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The interaction-energy landscapes (ELs) and magnetization dynamics of two-dimensional ensembles of
dipole-coupled magnetic nanoparticles are theoretically investigated. Extended nanostructures are modeled
by considering nonoverlapping nanoparticles (NPs) in a square unit cell with periodic boundary conditions.
The local minima and connecting transition states of the EL are determined systematically for
representative NP arrangements having different degrees of disorder. The topology of the ergodic
networks of stationary points is analyzed from both local and energy perspectives by using kinetic networks
and disconnectivity graphs. We show that increasing the degree of disorder not only increases, most
significantly, the number of local minima and transition states but also changes the shape of the EL in a very
profound way. While slightly disordered ensembles correspond to good structure seekers, which are
funneled towards the global minima, strongly disordered systems show very rough landscapes with
multiple low-energy local minima separated by relatively large energy barriers. The consequences of this
transition on the long-time Markovian dynamics of the nanostructures are quantified by calculating the
field-free magnetic relaxation after saturation and after quenching. The simulations indicate that the
relaxation of weakly disordered systems follows a slightly stretched exponential law, with a single
characteristic timescale for a wide range of temperatures. In contrast, strongly disordered systems show a
much more complicated relaxation dynamics involving multiple timescales, slowing down and trapping,
which is reminiscent of spin glasses.
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Statistical Physics

I. INTRODUCTION

Two-dimensional (2D) ensembles of magnetic nanopar-
ticles (NPs) have been the focus of remarkable research
activity in the past years [1–18]. From a fundamental
perspective, these systems constitute an extremely challeng-
ing research topic, in which reduced dimensionality, com-
peting interactions, and disorder merge, leading to novel
collective behaviors. From a technological standpoint,
magnetic nanostructures are most relevant for a variety of
applications, particularly in the field of spintronics, memory
devices, and high-density data storage [19,20]. A large
number of experimental methods have been developed in
order to fabricate NP ensembles, which can be divided into
two main categories. In top-down methods, the nanostruc-
tures are created starting from uniform bulk or film samples,
for instance, by means of lithography or edging [7].

In contrast, in bottom-up approaches, the NPs are first
synthesized by controlling the nucleation mechanisms, for
example, in vacuum by using a cluster-beam source
[1,2,8,9], on clean surfaces by diffusion-controlled aggre-
gation [3,21], or in solution by organometallic chemical
reactions [5]. These particles, which may be protected by a
ligand shell or coated with a nonmagnetic material, are then
deposited on a substrate or integrated in a three-dimensional
matrix. From a microscopic perspective, it is important to
remark that the different fabrication processes yield very
different structural arrangements of the NPs in the nano-
structures. These can range from a well-defined long-range
order, as in some lithographic samples and auto-organized
materials, to highly disordered samples with nearly random
positions of the NPs, as in surface nanostructures obtained
from cluster-beam deposition. It is one of the goals of this
paper to demonstrate how the degree of disorder in the NP
arrangement conditions the collective dynamical response
of the ensemble in a most significant way.
The magnetic properties of nanostructured materials are

