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We introduce a new boundary condition which renders the flux-insertion argument for the Lieb-Schultz-
Mattis-type theorems in two or higher dimensions free from the specific choice of system sizes. It also
enables a formulation of the Lieb-Schultz-Mattis-type theorems in arbitrary dimensions in terms of the
anomaly in field theories in 1þ 1 dimensions with a bulk correspondence as a BF theory in 2þ 1

dimensions. Furthermore, we apply the anomaly-based formulation to the constraints on a half-filled
spinless fermion on a square lattice with π flux, utilizing a time-reversal, magnetic translations and an on-
site internal UðNÞ symmetries. This demonstrates the role of the time-reversal anomaly on the
ingappabilities of a lattice model. Moreover, by our new boundary condition, we show that the many-
body Chern number of this lattice model is nonvanishing as N mod 2N in the presence of UðNÞ and
magnetic translations. This can be a general mechanism of anomaly-based constraints on quantized Hall
conductance, which generally depends on high-energy physics, from field theory.
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I. INTRODUCTION

Quantifying various phases for quantum many-body
systems is a central task in condensed matter and statistical
physics. Recent decades have witnessed several significant
phase classifications, e.g., topological ordered phases [1,2]
and symmetry-protected topological (SPT) phases beyond
Landau’s symmetry-breaking pattern of strongly correlated
systems with nonperturbative interactions [3,4]. Further-
more, symmetries together with filling fractions also
constrain low-energy spectrums when critical phases are
gapped, which induce the concept of symmetry-protected
critical phases [5,6] that nontrivial critical phases are
ingappable with a unique ground state if the symmetries
are respected by Hamiltonians.
One of the most important general principles in quantum

many-body systems is Lieb-Schultz-Mattis (LSM) theorem
[7] and its generalizations [8–11]. They show the interplay
between the global Uð1ÞQ charge and translation sym-
metries. The theorem states, under certain conditions, an

“ingappability” of the system, that is, either the presence of
gapless excitations above the ground states or a ground-
state degeneracy in the limit of the large system size. It is
valid for Hamiltonians with appropriate symmetries for
arbitrary strong interactions, and thus is nonperturbative in
nature.
Generally in physics, we expect that the bulk property

would not depend on the choices of boundary conditions. If
that is the case, we can use a boundary condition which is
convenient for the calculation and infer physical results
which would be valid independent of the boundary con-
dition. In many cases, the periodic boundary condition is
chosen as a boundary condition. A typical example is the
band theory of electronic structures.
The original proof [7] of the LSM theorem was also

based on the periodic boundary condition. The LSM
theorem in higher dimensions turns out to be more subtle.
While it is easy to see the failure of the original proof in
higher dimensions, the original proof would still work
[7,12] in an “anisotropic” thermodynamic limit in which
the ratio of the system sizes in each direction diverges.
However, one might worry that the system is essentially
one dimensional in such a limit. An alternative argument
based on an adiabatic flux insertion and gauge invariance,
which does not need such an anisotropic limit, was
proposed later [10]. It still depends on several nontrivial
assumptions including the stability of the gap against the
flux insertion, and special choices of system size as we will
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discuss later. It was followed by a more rigorous proof [11]
of the LSM theorem in higher dimensions, and its further
mathematical refinements [13].
Nevertheless, the flux-insertion argument is still attrac-

tive in its simplicity, intuitiveness, and connections to other
concepts in physics. Indeed, some of the recent extensions
[14] of the LSM theorem is based on the flux-insertion
argument. Because of this, it would be valuable to improve
the flux-insertion approach to the LSM-type theorems. One
of the subtleties in the flux-insertion argument was that the
system sizes must meet a special condition: The lengths in
all but one direction must be coprime with the denominator
of the filling fraction. Although one may consider the
“thermodynamic limit” with a series of finite-size systems
satisfying this condition keeping the ratio of length to be of
order of 1, it is desirable to remove such a rather artificial
condition.
In this work, we introduce a new class of boundary

conditions, which we call tilted boundary conditions
(TLBC), which is useful for derivation of the LSM-type
theorems in dimensions higher than one. As we will
demonstrate, with TLBC, the flux-insertion argument
can be applied without the artificial condition on the
system sizes. This is also the case for the higher-symmetry
[SUðNÞ] generalizations [6,8].
Furthermore, the TLBC reveals previously unnoticed

relations between anomaly in field theory with the LSM-
type theorems. While the LSM theorem has been well
understood in the context of Tomonaga-Luttinger liquids in
one spatial dimension, field-theoretical understanding of
LSM-type theorems in higher dimensions has been rather
limited. The TLBC allows us to understand the LSM
theorem as an anomaly manifestation. As a further appli-
cation of the anomaly-based approach, we will discuss the
implications of the time-reversal anomaly [15,16] with a
lattice interpretation. Taking the advantage of the bulk-
boundary correspondence between SPT phase and the time-
reversal anomaly on its boundary, the anomaly leads to an
ingappability constraint for the half-filled π-flux system
when time-reversal, on-site UðNÞ and magnetic transla-
tional symmetries are respected. Moreover, the TLBC
enables us to obtain a constraint on integer quantum
Hall conductances. We show that the π-flux system must
have nonvanishingN mod 2N many-body Chern number in
the presence of UðNÞ and magnetic translational sym-
metries. Our constraint generalizes those derived for lattice
models known for N ¼ 1 [17–21]. Furthermore, our
proposal can be a general mechanism for nonperturbative
restrictions on quantize Hall conductivity from field theory.
It reflects a deep relation between such phenomena with
symmetry-broken surface of SPT phases.
This paper is organized as follows. In Sec. II, we

introduce our new boundary condition TLBC and apply
it to the LSM theorem in arbitrary dimensions. In Sec. III,
the TLBC is used to generalize the LSM theorem for spin

systems. In Sec. IV, we discuss the LSM-type ingappabil-
ities on the half-filled π-flux square lattice with an on-site
UðNÞ symmetry, magnetic translational symmetries, and a
time-reversal symmetry by a time-reversal anomaly. As a
further application, a constraint on the integer quantumHall
conductances of the gapped π-flux system in the presence
of UðNÞ symmetry and magnetic translations is obtained by
a bulk-boundary correspondence with the geometry of
TLBC in Sec. V. In the Appendix, we present a detailed
derivation of the constraint.

II. TLBC AND LSM THEOREM

A. Flux insertion with PBC

Let us first review the flux-insertion argument [10] for
the LSM theorem in d ≥ 2 dimensions, and some of the
problems in it. We are interested in the energy spectrum of a
quantum many-particle system on a periodic lattice. We
assume that the number of particles is exactly conserved,
and consider the limit of the large system size (thermo-
dynamic limit) with a fixed “filling fraction” (number of
particles per unit cell) ν.
The many-body gap is defined as the energy gap between

the (possibly degenerate, multiple) ground state and the
continuum of excited states, in the thermodynamic limit. It
is not to be confused with the finite-size gap defined by the
gap between the ground state and the lowest excited state in
a finite system of a fixed size.
When the many-body gap vanishes, namely if the

continuum of excited states starts at an infinitesimal energy
above the ground state, the many-particle system is said to
be gapless. On contrary, when the many-body gap is
nonvanishing, the system is said to be gapped. The LSM
theorem is a constraint on the energy spectrum, in particular
the ground-state degeneracy if the system is gapped, when
the filling fraction ν is not an integer.
For simplicity, let us consider the (hyper)cubic lattice in

d dimensions with periodic boundary condition (PBC)

r⃗ ∼ r⃗þ Lix̂i; i ¼ 1; 2;…; d; ð1Þ

where Li is the length along ith unit vector x̂i, and the
Hamiltonian is required to possess translational symmetry
and Uð1ÞQ symmetry. We set the filling factor as a rational
number ν ¼ p=q, where p and q are coprime. There is an
additional charge-quantization condition due to the funda-
mental degrees of freedom being charge one:

νV ∈ N; ð2Þ

where V ≡Q
i Li is the total volume, and this condition is

also implied by the compactness of global Uð1ÞQ sym-
metry. The PBC means that the system has topologically
nontrivial loops, which may be visualized with “holes” in a
higher-dimensional embedding. Each hole can contain a
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magnetic flux [Aharanov-Bohm (AB) flux], which affects
the system through the Aharonov-Bohm effect. Here, we
will utilize the AB flux Φ which is enclosed by the closed
loop in x̂1 direction. Such a flux is represented by the vector
potential in x̂1 direction A1 ¼ Φ=L1.
The many-particle system may be gapless or gapped. If it

is gapless, there is nothing more to say in the LSM theorem.
Therefore, we can assume that the system is gapped,
namely the many-body gap separating the continuum of
the excited states from the ground state(s) is nonvanishing
(at Φ ¼ 0). Starting from a ground state, which is also a
momentum eigenstate, as the initial state, we consider an
adiabatic insertion of unit flux quantum Φ ¼ 2π. Namely,
we consider the application of a time-dependent Uð1ÞQ
gauge field

A1 ¼
2πt
TL1

;

with T → þ∞. After the insertion of the unit flux quantum,
the Hamiltonian is equivalent (under a large gauge trans-
formation) to the original one without the flux. Here, we
make a crucial assumption that the many-body gap (which
was nonvanishing at zero flux, by the initial assumption)
does not vanish during the flux insertion. It then follows
from the adiabaticity that the final state must be a ground
state below the gap. One might expect the final state after
the large gauge transformation would be identical to the
original ground state.
However, for an incommensurate filling, there is a

nontrivial momentum shift caused by the flux insertion.
For instance, the lattice momentum change along x̂1 is

ΔPPBC
1 ¼ 2π

p
q
L2L3 � � �Ld mod 2π; ð3Þ

which is nonzero if ðL2 � � �LdÞ is nondivisible by q. In this
case, the final state cannot be identical to the initial ground
state. Restricting the system sizes L2;3;…;d to coprime with
q, the statement of the LSM theorem is derived. Namely,
the system is either gapless or has at least q degenerate
ground states below the gap. However, this artificial
restriction on the system size is clearly undesired.
Physically we would expect the same statement to hold
for generic (large) system sizes, even though the above
argument does not lead to a nontrivial restriction if
L2L3 � � �Ld is divisible by q.
Here, let us also comment on the nontrivial assumption

that the nonzero many-body gap does not collapse during
the flux insertion. While this assumption, which is crucial
for “flux-insertion” arguments, has not been proven, it is
rather natural, as the change of the hopping terms is only of
the order of Oð1=L1Þ in the uniform gauge. In fact, there is
some numerical [22] and analytical [23] supporting evi-
dence. Furthermore, some versions of the LSM theorem,
that follow from the assumption, have been proven

rigorously [11,13]. Although a rigorous justification (or
a clarification on the range of validity) of the assumption is
an interesting problem, it is outside the scope of the
present paper.

B. Flux insertion with tilted boundary condition

Here, we propose to use, instead of the standard PBC, the
following TLBC:

r⃗þ Lix̂i ∼ r⃗þ x̂iþ1; i ¼ 1;…; d − 1;

r⃗þ Lix̂i ∼ r⃗; i ¼ d; ð4Þ

where x̂i is the unit vector along Li. We sketch the two-
dimensional case of TLBC in Fig. 1. Geometrically, under
such identifications, the space is a d-dimensional torus.
Combined with the flux insertion and momentum counting,
this leads to the LSM theorem without the artificial
restriction on the system sizes, as we will discuss below.
The TLBC is consistent with all the imposed symmetries
—Uð1ÞQ and translations. Now let us consider the follow-
ing flux-insertion process ðt ∈ ½0; T�Þ:

AiðtÞ ¼
2πt

T
Q

d
k¼i Lk

; i ¼ 1;…; d: ð5Þ

During the flux insertion, the gauge (5) still respects the
translational symmetries since it is site independent. Thus,
the canonical momentum remains exactly unchanged
during the time evolution under the flux insertion.
Similarly to the case of PBC, after completing the flux

insertion, we perform a large gauge transformation to bring
the Hamiltonian back to its original form. Reflecting the
different boundary condition and the different way of
inserting the flux, the large gauge transformation used
for PBC [10] does not work as is. Nevertheless, we find
that, the following large gauge transformation exactly
eliminates the vector potential (5) at t ¼ T, after the
flux-insertion process:

Û0 ¼ exp

�X
r⃗

i
2πr1n̂r⃗

V

�
; ð6Þ

where we fix the range of r⃗ as

FIG. 1. TLBC when d ¼ 2.
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r⃗ ¼ r1x̂1; ðr1 ¼ 1;…; VÞ; ð7Þ

exhausting all the lattice points.
By applying the large gauge transformation (6) on the

final state, which maps the Hamiltonian back to its original
form, we can compare the lattice momenta along x̂i of the
state before and after this insertion process in the same
Uð1ÞQ gauge. The momentum difference is

ΔPi ¼
2πnQ
d
k¼i Lk

mod

�
2π

VQ
d
k¼i Lk

�

¼ 2πν

�
VQ

d
k¼i Lk

�
mod

�
2π

VQ
d
k¼i Lk

�
; ð8Þ

where i ¼ 1; 2;…; d, the total number of particles is
denoted by n and n=V ¼ ν is the filling fraction by
definition, and the different periods of ΔPi ’s results from
the identification of translations as Tiþ1 ¼ ðTiÞLi due
to TLBC.
As in the case of the PBC reviewed in Sec. II A, the

momentum shift (8) implies the LSM theorem: if ν ¼ p=q
with p and ðq > 1Þ coprimes, the ground states in a gapped
phase must be at least q-fold degenerate, as long as the
Hamiltonian respects the Uð1ÞQ and the lattice translation
symmetries. That is, a trivial insulating phase with a unique
ground state is excluded. We note that, in the present
argument, each component of ΔP⃗ gives exactly the same
constraint on the ground-state degeneracies of gapped
phases, in contrast to the previous derivation in Eq. (3).
More importantly, there is no artificial requirement on the
system size beyond the charge-quantization condition
of Eq. (2).
It should be noted, however, the present argument still

relies on the nontrivial assumption that the excitation gap
does not collapse under the adiabatic flux insertion,
discussed at the end of Sec. II A.

