neighbor
hoppings, which would take time proportional to the distance
D(0, x). Specifically, let (yg := 0, y1, ..., Vo_1, ¢ = x) be a
sequence of length 1 + D(x, 0) such that the edge (y;, yi1)
is an edge of nearest neighbors in A; here, ¢ := D(x,0). We
then apply
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o L =ikl )05l e (G- 5%
(1) =
0 elsewhere,
(153)

where 4 is defined in Eq. (22). It is straightforward to verify
that the Hamiltonian takes |y;_;) to |y;) at the end of the
interval [(j — 1)(z/2h), j(z/2h)], forall j =1,...,7. As a
result, we achieve perfect state transfer from site 0 to site x
at t = (#/2h)D(0, x). Therefore, Theorem 11 holds for
a>d+ 1 with

7
K= 0 (154)

For a < d + 1, we use a state-transfer scheme depicted
in Fig. 3. The scheme, as depicted, assumes that the lattice
is a simple cubic lattice; however, this protocol is easily
applied to an arbitrary lattice graph, since we may always
arrange the unit cells of the graph in the structure shown
above. As the generalization to other lattices is obvious, we
describe only the case of a simple cubic lattice below.
We further assume the sites 0 and x are on the same axis of
the lattice; more precisely, we assume that the path of
shortest length connecting 0 and x is unique. If 0 and x =
(x1, ..., x4) do not satisfy this property, we use the protocol
described below to transfer the excitation from 0 to
(x1,0,...,0), all the way to (xi, ..., x,) in d separate steps,
increasing the total transfer time by at most a factor of d
compared to the protocol we describe below.

We define g € Z* as

D(x,0)] +1

Let B, C R? denote a cube of size D(x,0) such that the
sites 0 and x are at two different corners of B,. We then
recursively define a sequence of g — 1 cubes, namely,

(0)
B, ...

q = [log, (155)

B §0>, satisfying

.cBY cBY =B

0 0
{O}CBg)cBg)c e

(156)

q-

and the size of B\ is 2° [D(x,0)/24] for all s =1, ..., 4.
Note that our definition ensures the size of B is in [1, 2).

) (x)

Similarly, we define the cubes B(lx , ..., Bg’ that contain x:

(x}cBYcBY c...cBY cBY = B,. (157)

gq-1

Our strategy is to first expand the state [y (0)) = |0) to a
coherent uniform superposition on Bgo)’ which is sub-
sequently expanded to coherent uniform superpositions on
larger and larger cubes Bé()), e BEIO). After that, we reverse

the process and contract the uniform superposition on

BS;)) = B( %) onto the cubes (_)1, B<1x) and finally onto

site {x}. We argue that each expansion or contraction
involving cubes of size # takes time #%~¢, where £ is the
penalty due to the power-law constraint and #¢ is the
enhancement coming from the volumes of the cubes.
Summing over the values of £ results in a transfer time
that scales as D(0,x)* 4 ford <a <d+ 1.

To calculate the time it takes for each expansion or
contraction, we invoke the following lemma.

Lemma 12. Let A and B be two disjoint subsets of A,
and 0 < C < oo. Then, if

(158)

v (0) W;'

there exists a free-particle Hamiltonian H(z) defined in
Eq. (123) with |h;;| < C for all i, j € A such that, for any
0eR,

COSH sinG
ly( |i) i), (159)
\/ Al ; VB ;
at time
V3

<—.
2C/|BJIA]

Proof.—We prove the lemma by construction. Consider
the Hamiltonian

H(1) = sgn(tan0)y > iC(|j) (k| = k) (j])-

keA jEB

(160)

(161)

Without loss of generality, we take 6 € [0, (z/2)]; the
generalization to other @ is straightforward. By permutation
symmetry, the wave function takes the form Eq. (159) with
(1) a function of time. Pick any j € B. We can explicitly
evaluate

0 _ \/1B]d{jlw (1) _ /1B i

dt  cosf dt cos @

Cv/|BIIA].