known to depend on the size and composition of the NPs,
on the surface coverage, and also on the geometrical
arrangement of the particles. On the one hand, the origi-
nality resides in the specific behavior of individual clusters,
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including the effects of reduced size, low dimensionality,
and type of environment (e.g., ultrahigh vacuum, metallic
support, ligand shell, etc.). On the other hand, one would
like to understand and control the organization and global
properties of NP ensembles regarded as a whole. From the
latter perspective, diluted and densely packed samples are
fundamentally different. In weakly interacting ensembles
(low coverage), the magnetic properties of the nanostruc-
tures are dominated by local and short-range effects, such
as cluster-substrate hybridizations and magnetic anisotropy
energies. The long-time dynamics is governed by single-
particle local-moment fluctuations, which are described by
superparamagnetic Arrhenius-type models [22–24]. In this
case, it is generally expected that a perturbative or mean-field
treatment of the interparticle interactions could be an
appropriate starting point and that the structural organization
of the particles in the sample should not be so important
qualitatively. In contrast, for strongly interacting ensembles
(high coverage), the single-particle viewpoint is no longer
meaningful. In this case, the change in the magnetization
direction of any given particle inevitably induces changes in
the orientation of the magnetic moments of the neighboring
particles. Therefore, a cooperative response is expected
whenever the interparticle couplings are comparable to or
stronger than the local anisotropies, even though the details
of the physical behavior should depend on the nature of the
interactions (e.g., dipolar, Ruderman-Kittel-Kasuya-Yosida,
direct exchange, etc.) and on the underlying NP arrange-
ments (e.g., square, triangular, kagome, etc.). As a result,
even the most elementary transitions—for example, the
fluctuations between two adjacent metastable states or local
minima (LM) in the energy landscape—involve collective
changes of the magnetization directions of many NPs at the
same time [25–27]. Consequently, the many-body behavior
of the nanostructure needs to be taken into account from
the start.
Previous experimental and numerical studies of two-

dimensional ensembles of interacting magnetic nanopar-
ticles have revealed a variety of remarkable physical
phenomena, including long-range-order phase transitions,
continuous ground-state degeneracies, and order-by-
disorder effects [17,18,28–32]. In this context, it is par-
ticularly interesting to investigate the magnetic response of
NP ensembles to external perturbations, which may reveal
unusual nonequilibrium phenomena, such as dynamical
slowing down, ergodicity breaking, memory effects, and
aging. Indeed, there is experimental and theoretical evi-
dence that dense magnetic NP ensembles may show such
remarkable properties [33–38], in which case one denotes
them as superspin glasses because of the analogy to atomic-
spin glasses [39,40]. At the origin of these effects, one
usually finds competing frustrating interactions and dis-
order, which lead to rough energy landscapes showing
intricate networks of local minima separated by large,
broadly distributed energy barriers [39–41]. Under these

circumstances, the structural arrangement of the NPs plays
a central role since it conditions the shape of the underlying
interaction-energy landscape and all the resulting observ-
able properties, including magnetic order, thermodynamics,
and nonequilibrium dynamics.
The lack of symmetry resulting from disorder and the

anisotropic long-ranged nature of dipolar interactions pose
a serious challenge to theoretical investigations of magnetic
nanostructures. Analytical approaches are, in general, very
difficult or simply unfeasible. Hence, microscopic insight is
usually obtained by means of numerical simulations [42].
So far, there have been a number of theoretical studies of
the macroscopic response of NP ensembles, such as field-
cooled and zero-field-cooled magnetization curves, linear
and nonlinear susceptibilities, and magnetic relaxation rates
[43–46]. Moreover, elementary transitions between local
minima have been studied by solving the Langevin
dynamics and by using path-integral methods [47–49].
Nevertheless, many aspects of the most challenging col-
lective behavior of magnetic nanostructures remain unex-
plored, particularly concerning the role of disorder
[6,32,50–55]. Previous investigations have shown that
structural disorder significantly changes the energy land-
scape of dipole-coupled magnetic NP ensembles by
increasing the number of its local minima and reducing
the correlation length or spatial extension of the elementary
relaxation processes [25–27]. Although these results are
exciting, they are also far from conclusive. Detailed
investigations on how the local minima of the EL are
connected with each other in order to form a network of
metastable states are lacking. Little or no information is
available on the topology of these important kinetic net-
works and on the timescales governing the dynamics within
them. Furthermore, from an energy viewpoint, it remains
unclear how the local basins of attraction and the accessible
regions in configurational space merge as the available
energy increases and barriers can be progressively over-
come. This lack of knowledge is hampering since having a
detailed picture of the organization of the energy land-
scapes of these complex systems is crucial in order to
understand their equilibrium and dynamic properties from a
microscopic perspective.
The main goals of this paper are to characterize the

