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Electron optics in the solid state promises new functionality in electronics through the possibility of
realizing nano- and micrometer-sized interferometers, lenses, collimators, and beam splitters that
manipulate electrons instead of light. Until now, however, such functionality has been demonstrated
exclusively in one-dimensional devices, such as in nanotubes, and in graphene-based devices operating
with p-n junctions. In this work, we describe a novel mechanism for realizing electron optics in two
dimensions. By studying a two-dimensional Fabry-Perot interferometer based on a resonant cavity
formed in an InAs/GaSb double quantum well using p-n junctions, we establish that electron-hole
hybridization in band-inverted systems can facilitate coherent interference. With this discovery, we
expand the field of electron optics in two dimensions to encompass materials that exhibit band inversion
and hybridization.
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I. INTRODUCTION

Common interferometers in optics, such as Fabry-Perot or
Mach-Zehnder interferometers, rely on the interference of
monochromatic waves with the same propagation direction.
In this sense they can be regarded as one dimensional. In an
optical Fabry-Perot interferometer, the interference pattern
can be observed as a periodic change ofmaxima andminima
in the transmitted intensity while the wavelength of the
light is gradually varied. However, the wavelength period of
the interference pattern depends on the incident angle of the
light because it is the projection of the wave vector onto
the interferometer axis that enters the conditions for con-
structive and destructive interference. As a result, the
interference pattern is averaged out if light of all possible
incident angles is sent through the interferometer at once.
The same arguments apply to electronic Fabry-Perot inter-
ferometers. Pronounced interference is usually observed
only in one-dimensional systems, such as carbon nanotubes

[1] or quantumHall edge states [2,3], where the propagation
direction of electrons is restricted to one dimension.
Recently, electronic interference has been discovered in

two-dimensional pnp junctions (or npn junctions) of
single- and multilayer graphene [4–6], where electrons
(or holes) are incident under all possible angles. There,
Klein or anti-Klein tunneling in conjunction with Dirac’s
spectrum leads to a specific selectivity for incident angles
that enables the observation of interference in these two-
dimensional geometries without the need for additional
confinement in the transverse direction. Together with the
realization of electron lenses, collimators and beam splitters
[7–12], this discovery has marked a leap forward for
electron optics in the solid state.
Here, we report an interference mechanism fundamen-

tally different from that in graphene by studying transport
through a two-dimensional Fabry-Perot interferometer
realized using p-n junctions in an inverted InAs/GaSb
double quantum well. The interference is facilitated by
electron-to-hole scattering in the band-inverted regime.
Such a scenario does not filter the number of participating
transport channels, but instead produces many parallel one-
dimensional channels that share almost identical conditions
for constructive interference. This leads to a nonvanishing
interference pattern even after angle averaging. With this
finding, we expand the field of electron optics in two
dimensions to include materials that exhibit band inversion
and hybridization.
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II. DEVICE DESCRIPTION

Figure 1(a) is a false-color scanning-electron micrograph
showing an enlargement of a typical device used in this
work. The device is defined by an etched mesa and a
combination of overlapping metallic gates, see Fig. 1(b),
placed on top of a semiconductor heterostructure hosting
the coupled InAs and GaSb quantum wells. The nominally
undoped heterostructure is grown using molecular-beam
epitaxy along the [100] crystallographic axis on a GaSb
substrate. However, unintentional n-type doping character-
istic of our heterostructures leads to an excess of electrons
in the absence of any externally applied electric fields [13].
The charge carriers are confined in two dimensions to the
planes of the buried quantum wells, which extend in x-y
direction and have thicknesses in z of 13.5 (InAs) and
8 nm (GaSb), respectively.
To fabricate devices [14], we initially define the mesa of