C. Anomaly manifestation of LSM theorem

The TLBC also reveals a connection between the LSM
theorem in higher dimensions and anomaly in field theory
in 1þ 1 dimensions.
Let us consider an electronic system, without loss of

generality, on a square lattice with TLBC, the lattice point
of which can be thought as that of unit cells on a general
lattice with translational symmetries. First, we consider a
noninteracting, tight-binding model:

HTB ¼ −t
X
hr⃗;r⃗0i

c†r⃗cr⃗0 − μ
X
r⃗

c†r⃗cr⃗; ð9Þ

where t is a real positive number with chemical potential μ
and c†r⃗ the creation operator of spinless fermion at lattice
site r⃗ with h� � �i denoting summations only over nearest-
neighboring sites.

By a generalized ’t Hooft anomaly matching [6,24–26],
nontrivial symmetry anomalies in a low-energy effective
field theory of an arbitrarily fine-tuned lattice model
implies an ingappability of general lattice models, con-
strained only by filling and symmetry structures. Therefore,
the following analysis for the noninteracting model should
be also valid for more general, interacting systems.
Under the TLBC, we can exhaust all the sites by

translating a single site to one direction only, e.g., r⃗ ¼
jx̂1 with j ¼ 1; 2;…; V. With this coordinate convention,
we further define Ψj ≡ cjx̂1 which implies

HTB ¼ −t
XV
j¼1

�Xd
i¼1

Ψ†
jþVi

Ψj þ H:c:

�
− μ

XV
j¼1

Ψ†
jΨj;

Vi ≡ VQ
d
j¼i Lj

; ð10Þ

with the boundary condition as Ψj ¼ ΨjþV if the range of j
is extended to all integers. Then we can express the
Hamiltonian in the momentum space by

Ψj ¼
1ffiffiffiffi
V

p
XV−1
k¼0

ΨðkÞ exp
�
−i

2πk
V

j

�
; ð11Þ

as

HTB ¼
XV−1
k¼0

�
−2t

�Xd
i¼1

cos

�
2πVi

V
k

��
− μ

�
Ψ†ðkÞΨðkÞ

¼
X
k∈BZ

�
−2t

�Xd
i¼1

cos

�
2πVi

V
k

��
− μ

�
Ψ†ðkÞΨðkÞ

≡ X
k∈BZ

ϵðkÞΨ†ðkÞΨðkÞ; ð12Þ

where we have chosen the Brillouin zone which is
symmetric at k ¼ 0 so that the zeros of ϵðkÞ is symmetric
around the origin. Thus, we can label these zeros as
f�Kcgc¼1;…;N0

due to the even parity: ϵðkÞ ¼ ϵð−kÞ.
The low-energy Hamiltonian, which describes excitations
near the zeros of ϵðkÞ, is given as

H ¼
XN0

c¼1

Z
−Λ<k<Λ

vck½Ψ†
cðkÞΨcðkÞ −Ψ†

c̄ðkÞΨc̄ðkÞ�: ð13Þ

Thus, N0 ∼ L2 × L3 � � � × Ld represents the number of the
one-dimensional channels (1þ 1-dimensional Dirac fer-
mions). Here the ultraviolet cutoffΛ ≪ 2π=ðN0aÞ, where a
is the lattice constant, and vf is the value of Fermi velocity
not necessarily positive. The fermionic operator ΨcðkÞ ¼
ΨðKc þ kÞ and Ψc̄ðkÞ ¼ Ψð−Kc þ kÞ. It is essential to
remark the role played by the charge-quantization condition
in Eq. (2). To obtain a free system in the continuum limit
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where k is taken to be a continuum variable on the whole
real axis, it is necessary that the k ¼ 0 modes or Ψð�KcÞ
modes exist in the Hilbert space under the continuum limit,
as we will see later. In d ¼ 1, Eq. (2) implies precisely such
existence of Ψð�KcÞ modes. Therefore, we expect this
conclusion generalizes to arbitrary d ≥ 1 and the charge
quantization indeed permits us to do this continuum limit.
We absorb the jvcj into the following definition of two-

component Dirac operator:

ψcðkÞ ¼

8>>><
>>>:

� jvcjΨcðkÞ
jvcjΨc̄ðkÞ

�
; vc > 0;

� jvcjΨc̄ðkÞ
jvcjΨcðkÞ

�
; vc < 0:

ð14Þ

With the definition above, the real space formulation of
Lagrangian density takes a compact form as

LUð1Þ ¼
XN0

c¼1

X1
μ¼0

ψ̄cðt; xÞiγμ∂μψcðt; xÞ; ð15Þ

where γ0 ¼ σ2 and γ1 ¼ σ1 with σ⃗ Pauli matrices, and the
chirality is γ3 ¼ σ3. The role played by the existence of the
zero mode ψcðk ¼ 0Þ or Ψð�KcÞ can be understood in
the real space formulation (15): if we did not have these
zero modes, we would discard the zero mode of the Fourier
expansion of ψcðt; xÞ by hand when we quantize it, which
makes (15) not free Dirac fermions.
Then we minimally couple it with an external gauge

field as

A1ðt; xÞ ¼
2πt
VT

; ð16Þ

and A0ðt; xÞ ¼ 0: ∂μ → ∂μ − ieAμ, which exactly corre-
sponds to the flux insertion defined by Eq. (5) except
for that we are left by only one spatial dimension since we
have applied the coordinate convention r⃗ ¼ jx̂1 with
j ¼ 1;…; V before on the lattice.
Combining Eqs. (11) and (14), we obtain the lattice

translation T1 in x̂1 direction representation of ψcðt; xÞ as

ψT1
c ðt; xÞ≡ T1ψcðt; xÞT−1

1

¼ exp

�
i sgnðvcÞπγ3

2Kc

V

�
ψcðt; xÞ; ð17Þ

which is simply the chiral symmetry transformation, at low
energy, appearing on site. It is straightforward to apply
Fujikawa’s method [27,28] to calculate the global sym-
metry anomaly as the phase ambiguity of the fermionic
partition function responding to the chiral transformation as
Eq. (17) in the background gauge field configuration
Aμðt; xÞ.

ZUð1Þ

≡
R
Dðψ̄T1 ;ψT1Þexpð−R

LUð1Þ½ψ̄T1
c ðτ;xÞ;ψT1

c ðτ;xÞ;Aμ�ÞR
Dðψ̄ ;ψÞexpð−R

LUð1Þ½ψ̄cðτ;xÞ;ψcðτ;xÞ;Aμ�Þ

¼ exp

�
i
XN0

c¼1

2sgnðvcÞ
2πKc

V

�

¼ expði2πνÞ; ð18Þ

where the fermionic measureDðψ̄T1 ;ψT1Þ ¼ JT1
Dðψ̄ ;ψÞ is

calculated by Fujikawa’s U(1) gauge-invariant regulariza-
tion [27,28] and we have used the fact the filling fraction is
ν and ν ¼ P

c 2sgnðvcÞKc=V, and evaluate the formal path
integral in the Euclidean signature: τ ¼ it.
We define a lattice partition function ratio as

Zlatt
Uð1Þ ≡

TrΦG½T1Û0ÛfluxT−1
1 �

TrΦG½Û0Ûflux�

¼ hΦGjT1Û0ÛfluxT−1
1 jΦGi

hΦGjÛ0ÛfluxjΦGi
; ð19Þ

where we denote by “TrΦG” taking the trace only within
lowest energy states since the Wick rotation “τ ¼ it” in the
definition of ZUð1Þ implies that we should project out
excited states when we define Zlatt

Uð1Þ. We also assume a

unique gapped lattice ground state jΦGi and Ûflux denotes
the unitary time evolution by flux insertion followed by the
large gauge transformation Û0. The continuum-limit form
of Z0

Uð1Þ in Eq. (19) exactly coincides with the form of ZUð1Þ
in Eq. (18), where the large gauge transformation Û0 is
implicitly presented in the path integrals within ZUð1Þ since
the inner product of wave functionals jfψ̄ ;ψgiAμ

’s at the
last time slice can be done only after fixing the gauge by the
(large) gauge transformation Û0, which is in the same
situation as the lattice model. The necessity of Û0 can be
seen once one notices that the wave functional fψg is an
associated complex line sector of the underlying Uð1ÞQ
principal bundle and Û0 in Eq. (6) is exactly the gluing
transition function between the initial and the final time
slices. It implies that ZUð1Þ is the low-energy limit of Zlatt

Uð1Þ.
Then we can rephrase the consequence of anomaly ZUð1Þ

that the (discrete) chiral symmetry (17) will be broken once
Uð1ÞQ is gauged, in the lattice language. Since the
anomalous chiral symmetry means the chiral charge is
not conserved and here the chiral symmetry corresponds to
the lattice translation, we expect the lattice momentum is
not conserved under the gauge field. Indeed, this is a well-
known phenomenon that the particles are accelerated by
electric field and acquire a momentum. However, it should
be noted that the momentum is a gauge-dependent quantity.
Under the time-dependent uniform gauge field (16), the
momentum is exactly conserved thanks to the translation
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invariance. However, after a finite time, the gauge field
(vector potential) is nonzero and the momentum cannot be
directly compared to the initial value. Nevertheless, when
the system encloses an integral multiple of the unit flux
quantum (2π), the gauge field can be exactly eliminated by
the large gauge transformation Û0, so that the momentum
can be compared with its initial value. It is this large gauge
transformation Û0 that induces the change in the momen-
tum, as we can see from the flux-insertion argument for the
LSM theorem [10]. This observation also supports the
identification of ZUð1Þ as the low-energy limit of Zlatt

Uð1Þ.
Additionally, the role of the gauge invariance of Fujikawa’s
regularization applied in the calculation of Eq. (18) should
be noted since a gauge noninvariant regularization method
can give a vanishing chiral anomaly [29,30] corresponding
to the conservation of the lattice momentum in the fixed
initial gauge, which can be also explicitly seen by the
translational symmetry of the lattice Hamiltonian. It exactly
reflects the mixing nature of the chiral anomaly, which
characterizes the conflicting between U(1) and T1.
Since ZUð1Þ is a topological invariant, e.g., invariant

along any symmetry-respecting renormalization-group
flow by the generalized ’t Hooft anomaly matching, we
can evaluate Zlatt

Uð1Þ by its low-energy limit ZUð1Þ:

Zlatt
Uð1Þ ¼ ZUð1Þ: ð20Þ

However, the unique ground state must be featureless hence
a T1 eigenstate, which implies T1jΦGi ¼ expðiPÞjΦGi
thereby ZUð1Þ ¼ 1. This contradicts with ZUð1Þ ¼ Zlatt

Uð1Þ ¼
expði2πνÞ if q ≠ 1, unless

ÛfluxjΦGi⊥jΦGi; ð21Þ

which still conflicts the unique gapped ground state. Thus,
the ground states must be degenerate for fractional fillings.
Then we arrive at the LSM theorem with a well-defined
anomaly manifestation in a general thermodynamic limit.
Furthermore, the physical interpretation of ZUð1Þ can be
understood by its lattice partner Zlatt

Uð1Þ which exactly

measures the momentum changes after the charge pump-
ing. In this sense, we call that the chiral anomaly derived
from the Dirac field theory is lattice realized. The anomaly
we have considered is not an emergent anomaly at low
energy [24,25] which can be seen as follows.
Let us first tune the hoppings in Eq. (10) nonzero only

along x̂1. At low energy under TLBC, U (1) and translation
symmetries (17) are reduced to Uð1Þ × Zq [24], where ν ¼
p=q defined before. Since the translation is actually
represented by Z on the lattice with TLBC in the thermo-
dynamic limit, we should do a symmetry extension, which
is a quantitative treatment of the translation symmetry at
low energy honestly as Z rather than its emergent

expression Zq [24]. The symmetry extension is a mapping
from the ½Uð1Þ × Zq�-anomaly classes to the ½Uð1Þ × Z�-
anomaly classes, associated with the dual of the third

mapping in the short exact sequence 0 → Z!q Z → Zq → 0

of symmetries [31], This symmetry extension does not
trivialize the anomaly classes generating by Eq. (18) [32],
which means the anomaly classes generated by Eq. (18) are
still there even when we treat translation faithfully. The
general cases where the translation is represented by
Eq. (17) can be argued by anomaly matching to the
fine-tuned point above. In contrast, if we orbifolded theory
by the Zq symmetry using its finite cyclicity, which no
longer holds at the lattice scale, more anomalies would
emerge, but eventually be trivialized after the symmetry
extension [24]. Furthermore, we calculate the anomaly at a
critical point with a special translation representation (17),
which can be expected as an intrinsic anomaly at the lattice
level even if the lattice model is tuned away from this point,
in the following way. Let us assume the lattice degrees of
freedom are realized by a higher-dimensional lattice bulk B
with the corresponding Uð1Þ × Z symmetry at the lattice
scale. Then the intrinsic anomaly is unambiguously deter-
mined by the ½Uð1Þ × Z�-crystalline-SPT (CSPT) class that
this bulk B belongs to. It has been shown that CSPTone-to-
one corresponds to an SPT where Uð1Þ × Z is realized
purely on site and the continuum limit here is proposed to
give such a correspondence [25,33,34]. It means this
(on-site) SPT class corresponds to the anomaly of our
critical point in the continuum limit, calculated by the
representation (17) in a Z sense. Then the anomaly (18) is
associated with that CSPT, thereby intrinsic and applicable
away from the chosen critical point.
Finally, for d ¼ 0, due to Eq. (2), the filling ν0 ∈ N.