energy landscapes of dipole-coupled ensembles of mag-
netic NPs as a function of the orientation of the local
magnetic moments and to quantify the corresponding
magnetic relaxation dynamics. We pay particular attention
to establishing the correlations between the degree of
disorder, the properties of the landscape, and the observed
dynamics. In Sec. II, the theoretical background is pre-
sented. Aside from the microscopic model describing the
NP ensembles, we outline the methods used for identifying
the distinctive features of the ELs and for calculating the
corresponding Markovian relaxation dynamics. In Sec. III,
the properties of representative ensembles having different
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degrees of disorder are presented and discussed in some
detail. The topography of the ELs and, in particular, the
organization of the networks of their stationary points
[(local minima and transition states (TS)] are analyzed from
both local and energy perspectives. The properties of
magnetic NP ensembles are contrasted with those of other
relevant complex systems, including ferromagnetic (FM)
periodic models, dipolar-bonded clusters, and structural
glasses. The field-free time evolutions of the magnetic
order of the ensembles are determined starting from
saturation or thermal quenching. The correlations between
the observed dynamics and the underlying ELs are estab-
lished. A remarkable transition from rapid, good-structure-
seeker relaxation to trapped glasslike behavior is revealed
as the degree of disorder increases. Finally, in Sec. IV, we
summarize our conclusions and point out some of the
possible extensions and implications of this study.

II. THEORY

A. Nanostructure model

In order to describe the 2D ensembles of interacting NPs,
we consider nonoverlapping particles that are contained in a
square unit cell with periodic boundary conditions. Because
of the strong interatomic exchange couplings within theNPs,
and taking into account their small size with diameters of the
order of 5–10 nm, it is safe to regard each particle k as a
monodomain and to characterize its magnetic state by a
classical moment μ⃗k with a fixed module [8,9,56]. The
present model extends the one proposed in Refs. [25–27] by
allowing for a fully unconstrained three-dimensional (3D)
orientation of all μ⃗k. In this way, any possible artifacts
resulting from the previously imposed in-plane constraint of
μ⃗k (e.g., overestimation of the energy barriers, distorted
minimum energy paths, etc.) are removed. Having access to
the completemagnetic configurational space of the ensemble
is crucial in order to determine the entropy associated with
the statistical fluctuations at the local minima and transition
states. They are important for calculating the transition rates
between themetastable states that define the dynamics of the
system (see Sec. II E). Different geometrical arrangements of
theNPs are considered in order to investigate the role of auto-
organization and disorder on the magnetic behavior of the
ensembles: (i) weakly to moderately disordered square-
lattice structures, (ii) weakly to moderately disordered
triangular-lattice structures, and (iii) completely random
distributions of nonoverlapping particles. In the case of
the square and triangular structures, disorder is introduced
by displacing the particles from their regular periodic
positions according to a Gaussian distribution with standard
deviation σr. More than 200 different disordered nano-
structures have been investigated in detail. Representative
examples of these structures are given in Sec. III A.
In this paper, we focus on dipole-coupled ensembles of

magnetic NPs, which correspond to the limit of nearly

spherical particles having weak local anisotropy [23].
These strongly interacting systems are particularly chal-
lenging since they show noncollinear metastable magnetic
configurations and collective transitions, in which the
orientations of the moments of many different NPs change
at the same time [27,50–53,55]. Given the locations r⃗k and
magnetic moments μ⃗k, the dipolar energy of the system is
given by

E ¼ μ0
8π

X
k≠l

�
μ⃗k · μ⃗l
r3kl

−
3ðμ⃗k · r⃗klÞðμ⃗l · r⃗klÞ

r5kl

�
; ð1Þ

where r⃗kl ¼ r⃗k − r⃗l is the vector connecting the centers of
particles k and l, rkl ¼ jr⃗klj the corresponding distance, and
μ0 the vacuum permeability. Since the particles are usually
protected by ligands and do not overlap, there are no metal-
metal contacts and thus no contributions from direct-
exchange interactions between the NP moments. The
orientation of μ⃗k is defined by the polar and azimuthal
angles θk and ϕk. Hence, each magnetic configuration is
characterized by a set of N pairs of angles fθk;ϕkg in the
unit cell (k ¼ 1;…; N). Extending the model by including
other types of magnetic interactions (quadrupolar, direct or
indirect exchange, etc.) or local anisotropy fields is
straightforward.