width W ¼ 5 μm using wet chemical etching. Then, we
deposit the first layer of Al2O3 which serves as an insulating
oxide layer. Afterwards, we evaporate the metallic local
gates, followed by depositing the second layer of Al2O3.
Finally, we evaporate the large-area, or global, metallic top
gate before depositing metal to define Ohmic contacts to the
buried quantum wells. The local gates span the full device
width and are electrically separated from the heterostructure
surface below and the top gate above by the insulating oxide
layers. Below a local gate, the density of charge carriers in
the quantum wells is affected by this gate only. The
adjoining outer regions (leads) are affected by the top
gate exclusively [see the Supplemental Material for a full
electrostatic simulation [14] ]. A typical device contains

multiple local gates of varying lengths, allowing us to study
the length dependence of the interference in the same device.
The image in Fig. 1(a) is an enlargement of the region in
the vicinity of a single local gate of lithographic length
L ¼ 320 nm.
We commonly inject a dc current I ∼ 100 nA into the

device at 1.3 K and record the resulting junction voltage Vj

as a function of the voltage applied to the top gate VTG and
the voltage applied to the local gate VLG [Figs. 1(a), 1(b)].
In order to probe the locally gated region directly, we also
apply a small ac modulation to the local gate δVLG and pick
up the corresponding ac response in the junction voltage
δVj. Then, δVj=δVLGI represents the quantity dRj=dVLG

and is sensitive solely to changes in the transmission of the
locally gated region. From now on, for reasons to become
apparent shortly, we will refer to the locally gated region as
the “cavity.”

III. EXPERIMENTAL RESULTS

In the InAs/GaSb bilayer system,which has recently been
studied due to its topological insulator properties [15–18],
electronlike and holelike states coexist in the energetic
interval characterized by band inversion [19–22]. Here,
we employ the term “bilayer” to refer to the InAs and GaSb
quantum wells which form a bipartite, or bilayer, system
when considered as awhole. In the region of band inversion,
a hybridization gap opens in the in-plane dispersion due to
electron-hole coupling in the form of a tunnel coupling
between the adjacent quantum wells. The charge neutrality
point (CNP) resides within the hybridization gap, marking
the point at which the system is overall charge neutral, as the

FIG. 1. (a) False-color image describing the device structure and operation. The scale bar represents 2 μm. (b) Schematic device cross
section. (c) Exemplary band alignment EðkÞ in the pn0p configuration; μ is the electrochemical potential, indicated by the dotted line,
and the solid line indicates the charge neutrality point (CNP) in each region. (d) Color map depicting the differential junction resistance
dRj=dVLG as a function of VLG and VTG at 1.3 K. The resulting phase diagram is subdivided into quadrants according to the charge-
carrier configuration. The horizontal and vertical dashed lines mark the CNPs of the leads and the cavity, respectively. The insets show
the parts of the band structure probed to the left and right of the solid line at VLG ¼ 1.1 V in the pn0p configuration, as highlighted by
the shading.
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nonvanishing electronlike and holelike charges compensate
each other exactly. The hybridization gap is typically several
milli-electron volts in magnitude [17,20,22].
To explore the available parameter space, we tune the

voltages VTG and VLG to obtain a variety of charge-carrier
configurations in the device. We label the configurations
with ðx; y0; xÞ, where x ∈ fn; pg denotes the density of
majority charge carriers in the leads, and y0 ∈ fn0; p0g that
of majority charge carriers in the cavity, where n, n0 and p,
p0 are the densities of electronlike and holelike charge
carriers, respectively. In a pn0p configuration, there can
also be minority holes in the cavity (p0), and minority
electrons in the leads (n). This coexistence of electrons and
holes is a direct consequence of the aforementioned band
inversion. Figure 1(c) depicts the corresponding simplified
band lineup for the pn0p case.
The measurement in Fig. 1(d), which contains the main