Then, the low-energy effective response theory is
simply the (0þ 1)-dimensional Chern-Simons theory with
level ν0:

sUð1Þ ¼ ν0

Z
dtAðtÞ; ð22Þ

by a minimal coupling observation. Such an effective
action is well defined since ν0 is an integer, and the
zero-dimensional theory is Uð1ÞQ anomaly free thereby
well defined. It is applicable even for bosonic theory since
there is no spatial coordinate to give one a choice of spin
structures while the boundary condition along t or τ for
field operator is already fixed as, respectively, periodic and
antiperiodic for bosonic and fermionic situations. Thus,
d ¼ 0 cases can be always trivially gapped if we only have
a Uð1ÞQ symmetry. This agrees with the trivial d ¼ 0

version of the LSM theorem. While the statement is rather
trivial, this is still a useful exercise to check the consistency
of the anomaly argument. In the next section, we will see
somewhat more nontrivial consistency check in d ¼ 0 for a
higher symmetry.
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D. Bulk-boundary correspondences:
LSM theorem with Uð1ÞQ

In this section, based on our field-theory formulation
related to the TLBC, we discuss the LSM theorem from the
point of view of anomaly inflow. This enables us to
construct a higher-dimensional SPT bulk theory where
the massless theory LUð1Þ in Eq. (15) can be seen as a
boundary theory attached to the SPT bulk. To simplify the
discussion, in the following we first assume N0 ¼ 1. We
will generalize the argument to arbitrary N0 later. The
translation symmetry is reduced to

ψT1 ¼ exp ðiγ3πνÞψ ¼ exp

�
iγ3π

p
q

�
ψ : ð23Þ

Our physical degrees of freedom is the free Dirac fermion
composed by ψ ¼ ½ψL;ψR� where ψL;R are the left- and
right-moving chiral fermions, respectively. It is well known
that a single left-moving chiral fermion can be generated on
the edge of an integer quantum Hall system with σH ¼ þ1
and a right mover by σH ¼ −1. Thus, the (bulk) matter
field, which is able to support ψL and ψR fermions on its
edge, consists of two (2þ 1)-dimensional massive Dirac
fermion with opposite masses, which realizes σH ¼ �1,
separately [35]. Then we couple the background Uð1ÞQ
gauge field AUð1Þ and the gauge field aγ3=2 of the trans-
lational symmetry in Eq. (23) to the bulk fermions. After
the bulk matter field is integrated out,

Sbulk;Uð1Þ ¼
Z �

−
i
4π

AL ∧ dAL þ i
4π

AR ∧ dAR

�
; ð24Þ

where

AL ¼ AUð1Þ þ a=2; AR ¼ AUð1Þ − a=2: ð25Þ

where we have taken a “1=2” normalization convention so
that a has the same constraint as a Zq-gauge field:

da ¼ 0 and
I
closed loop

a ∈ 2π
p
q
Z: ð26Þ

Then,

Sbulk;Uð1Þ ¼ −
Z

i
2π

a ∧ dAUð1Þ; ð27Þ

which is exactly a BF-theory [36,37] coupling the Zq-
gauge field and the Uð1ÞQ-gauge field. To detect the
nontrivial aspect of such an SPT bulk, we evaluate the
bulk partition function on a compact closed manifold, e.g.,
three-torus T3 ¼ T2 × S1, with the following background
gauge field:

Z
T2

dAUð1Þ
2π

¼ 1;
Z
S1
a ¼ 2πν; ð28Þ

where a is a pullback from a flat gauge field on S1 and AUð1Þ
is a pullback from a gauge field on T2 with a unit Chern
number. With this background gauge field configuration,
we obtain the bulk partition function as

Zbulk;Uð1Þ ¼ expð−Sbulk;Uð1ÞÞ ¼ expði2πνÞ: ð29Þ

To understand the physical meaning of this bulk partition
function evaluated on T2 × S1, we briefly review the useful
tool called mapping torus [16,38–41] below. Given a
potentially anomalous theory defined on a physical space-
time M, its phase ambiguity of partition function by a
transformation, e.g., a gauge or global symmetry trans-
formation, can be calculated by the partition function of
corresponding bulk on a manifold M × S1 [16,41] con-
structed in the following way. We take a “cylinder” M ×
½0; 1� where the bulk field stays and it reproduces the
pretransformed boundary theory at M × f0g and the
transformed theory at the other end M × f1g. Then we
paste these two ends by the certain transformation twisting,
which corresponds to a twisted boundary condition of the
bulk field onM × I, to form the mapping “torus”M × S1.
In our case (28) above, we take S1 as the extra dimension
and T2 represents the physical spacetime of boundary
theory. The holonomy

R
S1 a precisely realizes the twisted

T1 transformation of the bulk field and the instantonR
T2 dAUð1Þ=2π implies the flux-insertion process by a unit
flux. Therefore, this mapping-torus bulk partition function
is equals to the phase ambiguity, brought by a T1 trans-
formation, of the boundary partition function with a flux
insertion in physical spacetime, which is precisely the
quantity calculated in Eq. (18).
This bulk construction can be generalized to arbitrary N0

in LUð1Þ by replacements of “1=2” in Eq. (25) by color-
dependent coefficients “sgnðvcÞKc=ðVνÞ” due to Eq. (17).
Then, after the color indices “c” is summed up and by
ν ¼ P

c 2sgnðvcÞKc=V, we arrive at the same effective
bulk-response theory as Eq. (27).
The bulk description of the anomaly proposes an

alternative way to detect the anomaly by the boundary
partition function (see e.g., Appendix D of Ref. [42]). Let
us take the T2 in Eq. (28) as the manifold spanned by the
physical spatial dimension and the extra dimension. S1 is
taken as the physical dimension of time. Then the holo-
nomy ðRS1 aÞ means we translate the system by a lattice
distance during the time period S1 and thus the resultant
partition function is an exponential of the lattice momen-
tum. The instanton in T2 means that we are comparing this
momentum obtained in two gauge choices of the gauge
field along the physical spatial dimension, which are
connected by a large gauge transformation.
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Therefore, the bulk-response approach (27) provides a
unified way to describe its boundary anomaly.

III. LSM THEOREM FOR SUðNÞ
SPIN-ROTATION SYMMETRY

In the following, we will use the methods developed in
the previous section to investigate the higher-symmetry
generalization of LSM theorem, e.g., replacement of the
global on-site symmetry by SUðNÞ spin-rotation symmetry,
or more precisely a PSUðNÞ ¼ SUðNÞ=ZN global sym-
metry [6,43] by the spin operator satisfying the following
SUðNÞ Lie algebra commutation relations:

½Sαr⃗;β; Sγr⃗0;δ� ¼ δr⃗;r⃗0 ðδαδSγr⃗;β − δγβS
α
r⃗;δÞ; ð30Þ

where α and β are the “spin” indices that take values among
1 to N. In particular, we focus on the quantum-anomaly
manifestation of the LSM theorem. Its advantage is that the
lattice ingappabilities can be detected at any fine-tuned
critical point which simplifies the calculation, thanks to the
’t Hooft anomaly matching.

A. “Spin”-quantization condition

Let us consider the most general situation that the total
number of Young-tableaux boxes per unit cell is b.
Analogous to Eq. (2), we also take the following
“spin”-quantization condition:

bV=N ∈ N: ð31Þ

The reason we assume this condition is different from the
Uð1ÞQ LSM case where charge quantization is naturally
imposed by fundamental degrees of freedom. To clarify this
seemingly unnatural requirement, let us see the situation
where Eq. (31) is not satisfied, namely bV=N ∉ N. Then
the total Young-tableaux boxes bV of the system is not
divisible by N. By the knowledge from representation
theory, there is no SUðNÞ-singlet sector in the Hilbert space
and by the global PSUðNÞ symmetry, the system is exactly
degenerate, even at all excited states since the states within
any nonsinglet irreducible representation must have the
same energy due to Schur’s lemma applied within any of
these nontrivial irreducible sectors.
Such a rather trivial type of ingappabilities is essential to

understand finite-system spectrum. Nevertheless, we are
not interested in it since these ingappabilities are not a
many-body effect and they depend on a specific choice of
system sizes. A many-body ingappability is commonly
considered as almost degeneracies, e.g., the ingappabilities
make sense only at general thermodynamic limits.
Therefore, in the following discussion for (d ≥ 1)-
dimensional system, we avoid such an exact degeneracy
explicitly exposed above by imposing Eq. (31).
Nevertheless, when stating the final theorem without loss

of generality, we will also include the cases that bV=N ∉ N
for which the ground states are exactly degenerate.

B. Generalized LSM theorem and anomaly
manifestation

Since we are only interested in the low-energy spectrum
of the lattice model, we can equivalently reconstruct its
low-energy physical properties by coupling b copies of the
lattice models each of which has one fundamental SUðNÞ
degree of freedom within each unit cell. It is possible due to
the group-theoretical knowledge that any SUðNÞ irreduc-
ible representation with b0 Young-tableaux boxes is con-
tained in the tensor products of b0 of fundamental
representations. Then we can project out all the undesired
degrees of freedom in the analog of Affleck-Kennedy-
Lieb-Tasaki chain construction from spin-1=2 degrees of
freedom [44]. Moreover, such a projection can be realized
by a strong interaction dynamically, hence the quantum
anomaly factor of the original system can be obtained by a
summation of the anomalies of these b of fundamental
lattices. Then the problem is reduced to the anomaly related
to fundamental lattices we will calculate below.
Similarly to the generalized LSM theorem in one

dimension, we do the following N-flavor fermionization
representing spin degrees of freedom:

Sαr⃗;β ¼ Ψα†ðr⃗ÞΨβðr⃗Þ −
1

N
δαβ ð32Þ

with the restriction of total particle number on every site “r⃗”

XN
α¼1

Ψα†ðr⃗ÞΨαðr⃗Þ ¼ 1; ð33Þ

so that Sαr⃗;β’s defined in Eq. (32) satisfy Eq. (30).
Again, we impose the TLBC defined as Eq. (4). In the

analog of SU(2) cases, a fine-tuned critical model can be
the Hubbard model in the conductive phase:

HSUðNÞ ¼ −t
X
hr⃗;r⃗0i

�XN
α¼1

Ψα†ðr⃗ÞΨαðr⃗0Þ þ H:c:

�

−U

�XN
α¼1

Ψα†ðr⃗ÞΨαðr⃗0Þ − 1

�2
; ð34Þ

where the Hund’s rule coupling U ≫ jtj realizes the
particle number restriction per unit cell in Eq. (33). By
an observation on Eqs. (34) and (10), we can see that (1) the
SUðNÞ case has a stronger particle number restriction per
unit cell; (2) each flavor has a filling fraction 1=N within a
unit cell. With this comparison, it is straightforward to
derive the effective theory of the current SUðNÞmodel after
we apply the coordinate system r⃗ ¼ jx̂1 with j ¼ 1;…; V
again:
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LSUðNÞ½A� ¼
XN0

c¼1

XN
α¼1

ψ̄α
cðt; xÞiγμð∂μ − iAμÞψc;αðt; xÞ;