B. Energy landscapes

The static and dynamic properties of classical many-
body systems are conditioned by the underlying energy
landscape (EL) as a function of the relevant degrees of
freedom—in the present case, the magnetic moments μ⃗k.
The EL can be characterized by its remarkable configura-
tions or stationary points, namely, the LM and TS [41].
Although the focus on the stationary points and the
associated basins of attraction is a meaningful simplifica-
tion, locating and cataloging all of them remains a serious
challenge for complex systems having high-dimensional
configurational spaces. Therefore, one usually aims to
construct a representative sample of LM and TS relevant
for the dynamics of the system under study [41,57,58].
The network of stationary points is determined in the

following way [59]: (i) One considers the magnetic
configuration of a local minimum, for example, the global
minimum, and from there, one starts an eigenvector-
following search for a nearby TS along one of the
eigenvectors with the lowest eigenvalue of the Hessian
matrix H at this minimum [58]. (ii) Once a TS is found,
the two LM connected by it are identified by performing
two limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) minimizations [60] starting at the configurations
located at both sides of the recently found first-order saddle
point. Each triplet obtained in this way—the two LM and
the connecting TS—defines an elementary transition or
relaxation process. In almost all cases, the triplet is
connected to the already-recorded network of stationary
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points since at least one local minimum is known, namely,
the starting one. (iii) The triplet LM-TS-LM is then added
to the database of stationary points, unless it was already
known. Triplets that are disjoint from the existing network
are disregarded at this stage. (iv) The algorithm proceeds by
starting the eigenvector-following TS search along a differ-
ent eigenvector of H. Once a predefined number of
eigenvectors of H at the given minimum have been tried
(typically, 15–20 searches are enough to find most of the
adjacent TS), one moves to the next local minimum in
the database, which amounts to returning to step (i). The
algorithm terminates after all local minima in the database
have been explored or after a specified number of con-
nected LM have been found.

C. Kinetic networks

The calculated LM and TS form a connected or ergodic
network, usually known as the kinetic network of the EL. It
can be naturally represented by an undirected graph, in
which the nodes symbolize the LM and the edges signify
the connecting pathways going through the TS [61,62].
Examples of these networks are given in Sec. III B. The
topology of the network of stationary states can be
characterized by a number of local and global properties.
A fundamental local property of each node i is the degree or
number of connections NcðiÞ, which represents the number
of links between this node and any other node of the
network. Since different networks often vary widely in size,
it is meaningful to introduce the local connectivity density

ρcðiÞ ¼
NcðiÞ

NLM − 1
; ð2Þ

given by the ratio between NcðiÞ and its maximum possible
value, where NLM is the total number of LM or nodes in the
network. Thus, ρcðiÞ measures the relative importance of
the LM i in the kinetic network [61,62]. The LM with large
ρc are referred to as hubs since they are connected to a
significant fraction of all other LM. In the present work, we
consider that a LM i is a hub when ρcðiÞ ≥ 0.1. Hubs play a
central role in the dynamics of complex systems because
they participate in most relaxation processes. If the tran-
sition rates are favorable, they may funnel and speed up the
dynamics, while in the opposite case, they are responsible
for trapping and slowing down. Their number, connectivity,
and the height of the barriers surrounding them are there-
fore crucial for determining the dynamics and its
timescales.
Another fundamental property of the network of sta-

tionary points is the distance dij between the LMs i and j,
which is equal to the smallest number of elementary LM-
TS-LM transitions or segments needed to connect them.
The average path distance d̄ over all pairs of LMs quantifies
the extension of the network in units of an elementary
relaxation step [61,62]. When d̄ is small, the system has to