findings of this work, displays dRj=dVLG as a function
of VLG and VTG for a local gate of lithographic length
L ¼ 320 nm. The quadrants representing the possible
charge-carrier configurations indicated in the figure are
separated by the experimentally determined CNPs in the
leads and the cavity (horizontal andvertical dashed lines).We
recognize regular oscillations in the pn0p configuration
(nearly vertical stripes of alternating minima and maxima)
which depend strongly on VLG, and weakly on VTG. In the
other quadrants, no such oscillations appear. The observed
oscillations persist up to VLG ∼ 1 V before disappearing.
Concomitantly, we estimate from independent density mea-
surements [14] thatp0 vanishes atVLG ≈ 1.1 V, as the Fermi
energy crosses the top edge of theground state subband in the
unhybridized valence band [see insets of Fig. 1(d)]. In other
words,whenVLG > 1.1 Vweobtain a conventional electron

system devoid of holes. This observation suggests that the
coexistence of electrons and holes in the cavity is crucial for
the emergence of the resistance oscillations. Upon closer
inspection of Fig. 1(d), one can notice weak oscillatory
features in the pn0p configuration also for VLG > 1.1 V.
Their visibility is significantly smaller than that of the
oscillations found below 1.1 V, and, as we explain later,
the two are most likely not of the same origin. From now on,
we concentrate on the oscillations for VLG < 1.1 V.
In the pn0p configuration, p-n junctions delimit the

cavity. Across each junction, the density of states exhibits
a local minimum as the Fermi energy transitions smoothly
frombelow to above the hybridization gap [23]. Specifically,
if a true gap exists, particles must tunnel in order to be
transmitted. The p-n junctions can therefore act as semi-
transparent mirrors, trapping particles in the cavity and
enabling the formation of discrete standing-wave modes.
The transmission, and accordingly, the resistance, of the
resulting resonant cavity is then modulated as a function of
the density n0 within it, with constructive and destructive
interference alternating in a periodic manner. In optics, this
type of interferometer is known as a Fabry-Perot étalon [24].
To better understand the nature of the resistance oscil-

lations, we systematically investigate pn’p junctions
with local gates of various lengths, both in a single device
and across multiple devices, and find the oscillations to be
reproducible. This robustness also holds for multiple
cooldowns, with the pattern of minima and maxima hardly
changing despite repeated thermal cycling. We observe that
both the oscillation amplitude and the average period in
VLG decrease with increasing L. Furthermore, the oscil-
lations remain unchanged if the current direction is
reversed, and their amplitude also decreases with increasing
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FIG. 2. (a) Temperature dependence of the resistance oscillations in dRj=dVLG in the pn0p configuration at VTG ¼ −1.8 V and in a
reduced range in VLG, chosen so as to highlight the oscillation behavior upon changing the temperature from 50 mK to 8 K. Dotted lines
and symbols mark local minima (circles) and maxima (diamonds) used in the analysis presented in (c). (b) Fit of the temperature
dependence of the local maximum at VLG ¼ −0.365 V, indicated by the arrow in (a), with a thermal damping function, Eq. (1).
(c) Summary of the mode spacing ΔE in the cavity extracted from the local minima and maxima marked in (a). The mean and standard
deviation obtained when factoring in all points is inset. The individual points have relative errors of around 5%, such that the error bars
are as large as or smaller than the point size.
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current bias. These measurements are described in the
Supplemental Material [14]. A similar decrease occurs at
elevated temperatures, with the oscillations completely
disappearing above ∼4 K. Below ∼500 mK their ampli-
tude saturates. This behavior is illustrated in Fig. 2(a).
Our experimental results are consistent with the emer-

gence of standing wave modes in the cavity, such that the
oscillations arise due to quantum interference in a two-
dimensional electronic analog of the Fabry-Perot étalon.
The decrease in amplitude with increasing L is in agree-
ment with a finite phase coherence length. An increase in
temperature leads to a broadening of the Fermi-Dirac
distribution around the Fermi energy, such that the ener-
getic interval relevant for transport expands. In the context
of the cavity, this phenomenon leads to averaging over
multiple adjoining standing wave modes, ultimately reduc-
ing the modulation of the resistance.
For a more quantitative analysis of the temperature

dependence, we determine the oscillation amplitude as a
function of temperature for the various minima and maxima,
marked bycircles anddiamonds respectively, inFig. 2(a).We
place splines through the minima and maxima to determine
the slowly varying background and subtract this background
to obtain the amplitude. Figure 2(b) shows the temperature
dependence of the amplitude of the maximum located at
VLG ¼ −0.365 V, as marked by the arrow in Fig. 2(a),
together with a fit (solid line). The fit is given by a thermal
damping function of the form

