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Putting a generally valid upper bound on equilibration times of physically relevant observables is a much
pursued endeavor. Recently, such a bound has been suggested by Garcia-Pintos et al. While the
mathematical correctness of the bound as such is undisputed, its concrete calculation requires the
knowledge of certain quantities, which Garcia-Pintos et al. assess by means of assumptions. We show that,
e.g., in standard cases of slow, exponential equilibration, (at least) one of these assumptions is not valid.
This demonstration highlights the difficulty to judge the validity of the above assumptions without further
information. Such information is, in general, very hard to obtain.
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I. INTRODUCTION

For self-containedness, we (re)state the main result of
Ref. [1] [hereafter called the García-Pintos bound (GPB)]
in a comprehensive form. (It should be a quick read-
through for those familiar with this result.) Furthermore, we
define the function wðGÞ, cf. Eq. (2), which is directly
calculated from the probability distribution denoted by pjk

in Ref. [1].
The GPB addresses an equilibration time Teq. To further

specify Teq, we introduce some notation. Let ρ be the initial
state of the system. Moreover, let AðtÞ denote an observable
A in the Heisenberg picture and hAðtÞi ≔ TrfAðtÞρg its
time-dependent expectation value. Because the closed sys-
tem dynamics is unitary (and the system is finite), hAðtÞi has
a well-defined “infinite-time average” hAi≕ hAieq, which is
routinely considered as the equilibrium value of A, if the
observableA equilibrates at all [2]. Now, consider a deviation
DðtÞ of the actual expectationvalue from its equilibrium, i.e.,
DðtÞ ≔ ðhAðtÞi − hAieqÞ2=4kAk2, where kAk is the largest
absolute eigenvalue of A. Furthermore, consider an average
of DðtÞ over the time interval ½0; T� denoted by D̄T.
The condition that defines Teq is that D̄T ≪ 1 must hold
for T ≫ Teq (for nonequilibrating systems, such a Teq may
not exist [2]). The GPB is an explicit expression for such a

Teq [see Eq. (4)] based on ρ,Að0Þ and the Hamiltonian of the
systemH. As the GPB involves somewhat refined functions
of the above three operators, we need to specify these before
stating the GPB explicitly. A central role is taken by the
probability distribution pjk, which is defined as

pjk ∝ jρjkAkjj for Ej − Ek ≠ 0;

pjk ¼ 0 for Ej − Ek ¼ 0;
X
j;k

pjk ¼ 1; ð1Þ

whereEj,Ek are energy eigenvalues corresponding to energy
eigenstates jji, jki. Additionally, matrix elements are abbre-
viated as ρjk ≔ hjjρjki, Ajk ≔ hjjAð0Þjki. While the GPB is
not limited to this case, here, we focus on thepjk that may be
described in terms of a probability density function wðGÞ.
The examples we present below conform with such a
description, and it is plausible that this applies to generic
many-body scenarios. Prior to defining wðGÞ, we define
wðG; ϵÞ as

wðG; ϵÞ ≔ 1

ϵ

X
j;k

Θ
�
ϵ

2
− jEj − Ek −Gj

�
pjk; ð2Þ

where Θ is the Heaviside function. This definition is the
standard construction of a histogram in which the pjk are
sorted according to their respective energy gapsEj − Ek. It is
now assumed that there exists a range of (small but not too
small) ϵ such that wðG; ϵÞ is essentially independent of
variations of ϵ within this range. The wðG; ϵÞ from this
“independence regime” are simply abbreviated aswðGÞ. Let
the standard deviation ofwðGÞ be denoted by σG. [InRef. [1],
σG denotes the standard deviation of wðG; 0Þ; however, here
we focus on situations where this difference is negligible.]
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Furthermore, let wmax denote the maximum of wðGÞ.
The quantities a and Q that eventually enter the GPB
are now defined as

a ≔ wmaxσG; Q ≔
X

i;j∶Ei≠Ej

jρijAjij
kAk : ð3Þ

We can now state the GPB:

Teq ¼
πakAk1=2Q5=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijTrf½½ρ; H�; H�Agjp ¼ πakAk1=2Q5=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� d2

dt2 hAðtÞijt¼0j
s : ð4Þ

II. GENERAL PROBLEM OF UPPER
BOUNDING a, Q IN THE CASE OF SLOW

EXPONENTIAL DECAY DYNAMICS

Obviously, the GPB links Teq to the initial “curvature” of
the observable dynamics ∂2

t hAðtÞijt¼0 [which is often
practically computable, simply from its form in the denom-
inator in the middle of the double equation in Eq. (4)].
An actual, concrete value or upper bound for Teq, however,
may only be computed from Eq. (4) if the numerator can
also be computed or upper bounded. Let us stress that this
(rather obvious) statement is pivotal for the argument in this
Comment. The three main results, which are formulated
further below, attain their significance only in connection
with this statement. The crucial quantities in the numerator
are a and Q. As it is practically impossible to calculate a
from its definition for many-body quantum systems,
García-Pintos et al. instead resort to an assumption con-
cerning a. They argue that a ∼ 1may be expected for wðGÞ
that are “unimodal.” Unimodal means that wðGÞ essentially
consists of one central elevation like a Gaussian or a box
distribution, etc. Indeed, a is invariant with respect to a
rescaling wðGÞ → swðsGÞ, as it would result from rescal-
ing the Hamiltonian as H → sH (here, s is some real,
positive number). García-Pintos et al. also offer various
upper bounds on Q for different situations.
In contrast to the argument in Ref. [1], we show in the

following that the assumption of any two fixed upper
bounds on a and Q is necessarily violated for generic,
sufficiently slow, exponential decays of hAðtÞi. To this end,
two standard scenarios of slow dynamics are analyzed
below. In Sec. III, we also provide a concrete spin-based
example (along the lines of Scenario 1) in which a is found
to diverge while the bound onQ from Ref. [1] applies. This
result occurs even though wðGÞ is unimodal.
Scenario 1: Dynamics of quantities that are conserved

except for a weak perturbation to the Hamiltonian.—
Consider first a Hamiltonian consisting of an unperturbed
part H0 and a perturbation λHint.

H ¼ H0 þ λHint: ð5Þ

Furthermore, consider an observable A, which is conserved
under H0, i.e., ½A;H0� ¼ 0. If H0 has a sufficiently wide
and dense spectrum and λ is small, exponential decay, in the
simplest case, monoexponential decay, i.e.,

hAðtÞi ¼ ðhAð0Þi − hAieqÞe−t=τrel þ hAieq; ð6Þ

occurs, where τrel ¼ rλ−2 and r is a real, finite, positive
number that depends on the details of the setup. Many well-
understood approaches, such as the Weisskopf-Wigner
theory and projection operator techniques (Nakajima-
Zwanzig, Mori, etc.), arrive at such exponential decay
dynamics [3–7] for standard, physical, nonequilibrium
situations. A bold numerical demonstration for the emer-
gence of dynamics in accordance with Eq. (6) in closed
quantum systems is given in Ref. [8]. For even more
evidence, see Refs. [9,10]. If ∂thAðtÞijt¼0 ¼ 0, obviously
Eq. (6) cannot apply at t ¼ 0. In this case, Eq. (6) is meant
to apply after a short “Zeno time” τzeno, which is usually
exceedingly short compared to the relaxation time τrel [4,7].
Note, however, that the denominator of Eq. (4) necessarily
addresses a time below the Zeno time, namely, t ¼ 0. We
now aim to find the principal dependence of quantities in
Eq. (4) on the interaction strength λ. From the definition of
Teq given at the beginning of Sec. I, it follows that

Teq ≥ τrel: ð7Þ

For the denominator of Eq. (4), we find, with Eq. (5),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� d2dt2 hAðtÞijt¼0

����
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc1λþ c2λ2j

q
; ð8Þ

where c1¼Trf½Hint;A�½ρ;H0�g, c2 ¼ Trf½Hint; A�½ρ; Hint�g.
While initial states ρ such that c2 ¼ 0 are possible, they are
not generic; rather, they are very rare (untypical) for a
given, nonvanishing hAð0Þi [11]. Plugging Eqs. (6)–(8) into
Eq. (4) yields