undergo fewer elementary transitions in order to relax from
an arbitrary excited state to its equilibrium configuration. In
contrast, as d̄ increases, the relaxation mechanisms become
more complex and usually slower since a larger number of
intermediate TS are involved. In this context, it is useful to
introduce the eccentricity ϵi of node i as the largest dij
between this node and any other node j. Thus, ϵi quantifies
the extent of the network from the perspective of node i.
From the set of all ϵi, one derives the radius R and diameter
D of the network as the smallest and largest ϵi, respectively
[61,62]. Here, R and D are global network characteristics,
whose values increase, together with the average distance
d̄, as the complexity of the network increases and the
approach to equilibrium becomes more intricate. However,
notice that R and D are given by the local environment of
the two particular nodes giving the extrema. They are
therefore more prone to fluctuations and may be less
representative than d̄.
Besides the connectivity density ρcðiÞ, it is also interest-

ing to investigate how the neighbors of a node are
connected with each other in order to identify the presence
of subgroups or clusters of nodes among which direct
transitions are possible. This information, known as clus-
tering of the network, can be used to anticipate rapid
dynamics within subgroups of basins or metabasins. A
global measure of the degree to which the neighbors of a
node are also neighbors of each other is given by the
transitivity

C ¼ 3 ×
number of triangles
number of triads

; ð3Þ

which represents the probability that in a triad of nodes, in
which i is connected to j and j to k, i and k are also
connected [63]. The factor 3 in Eq. (3) takes into account
that each triangle contains 3 triads.
The above network metrics are very useful in order to

assess the properties of magnetic nanostructures, for
example, as a function of the NP arrangement and degree
of disorder. They also allow quantitative comparisons with
the behavior of other complex systems in very different
physical situations (glasses, atomic clusters, proteins, etc.).
Two idealized model networks appear as important refer-
ences in this context since they are representative of
extreme-opposite characteristics. On the one hand, we
have the random networks, in which the nodes are con-
nected randomly with a given average degree [64]. These
networks show relatively short average distances d̄ and
very low transitivities C. On the other hand, we have lattice
networks, which correspond to the nearest-neighbor (NN)
map of compact lattice structures and which have com-
paratively large values of both d̄ and C [61,62]. Finally, a
recurring question in network analysis is to determine
whether the considered system shows small-world proper-
ties [65]. In a small-world network, the probability that the
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neighbors of a node are also neighbors of each other is high,
and the number of elementary transitions or edges needed
to connect any two nodes is small. Therefore, following
Watts and Strogatz [65], we consider that a network shows
small-world behavior if it combines a small value of d̄,
which is comparable to or smaller than the one of a random
network having the same size and average degree, with a
significant value of C, which is typical of compact-lattice
networks. These properties are often associated with the
presence of hubs and can be found in many practical
examples such as neural, airport, and electric-power-grid
networks [61,62,65].

D. Disconnectivity graphs

While the topology of the kinetic networks and the
parameters characterizing them provide a clear picture of
how the basins or metastable states are connected among
each other from a local or configurational perspective, they
give no insight on the distribution of the stationary points
from an energetic point of view. A complementary
approach that removes this limitation is to determine the
corresponding disconnectivity graphs (DGs) [66], exam-
ples of which are shown in Sec. III C. The procedure to
calculate the DGs is the following [41]: For any given
energy E, one groups the LM of the ergodic network into
disjoint sets called superbasins. Two LM are said to belong
to the same superbasin if they can be connected by a path
that never exceeds the energy E. In other words, reaching a
minimum outside a given superbasin always requires
energies that are larger than E. It is clear that the super-
basins define equivalent classes. In the absence of degen-
eracies, there is only one superbasin at very low energies
that contains the global minimum. However, if the ground
state is N-fold degenerate, one finds N disjoint superbasins
at low E. As the available energy E is gradually increased,
more and more LM become accessible. Notice that these
new minima are not necessarily connected with the global
minimum or with each other for energies below E. Thus,
new superbasins are, in general, identified (see, for exam-
ple, Fig. 5 in Sec. III C). However, if E is further increased,
one also observes that, at some point, there are superbasins
that start to merge since the energy barriers between them
can be overcome. Finally, for very high E, only one
superbasin is left. It contains all the LM of the system.
In practice, the disconnectivity graph is constructed by