A ¼ A0

2π2kBT
ΔE

1

sinh 2π2kBT
ΔE

; ð1Þ

where A0 is a constant prefactor and ΔE is the characteristic
mode spacing in the cavity. We repeat the fitting procedure
for the other extrema and summarize the results in Fig. 2(c).
We recognize that ΔE is constant in the investigated voltage
(energy) range, obtaining ΔE ∼ 1 meV upon taking the
mean of all data points. Theoretical calculations, as discussed
below, agree with this value.

IV. THEORETICAL MODELING OF
FABRY-PEROT INTERFERENCE

In order to understand the origin of the interference, we
model the hybridized electron-hole system using the
minimal Bernevig-Hughes-Zhang Hamiltonian [25]

H ¼
�
hðkÞ 0

0 h�ð−kÞ

�
; ð2Þ

where hðkÞ¼Bk21̂þðM0þM2k2Þσ̂zþAkxσ̂x−Akyσ̂y,
σ̂i are Pauli matrices operating on the orbital degrees of
freedom and k ¼ ðkx; kyÞ is the wave vector. The nonzero
blocks in the Hamiltonian act on the two spin degrees of
freedom separately. The parameter M0 governs the band

inversion, M2 symmetrically controls the band curvatures
(effective masses), B is a symmetry-breaking term between
electron and hole bands andA determines the electron-hole
coupling. In Fig. 3(a), we present the dispersion of the
hybridized conduction band relevant for the cavity in the
pn0p configuration. In the band-inverted regime, the bulk
band structure has the shape of a “sombrero hat,” formed
due to the hybridization between the InAs conduction and
GaSb valence bands.
We assume that both cavity and leads are infinite in the y

direction, such that ky remains a good quantum number.
Scattering between the n0-doped cavity and p-doped leads
conserves ky, such that ky ¼ k0y (primed quantities refer to
the cavity, unprimed ones to the leads). We therefore treat
the two-dimensional scattering problem as an infinite set of
one-dimensional wires with different ky momenta. For each
ky, we note that there are four possible scattering processes
of quasiparticles that can occur at the interfaces between
the cavity and the leads [Figs. 3(b) and 3(c)], distinguish-
ing scattering between (i) alike particles—electron-to-
electron and hole-to-hole (ee and hh)—and (ii) different
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FIG. 3. (a) Sombrero-hat dispersion Eðkx; kyÞ of the hybridized
conduction band resulting from the theoretical model, Eq. (2), as
applied to the InAs/GaSb system. (b) Overview of the scattering
processes ij that occur within the n0-doped cavity when a
quasiparticle impinges onto the interface between cavity and
lead. The rij are reflection coefficients. (c) Upper panel: band
structure in the three regions of a pnp junction. The dashed
horizontal line represents the electrochemical potential μ. Full
blue (red) circles represent holelike (electronlike) states moving
to the right, while empty blue (red) circles represent holelike
(electronlike) states moving to the left. Lower panel: sketch of a
Fabry-Perot interferometer for a one-dimensional channel. The
colors are coded according to the upper panel, with red (blue)
arrows denoting holelike (electronlike) states moving to the right
(solid lines) and left (dashed lines).
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particles—electron-to-hole and vice versa (eh and he). This
situation is reminiscent of optical Fabry-Perot cavities with
birefringent (polarization-dependent) mirrors [26].
With the aforementioned considerations in mind, we

write the scattering problem for the pn0p junction [see
Fig. 3(c)] as

�
Ψ⃗L

−

Ψ⃗R
þ

�
¼ Ŝ

�
Ψ⃗L

þ

Ψ⃗R
−

�
; ð3Þ

where Ŝ is the scattering matrix that connects the incident
waves from the left lead to the transmitted waves in the
right lead,