(162)

Hly (1)) =

Since the value of € at which |y(f)) is given by
Eq. (159) is in [0, (x/2)], we conclude that Eq. (162)
implies Eq. (160). m

By construction, the time z of our perfect state-transfer
algorithm is given by

T=2 2‘1: Tp,
s=1

(163)

where T’z  is the time it takes to expand from B@] to BEO) ,

which is also the time it takes to contract ng) into Bﬁf)l.

To evaluate these times, we use Lemma 12 with C = 1/2%*
to get
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2% 2n
TB,S S” =
\/2(5'—1)(1(2501_2(3—1)(1) \/2"— 1

23‘((1—&1)’ (164)

for all s =1,...,q9. Here, we have lower bounded the
number of sites in B\ by 25¢/2.

For a # d, summing over s gives
2d+1, o(g+1)(a=d) _ 1
2 _q 2(1—d -1

2d+3 1 —d
< {WWD(X’ 0)7

2d+1” 1

V2d_1 12771

7<

(a>d),
(165)

(a < d).
On the other hand, at @ = d, we have

24x 2z

<gXx <
V2417 V2 -

Therefore, Theorem 11 follows. [ ]

There are two important consequences of Theorem 11.
First, even a single quantum mechanical degree of freedom
can perform state transfer as asymptotically well as the
previously best-known protocol in an interacting many-
body system [8] for @ > d. Second, Theorem 11 proves that
any possible improvement to Theorem 9 must be subalge-
braic. Both the linear light cone and the superlinear
polynomial light cones we prove for free quantum systems
with long-range interactions are now known to be optimal.
Theorem 11 is also applicable to spin systems, since the
spin degrees of freedom may be treated as hard-core
bosons. Similarly, the protocol applies to Hamiltonians
with on-site and particle-number-conserving interactions
such as the Bose-Hubbard model: The interactions have no
effect, since at all times during the protocol there is at most
a single particle in the system.

As noted in the introduction, this state-transfer protocol
is naturally realized in experiments whenever there is a
conserved quantity. For example, in a spin system with
Z-spin conservation, we can prepare the system in a highly
polarized state with a single up spin; the location of the up
spin represents the location of the single quantum degree of
freedom, and our state-transfer protocol immediately
applies. In trapped ion crystals, it is natural to use a large
transverse magnetic field to help restrict to this subspace
[50]. In addition, decoherence rates are greatly reduced in
the single-particle subspace, when compared to the GHZ
states employed by Ref. [8].

A key feature of this state-transfer protocol is its
remarkable robustness to error. Here, we give a heuristic
argument for this robustness; a complete analysis is
provided elsewhere [51]. At step n of the protocol above,
there are N\, = 2% sites in each domain which are all
mutually coupled; the coherent state-transfer process leads
to an enhancement in the transfer rate by a factor of V.

- [1+1logD(x,0)]. (166)

Now, suppose that there is an uncorrelated random error in
the coefficients of |) (k| in Eq. (161). Using random matrix
theory [52], we estimate that these errors introduce lead to
dephasing rates of the order of \//T,, . If |x) is the target site
for the state-transfer protocol, we estimate the loss in
fidelity 7 = |(y/()|x)|* by summing up the error after each
step:

€
<sm—y- (167)

1—f~ir e22 /2 <

Here, € is related to the error in a single coupling in the
state-transfer process. Therefore, the quantum coherent
hopping of this state-transfer protocol renders it highly
immune to imperfections in tunable coupling constants
which are inevitable in any near-term quantum simulator.
As ¢ — 0, the fidelity F — 1.