performing the above-mentioned analysis at a discrete set
of typically equidistant energies, which are indicated on the
y axis of the graph (see, for example, Fig. 5) [41]. At each
of these energies, a superbasin is represented by a node,
taking into account that two nodes are connected if the
corresponding superbasins share at least one common local
minimum. The horizontal positions of the nodes in the
graph are arbitrary a priori. For the sake of clarity, they are
usually chosen by grouping superbasins that have similar
energies and energy barriers. The result is a treelike graph,

where the end of each branch corresponds to a single local
minimum and its corresponding local basin of attraction (see
Fig. 5) [41]. All the LM that are connected to a common
node are mutually accessible at the corresponding energy
and thus belong to the same superbasin. A particularly
transparent classification of archetypal energy landscapes–
by exploiting the analogies between DGs and weeping-
willow, palm, or banyan trees—may be found in Ref. [67].

E. Markovian dynamics

At low temperatures, the transitions between different
metastable states or basins can be regarded as rare events,
so the time evolution consists of a series of independent
elementary transitions separated by relatively long thermal-
ization periods. Under these conditions, memory effects
are lost, and the dynamics can be regarded as Markovian.
The transition rates kji between the metastable states define
the dynamics, which is governed by the master equation.
In the framework of transition state theory (TST) [68], they
are given by

kTSTji ¼ hδ½sðxÞ�v⊥ðxÞH½v⊥ðxÞ�iT; ð4Þ
where hiT denotes the thermal average, x stands for the
dynamical variables of the system (in the present case, the
set of N pairs of angles fθk;φkg), sðxÞ ¼ 0 defines
the surface dividing the initial basin i from the final basin
j, v⊥ðxÞ is the projection of the configurational velocity
vector _x onto the normal of the dividing surface, and
H½v⊥ðxÞ� is a Heaviside function, taking the value 1 if
v⊥ðxÞ points towards the final state and zero otherwise
[69]. This expression can be worked out by performing a
quadratic expansion of the energy at the initial local
minimum xLM and at the first-order saddle point xTS
[70]. The system configuration and energy around the
minimum can be expressed in terms of the Hessian
eigenvectors eκ and eigenvalues εκ as x ¼ xLM þP

κ qκe
LM
κ and EðqÞ ¼ ELM þP

κ ε
LM
κ q2κ , where the nor-

mal coordinates qκ describe the fluctuations. Analogous
expressions hold at the saddle point. The dividing surface is
then approximated by the hyperplane spanned by the
2N − 1 stable modes eTSκ (κ ¼ 2;…; 2N) having positive
Hessian eigenvalues εTSκ at the saddle point. The normal to
the dividing surface, given by the single unstable mode eTS1
(εTS1 < 0), can be regarded as a reaction coordinate from
which v⊥ ¼ dq1=dt follows [70].
In order to determine v⊥, the dynamics of the coupled

magnetic moments needs to be taken into account [71,72].
The underlying time evolution can be described by the
Landau-Lifshitz-Gilbert equations [73]

dθk
dt

¼ −γ
Mk sin θkð1þ α2Þ

� ∂E
∂φk

þ α sin θk
∂E
∂θk

�
ð5Þ

and
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dφk

dt
¼ γ

Mk sin θkð1þ α2Þ
�∂E
∂θk −

α

sin θk

∂E
∂φk

�
; ð6Þ

where θk and φk are the polar and azimuthal angles defining
the direction of the magnetic moment μ⃗k of NP k, γ is the
gyromagnetic ratio, and α is the damping parameter.
Linearizing these equations for small qκ, one obtains v⊥ ¼
dq1=dt ¼