Ŝ ¼
�
r̃0 t̃0

t̃ r̃

�
; ð4Þ

and r̃, r̃0, t̃, t̃0 are 2 × 2matrices. We then solve the problem
analytically [see the Appendix] and obtain the transmission
TðE0; kyÞ ¼ trt̃†t̃ for each ky wire as a function of the Fermi
energy E0 in the cavity, see Fig. 4(c). The maximum
possible value of T is 4, as there are 2 orbital and 2 spin
degrees of freedom present. The maxima of the trans-
mission depend only weakly on ky for energies close to
the band bottom, near the hybridization gap. Away from
the band bottom, the dependence on ky increases and the
transmission maxima curve toward lower energies. It is
crucial for our result that the wave-vector change Δkx for
scattering processes eh and he does not depend strongly on
ky at energies close to the gap, see Figs. 4(a), 4(b).
Upon inspection of the reflection amplitudes jrijj at the

interface between the cavity and the leads [Fig. 3(b)], we
identify that the eh and he scattering processes dominate
the transmission T at energies close to the gap, see
Fig. 4(d). With this in mind, we approximate the condition
for constructive interference as

Δkeh=heL ¼ 2πm; ð5Þ

where Δkeh=he is the energy-dependent momentum transfer
in the x direction in the eh and he scattering processes
and m ∈ N is the ordinal number of the transmission
maxima [refer also to the Supplemental Material [14] ].
This approximation agrees well with the calculated T, see
Fig. 4(c).
To obtain the conductance, we integrate the calculated T

over all incident states with different momenta ky,

GðE0Þ ¼ 2e2

h
W
2π

Z
kF

−kF
dkyTðE0; kyÞ; ð6Þ

and set the resistance RðE0Þ ¼ 1=GðE0Þ. The width of the
sample in the y direction is W and the integration
boundaries �kF are given by the Fermi wave number
associated with the larger of the two Fermi circles in

the leads. The numerical derivative dR=dE0 is shown in
Fig. 5(a). Oscillations appear when the Fermi energy in the
cavity lies in the energy region where the coherent eh and
he processes exist, indicated by the shaded area in Fig. 5(a).
The energetic width of this region is approximately 8 meV,
comparable to the size of the hybridization gap. Near the
gap, the oscillation period grows with increasing energy. In
contrast, the oscillation amplitude decays with increasing
energy as the ee and hh scattering processes become
relevant. Once the holes in the cavity are depleted and
the Fermi energy enters the region above the top of the
sombrero hat, the oscillations disappear. We postulate that
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the eh scattering processes assuming conservation of ky; Δkx
does not depend strongly on ky. (b) Momentum transfer Δkx as a
function of ky for the various scattering processes ij from
Fig. 3(b). Here, Δkeh and Δkhe are identical. kF;e (k0F;e) and
kF;h (k0F;h) are Fermi wave numbers of electronlike and holelike
states in the leads (cavity), respectively. (c) Transmission T
through the pn0p junction as a function of the Fermi energy E0 in
the n0-doped cavity and the momentum ky of the incident wave,
calculated using a scattering matrix approach. The dashed lines
denote the constructive interference condition assuming eh and
he scattering only [Eq. (5) and inset]. The minimum of the
hybridized conduction band is located at 22.1 meV. (d) Reflection
amplitudes jrijj for the various scattering processes ij from
Fig. 3(b) plotted as a function of E0 and for ky ¼ 0.
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this behavior is a generic property of band structures with
the shape of a sombrero hat. The interference mechanism is
a result of both the selective scattering of electrons to holes
and the fact that the interference condition does not vary
much with ky.
We now analyze the periodicity of the experimentally