πakAk1=2Q5=2 ≥ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc1λþ c2λ2j

p
λ2

ð9Þ

for the numerator of Eq. (4). Obviously, the numerator of
Eq. (4) diverges in the limit of weak interactions, i.e.,
λ → 0. The latter holds even if c1 ¼ 0. The divergence of
the numerator of Eq. (4) necessarily implies the divergence
of a or Q or both. Thus, no concrete, finite Teq may be
computed from Eq. (4) in this case. This is the first main
result of the present Comment.
Scenario 2: Dynamics of long-wavelength Fourier

components of spatial densities of conserved quan-
tities.—In Scenario 1, the exponential decay is due to some
“conservation breaking” part of the Hamiltonian being
small. However, exponential decay also often occurs with-
out some part of the Hamiltonian being particularly small.
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Consider, e.g., a spatially more or less homogeneous system
in which some quantity Z (like energy, particles, magneti-
zation, etc.) is totally conserved. Nevertheless, the spatial
density of this quantity pðx; tÞ may undergo some time
evolution. If this evolution complies with a diffusion equa-
tion, a Fourier component of this density, e.g., hAkðtÞi ¼
hR cosðkxÞpðx; tÞdxi, will decay exponentially, i.e.,

hAkðtÞi ¼ hAkð0Þie−κk2t; ð10Þ

where κ is the non-negative, finite diffusion coefficient.
However, just like in Scenario 1,we additionally need to find
∂2
t hAkðtÞijt¼0 in order to find the scaling of a and Q with k.

While the following consideration, in principle, applies to all
spatial dynamics of conserved quantities, here we resort to a
specific example, for clarity. We consider the XXZ chain of
length N with periodic boundary conditions (N þ 1≡ 1)
and anisotropy Δ described by the Hamiltonian

HXXZ ¼
XN
j¼1

ðSxjSxjþ1 þ SyjS
y
jþ1 þ ΔSzjS

z
jþ1Þ: ð11Þ

The total magnetization of the system, i.e., Z ¼ P
i S

z
i , is

conserved. The Fourier components of the spatial distri-
bution of the magnetization are

Ak ¼
1ffiffiffiffi
N

p
XN
i¼1

cosðkiÞSzi ; ð12Þ

where k ¼ 2πm=N are the discrete wave numbers and
m ¼ 0; 1;…; N − 1. The scaling in N guarantees the
convergence of the variances of the spectra of the Ak to
finite values of order unity at large N. (This case may be
inferred from considering the corresponding Hilbert-
Schmidt norms.) Calculating the second temporal deriva-
tives of the Ak yields

− ½HXXZ; ½HXXZ; Ak��
¼ 2ðcosðkÞ − 1ÞðAk þ BkÞ − sinðkÞCk; ð13Þ

where

Bk ¼
2ffiffiffiffi
N

p
XN
j¼1

cosðkjÞðSxj−1SzjSxjþ1 þ Syj−1S
z
jS

y
jþ1Þ

−
Δffiffiffiffi
N

p
XN
j¼1

cosðkjÞðSzj−1SxjSxjþ1 − Sxj−1S
x
jS

z
jþ1

þ Szj−1S
y
jS

y
jþ1 − Syj−1S

y
jS

z
jþ1Þ;

Ck ¼ −
2Δffiffiffiffi
N

p
XN
j¼1

sinðkjÞðSzj−1SxjSxjþ1 − Sxj−1S
x
jS

z
jþ1

þ Szj−1S
y
jS

y
jþ1 − Syj−1S

y
jS

z
jþ1Þ: ð14Þ

For small k, this result may be approximated as

½HXXZ; ½HXXZ; Ak�� ≈ k2ðAk þ BkÞ þ kCk: ð15Þ
Note that the variances of the spectra of Bk and Ck are all of
order unity for any k, just like the spectra of the Ak. Relying
on the small-k approximation yieldsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� d2dt2 hAkðtÞijt¼0

����
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����c3kþ c4k2

����
s

; ð16Þ

where c3 ¼ TrfCkρg and c4 ¼ hAkð0Þi þ TrfBkρg. While
initial states ρ resulting in TrfBkρg ¼ −hAkð0Þi are math-
ematically possible, they are not generic or typical at all.
Instead, typical values are TrfBkρg ≈ 0—even, and espe-
cially, for a given hAkð0Þi [11]. Thus, exploiting Eq. (16)
yields, in general, by the same line of argumentation
employed before in Scenario 1 [cf. Eqs. (7)–(9)],