νeff ¼
1

N
; ð35Þ

where the inclusion of a dynamical fluctuating Uð1ÞQ
gauge field is used to eliminate Uð1ÞQ phase degrees of
freedom. It is because Uð1ÞQ is unphysical, e.g., the
fundamental observable Sαr⃗;β is invariant under Uð1ÞQ. It
can be also viewed as a realization of the particle number
constraint as Eq. (33) regularized by the Grassmann-
number ordering ambiguity to make the Lagrangian
explicitly Uð1ÞQ gauge invariant:

P
N
α¼1 Ψα†ðr⃗ÞΨαðr⃗Þ ¼ 1;

↓P
N
α¼1

	
1 − 1

N



Ψα†ðr⃗ÞΨαðr⃗Þ − 1

NΨαðr⃗ÞΨα†ðr⃗Þ ¼ 0;

↓GrassmanianP
α

	
1 − 1

N



ψα†ðt; xÞψαðt; xÞ − 1

N ψαðt; xÞψα†ðt; xÞ ¼ 0;

↓ReorderingP
α
ψα†ðt; xÞψαðt; xÞ ¼ 0;

which can be done by a Lagrangian multiplierP
α A0ψ̄

αγ0ψα consistent with gauge invariance. The zeros
of Hamiltonian ϵαðkÞ for each flavor in momentum space in
the same notations satisfy

XN0

c¼1

2sgnðvcÞKc=V ¼ νeff : ð36Þ

Similarly to Eq. (2), the Uð1ÞQ-LSM case, Eq. (31) also
guarantees the existence of the continuum limit of k
variables in Ψαð�Kc þ kÞ. Then we couple the theory to
a background PSUðNÞ gauge field APSUðNÞ which locally
takes value in suðNÞ algebra. In the following discussion,
tN2−1 ≡ diag½1; 1;…; 1;−ðN − 1Þ�N×N is denoted as the
matrix representation of the last suðNÞ generator. First,
let us analyze the current gauge group, which actually is not
Uð1Þ×SUðNÞ¼fðg1;gNÞjg1∈Uð1Þ;gN∈SUðNÞg since its
center ZN generated by ½expði2π=NÞ; expð−i2πtN2−1=
NÞ� ∈ Uð1Þ × SUðNÞ does not transform the matter field
fψαg. It implies that the gauge group is ½Uð1Þ × SUðNÞ�=
ZN ≅ UðNÞ, and thus only APSUðNÞ þA,NAPSUðNÞ andNA
or their integer multiples can be lifted to canonical 1-form
uðNÞ connections thereby expressible by well-defined
uðNÞ connections.
We consider the following flux insertion which general-

izes the U(1) case and the connection can be written down
by a uðNÞ connection:

APSUðNÞ þA ¼ 2πt
TVN

ð1 − tN2−1ÞN×N þ δA; ð37Þ

where δA is a dynamical canonical U(1) connection since
½2πtð1 − tN2−1Þ=ðTVNÞ� is globally well defined, and then
the functional integration

R
DA over uð1Þ=ZN connection

can be converted to
R
DδA over u(1) connection. The

physical interpretation of such a PSUðNÞ “flux” insertion is
that we adiabatically rotate the spin along x̂1 direction and
this spatial-dependent rotation matrix projectively repre-
sented by SUðNÞ matrix is multi-valued since it is iden-
tified up to a center of SUðNÞ due to the local U(1) gauge
degrees of freedom by A. Therefore, the accompany U(1)
twisting is simply to compensate this artificial ambiguity in
the SUðNÞ rotation matrix.
In a similar sense, we can calculate the anomaly factor

by Fujikawa’s gauge-invariant regularization [6,27] on
the fermionic measure

Q
c;α Dðψ̄T1

c;α;ψ
T1
c;αÞ ¼ JðT1Þ×Q

c;α Dðψ̄c;α;ψc;αÞ below:

ZSUðNÞ

≡
R
DADðψ̄T1

c;α;ψ
T1
c;αÞ expð−

R
LT1

SUðNÞ½Aþ APSUðNÞ�ÞR
DADðψ̄c;α;ψc;αÞ expð−

R
LSUðNÞ½Aþ APSUðNÞ�Þ

¼ exp

�
i
XN0

c¼1

2sgnðvcÞ
2πKc

V

�

¼ exp ði2π=NÞ; ð38Þ

where we have made use of the same notation for the
transformation rule of ψ → ψT1 as Eq. (17) and LT1

SUðNÞ ≡
LSUðNÞ½ψ̄T1ðτ; xÞ;ψT1ðτ; xÞ� except that here we have a
specified filling factor νeff ¼ 1=N for each flavor.
Thus, for the general case of b of Young-tableaux boxes

per unit cell:

ZðbÞ
SUðNÞ ¼ ðZSUðNÞÞb ¼ exp

�
i2π

b
N

�
: ð39Þ

Similarly to the U(1) case in LSM theorem, we can also

define the lattice-realization of ZðbÞ
SUðNÞ by Z

0ðbÞ
SUðNÞ analogous

to Eq. (19), and by anomaly matching: Z0ðbÞ
SUðNÞ ¼ ZðbÞ

SUðNÞ.

C. LSM-type anomaly in 0 dimension

To complete the SUðNÞ generalization of LSM theorem,
we also study the case of d ¼ 0, which is a problem in
single-body quantum mechanics. Unlike in d ≥ 1, no
quasidegeneracy (asymptotic degeneracy in the thermody-
namic limit) can be defined from the energy spectrum.
Exact ground-state degeneracy can still be defined for
d ¼ 0. However, the exact degeneracy is generally a direct
consequence of Schur’s lemma. Namely, an SUðNÞ spin in
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any nontrivial irreducible representation must have exact
degeneracy for a SUðNÞ-symmetric Hamiltonian.
Here, we consider the spectrum of Hamiltonian impos-

ing only the discrete subgroup ZN × ZN of PSUðNÞ,
instead of the full PSUðNÞ symmetry. In this case, an
irreducible representation of PSUðNÞ can become reducible
and the degeneracy of the spectrum may be lifted. Whether
the ground state can be made unique by such a level
splitting is a question analogous to the “ingappability”
discussed for d ≥ 1 dimensions in the context of the LSM
theorem.
Before the general discussion for the SUðNÞ case, we

give several explicit examples for N ¼ 2, 3 cases. If N ¼ 2,
the Z2 × Z2 is generated by expðiπSx=2Þ and expðiπSz=2Þ,
which, in the fundamental representation ρf, satisfy

ρf½expðiπSx=2Þ�ρf½expðiπSz=2Þ�
· ρ−1f ½expðiπSx=2Þ�ρ−1f ½expðiπSz=2Þ� ¼ −1: ð40Þ

If N ¼ 3, Z3 × Z3 is generated by exp½iπðt8 − t3Þ=3� and
exp½−i2πðt2 − t5 þ t7Þ=ð3

ffiffiffi
3

p Þ� where, in the fundamental
representation, ρf½t8�¼diag½1;1;−2�, ρf½t3�¼diag½1;−1;0�,
ρf½t2�lm ¼ iδl;2δm;1 − iδl;1δm; 2, ρf½t5�lm ¼ iδl;3δm;1 −
iδl;1δm;3 and ρf½t7�lm ¼ iδl;3δm;2 − iδl;2δm;3, and, by [45],

ρf

�
exp

�
iπ
t8 − t3
3

��
ρf

�
exp

�
−i2π

t2 − t5 þ t7
3

ffiffiffi
3

p
��

·

· ρ−1f

�
exp

�
iπ
t8 − t3
3

��
ρ−1f

�
exp

�
−i2π

t2 − t5 þ t7
3

ffiffiffi
3

p
��

¼ expði2π=3Þ: ð41Þ

The same commutators in Eqs. (40) and (41), for the adjoint
representation, are trivial [45] and the constructions of the
ZN × ZN generators for other SUðNÞ cases can be found in
[46]. A general representation with b Young-tableaux
boxes for SUðNÞ cases yields a commutator as
expði2πb=NÞ, which reflects the H2½ZN × ZN;Uð1Þ� ≅
ZN classification of the projective representation of
ZN × ZN , where H2½·;Uð1Þ� denotes the second group
cohomology with a U(1) coefficient ring. Moreover, two
transformations with a nontrivial commutator as Eqs. (40)
and (41) cannot share a single one-dimensional invariant
sub-Hilbert space. These results exactly imply that any b
Young-tableaux representation SUðNÞ “spin” can be
gapped with a unique ground state respecting ZN × ZN
if and only if N divides b.
Let us discuss and derive such (0þ 1)-dimensional (in)

gappabilities in the framework of anomaly. The partition
function would have a phase ambiguity from the projective
representation by an SUðNÞ spin. Indeed, the ungauged
Dijkgraaf-Witten theory provides a non-Lagrangian con-
struction to expose this relation between the projective
representation and (0þ 1)-dimensional anomaly for finite

symmetries [47]. As follows, we will also manifest this
relation in our concrete fermionic representation of spins.
For general SUðNÞ cases, we first study the fundamental

representation case or b ¼ 1 at a single point. The low-
energy effective theory for the (fine-tuned) lattice
Hamiltonian HSUðNÞ ¼ 0 is simply

LSUðNÞ½A� ¼
XN
α¼1

ψ̄αðτÞið∂τ − iAτÞψαðτÞ; ð42Þ

defined on the temporal circle τ ∈ S1 ¼ R=ð2πZÞ around
which ψðτ þ 2πÞ ¼ −ψðτÞ, where the minus sign results
from the fermionic path integral. Hence, we do not have
ZN × ZN twisting around S1. fψαgNα¼1 constitutes the
projective representation of ZN × ZN whose generators
VN and WN represented by matrices ρðVNÞ and ρðWNÞ
satisfying

ρðVNÞρðWNÞρ−1ðVNÞρ−1ðWNÞ ¼ expði2π=NÞ: ð43Þ
The Uð1ÞQ dynamical gauge field Aτ is again used to

project out the unphysical Hilbert subspace, and the Uð1ÞQ
charge at the site is restricted to be 1 the same as Eq. (33).
Because of this charge number restriction, the response
theory of (42) to the gauge field Aτ takes the form as

zSUðNÞ½A� ¼ jzSUðNÞ½A�j exp
�
−i

Z
S1
Aτ

�
; ð44Þ

by the minimal coupling argument. The partition function
is obtained after the dynamical A is integrated out:

zSUðNÞ ¼
Z

DAzSUðNÞ½A�: ð45Þ

Since the anomaly can be detected by different bulk
extensions over which the spin structure and gauge fields
extend. We rewrite zSUðNÞ½A� into two different bulk
extensions:

zSUðNÞ½A; X� ¼ jzSUðNÞ½A�j exp
�
−i

Z
X
F
�
; ð46Þ

zSUðNÞ½A; X0� ¼jzSUðNÞ½A�j exp
�
−i

Z
X0
F
�
; ð47Þ

where ∂X ¼ ∂X0 ¼ S1 and they are indeed the extension of
zSUðNÞ½A� in Eq. (44) since by the Stokes’ theorem

Z
X
F ¼

Z
X0
F ¼

Z
S1
Aτ ð48Þ

in the absence of ZN × ZN background gauge field. The
absolute value of the partition function is well defined so it
does not depend on the extension [16]. zSUðNÞ½X� and
zSUðNÞ½X0� are still defined by integrating out A. Although
we do not include any ZN × ZN twisting along the physical
dimension S1, we can still insert ZN × ZN domain walls
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into the gauge bundle on X and X0, which does not affect
the trivial ZN × ZN bundle on their edge circle ∂X ¼
∂X0 ¼ S1 as follows. Because of this antiperiodic boundary
condition on S1, we can extend it onto the disk X ¼ D2

(see, e.g., Chap. 3 of Ref. [48]) and onto X0 such that
X̃ ≡ X ∪ ð−X0Þ ¼ T2. Then the bulk dependence
zSUðNÞ½A; X�=zSUðNÞ½A; X0� ¼ exp ð−i RX̃ F Þ.
The ZN × ZN bundle on X̃ ¼ T2 is sketched in Fig. 2

where along one cycle of T2 there is a VN twisting and
along the other cycle a WN twisting. To obtain a consistent
gauge bundle for the fermionic degrees of freedom on T2,
we need to insert a Uð1ÞQ flux:

Z
X̃
F ¼ −

2π

N
mod 2π; ð49Þ

to induce an Aharonov-Bohm phase exactly eliminating the
phase ambiguity brought by the commutator (43). Thus, the
phase ambiguity of zSUðNÞ½A� due to the different extension
X and X0 is expði2π=NÞ. Furthermore, since such a phase is
independent on the fluctuating gauge field A which is
integrated within one gauge sector connected by small
gauge transformations, we can extract this phase out of the
integration

R
DA. Thus, this phase ambiguity denoted by

ZSUðNÞ is also shared by zSUðNÞ after such a functional
integration:

ZSUðNÞ ≡ zSUðNÞ½X�
zSUðNÞ½X0� ¼ expði2π=NÞ: ð50Þ

By additivity of anomaly, we have for general representa-
tions with total b of Young-tableaux boxes:

ZðbÞ
SUðNÞ ¼ ðZSUðNÞÞb ¼ exp

�
i2π

b
N

�
: ð51Þ

This precisely implies that the partition function is enjoying
an anomaly resultant from a projective representation of
ZN × ZN . Indeed, when b is divisible by N, such as spin-1
(adjoint) representation of suð2Þ, the interaction S2z can gap
the ground state uniquely preserving Z2 × Z2 generated by
expðiπSx=2Þ and expðiπSz=2Þ. For the adjoint representa-
tion of suð3Þ, which is made of three Young-tableaux

boxes, the ground state can be also gapped uniquely since
the generators ofZN × ZN share at least one, actually eight,
one-dimensional invariant sub-Hilbert-spaces [45].
Including the exact degeneracies in d ≥ 1 when bV=N ∉

N as well, Eq. (39) together with Eq. (51) exactly gives the
following generalized LSM theorem in any dimension of
d ≥ 0, which has a well-defined thermodynamic limit
independent on the system size specification:
If a ðd > 0Þ-dimensional Hamiltonian possesses SUðNÞ

spin-rotation and translation symmetries, or if a (d ¼ 0)-
dimensional Hamiltonian possesses ZN × ZN , the system
does not permit a trivially gapped phase when the total
number b of Young-tableaux boxes per unit cell is not
divisible by N. The converse is true if d ¼ 0.
It is an appropriate point to remark that the role played by

filling constraint is different between d ¼ 0 and d > 0. In
the former case, the filling condition restricts the θ term of a
possible bulk extension, while filling restricts the form of
translation symmetry at the low-energy continuum limit in
d > 0. Moreover, unlike LSM theorem in arbitrary dimen-
sions discussed in Sec. II, our generalization of LSM does
not have a compact form when d ¼ 0 is included, because
of the higher-symmetry PSUðNÞ than Uð1ÞQ.