observed oscillations [Fig. 5(b)] with the theoretical
insights in mind. The aforementioned features, namely
the increasing period and the decreasing amplitude, both as
a function of increasing energy, are present in the experi-
ment. Furthermore, by converting gate voltage to density,
and then relating the density to the wave number in the
cavity, we obtain an estimate for the cavity length based on
the period [14]. The estimate agrees with the lithographic
gate length. It is worth emphasizing that in the case of
dominant ee scattering, the oscillations would grow in
amplitude with increasing electron density, or equivalently
with increasing voltage. The opposite is true in the experi-
ment, providing confirmation of the significance of elec-
tron-hole interference.
We now comment on the oscillatory features observed in

the experiment in the pn0p configuration for VLG > 1.1 V
in Figs. 1(d) and 5(b). Their amplitude is smaller compared
to the amplitude of the Fabry-Perot oscillations and their
apparent periodicity changes arbitrarily as a function of
VLG. In fact, sometimes these oscillations disappear com-
pletely, as around VLG ∼ 2 V, before reappearing again as a
function of VLG. We have observed such features for local
gate lengths L which are of the order of several micrometers
where we are certain that no Fabry-Perot oscillations exist.
Indeed, clear and reproducible oscillations attributed to
Fabry-Perot interference whose period scales inversely with
L and which exhibit the characteristic bending as a function
of perpendicular magnetic field discussed in the next section
are only present when L does not exceed ∼1 μm [see
discussion on length dependence in the Supplemental
Material [14] ]. Note also that the theoretical model predicts
only Fabry-Perot oscillations below the top of the sombrero
hat, and no oscillations above it [Fig. 5(a)], hinting at a
different origin for these weaker oscillations.
We speculate the origin of the weak oscillations found

above VLG ∼ 1.1 V to be mesoscopic conductance

fluctuations (ballistic or diffusive). These fluctuations re-
present a phenomenon that competes with the Fabry-Perot
interference. Once the Fabry-Perot interference disappears as
holes are depleted below the local gate, the conductance
fluctuations remain.
In the np’n configuration no oscillatory features appear,

even upon extension of the voltage range to more negative
VLG [14]. The origin of the lack of oscillations in this
regime is currently an open question. Ideally, the interfer-
ence phenomenon should appear in this configuration too.
This is confirmed by our theoretical model. However, the
model does not take the finite lifetime of the carriers into
account. In reality, the average Drude mobility decreases
when moving from the hybridized conduction band to the
hybridized valence band across the CNP. This is typical of
InAs/GaSb double quantumwells because the holes deep in
the valence band of GaSb are roughly an order of
magnitude heavier than the electrons deep in the conduc-
tion band of InAs [27,28]. Without invoking any particular
multiband model, the average Drude mobility as deter-
mined by classical low-field magnetotransport is a combi-
nation of the electron and hole mobilities. We conjecture
that the decrease in average mobility (and therefore of the
elastic mean free path) is accompanied by a decrease in the
phase coherence length. The combined effect is a suppres-
sion of the Fabry-Perot interference in the np0n
configuration.

V. MAGNETIC FIELD DEPENDENCE

We now turn to the dependence of the resistance
oscillations on a perpendicular magnetic field B. In the
experiment [Fig. 6(a)], we track the evolution of the
oscillations close to the CNP as a function of B.
Overall, lines of constant transmission (phase) are initially
independent of B close to B ¼ 0. They then bend toward
lower VLG with increasing B. This bending ceases there-
after as the lines straighten once again before the resistance
oscillations vanish. Comparing the dRj=dVLG signal at
B ¼ 0 and at B ¼ 0.25 T, we recognize that minima and
maxima are interchanged. Such a shift of half a period is
equivalent to a phase shift of π.
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CNP marking electron and hole coexistence.
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Placing model (2) on a lattice [29], we numerically
calculate the expected magnetic field dependence, see
Fig. 6(b). Crucially, opposite spin states possess different
responses to the magnetic field. The resulting plot bears
similarities with the experimental measurement, and quali-
tatively captures all striking observations, namely (i) the
qualitative bending of the lines, (ii) the exchange of minima
and maxima, and (iii) the energy-dependent (gate-voltage
dependent) critical magnetic field above which oscillations
are no longer present. From the model analysis, we
conclude that (i) highlights the holelike nature of the cavity
states, (ii) is related to the spin splitting of the initially
degenerate standing wave modes in the cavity, and (iii) is a
result of the decreasing density of holelike states (see
below). Note that the minimal model (2) does not include
several complications present in the experiment, such as
band anisotropy, additional spin-orbit coupling terms, a
density-dependent band overlap, and the fact that the
electrostatics of the device change as a function of the
gate voltages. These effects may conspire to produce
the quantitative differences between the two plots in Fig. 6.
Semiclassically, we expect the interference phenomenon