E. Efficient early-time classical boson sampling

The boson sampling problem was proposed by Aaronson
and Arkhipov [25] as a potential candidate for the demo-
nstration of quantum supremacy. While simulating the
dynamics of bosons hopping on a lattice is generally a
difficult task for classical computers, early-time evolutions
where the bosons do not have enough time to hop too far
from their initial positions can be simulated efficiently
[10,26,53]. In particular, Ref. [10] considers a scenario
where bosons are initially located at equal distances on a
lattice and allowed to move in the lattice using only nearest-
neighbor hoppings. Using the Lieb-Robinson bounds, the
authors construct an early-time classical sampler that
efficiently captures the dynamics of the bosons up to time
t. that scales polynomially with the system size and,
thereby, demonstrate a dynamical phase transition in the
computational complexity.

The early-time classical sampler was later generalized to
more complicated systems with power-law hoppings [26].
However, the easiness timescale 7, in this case scales
polynomially only with the system size for a > 2d and
scales logarithmically with the system size when
d+1 < a<2d. In this section, we show that the tight
free-particle bound in this paper immediately imply that z,
scales polynomially with the system size for all @ > d, i.e.,
an exponentially longer easiness timescale in the regime
a € (d,2d] compared to the previous results [26].

For pedagogical reasons, we describe here only the high-
level ideas behind the construction of the early-time boson
sampler and argue for its efficiency using the technical
results of Ref. [26]. We consider N bosons hopping on
a d-dimensional lattice under the Hamiltonian

Z‘IU i J’

(168)
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where b; is the bosonic annihilation operator on site i,
J: () £1/D(i, j)* are the hopping strengths, and the sums
are over all sites i, j on the lattice. We assume that the
lattice has M « N’ sites in total, where f > 11is a constant.
The bosons are initially located on evenly spaced sites on
the lattice so that the minimum distance between nearest
occupied sites is 2L o< (M/N)"/4 & N¥-1/4 a5 shown in
Fig. 6. Denote these initial positions by ji, ..., jy. We can
write the initial state in terms of the creation operators:

w(0)) = [] b}, vac). (169)
k=1

where |vac) is the vacuum state.

The aim of boson sampling is to sample the positions of
the bosons at a later time ¢. The idea of the early-time boson
sampler in Refs. [10,26] is that each boson primarily hops
within its causal light cone, i.e., a bubble of radius r(¢)
centered on its initial position. For a small enough time,
r(t) < L and the bosons do not interfere with each other.
The state of the system at this time can be approximated by
a product state over the bubbles, and, therefore, the
positions of the bosons can be efficiently simulated by
simulating the dynamics of each boson independently.

Let U(r) = T exp|—i [ dsH(s)] be the evolution unitary
generated by H at time . By inserting pairs of I = UTU in
between the creation operators, the state of the system at
time ¢ can be written as

() = Jup, U@, (170)
k=1

Here, the evolution of the state can be simplified
into independent evolutions of the creation operators

Ml/D
000000000000 00000O0O0O0
M\YP| OO0 00000000000 000000
(ﬁ> OCO@0000Oe0000e0000 800
O0000000000000000O0O0O0
© 0000000000000 000000
0000000000000 O0I0000O0
0000000000000 O0000O0O0O0
0O0O@0000@@0000e0000 e0O0
0000000000000 00I0000O0
000000000000 00000000
000000000000 00000O0O0O0
O00000000000O000000O0O0
0000000000800 00 e0O0
000000000000 00000O0O0O0
0000000000000 0000O0O0
0000000000000 00000O0O0
0000000000000 000000O0
ool NeNelicNoN NeleleNoN NeNelicloN Nele)
0000000000000 00I0000O0
0000000000000 O00I000O0O0

FIG. 6. A depiction of the initial state in Ref. [10]. Empty
circles represent empty lattice sites, and filled circles represent
initially occupied sites.

b; (1) = U(t)b; U'(t). Using our free-particle bound in

Theorem 9, we can approximate b;k(t) by its evolution
within a light cone originated from j;:

b, (1) % Uy(0)b}, U (1) = B, (1)