D. Bulk-boundary correspondences:
LSM theorem with PSUðNÞ

In this section, we will construct the SPT “bulk” theory
with PSUðNÞ symmetry in one higher dimensions, which
has the boundary theory with the LSM-type anomaly, in
two different ways.

1. A weak SPT point of view

To check whether the lattice system has any other LSM-
type anomaly beyond Eq. (39), we make use of a weak-
SPT viewpoint on quantum anomaly calculated before.
Since the quantum anomaly of a spatially d-dimensional
system can be understood as that of the boundary of a
½ðdþ 1Þ þ 1�-dimensional bulk SPT phase. Therefore, the
relevant SPT bulk that the LSM-type anomaly of system
corresponds to is assumed to lie in the classes of
Hdþ2½PSUðNÞ × Zd;Uð1Þ� which is the PSUðNÞ (group)
cohomology group with U(1) as a (trivial) group-module
[3], where Zd is a direct product of d of lattice translations
corresponding to the translations of its d-dimensional
spatial boundary in the thermodynamical limit [43,49].
By the Künneth formula,

Hdþ2½PSUðNÞ × Zd�
¼ Hdþ2½PSUðNÞ × Zd−1� ⊕ Hdþ1½PSUðNÞ × Zd−1�
¼ � � �
¼ f⊕dþ2

k¼3 H
k½PSUðNÞ × Zk−3�g ⊕ H2½PSUðNÞ�; ð52Þ

where, for clearness, the coefficient ring U(1) is sup-
pressed. Let us explain the first line of the equation above.

FIG. 2. ZN × ZN bundle on X̃ ¼ T2 where the domain walls
are inserted beyond ∂X ¼ S1 and a corresponding transformation
is acted across a domain wall according to the domain-wall
orientation indicated above.
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Hdþ2½PSUðNÞ × Zd−1� represents the ½ðdþ 1Þ þ 1�-
dimensional SPT phases protected by PSUðNÞ × Zd−1

where the dth Z is neglected, which is consistent with
the projection Hdþ2½PSUðNÞ × Zd� → Hdþ2½PSUðNÞ ×
Zd−1� where the group structure of dth Z is forgotten.
Hdþ1½PSUðNÞ × Zd−1� corresponds to the (dþ 1)-
dimensional SPT phases constructed by stacking, uni-
formly in the dth direction, d-dimensional SPT’s protected
by PSUðNÞ × Zd−1. This correspondence can be derived in
a nonlinear sigma model (with target space as classifying
spaces of groups [50]) approach (see, e.g., Appendix C in
Ref. [49]). Intuitively speaking, the dth translation Z
introduces an obstruction for the phase to be trivialized
with unit cells along that direction.
The stacking constructions of SPT classes in

Hdþ2½PSUðNÞ × Zd� can be also justified after we continue
to apply the Künneth formula to (52) to obtain

Hdþ2½PSUðNÞ × Zd� ¼⊕d
r¼0 fHrþ2½PSUðNÞ�gd!=½ðd−rÞ!r!�;

ð53Þ

where the copy number d!=½ðd − rÞ!r!� ofHrþ2½PSUðNÞ� is
exactly the total number of perpendicular directions to
stack ½ðrþ 1Þ þ 1�-dimensional PSUðNÞ-SPT phase by the
translations Zd. Therefore, the last term H2½PSUðNÞ�
means ½ðdþ 1Þ þ 1�-dimensional SPT phases stacked by
copies of a one-dimensional SPT phase (or chain) protected
by PSUðNÞ uniformly in all the d spatial dimensions while
all the d of translations are obstruction for it to be
trivialized. One characterizing property of phases by
H2½PSUðNÞ� is that lifting any of the d translations and
PSUðNÞ out will trivialize the phase, while other compo-
nents do not have this property. In this sense, H2½PSUðNÞ�
is the maximally mixed anomaly of PSUðNÞ × Zd.
On the other hand of our current system, the generalized

LSM also has the same “mixing” characteristic since any N
of unit cells can be SUðNÞ singlet if any of the translations
are permitted to be broken explicitly, and PSUðNÞ sym-
metry is obviously essential for the ingappability as well.
Thus, the LSM-type anomaly of our system is a class in
H2½PSUðNÞ�. Conversely, the anomaly factor in Eq. (39)
exactly implies a ZN group structure and the generator is
the fundamental case: b ¼ 1. Therefore, b ¼ 1;…; N
represents the ZN elements. Since H2½PSUðNÞ� ≅ ZN
thereby saturated by b ¼ 1;…; N, we can come to the
conclusion that all possible LSM-type anomalies have been
extracted out by Eq. (39) with b ¼ 1; 2;…; N, which are
exactly classified by H2½PSUðNÞ�.

2. A BF-theory approach

Similarly to the Uð1ÞQ case studied in detail in Sec. II D,
we can also construct the bulk massive fermions with
opposite masses for the two opposite chiralities of Dirac

fermions and derive the response theory for the funda-
mental chain (b ¼ 1) as the following BF theory by
replacing AUð1Þ in Eq. (27) by APSUðNÞ þA≡ AUðNÞ þ
A0 with a dynamical U(1)-gauge field A0 properly quan-
tized as

R
dA0 ∈ 2πZ:

Zðb¼1Þ
bulk;PSUðNÞ

¼
Z

DA exp

�Z
i
2π

Tr½a ∧ dðAPSUðNÞ þAÞ�
�

¼
Z

DA0 exp
�Z

i
2π

Tr½a ∧ dðAUðNÞ þA0Þ�
�

¼ exp

�Z
i
2π

Tr½a ∧ dAUðNÞ�
�
; ð54Þ

where the smooth sector of the dynamical fieldA0 plays the
role as a Lagrangian multiplier and its topologically non-
trivial sectors restrict the translation-gauge field a to satisfy
(see e.g., Appendix C 3 of [15]):

da ¼ 0 and
I
closed loop

a ∈
2π

N
Z: ð55Þ

Comparing Eq. (55) with Eq. (26) justifies the effective
filling factor, Eq. (35). We can take the following gauge
bundle on the mapping torus T2 × S1:

Z
S1
a ¼ 2π

N
and

Z
T2

Tr
�
dAUðNÞ
2π

�
¼ 1; ð56Þ

where a is a pullback from a flat gauge field on the extra
dimension S1 and AUðNÞ is a pullback from a gauge field on
the physical spacetime T2 representing a flux insertion. The
translation-symmetry holonomy

R
S1 a in Eq. (56) realizes

the translation-symmetry twisting of bulk field and thus

mapping-torus partition function Zðb¼1Þ
bulk;PSUðNÞ exactly repro-

duces the phase ambiguity (38) brought by a translation
transformation.
Therefore, due to the additivity of the bulk,

ZðbÞ
bulk;PSUðNÞ ¼ ðZðb¼1Þ

bulk;PSUðNÞÞ
b

¼ exp

�
i2π

b
N

�
; ð57Þ

which is the same anomaly factor as Eq. (51).

IV. TLBC APPLIED TO THE INGAPPABILITIES
BY TIME REVERSAL

In this section, we will discuss the application of TLBC
to the ingappability constrained by a time-reversal sym-
metry. As an example, let us consider the following half-
filled N-flavor spinless fermion on a square lattice with π-
flux per plaquette:
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Hπ ¼
XN
f¼1

t

�X
r⃗

c†ðr⃗þx̂Þfcr⃗f þ H:c:

�

þ
XN
f¼1

t

�X
r⃗

c†ðr⃗þŷÞfcr⃗fð−1Þr1 þ H:c:

�

≡Hπ1 þHπ2; ð58Þ

where we have chosen a gauge such that Hπ is still lattice-
translation symmetric along ŷ. Nevertheless, the translation
symmetry along x̂ seems to be broken to two sites.
However, physically, the system should be still symmetric
along x̂ with one site, and such a translation symmetry and
the original translation along ŷ in the current gauge choice,
called magnetic translations [51,52] equally for all flavors
f’s satisfies

T1cr⃗fT−1
1 ¼ cðr⃗þx̂Þf expðiπr2Þ;

T2cr⃗fT−1
2 ¼ cðr⃗þŷÞf: ð59Þ

We will use T1;2 to denote the magnetic translations in the
following discussion, instead of original lattice translations.
To make T1 a well-defined unitary transformation repre-
senting an exact symmetry, we need to impose that
Ly ∈ 2N. Then the charge quantization in Eq. (2) is
automatically fulfilled. It should be noted that the gauge-
invariant nature of T1;2 is encoded in their commutator:

T1T2T−1
1 T−1

2 ¼ −1: ð60Þ

Here, “half-filled” implies that the particle number per
physical 1 × 1 unit cell is 1=2. However, the LSM theorem,
even after generalized to UðNÞ cases, cannot say anything
nontrivial for the present case with the magnetic translation
symmetry. Indeed, the following interaction, respecting
UðNÞ and T1;2, can open a gap with a unique ground state:

ΔH ¼
X
r⃗;f

tð−1Þr1 ½ic†r⃗fcðr⃗þx̂þŷÞf þ c†r⃗fcðr⃗þ3x̂þŷÞf� þ H:c:

ð61Þ

It should be noted, however, that ΔH breaks the time-
reversal symmetry explicitly. Thus, we may expect that
imposing time-reversal symmetry in addition to the mag-
netic translation symmetry potentially obstructs the trivially
gapping.
Indeed, it has been proposed that, in the N ¼ 1 case, the

Hall conductance of the system when trivially gapped by a
Uð1ÞQ and T1;2 symmetric interaction, must be odd [17,19–
21]. This implies that there cannot be a unique ground state
with a nonvanishing excitation gap, when the time-reversal
symmetry is additionally imposed. However, the arguments
in Refs. [17,19–21] again rely on the special choice of the
system sizes. Here, we apply the TLBC to the systems

invariant under the magnetic translation and the time
reversal, which reveals an anomaly manifestation of the
ingappability constraint due to the time-reversal symmetry
in the context of field theory.

A. Low-energy effective theory and symmetries

Our strategy is to apply the TLBC to the low-energy
effective field theory. As a preparation, we first use the
PBC to define the momentum representation (Fourier
components)

cð2n1;r2Þ ¼
X
k⃗

ak⃗ exp ðik1n1 þ ik2r2Þ;

cð2n1þ1;r2Þ ¼
X
k⃗

bk⃗ exp ðik1n1 þ ik2r2Þ; ð62Þ

where k⃗ ∈ ð−π; π� × ð−π; π�. We will introduce the TLBC
in the next section. The momentum representation of the
tight-binding Hamiltonian (58) reads

Hπ1 ¼ t
X

a†kbk½1þ expð−ik1Þ� þ b†kak½1þ expðik1Þ�;
Hπ2 ¼ t

X
2ða†kak − b†kbkÞ cos k2: ð63Þ

Therefore,

Hπ ¼ t
X

ða†k; b†kÞ
�

2 cosk2 1þ expð−ik1Þ
1þ expðik1Þ −2 cosk2

��
ak
bk

�
:

The low-energy excitation momentum points are localized
around

K ¼ ðπ;−π=2Þ and K0 ¼ ðπ;þπ=2Þ: ð64Þ

The low-energy effective theory can be obtained as

Hπ ≈ t
X

l¼f1;2g;k
ψ†ðlÞ
k ð−2σ3k2 − σ2k1Þψ ðlÞ

k ; ð65Þ

where

ψ ð1Þ
k ¼ σ2

�
akþK

bkþK

�
¼

�−ibkþK

iakþK

�
; ð66Þ

ψ ð2Þ
k ¼

�
akþK0

bkþK0

�
: ð67Þ

We have the following symmetry representation:
(i) Flavor UðNÞ symmetry Ufϕg.