to be suppressed with increasing magnetic field as the
cyclotron radius rc ¼ ℏk0F=eB decreases below a threshold
related to the length L of the cavity, where k0F is the Fermi
wave number in the cavity. Namely, when 2rc ¼ L at a
critical field Bc, quasiparticles cannot traverse the cavity
any longer. As the holelike states have smaller k0F than the
electronlike states, their Bc occurs earlier, see dotted lines
and the inset in Fig. 6(b). While it is not straightforward to
determine Bc in the experiment [the corresponding lines in
Fig. 6(a) are guides to the eye only], in the model analysis
the oscillations essentially disappear when this condition is
fulfilled for the holelike states. Therefore, we conclude that

in the pn0p configuration the minority holes in the cavity
decisively govern the interference dynamics in the presence
of a magnetic field and not the majority electrons.

VI. OUTLOOK

Our results set the stage for engineering electron
optics phenomena in a variety of materials that feature
band inversion and hybridization, or equivalently, a som-
brero-hat dispersion. Examples include systems with strong
Rashba spin-orbit interaction [30], such as the HgTe/CdTe
quantum spin Hall insulator system [31], two-dimensional
monochalcogenides like GaSe [32], transition metal dichal-
cogenides like WTe2 [33] and three-dimensional topologi-
cal insulators, such as those based on bismuth [34]. We note
that the coherent oscillations in the resistance are also
dependent on the geometry of the cavity, most notably on
the cavity length. Although the aforementioned systems
have a sombrero-hat dispersion, it is important that the
length of the cavity is large enough such that several modes
fit inside the energy region where the electronlike and
holelike states are present. On the other hand, the cavity
needs to be small enough such that the separation of the
oscillations can be experimentally resolved. After briefly
examining the band structures of said systems, we believe
that they too should feature Fabry-Perot interference
mediated by electron-to-hole scattering in the band-
inverted regime, provided their material quality guarantees
a sufficiently large phase coherence length. A more
thorough exposition of the generality of the newly dis-
covered interference mechanism is explicated in the
Supplemental Material [14].
We also predict that single p-n junctions in the above

materials can exhibit focusing of electrons and holes
due to electron-to-hole scattering, thus enabling the
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FIG. 6. (a) Color map depicting the differential junction resistance dRj=dVLG as a function of VLG and B at VTG ¼ −1.7 V and 1.3 K.
(b) Calculated dependence of dR=dE0 on the Fermi energy E0 in the cavity and B. The inset shows schematic trajectories for electronlike
and holelike states at the critical magnetic field Bc of the holelike states, represented in both (a) and (b) by the dotted lines. Dashed lines
and arrows indicate features common to both experiment and calculation, discussed under points (i)–(iii) in the main text.
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implementation of a range of devices such as Veselago
lenses [8,9] and beam splitters [11]. In the particular case of
InAs/GaSb, the electrostatic tunability with back and front
gates is advantageous for precise control of the band
structure [28] and hence the interference phenomenon.
Compatibility with standard large-scale semiconductor
processing techniques enables the straightforward realiza-
tion of networks of interferometers, which is favorable for
upscaling.
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APPENDIX: SCATTERING MATRIX