Jk Jk (171)
where U, (t) = 7 exp[—i [{dsH,(s)] and H; is the
Hamiltonian constructed from H by taking only the
hoppings between sites that are at most a distance L from
Jk- Using Corollary 10, the error of this approximation is
O((N1)3?/L(e=4=€)/2) " where € is an arbitrarily small
positive constant and we assume ¢ > 1 without loss of
generality. Repeating the approximations for all k =
1,..., N, we thereby show that the state |y(z)) is approx-
imately [¢(1)) = [T, By, (1) lvac)

Since the operators b; (¢) are supported on distinct
regions, the bosons from different regions do not interfere
with each other. Therefore, the probability distribution for
the positions of the bosons in |¢(7)) is simply the product of
probability distributions of each boson hopping independ-
ently. Thus, at a later time, the positions of the bosons in
|¢(1)) can be efficiently sampled on a classical computer.

Note that the state |¢(¢)) only approximates |y (7)) up to
some time ¢,. To estimate t,, we calculate the total error of
the approximation. A simple calculation [26] shows that the
total error of approximating the N original bosons {b"(#)}
by the confined ones {5 ()} is O(N>/2£/2/L{*=4=9)/2)_N
times the error of approximating each b'(¢) by the
corresponding b ().

Requiring that the total error of the approximation is at
most a small constant, we obtain

1, & L@=d=/3N=5/3 o NIF-Dla=d=€)/3d=(5/3) = (172)

where we replace L o N¥~1/4 from our assumption.
Therefore, by choosing a small enough e, the easiness
time ¢, increases polynomially with N for all o>
d{1+1[5/(p—1)]}. In particular, the condition becomes
a > d in the limit of large . Therefore, our free-particle
bound improves the easiness time f, exponentially com-
pared to Ref. [26] in the regime a € (d, 2d|.

VII. GENERATING TOPOLOGICALLY
ORDERED STATES

In this section, we study the minimum time it takes to
create topologically ordered states from topologically
trivial ones. Before we present our result, we define
topologically ordered states and topologically trivial states
following the definitions in Refs. [36,54]. Suppose that the
finite lattice A has diameter L and consists of O(L?) sites.
Let {|wi),....|yx)} be a set of orthonormal quantum
many-body states and define
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2wilOlw )}

(173)

e = sup max {[(wilOlwi) = (w;|Olw;)

where the supremum is taken over unit-norm operators O
supported on a subset of the lattice with diameter / < L/2.
Roughly speaking, e quantifies the ability to distinguish
between the states {|w), ..., |w)} using observables that
are supported on only a fraction of the lattice. We say that
the states are topological if there exist constants ¢, > 0
such that € < ¢L™ and are trivial if ¢ is independent of L
[55]. We now use the Lieb-Robinson bound to bound the
minimum time it takes to convert between topological and
trivial states.

Proposition 13. Consider a time-dependent Hamiltonian
H with long-range interactions of exponent & on A. Let U(¢)
be the evolution unitary generated by H at time ¢, let
{lw1), .- |wi)} be a set of topologically ordered states,
andlet{|¢;), ..., |¢r) } be aset of topologically trivial states.
If o >2d+ 1 and there is a time 0 < 7 < oo such that
lw;) = U(z)|¢;), then there exists an L-independent con-
stant 0 < K < oo such that 7 > K7*, where

i {L when a > 3d + 1,
£ Le=20)/(d+1) /10624 [, when 2d + 1 < a < 3d + 1.
(174)

Proof.—Consider an arbitrary operator O with a support
diameter of [ < L/2 and let O(t) = U(t)OU'(t) be the
evolved version of O. We further introduce O(t,1') =

trge O(t) as the version of O(r) truncated to a ball B, of
[/

diameter /' > [ such that I’ — [ is of the order of L. Using
the triangle inequality, we have

(@i O(z. 1) |¢:) — (#;|O(z.1)|¢))]
<2[0(7) = Oz, 1) || + {:ilO(7) i) — (9,|O(2) ;)]
(175)