Conventionally, the global UðNÞ symmetry is
defined as
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Ufϕgcr⃗U−1
fϕg ¼ exp

�XN2−1

k¼0

−iϕktk

�
cr⃗; ð68Þ

where tk’s: tff
0

0 ¼ δf;f0 the U(1) generator while
ftk∶k ¼ 1; 2;…; N2 − 1g are SUðNÞ generators in
the fundamental representation with a renormaliza-
tion such that ϕk’s are each compactified by 2π.
Equivalently,

Ufϕg ¼ exp

�X
r⃗;f;f0

XN2−1

k¼0

ic†r⃗ft
ff0
k ϕkcr⃗f0

�
: ð69Þ

Since U(1) and SUðNÞ share a center, the definition
above is not faithful and a more systematic approach
is to impose a global structure both on U(1) and
SUðNÞ parameters fϕkg by a quotient over ZN since
UðNÞ ≅ ½Uð1Þ × SUðNÞ�=ZN .
For the low-energy degrees of freedom,

UfϕgψU−1
fϕg ¼ exp

�XN2−1

k¼0

−iϕktk

�
ψ : ð70Þ

In the following discussion, the flavor indices “f”
will be suppressed for simplicity.

(ii) Magnetic translation T1.
The lattice Hamiltonian is invariant under the

magnetic translation along the x̂ axis:

T1cr⃗T−1
1 ¼ cr⃗þx̂ expðiπr2Þ; ð71Þ

which means

T1akT−1
1 ¼ bkþQ; ð72Þ

T1bkT−1
1 ¼ akþQ expðik1Þ; ð73Þ

where Q≡ K0 − K ¼ ð0; πÞ.
In the low-energy field theory,

T1ψT−1
1 ¼ iτ1ψ ; ð74Þ

where τ matrices act on the valley components.
(iii) Translation T2.

The Hamiltonian is also invariant under the
conventional translation along the ŷ axis:

T2cr⃗T−1
2 ¼ cr⃗þŷ; ð75Þ

which gives

T2akT−1
2 ¼ ak expðik2Þ; ð76Þ

T2bkT−1
2 ¼ bk expðik2Þ; ð77Þ

and

T2ψT−1
2 ¼ −iτ3ψ : ð78Þ

(iv) Time-reversal symmetry ZT
2 .

Since we are interested in the constraint brought
by time-reversal symmetry ZT

2 , we define the
following (antiunitary) time-reversal symmetry on
our spinless fermions as

Θ0iΘ−1
0 ¼ −i; ð79Þ

Θ0cr⃗Θ−1
0 ¼ cr⃗: ð80Þ

Thus

Θ0akΘ−1
0 ¼ a−k; ð81Þ

Θ0bkΘ−1
0 ¼ b−k; ð82Þ

and

Θ0ψ k⃗Θ
−1
0 ¼ −iτ2 ⊗ σ2ψ−k⃗; ð83Þ

or

Θ0ψ1;kΘ−1
0 ¼ −σ2ψ2;−k;

Θ0ψ2;kΘ−1
0 ¼ σ2ψ1;−k: ð84Þ

Let us do a trivial rescaling k2 → k2=2 and t → 1. Back to
the real space, the Hamiltonian density becomes

H ¼
XN
f¼1

X2
l¼1

iψ†ðlÞ
f ðσ3∂2 þ σ2∂1Þψ ðlÞ

f

¼ −iψ̄ð−γ0σ2∂1 − γ0σ3∂2Þψ
¼ −iψ̄ðγ1∂1 þ γ2∂2Þψ ; ð85Þ

where, for clearness, we have suppressed the summation
over flavor “f” and valley “l” indices. ψ̄ ≡ ψ†γ0 and
fγμ; γνg ¼ 2ημν ¼ 2diagðþ;−;−Þ, the Dirac algebra in
(1þ 2) dimensions. We can choose the following basis:

8>><
>>:

γ0 ¼ σ1;

γ1 ¼ −iσ3;
γ2 ¼ iσ2:

ð86Þ

Then the Lagrangian density is LDirac ¼ ψ̄iγi∂iψ with the
following symmetry representations:
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T̂1ψðt; x; yÞ ¼ iτ1ψðt; x; yÞ;
T̂2ψðt; x; yÞ ¼ −iτ3ψðt; x; yÞ;
Θ̂0ψðt; x; yÞ ¼ −τ2 ⊗ γ2ψ�ð−t; x; yÞ

¼ −τ2ðΘEψÞðt; x; yÞ; ð87Þ

where Θrel ¼ γ2K is the emergent relativistic time-reversal
of Dirac spinor with K the antilinear operator Ki ¼ −iK.
After a Wick rotation ∂t → i∂τ, the eigenvalue problem of
the corresponding Euclidean Dirac operator reads

Γi∂iψðτ; x; yÞ ¼ λψðτ; x; yÞ; ð88Þ

in which fΓj;Γkg ¼ −2δjk ¼ −2diagðþ;þ;þÞ and

Γ0 ¼ iσ1; Γ1 ¼ −iσ3; Γ2 ¼ iσ2: ð89Þ

The symmetry field-configuration representations is
analytically continued to [16]

T̂1ψðτ; x; yÞ ¼ iτ1ψðτ; x; yÞ;
T̂2ψðτ; x; yÞ ¼ −iτ3ψðτ; x; yÞ;
Θ̂0ψðτ; x; yÞ ¼ −iτ2 ⊗ Γ2Γ0ψ�ð−τ; x; yÞ

¼ −τ2 ⊗ ðCRτψÞðτ; x; yÞ; ð90Þ
with Cψðτ; x; yÞ ¼ Γ2ψ�ðτ; x; yÞ the charge conjugation
and Rτψðτ; x; yÞ ¼ iΓ0ψð−τ; x; yÞ the reflection about the
temporal direction. The analytical continuationΘrel ↦ CRτ

above can be understood from their behaviors on the gauge
field [16]: ΘrelAμðt; x⃗Þ ¼ ð−1Þ1þδμ;tAμð−t; x⃗Þ, CAiðτ; x⃗Þ ¼
ð−1ÞAiðτ; x⃗Þ and RτAiðτ; x⃗Þ ¼ ð−1Þδi;τAið−τ; x⃗Þ, which
implies that CRτ reproduces Θrel.

B. TLBC for the effective field theory

Let us now impose the TLBC for the low-energy degrees
of freedom ψðτ; x; yÞ as

ψðτ; xþ Lx; yÞ ¼ T2ψðτ; x; yÞ;
ψðτ; x; yþ LyÞ ¼ ψðτ; x; yÞ: ð91Þ

Then we do a flux insertion into the hole rounded by Lx:

Aτðτ; x; yÞ ¼ 0; Axðτ; x; yÞ ¼
π

Lx

τ

Lτ
t0;

Aθ
yðτ; x; yÞ ¼

θ

Ly

1

N
ðt0 − tN2−1Þ; ð92Þ

where t0 is an ðN × NÞ identity matrix and tN2−1 ¼
diag½1; 1;…; 1;−ðN − 1Þ�. For later use, we also formally
introduce a static flux into the hole of Ly, but we take
θ ¼ 0 mod 2π later, which is gauge equivalent to Ay ¼ 0

by a large UðNÞ-gauge transformation as exp ½i2πyðt0−
tN2−1Þ=ðNLyÞ�. Afterwards, we further do a T1

transformation. Then the Euclidean path-integral partition
function related to this flux insertion followed by T1

transformation takes the form as

zðθÞ≡
Z

Dðψ̄α;ψαÞ exp
�
−
Z

LDirac½AxðτÞ; Aθ
y�
�
; ð93Þ

with the spacetime manifold as a four-dimensional torus T4

and T the time-ordering operator with the boundary
condition combined with Eq. (91) as

ψðτ þ Lτ; x; yÞ ¼ −T1ψðτ; x; yÞ;
ψðτ; xþ Lx; yÞ ¼ T2ψðτ; x; yÞ;
ψðτ; x; yþ LyÞ ¼ ψðτ; x; yÞ; ð94Þ

where the minus sign in the boundary condition along τ is
due to the fermionic nature of the path integral.
TLBC by T1;2 is obviously consistent with Θ0 since

½T1;2;Θ0� ¼ 0. Nevertheless, one might have noticed that
the flux insertion by Ax is only π flux through the τ − x
plane rather than 2π. At the first glance, it gives an ill-
defined transition function across the cut between τ ¼ Lτ

and τ ¼ 0. However, it is actually canonical because the
latter T1 transformation at τ ¼ Lτ anticommutes with T2

imposed in x̂ direction: T1T2T−1
1 T−1

2 ¼ −1, and it makes
the boundary condition (94) appear inconsistent. Such an
extra “−1” sign inconsistency in the boundary condition
exactly compensates the transition-function sign ambiguity
brought by a π-flux insertion by Axðτ; x; yÞ in Eq. (92). A
systematic construction of the gauge bundle above is given
in Ref. [45].
Then let us take a look at the following ratio:

Zπ ≡ zðθ ¼ 2πÞ
zðθ ¼ 0Þ ; ð95Þ

and the phase of Zπ denotes the difference between the
momentum transfers in the presence of Aθ¼2π

y and Aθ¼0
y

[cf. Eqs. (93) and (94)]. Thus, due to the gauge equivalence
of Aθ¼2π

y and Aθ¼0
y , Zπ is 1 if the theory is anomaly free.

Thus, the discrepancy between Zπ and 1 signals the gauge
anomaly of our Dirac theory (85).
To evaluate this anomaly factor Zπ, we can first

introduce a Pauli-Villars (PV) regulator LagrangianP
α;f iξ̄α;f½iΓið∂i − iAiÞ − mPV�ξα;f to regularize the 3D

partition function, where ξα is a two-flavor bosonic spinor
and the diagonalmass term (mPVδ

αβδff
0
) preservesUðNÞ and

T1;2. The partition function is regularized as
jZ3Dj expð−iπη3D=2Þ explicitly breaking ZT

2 due to the
regulator mass, where jZ3Dj is the absolute value
of our massless-theory partition function and η3D ≡
limε→0þ

P
k sgnðλkÞ expð−ελ2kÞ with fλkg the spectrum of
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3D two-flavor Dirac operator. However, ZT
2 can be restored

when we attach a 4D bulk on it, or equivalently, add a 4D
counterterm supported by X0∶∂X0 ¼ T3 whose boundary
is our 3D manifold T3: 2½ð2=48Þ RX0 trR ∧ R=ð2πÞ2þR
X0 ð1=2ÞTrF ∧ F=ð2πÞ2�, whereR is the two-form curvature
tensor and “tr” is taken over the four spacetime indices and
“Tr” over the flavors. Thus, the regularized partition function
on X0 by Atiyah-Patodi-Singer (APS) index theorem [38] is

Z3DðX0Þ ¼ jZ3Dj exp ½−iπI4DðX0Þ�; ð96Þ

I4DðX0Þ ¼ η3Dð∂X0Þ
2

−
�Z

X0

N
24

trR ∧ R
ð2πÞ2 þ TrF ∧ F

ð2πÞ2
�
; ð97Þ

in which Z3DðX0Þ explicitly respects time-reversal symmetry
since I4D of a 4D Dirac operator with N flavors and two
valleys, the number difference of zero modes between
positive and negative chiralities, is proportional to the
effective action of a (3þ 1)-dimensional massive fermion
and it is an integer calculated under APS boundary condition.
Z3DðX0Þ potentially depends on the extension X0, which
disables our massless system to be purely a 3D model. As
shown below, Zπ in Eq. (95) can be calculated by a phase
ambiguity induced by two different extensions, with and
without, respectively, a 2πðt0 − tN2−1Þ=N flux in the orient-
ableDX0 spanned by the extra dimension and the ŷ-direction
circle S1ðŷÞ (nonorientable extensions to be discussed later).

Thus, X0 ¼ T2 ×DX0 and we also set ∂DX0 ¼ S1ðŷÞ so that

∂X0 ¼ T3 is the spacetime of our (2þ 1)-dimensional
system. We take X0

1;2 ¼ T2 ×DX0
1;2

to extend both the

spacetime and the gauge field, where DX0
1
and DX0

2
are not

necessarily the same. We insert 2πðt0 − tN2−1Þ=N flux
through DX0

1
as in Fig. 3 and we obtain Ay ¼ Aθ¼2π

y on its

boundary S1ðŷÞ by the Stokes’ theorem up to a small gauge

transformation. On the other side,DX0
2
has no flux through it.