We employ a scattering matrix approach to calculate
the transmission through the device. Because of the
different positions of the Fermi energy in the cavity and
the leads, effective barriers emerge at the cavity-lead
interfaces, entailing scattering of waves at these barriers,
see Fig. 3(c). As a result of the sombrero-hat band structure,
for each energy located within the region of band overlap
there exists a region of momenta ky where two incident
waves are present, one of them being electronlike and the
other holelike [Fig. 3(c)].
We work in the limit of infinitely sharp p-n interfaces,

although preliminary studies show that the oscillations are
also present if the p-n interfaces are broadened. In Fig. 3(c),
the scattering problem for one ky channel is illustrated. At
every interface, the scattering matrix is equal to

ŜL=R ¼
�
r0L=R t0L=R
tL=R rL=R

�
; ðA1Þ

where the subscript LðRÞ denotes the left (right) interface
and r, r0, t, t0 are 2 × 2 matrices describing reflection and
transmission amplitudes for electronlike and holelike
waves impinging on the interface from the left (r, t) and
the right (r, t) with the following structure:

r ¼
�
ree reh
rhe rhh

�
; t ¼

�
tee teh
the thh

�
;

r0 ¼
�
r0ee r0eh
r0he r0hh

�
; t0 ¼

�
t0ee t0eh
t0he t0hh

�
: ðA2Þ

We can write down the scattering equations for the pn0p
junction,

�
Ψ⃗L

−

Ψ⃗C
þ

�����
x¼0

¼ ŜL

�
Ψ⃗L

þ

Ψ⃗C
−

�����
x¼0

;

�
Ψ⃗C

−ðx ¼ 0Þ
Ψ⃗C

þðx ¼ LÞ

�
¼ T̂

�
Ψ⃗C

−ðx ¼ LÞ
Ψ⃗C

þðx ¼ 0Þ

�
;

�
Ψ⃗C

−

Ψ⃗R
þ

�����
x¼L

¼ ŜR

�
Ψ⃗C

þ

Ψ⃗R
−

�����
x¼L

; ðA3Þ

where C denotes the cavity and the subscripts þ=−
denote waves moving to the right or left, i.e., waves
with positive or negative velocities. In general, Ψ⃗j

� ¼
½ψ jð�jkejÞψ jð∓ jkhjÞ�T is a two-component vector with
spinor components that denote waves with electronlike
dispersion [marked with red circles in Fig. 3(c)] and waves
with holelike dispersion [blue circles in Fig. 3(c)]. The
matrix T̂ assigns the dynamical phase for the waves due to
their free propagation, and is equal to

T̂ ¼

2
6664
eijkejL 0 0 0

0 e−ijkhjL 0 0

0 0 eijkejL 0

0 0 0 e−ijkhjL

3
7775≡

�
ϕ̂ 0

0 ϕ̂

�
:

ðA4Þ

Now that we have set up the scattering problem in terms of
scattering processes at each junction individually, we can
proceed in determining the total transmission through the
device.
The equations that connect the incident states from the

left lead to the transmitted waves in the right lead are given
by Eq. (4). In the experiment, current is injected only from
the left lead and so we set Ψ⃗R

− ¼ 0. The final solution for the
waves transmitted in the right lead, Ψ⃗R

þ, is Ψ⃗
R
þ ¼ t̃Ψ⃗L

þ, and
hence the total transmission is TðE0; kyÞ ¼ trt̃†t̃. The
matrix t̃ can be obtained from the matrices ŜL, ŜR, and
ϕ̂. After taking into account the time-reversal symmetry,
ŜTL=R ¼ ŜL=R, and inversion symmetry around the middle of

the cavity, at x ¼ L=2, ŜRðE0; kyÞ ¼ σxŜLðE0;−kyÞσx,
where σx is a Pauli matrix, we obtain

t̃ ¼ t̄Tϕ̂ð1̂2×2 − rϕ̂ r̄ ϕ̂Þ−1t; ðA5Þ

with fr̄ðkyÞ; t̄ðkyÞg ¼ frð−kyÞ; tð−kyÞg.
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