By our assumptions on the presence of topological order in
lw;) and the absence of topological order in |¢;), there
exist constants 0 < 8, a; , < oo such that

a
a -2 <20@ -0 (176)

On the other hand, using Proposition 2 for @ >2d+ 1 and
7 < L/v, where 7 is a constant, there exists 0<C, 2<00
such that

Td+110g2dll lOgZdL
10) = O 1) < € L1 T8 < Gt ZE T
(177)

where the factor L? accounts for the support size of O. For
all @ >2d+ 1, Eq. (177) vanishes as L increases, in
contradiction with Eq. (176), unless 7 = O(z*). The proof
is complete. n

VIII. CLUSTERING OF CORRELATIONS

In addition to the dynamics of quantum systems, the
Lieb-Robinson bounds also have implications for the
eigenstates of a Hamiltonian. In Ref. [15], the authors
show that, if a time-independent power-law Hamiltonian
with an exponent « has spectral gap A > 0, the correlations
between distant sites in the ground state of the system also
decay with the distance as a power law with an exponent
lower bounded by

a
T (178)

where ¥ is a constant that depends on a.

The bound in Ref. [15] has a undesirable feature: For a
given value of a, varying the gap A also changes the
minimum exponent «. Although this feature leads to an
intuitive implication that larger energy gaps result in faster
correlation decay, there is no known example where
ground-state correlations decay at a slower rate than a
power law with an exponent a. Indeed, we show that the
cause of this problem is tied to the previous lack of an
algebraic light cone in the quench dynamics. In particular,
by using the Lieb-Robinson bounds with algebraic light
cones [11,16,21,22,56], we show for all a > 2d that the
ground-state correlations must decay as a power law with
the exponent lower bounded by the exponent of the
Hamiltonian.

Proposition 14. Let H be a power-law Hamiltonian
with an exponent a; let A and B be local operators obeying
IA]l, ||B]| < 1, supported on X and Y such that [X|=|Y|=1
and D(X,Y) = r > 0. Assume that H has a unique ground
state |yp,) and spectral gap A to the first excited state.
Define C(r) = (wolABlwo) — (WolAlwo) (wo| Blwo) to be
the connected correlator between A and B in the ground
state. Then

(179)

2r71el(5) ar/? 41 log"/?r
7 A7 re

el < |

where c is a constant independent of a, y = a(a —d + 1)/
(a —2d), and T'(+) is the Gamma function.
Proof.—First we rewrite

C(r) = (wolAlwe) (wilBlwo),

k>0

(180)

where the sum is over the excited states |w;) of the
Hamiltonian. Our strategy is to relate C(r) to the commu-
tator norm ||[A(t), B]||, which we then bound using

031009-25



MINH C. TRAN et al.

PHYS. REV. X 10, 031009 (2020)

a Lieb-Robinson bound. To relate C(r) to ||[A(z), B]||, it is
natural to first consider the value of [A(¢), B] in the ground
state, whose magnitude is bounded by ||[A(?), B]||:

(wollA(r), (wolA(1)Blyo) — H.c.

= e (o | Aly) (wi | Blyo) — Hee.,
k>0

Bllwo) =

(181)

where E; are the eigenvalues of the Hamiltonian and we set
ground-state energy E, = 0 so that E;, > 0 for all £k > 0.
Note that the k = 0 terms cancel between the first term and
its Hermitian conjugate.

By observation, we note that if we could replace the
terms e'“+" in Eq. (181) by a unit step function @(E}) that
satisfies ®(E;) =1 and O(—E;) =0, we immediately
obtain the expression of C(r) in Eq. (180). In fact, this
replacement is easy to achieve using the identity

) 1 0 eiEkt
lim — dt — =
=0t 27l J_o 1 — i€

Therefore, we have

O(Ey). (182)

1 o A(t),B
=0+ 271 | oo t—ie
and we obtain the relation
1 o0 A(t),B
=0+ 27i oo t—ie

<! fo HAO.BL

Unfortunately, this relation is not useful; the right-hand
side of Eq. (184) diverges even when the commutator
[l[A(z), B]|| does not increase with time. The failure of such
a simple treatment is not surprising, as we do not use the
crucial assumption on the existence of a finite energy
gap (E; > A).