Then Ay ¼ Aθ¼0
y on its boundary S1ðŷÞ up to a small gauge

transformation. Therefore, the bulk-extension dependence
here precisely characterizes the gauge anomaly (95) of the
boundary theory between the two different gauge choices
Aθ¼2π
y and Aθ¼0

y :

Zπ ¼
Z3DðX0

1Þ
Z3DðX0

2Þ
¼ ð−1ÞI4DðX0

1
∪−X0

2
Þ ¼ −1; ð98Þ

where we have used the index pasting rule I4DðX0
1Þ −

I4DðX0
2Þ ¼ I4DðX0

1 ∪ −X0
2Þ with X0

1;2 glued as Fig. 3
through their common boundary T3 along which the gauge
fields are pasted by a gauge transformation, and the index for
the closed manifold X0

1 ∪ −X0
2:

I4DðX0
1 ∪ −X0

2Þ

¼ 2

�
−
N
48

Z
X0
1
∪−X0

2

trR ∧ R
ð2πÞ2 −

1

2

TrF ∧ F
ð2πÞ2

�

¼ −
2

32π2

Z
X0
1
∪−X0

2

d4xϵijklTrðFijFklÞ mod 4N

¼ 1 mod 4N; ð99Þ

with the gravitational contribution on general closed orient-
able manifolds valued in 2 × 2 × NZ ¼ 4NZ thereby irrel-
evant to Zπ , and a unit UðNÞ instanton insideDX0

1
∪ −DX0

2
as

shown in Fig. 3. Equation (98) also means that the SPT bulk
attached is nontrivial and the low-energy field theory (85)
cannot be regulated by local regulators respecting on-site
UðNÞ, T1;2, and ZT

2 without the bulk attachment (97).
The anomaly we have obtained is fully amixed type since

it will be trivialized once we discard any of the required
symmetries. This property is consistent with the ingapp-
ability on the lattice level, e.g., the magnetic-translation and
UðNÞ symmetric gapping term but time-reversal breaking
ΔH in Eq. (61) trivially gaps the system. Thus, we expect
such a non-Abelian symmetry anomaly is the desired LSM
type. Moreover, two layers (or copies) of lattice systems can
be trivially gapped respecting all the required symmetries
since we can always set opposite chemical-potential term,
e.g.,

P
f

P
Z¼1;2ð−1ÞZ

P
r⃗ δμc

†Z
r⃗;fc

Z
r⃗;f with Z labeling the

layers so that one of two is fully filled while the other empty,
without breaking (total) filling fraction and symmetries.
This aspect is also implied by and consistent with our Z2-
anomaly classification. In addition, there is no purely
UðNÞ⋊ZT

2 anomaly, which implies that without T1;2 we
can trivially gap the system, consistent with the lattice
situation as well. Furthermore, we do not use the emergent
properties of T1;2 at low-energy limit, such as their finite
cyclicality, so the corresponding emergent anomalies, if any,
are not included. Instead, we only make use of the gauge-
invariant nontrivial commutator T1T2T−1

1 T−1
2 ¼ −1 already

held at the lattice level. Additionally, due to the time-reversal
symmetry, we should also consider nonorientable manifold
in Euclidean signature twisted by CRτ [cf. Eq. (90)].
However, the anomaly class detected in this way is still
Z2 identical to the Z2 class in our orientable cases which

FIG. 3. X0
1;2 are glued along their common boundary T3. There

is a unit UðNÞ instanton labelled by “*” inside DX0
1
∪ −DX0

2

inducing a flux through DX0
1
.
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implies the absence of pure time-reversal anomaly (see, e.g.,
Sec. IVG of Ref. [16].) Combining these observations
above, this mixed anomaly in field theory suggests the
ingappability in the presence of the time-reversal symmetry
together with the flavor and magnetic translation sym-
metries. This will be further confirmed in the next section,
by defining a corresponding quantity on the lattice.

C. Lattice realization of Z2-classifying anomaly

Zπ ¼ −1 defined for the effective field theory in the
previous section is a topological invariant, e.g., it cannot be
changed along renormalization flow (RG) from the critical
point as long as the interaction perturbing the system
respects all the required symmetries. Here, we look for a
lattice quantity Z0

π whose low-energy and continuum limit
is Zπ . The ’t Hooft anomaly matching then suggests it
would be a robust topological invariant which can be
evaluated exactly by its infrared counterpart Zπ .
Let us assume that the system is trivially gapped under

all the symmetries. It will lead to a contradiction, as we will
demonstrate below. To do so, we first impose the following
TLBC:

cxþLx;y ¼ cx;yþ1; cx;yþLy
¼ cx;y: ð100Þ

The lattice translation T2 is well defined, but the magnetic
translation T1, which is defined on the lattice before
modded by the relation (100), is incompatible with (100)
since it is y dependent and y coordinate has a freedom to be
adjusted by Eq. (100). A sensible form of T1 in the modded
space can be obtained by fixing the assignment of lattice
coordinates, e.g., cx;0 with x ¼ 1;…; LxLy similar to
Eq. (7). By Eq. (59), T1 reduces to T 0

1 which is the lattice
translation. The existence of T1 on the lattice with periodic
boundary conditions implies that such a symmetry has a
different form in our tilted case especially in the low-energy
sense. It follows straightforwardly from the assumption of
the gapped unique ground state that the ground state should
go back to itself after an adiabatic insertion ðT → þ∞Þ of π
flux into the hole rounded by Lx:

Axðt; r⃗Þ ¼
π

Lx

t
T
t0 ð101Þ

followed by the T 0
1 transformation:

T 0
1cx;yT

0
1
−1 ¼ cxþ1;y: ð102Þ

It is due to that the following large gauge transformation V:

V 0cx;yV 0−1 ¼ exp

�
i
π

Lx
x

�
expðiπyÞcx;y; ð103Þ

with ðx; yÞ ∈ ½1; Lx� × ½1; Ly� is well defined since the
original magnetic translation T1 requires Ly ∈ 2Z as
mentioned before, and it is able to restore the initial
Hamiltonian after the preceding π-flux insertion and T 0

1.

Let us consider the following quantity: (T is time
ordering)

zlattðθÞ

≡ TrΦG

�
T̂ 0
1V

0T exp

�
−i

Z
H½AxðtÞ; Aθ

y�dt
��

¼ hΦGjT̂ 0
1V

0T exp

�
−i

Z
H½AxðtÞ; Aθ

y�dt
�
jΦGi;

where H is the time-dependent lattice Hamiltonian and
jΦGi is the certain presumed unique gapped ground state.
We also set an artificial flat Uð1ÞQ gauge field in y direction
by Ay ¼ θðt0 − tN2−1Þ=ðNLyÞ where our case corresponds
to θ ¼ 0. Then zlattðθÞ satisfies

zlattðθÞ ¼ zlattðθ þ 2πÞ; ð104Þ

due to the large gauge transformation mentioned before.
Let us imagine a series of model with θ changing from 0

to 2π and consider

Zlatt
π ≡ zlatt½θ ¼ 2π�

zlatt½θ ¼ 0� : ð105Þ

Before evaluating this ratio of partition functions, we first
notice thatT 0

1V
0 acting on cx;ywith ðx; yÞ ∈ ½1; Lx� × ½1; Ly�:

T 0
1V

0cx;yðT 0
1V

0Þ−1

¼ exp

�
i
π

Lx
x

�
expðiπyÞcxþ1;y

¼ T1Vcx;yðT1VÞ−1; ð106Þ
which has exactly the same effect as the T1 on periodic
lattice followed by a “half-large” gauge transformation
Vcx;yV−1 ≡ expðiπx=LxÞ with ðx; yÞ ∈ ½1; Lx� × ½1; Ly�,
which is well defined according to the discussion below
Eq. (94).
Therefore, the continuum limit of z0 is

zlatt ¼ TrΦG½T̂ 0
1V

0T exp

�
−
Z

H½AxðτÞ; Aθ
y�dτ

��

→ TrΦG½T̂1VT exp

�
−
Z

H½AxðτÞ; Aθ
y�dτ

��
;

which precisely reproduces the form of z in Eq. (93) with
the boundary condition as Eq. (94). Similarly as the Uð1ÞQ
case, the role played by V in the path integral of z is
implicitly an assignment of a transition function between
the last two time slices preceding the T̂1 gluing. Thus, we
can make use of ’t Hooft anomaly matching to evaluate Zlatt

π

by Zπ:

Zlatt
π ¼ Zπ ¼ −1: ð107Þ
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Therefore, we have

zlattðθ ¼ 0Þ ¼ zlattðθ ¼ 2πÞ ¼ −zlattðθ ¼ 0Þ; ð108Þ
which is impossible unless

zlattðθ ¼ 0Þ ¼ 0: ð109Þ
It implies the following two equal-energy states are actually
orthogonal:

T̂ 0
1V

0T exp

�
−i

Z
T

0

H½AxðtÞ; Ay ¼ 0�dt
�����ΦGi⊥jΦGi;

thereby contradicting the assumption of the unique jΦGi. It
means the ground-state degeneracy must be nontrivial and
we arrive at an LSM-type ingappability.

V. TLBC APPLIED TO MANY-BODY
CHERN NUMBERS

In this section, we will apply TLBC to obtain a nontrivial
constraint on integer quantum Hall conductances. The
well-known Thouless-Kohmoto-Nightingale-Nijs formula
[53,54] identifies the Hall conductance of a band insulator
with the Chern number defined by the Berry connection of
eigenstates in the Brillouin zone. It was then generalized to
“many-body Chern number” for more general interacting
systems [55]. It should be noted that, by definition,
evaluation of the Chern number generally requires an
integral over the entire Brillouin zone or the entire
parameter space. Such integrations can be time consuming
even for free electrons (band insulator) with generic band
structures, especially when Chern numbers nCh are large,
since the critical mesh size of the discretized Brillouin zone
is of order Oð ffiffiffiffiffiffiffi

nCh
p Þ [56]. Evaluation of many-body Chern

numbers of interacting systems can be even more difficult
(however, see also Ref. [57]).
On the other hand, since the low-energy physics of lattice

models can be often described by field theory, such as Dirac
fermions, it is natural to attempt to determine the Hall
conductance (Chern number) by the low-energy effective
field theory. If this works, the Chern number appears to be
determined with only the information in the low-energy
limit. However, the most naive expectation fails in general
[58]. This is not surprising, considering the global nature of
the Chern number. In terms of field theory, the discrepancy
can be attributed to so-called “spectator” fermions which
may exist at higher energies and are invisible in low-energy
physics [59–62].
Nevertheless, anomaly, which is a central concept

utilized in the present paper, is a essential property of
field theory which is robust even at higher energies. We can
therefore derive a nontrivial constraint on the Hall con-
ductance from field theory, as we demonstrate below. In
other words, the anomaly controls possible behaviors of the
spectator fermions.

Let us consider the half-filled π-flux system above. Since
the system can be gapped if we explicitly break the time-
reversal symmetry, e.g., byΔH in Eq. (61), it is gappablewith
a unique ground state in the presence of UðNÞ and magnetic
translations. In the following discussion, we will investigate
the constraint on the many-body Chern number in such a
gapped phase when UðNÞ and magnetic translations are
respected by the half-filled spinless lattice Hamiltonians.
To derive the constraint, however, it is convenient to start

from the gapless system which is obtained by imposing the
time-reversal symmetry. By TLBC in Eq. (91) together
with its lattice realization in Eq. (100), we obtain the
partition function Eq. (96) for the critical Hamiltonian Hπ
in Eq. (58). It can be rewritten as

Z3DðX0Þ ¼ jZ3Djexpð−i
π

2
η3DÞ exp

�
iπ
Z
X0∶∂X0¼T3

TrF∧F
ð2πÞ2

�
;

ð110Þ
where jZ3Dj expð−iπη3D=2Þ is regularized by the Pauli-
Villars regulator defined before, which is automatically
gauge invariant, and T3 is the (2þ 1)-dimensional space-
time where our square lattice is defined. At the first sight,
the partition function depends on the choice of the four-
dimensional spacetime X0. However, as we will see, the
physical observables, such as Hall conductances, when we
gap it, is independent of this dimension extension. In
addition, the X0-bulk regulator is the only sensible way to
regularize the partition function up to a nonuniversal part as
summarized by Ref. [63].
By the discussion following Eq. (96), the partition

function (110) is, up to a nonuniversal factor, equal to
the partition function of a (3þ 1)-dimensional Dirac
fermion in R4 ⊃ X0 whose mass is opposite of the PV
regulator within X0 and is the same as the PV regulator mass
in ðR4 − X0Þ, which can be identified as the vacuum
[cf. Eqs. (A1) and (A2)] [15,63,64] as in Fig. 4. The
(3þ 1)-dimensional Dirac mass inevitably vanishes on
the interface T3 ¼ ∂X0 ¼ −∂ðR4 − X0Þ, along which the
(2þ 1)-dimensional gapless mode flows, because the
masses have different signs on the two sides of the interface
and the mass is restricted to be real throughout the whole
bulk by the time-reversal symmetry. Then we introduce a
general local interaction, not necessarily perturbative, to the
Hamiltonian Hπ in Eq. (58), and the interaction gaps the
system with a unique ground state, breaking time-reversal
symmetry while respecting UðNÞ and magnetic transla-
tions. In the equivalent (3þ 1)-dimensional bulk-interface-
bulk picture described above, the locality of this gapping
interaction in (2þ 1) dimensions is translated as follows:
the interaction only takes place locally around the interface
∂X0 ¼ T3 (since it is local on ∂X0) and thus the time
reversal is still preserved deeply in the X0 and the vacuum
ðR4 − X0Þ on its two sides. Then the partition function for
this gapped system takes the following general universal
form by the interface interpretation above (cf. Appendix):
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Z3DgappedðX0Þ ¼ exp