πakAkk1=2Q5=2 ≥ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc3kþ c4k2j

p
k2

; ð17Þ

where the rhs diverges in the limit k → 0, analogous to
Eq. (9). Again, this divergence occurs even for c3 ¼ 0.
Thus, no concrete, finite Teq may be computed from Eq. (4)
in this limiting case either. This is the second main result of
the present Comment. We want to emphasize the following.
The XXZ chain exhibits, depending on (nonsmall) Δ and ρ,
various sorts of transport behavior, such as diffusive,
ballistic, and possibly superdiffusive, with the inclusion
of some disorder, possibly subdiffusive, etc., [12,13]. The
constants a and Q cannot be simultaneously finite in the
long-wavelength limit (k → 0, N → ∞) if the transport is
diffusive. They may be finite if the transport is, e.g.,
ballistic. Thus, determining whether or not a and Q are
both finite is as difficult as determining whether transport is
ballistic or diffusive. The latter is, however, a long-standing
and only recently to a good extent answered research
question for the XXZ chain [12,14–17].

III. CONCRETE, PHYSICAL EXAMPLE
ENTAILING a ≁ 1

Here, we present a concrete, physical example, which is
nevertheless simple enough to allow for analytical analysis.
This analysis unveils that, in this particular instance, indeeda
diverges while the bound on Q, as provided in Ref. [1],
applies. The exemplary setup consists of a single spin
(hereafter, called the “system”) subject to a magnetic field
of strengthB along the z direction, weakly coupled to a large
(but finite) environmental system (hereafter, called the
“bath”). Thus, the unperturbed Hamiltonian is given by
H0 ¼ BSzsys þHbath and the coupling interactions by λHint.
The observable of choice is the magnetization in the z
direction of the system spin, i.e., A ¼ Szsys. For a numerical
analysis of such an example, see Ref. [8]. We consider the
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simple case of a product initial state, where the system is
maximally aligned with the magnetic field and the bath is in
an infinite-temperature state, i.e., ρ ¼ ðSzsys þ 1sys=2Þ ⊗
1bath=dbath. According to Ref. [1] [Sec. V, Eq. (29)], this
case entails Q ≤ 2. Furthermore, we obtain

hSzsysðtÞi ¼ TrfSzsysðtÞρg ¼ TrfSzsysðtÞSzsysg ð18Þ
for the dynamics of the observable hSzsysðtÞi, which may be
rewritten as

hSzsysðtÞi ¼
X
j;k

jhjjSzsysjkij2eiðEj−EkÞt: ð19Þ

Now, consider the distribution pjk as defined in Eq. (1) for
the given setting:

pjk ∝ jhjjSzsysjki2j ¼ jhjjSzsysjkij2 for j ≠ k: ð20Þ
For nonintegrable systems, the eigenstate thermalization
hypothesis is expected to hold, yielding jhjjSzsysjjij2 ≈ 0.
Exploiting this case, the insertion of Eq. (20) into Eq. (19)
yields

hSzsysðtÞi ∝
X
j;k

pjkeiðEj−EkÞt: ð21Þ

To the extent that pjk may indeed be replaced by a smooth
probability density as discussed around Eq. (2), Eq. (21)may
be rewritten as

hSzsysðtÞi ∝
Z

wðGÞeiGtdG: ð22Þ

Thus, for the present example, wðGÞ is essentially the
Fourier transform of the observable dynamics hSzsysðtÞi. If
the expectation value hSzsysðtÞi decays strictly exponentially,
i.e., if Eq. (6) strictly applies, wðGÞ would be strictly
Lorentzian. While a Lorentzian distribution is clearly unim-
odal with onewell-behavedmaximum, its variance diverges.
Consequently,a, as defined in Eq. (3), would diverge aswell.
This is the third main result of the Comment at hand. A strict
mathematical divergence of a is only hindered by the small
deviations of the true dynamics in a finite system from
Eq. (6). These deviations are captured by the aforementioned
Zeno time. As is well known, Zeno times may become
arbitrarily small in systems with arbitrarily broad energy
spectra [4]. Thus, a may indeed become arbitrarily large,
i.e., a ≁ 1. In many standard scenarios, rather large amay be
expected if the coupling is sufficiently weak and the baths
are large. For a numerical illustration of this statement,
see Ref. [8].
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