Intuitively, to make the integral in Eq. (184) converge,
we can multiply the integrand by a function that decays
quickly with ¢. A natural choice is a Gaussian function

(184)

e~1/2” "where v > 0 is an adjustable parameter; it decays
with time quickly enough to make the integral converge,
and its Fourier transformation is rather easy to handle. By
multiplying this function to the integrand in Eq. (182), we
arrive at a convolution of the step function with the
Gaussian function:

) 1 . eiEkle—(vl/2)2
lim — dt —
e—0" 271 | _o t—ie

:—/m O(E, — E)e B/"dE=: f(E,).  (185)

It is easy to verify that f(E;) = 1 — g(Ey) and f(—E}) =
0+ g(E;) for some positive function g(Ej) < Ee‘<Ek/“>2.
Thus, f(E;) closely resembles the step function ©(Ey),
albeit with a smoother transition from O to 1.

Inserting this convolution into Eq. (183), we have

0 (vt/2)?
lim 1/ 41 WollA(). Bllyo)e”
e—0" 271 t—ie

k>0

Using a Cauchy-Schwarz inequality, we can then bound the
absolute value of the sum over k& in the right-hand side by

> 29(EQ) (wolAly) (wal Blwo)| < e/, (187)

k>0

where we use that £, > A. Thus, we arrive at our desired
relation:

o0 —(v1/2)?
e < / i
T .Jo

Finally, we bound the commutator norm using the Lieb-
Robinson bound in Ref. [16]:

B + 47"

11A(2), (188)

lA(). Bl < e 2

—_ )
ra

(189)

where ¢ is a constant and y = a(a —d + 1)/(a — 2d). We
obtain

2-1er(3) 1

T v'r®

lc(r)] < e~ (B/v) (190)

where T'(-) is the Gamma function. By choosing v =

A/\/alogr, we get

2r71el(5) ar/? log’/?r
AT r®

IC(r)l < (191)

Therefore, the correlators in the ground state of a power-
law Hamiltonian with a > 2d also decay with the distance
as a power law (up to a logarithmic correction) with the
same exponent a as that of the Hamiltonian. In particular,
this exponent is independent of the energy gap A, in
contrast to the previous result in Ref. [15]. [

Note that, in Eq. (190), we use an algebraic light cone
bound from Ref. [16] instead of the tighter bounds in recent
works [11,21,22,56], because the bounds in Refs. [11,21,56]
decay with the distance slower than 1/r* while the bound in
Ref. [22] does not hold for 2d < a <2d + 1.
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IX. CONCLUSION

We have demonstrated a hierarchy of linear light cones—
a sequence of metrics and protocols under which the
emergent locality that arises in local quantum many-body
systems breaks down at different exponents a of long-range
interactions. The most general such light cone—the Lieb-
Robinson light cone that bounds commutator norms—can
become superlinear for any @ < 2d + 1. We conjectured that
the Frobenius light cone that controls many-body chaos and
state transfer can be superlinear only when a < 1 + 3 d and
proved this result in d = 1 using the operator quantum walk
formalism. Finally, in noninteracting systems, we proved
both linear (@« > d + 1) and superlinear (d < a <d+ 1)
light cones along with the optimality of these bounds. As
such, we close a number of long-standing questions in the
literature on the limits and capabilities of quantum dynamics
with long-range interactions.