�
i
Z
R4

θðxÞTrF ∧ F
ð2πÞ2

�
; ð111Þ

with

θðxÞ ¼
�−2nπ; x deep in the vacuum;

π; x deep inX0;
ð112Þ

where the universal quantity n ∈ Z since the θ angle of
the vacuum is 0 mod 2π and the varying θðxÞ only breaks
time reversal near ∂X0 ¼ T3 [65]. (A nonlocal gapping
interaction is able to change the θ angle arbitrarily deeply
inside X0 or the vacuum.) Thus, by an integration by part for
the exponential in Eq. (111) and taking a Uð1ÞQ connection
A ¼ Auð1ÞIN×N , we obtain

Z3D-gappedðX0Þ ¼ exp

�
i
Z
T3

ð2nþ 1ÞN
4π

Auð1Þ ∧ dAuð1Þ

�
;

ð113Þ
which is explicitly a pure (2þ 1)-dimensional partition
function on T3 independent of the “bulk” X0, as expected
since our system is purely supported by a two-dimensional
spatial lattice. The physical meaning of the winding
number “n” of θðxÞ is the stack of n layers of gapped
UðNÞ and magnetic-translation symmetric systems, e.g., n
layers of 2 copies of our boundary theories (85) with mass
terms, which are able to nonanomalously respect the time
reversal in addition to UðNÞ and T1;2 at the low energy in
their own dimensions.
We can directly, by the level of the Chern-Simons term in

Eq. (113), identify the Hall conductance or in terms of
many-body Chern number as

σH ¼ N mod 2N: ð114Þ

The permitted Hall conductances by the constraint above
are symmetric about the zero value, which is not a
coincidence. Let us assume that, preserving the UðNÞ

and magnetic translations, we have realized an integer

quantum Hall state with σð0ÞH . Then we do a time-reversal
transformation Θ0 on this state (or its parent Hamiltonian)

and the resultant state has the Hall conductance −σð0ÞH ,
which still respects the original UðNÞ since, the group
elements of Θ−1

0 UðNÞΘ0 are the same as UðNÞ, which can
be seen in a basis where all the UðNÞ generators are purely
real or imaginary. (This can be always done for general N’s
since the generators are Hermitian.) This state is also
symmetric under the original magnetic translations since
the gauge-invariant commutator (60) is time-reversal invari-
ant (namely, π flux is time-reversal symmetric). Thus, the
permitted Hall conductances must be symmetric about the
zero. For general flux cases out of the scope, the above
argument does not work, since if we want to map the
magnetic translations back to its initial form, we need to
further do a spatial reflection which, together with the time

reversal, trivially transforms σð0ÞH back to σð0ÞH .
This generalizes the constraint for N ¼ 1 obtained from

the lattice argument [18–21]. It is notable that this gener-
alized constraint can be derived within the field theory. We
can see that the contribution from the spectator fermion is
0 mod 2N which is controllable in the presence of UðNÞ
and magnetic translations.
In a short summary, TLBC is useful in the bulk SPT

identification of the gapless point Eq. (85) since it con-
stitutes a gauge bundle in Eq. (91) to detect the anomaly
Eq. (98). This bulk SPT correspondence is helpful since it
provides us a visualizable way to treat our (2þ 1)-dimen-
sional system as a domain wall in Fig. 4 and, furthermore,
to restrict the integer Hall conductances.
We can further argue that such a constraint on many-

body Chern numbers is part of a more general framework.
An observation of Eq. (111) implies that we can imagine a
general system as a ZT

2 -broken surface of an SPT bulk
protected by ðG × Z2Þ⋊ZT

2 whereG is an on-site symmetry
and Z2 can be translations or magnetic translations. Then
the bulk regularization can induce a natural constraint on
the G response, e.g., Hall conductances. The surface theory
is trivial in the sense that the bulk is trivial if ZT

2 is broken,
while the nontrivial property, e.g., constraints of Hall
conductances, results from that the surface theory can be
attached to nontrivial SPT bulk where ZT

2 is preserved
deeply in bulk. In addition, the method is also directly
applicable to arbitrary even spatial dimensions where
Chern-Simons actions can be defined.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, we introduce a generalized boundary
condition TLBC for discussion of the LSM theorem and
related problems. Under the TLBC, each lattice site can be
reached by repeating the lattice translation in a particular
direction. As an advantage of the TLBC, the LSM theorem
in two or more dimensions can be derived by the

FIG. 4. The bulk-interface-bulk equivalence of the partition
function (110) where the PV regulator mass is −m0 in Eqs. (A1)
and (A2).
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flux-insertion argument without an artificial restriction on
the system sizes, which renders the thermodynamic limit
more natural. Moreover, with the TLBC, the LSM theorem
in arbitrary dimensions is related to the global chiral
anomaly of Dirac fermion in (1þ 1) dimensions in a
unified manner. This is also extended to the LSM theorem
with the larger SUðNÞ symmetry, and to the similar
ingappability constraint under the time reversal and the
magnetic translation symmetries with the on-site UðNÞ
symmetry. Furthermore, we also utilized the TLBC to
derive a nontrivial constraint on many-body Chern numbers
from field theory, which generalizes the known result from
the lattice. It shows the power of anomaly which univer-
sally dictates higher energies, within the universal field-
theory formulation and independently of the regularization
or realization. Although similar phenomena have been
proposed on the surface of topological insulators [66],
our result is the first to relate the Hall conductance of a pure
two-dimensional lattice system to SPT phases.
Despite the usefulness of TLBC as we have demon-

strated, it cannot be applied to exploit consequences of
spatial reflection symmetries, which are inconsistent with
the TLBC as introduced in this paper. Nevertheless, we
believe that the idea of modifying the boundary condition
from the standard PBC in the LSM-type argument, and
combining it with anomaly in field theory, is opening up a
new direction in quantum many-body theory. In fact,
recently, Furuya and Horinouchi [67] generalized our work
by introducing a twisted boundary condition and deriving a
nontrivial constraint for systems on the checkerboard
lattice. We hope that more developments will follow in
the future.

ACKNOWLEDGMENTS

Both authors thank Yohei Fuji, Shunsuke Furuya, Hans
Hansson, Chang-Tse Hsieh, Yuan-Ming Lu, Ying Ran,
Shinsei Ryu, Xiaolin Sun, Yuji Tachikawa, Yasuhiro Tada,
Cenke Xu, and Xu Yang for useful discussions. Y. Y. was
supported by JSPS fellowship. This work was supported in
part by MEXT/JSPS KAKENHI Grants No. JP19J13783
(Y. Y.), No. JP17H06462 (M. O.), and No. JP19H01808
(M. O.). A part of the present work was performed at Kavli
Institute for Theoretical Physics, University of California at
Santa Barbara, supported by U.S. National Science
Foundation Grant No. NSF PHY-1748958.

APPENDIX: DERIVATIONS OF
(111), (113) AND (114)

Here, we will give a rigorous proof of (111) and (113).
Because of the discussion around Eq. (96), the low-

energy effective theory can be thought as the interface
theory between the vacuum and a bulk in the Euclidean
signature as

Sbulk ¼
X
α;f

Z
X0
iψ̄α;fð−iD4 −m0Þψα;f þ Sreg; ðA1Þ

where Sreg ≡P
α

R
R4 iχ̄α;fð−iD4 þm0Þχα;f is the bosoni-

cally statistical spinor regulator and D4 ¼
P

3
i¼0 Γ̃

ið∂i −
IAiÞ is the 4D Dirac operator where fΓ̃i; Γ̃jg ¼ −2δij,
i; j ∈ f0; 1; 2; 3g. The vacuum action is simply

Svac ¼
X
α;f

Z
R4−X0

iψ̄α;fð−iD4 þm0Þψα;f þ Sreg: ðA2Þ

The symmetries UðNÞ and T1;2 all extend in a natural way
to both bulks. Gapping our (2þ 1)-dimensional system by
a UðNÞ and T1;2 gapping term can be seen as physically
equivalent to gapping the interface between the artificial
bulks Sbulk and Svac by a UðNÞ and T1;2 respecting
boundary interaction within the interface. Therefore, we
can resolve the former question in the approach to the
later one.
Since X0 is embedded in R4 in a natural way, we take a

local geometry near T3 ¼ ∂X0 as T3 ×R where
R∶x3 ∈ ð−∞;þ∞Þ. We introduce a spatial dependence
UðNÞ-preserving mass term mαβðx3Þ to gap the boundary
states where α and β are valley indices, namely the whole
material to be gapped throughout x3 ∈ ð−∞;∞Þ:

Sfull ¼
X
α;β

Z
R4

iψ̄α;f½−iD4δ
αβ −mα;f;β;f0 ðx3Þ�ψβ;f0

þ Sreg; ðA3Þ

where mα;f;β;f0 ðx3Þ interpolates the nontrivial bulk Sbulk
asymptotical at x3 → þ∞ and the vacuum at x3 → −∞:

mα;f;β;f0 ðx3Þ ¼
�
m0δ

α;βδf;f
0
; x3 → þ∞;

−m0δ
α;βδf;f

0
; x3 → −∞:

ðA4Þ

Moreover, the gapping is required to respect UðNÞ and T1;2

proportional to τ3;1, and then

mα;f;β;f0 ðx3Þ ∝ δα;βδf;f
0 ðA5Þ

since any matrix in SLð2;CÞ commuting with τ1;3 must be
proportional to identity. Combining this result and that a
general nonvanishing mass term can only take a Dirac-mass
or a chiral-mass form, then the interpolating action is

Sfull ¼
X
α;f

Z
R4

iψ̄α;ff−iD4 þm0 exp½iΓ̃5θðx3Þ�gψα;f

þ Sreg; ðA6Þ

where we have, without loss of generality, normalized the
mass amplitude to be a constant m0 which can be done
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canonically, since the mass gap never closes for any x3, and
Γ̃5 ≡ −Γ̃0Γ̃1Γ̃2Γ̃3 is Hermitian and the continuous function
θðx3Þ satisfies

θðx3Þ ¼
�
π mod 2π; x3 → þ∞;

0 mod 2π; x3 → −∞:
ðA7Þ

To evaluate the partition function of Sfull, we do the
following x3-dependent chiral rotation

ψα;f → exp½iΓ̃5θðx3Þ=2�ψα;f;

ψ̄α;f → ψ̄α;f exp½iΓ̃5θðx3Þ=2� ðA8Þ

to eliminate the chiral phase of the mass term. However, it
is inevitable to introduce a θ term due to 4D global chiral
anomaly although the matter partition function is regula-
rized to be unity by Sreg. Therefore, after a Uð1ÞQ con-
nection A≡ At0 is taken,

Zfull ¼ exp

�
i
Z
R4

θðx3ÞTrF ∧ F
ð2πÞ2

�

¼ exp

�
iN

ð2πÞ2
Z
R4

fd½θ ∧ dðA ∧ dAÞ

− dθ ∧ A ∧ dA�g
�

¼ exp

�
i
Z
T3

�R
dθ
π

�
N
4π

A ∧ dA

�
; ðA9Þ

where we have made use of Bianchi identity dðdAÞ ¼ 0 for
Uð1ÞQ connections and the assumption that Aμ is nearly x3

independent within the interface of two bulks.
The response exactly implies that, at the interface,

namely our interested (2þ 1)-dimensional system on T3,

σH ¼ N
Z

dx3∂x3θ=π

¼ N mod 2N; ðA10Þ

where we have used the winding property of θðx3Þ in
Eq. (A7). Thus, we reach the final conclusion of the
constraint on the Hall conductance of the uniquely gapped
UðNÞ and T1;2 respecting system: σH ¼ N mod 2N. The
role played by T1;2 is also obvious from the derivation
above, e.g., without T1 or T2, we can gap the boundary,
respectively, by a mass as m0 exp½τ3 ⊗ iΓ̃5θðx3Þ�δf;f0 or
m0 exp½τ1 ⊗ iΓ̃5θðx3Þ�δf;f0 , resulting an unrestricted σH.
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