Besides state transfer and many-body chaos, we have
also demonstrated a wide range of applications of these
(nearly) tight light cones. We proved that the growth of
connected correlations obeys the same light cone as that of
the Lieb-Robinson bound. In the context of digital quantum
simulation, we used the Lieb-Robinson bound to construct
an approximation for the time-evolved version of a local
observable and, thereby, reduced the cost of simulating the
observable on quantum computers for all a > 2d + 1.
Similarly, using the free light cone, we constructed an
efficient early-time classical boson sampler for all a > d,
exponentially improving the previous best estimate in some
regime of a. Additionally, we bounded the time it takes to
generate topologically ordered states using power-law
interactions. Finally, we tightened the minimum correla-
tion-decay rate in the ground state of a gapped power-law
Hamiltonian.

The hierarchy of linear light cones revealed in this paper
has important implications both on the capabilities of
quantum technologies exploiting long-range interactions
as well as on the nature of quantum information dynamics
and thermalization in these systems. A complete under-
standing of quantum chaos and state transfer, at the very
least, requires the construction of a new mathematical
framework beyond the Lieb-Robinson bounds, perhaps
along the lines of our operator quantum walk. It is an
interesting open question whether and how the hierarchy of
different notions of locality revealed in this manuscript
reveals itself in aspects of quantum chaos besides OTOCs,
perhaps including entanglement dynamics or eigenvalue
statistics. The tightness of the superlinear polynomial light
cone t ~ r* ! foundind = 1 for2 < a < 3 in Ref. [21] as
well as the existence of algebraic light cone below a = 2d
in [11,16,56], remains an open problem. Last, it also
remains an important future challenge to obtain the
Frobenius light cone in two or more dimensions, as well
as to rigorously study the light cone that controls the
decoherence of a quantum system subject to long-range

random noise, which was conjectured to be linear for
a>d+1[57].
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Note added in proof.—Recently, we became aware that a
second version of Ref. [22] appeared, which includes
an analysis like Theorem 5 involving applying a very
similar H () to a particular initial state where all qubits are
in |0), except for the qubit at site 0, which starts in an
arbitrary state a|0) + b|1). The result, up to a Hadamard
gate, is an encoding of the initial qubit into state
al000...)5 [0)  + b[111...)p |1);, where site f is distance
r away from site 0, B, contains sites within a ball of radius
¢ around site 0, and all other qubits [22].

We add that, upon undoing the Greenberger—Horne—
Zeilinger-like state on B, with nearest-neighbor CNOTs, one
obtains a|0)o|0) ; + b[1)o|1) ;, where all other qubits are in
|0). Reversing this full procedure with the roles of 0 and f
exchanged, one obtains single-qubit state transfer from 0 to
r; i.e., all qubits end up in |0), except for qubit f, which
ends up in state a|0) + b|1). Using the language defined in
the introduction, this state transfer, like that in Ref. [8], is
not universal in that it assumes that all qubits involved,
except for the one at site 0, start in |0). This protocol takes
time O(r%/(4+1)) and is faster than that of Ref. [8] for
d —1—% < a <2d+ 1. In particular, for these values of a,
this protocol can be used to shorten, relative to the result of
Ref. [8], the preparation time of multiscale entanglement
renormalization ansatz (MERA) states of linear size L
down to O(L¥/24+1),

For d<a<d+1, the state-transfer protocol
just presented can be sped up with the help of the
protocol of Ref. [8]. In particular, we can use the
protocol from Ref. [8] to encode in time ¢ a qubit
al0) + b|1) at site 0 into a GHZ-like state a|000...) +
b[111...) of ~t4/(@=4) qubits, as compared to ~¢¢ qubits
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in the original protocol above. The same procedure
can be used to prepare the GHZ state around site f,
while the reverse of the procedure can be used to
undo the preparation of these GHZ-like states around
both site 0 and site f. With this enhancement on the
preparation and the undoing of the GHZ-like states, the
state-transfer protocol takes time t ~ rla=d)/(atd) g
faster than both of the original protocols, and can be
used to prepare MERA states of linear size L in
time O(L*@d)/(atd)y,
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