P
κ aκqκ as a linear combination of the fluctua-

tions qκ within the dividing plane at the TS [71,72]. The
resulting rate in harmonic transition state theory (HTST) is
given by

kHTSTji ¼ 1

2π

JTS
JLM

Q
2N
ν¼1

ffiffiffiffiffiffiffiffi
εLMν

p
Q

2N
κ¼2

ffiffiffiffiffiffiffi
εTSκ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2N
λ¼2

a2λ
εTSλ

vuut e−ðETS−ELMÞ=kBT; ð7Þ

where T refers to the temperature and JLM ¼ Q
N
ν¼1 sin θ

LM
ν

(JTS ¼
Q

N
κ¼1 sin θ

TS
κ ) to the Jacobian of the transformation

to spherical coordinates [71,72]. With an appropriate
choice of the local coordinates, the latter can be set to 1.
Notice that in the harmonic approximation, the transition
rates take the form of an Arrhenius ansatz kji ¼
fjie−ΔEji=kBT for each pair of metastable states i and j,
where the prefactor fji depends on i and j but not on T, and
the Boltzmann factor corresponding to the activation
energy ΔEji ¼ ETS − ELM carries all the temperature
dependence. Equation (7) takes into account the environ-
ment-specific entropy associated with the fluctuations of
the magnetic configuration at the initial basin i and at the
TS leading to the basin j, as well as the probability flux v⊥
at the dividing surface. The kji obtained in this way are
consistent with the energy landscape and the local curva-
tures at the stationary points. Thus, a rigorous quantifica-
tion of the timescales of the relaxation processes is
provided, including the distribution thereof throughout
the landscape. Any ad hoc assumptions on fji are thereby
avoided. In practice, the values obtained in our calculations
are in the range fji ¼ 108 − 1011 Hz depending on the
initial and final basins. These results are qualitatively in
agreement with the figures inferred from experiment [74].
Once the transition rates kij for all elementary transitions

are obtained, the time evolution of the system is calculated
by solving the master equation [75]

dp
dt

¼ Qp; ð8Þ

where the ith component pi of the vector p represents the
occupation probability of the minimum or basin i. The
transition-rate matrix Q is given by

Qij ¼ kij − δij
XNLM

l¼1

kli; ð9Þ

where NLM is the total number of LM of the system. The
solution of this linear equation takes the form

pðtÞ ¼ eQtpð0Þ; ð10Þ

where pð0Þ stands for the initial configuration of the
system. Expressing the matrix exponential in terms of
the normalized eigenvectors ui and eigenvalues λi of Q,
one obtains

pðtÞ ¼
XNLM

i¼1

cieλitui; ð11Þ

where ci ¼ pð0Þ · ui is determined by the initial probability
distribution [75]. Alternatively, Eq. (8) can be solved by
using the kinetic Monte Carlo method [76,77].

III. RESULTS AND DISCUSSION

The first goal of this section is to investigate the
interaction-energy landscapes of ensembles of magnetic
NPs and, in particular, to quantify the effects of structural
disorder. To this aim, a large number of model realizations
of the nanostructures, more than 600 in all, have been
explored. Three representative examples are illustrated in
Fig. 1, which correspond to a weakly disordered square
lattice, a weakly disordered triangular lattice, and a random
distribution of nonoverlapping particles. Rather than per-
forming statistical averages over a large number of NP
arrangements, our aim here is primarily to analyze in detail
the energy landscapes of representative nanostructures, in
order to shed light on the role of disorder on the topology of
the landscapes and on the dominant microscopic magnetic
relaxation mechanisms. To quantify the effects of structural
disorder, which is inherent to any experimental sample, we
start from periodic square and triangular lattices and
introduce random displacements of the NP positions
according to a Gaussian distribution with mean-square
deviation σr. The weakly disordered ensembles shown in
Fig. 1 correspond to σr ¼ 0.05r0, where r0 is the nearest-
neighbor distance of the periodic arrangement. Increasing
σr allows us to control the importance of disorder system-
atically. The limit of strongly disordered ensembles is
reached when σr is comparable to or larger than r0, which
corresponds to a random distribution of nonoverlapping
nanoparticles.
For the calculations, we consider Fe particles having a

diameter ϕ ¼ 3 nm and the structural arrangements shown
in Fig. 1. In this size range, the Fe NPs are known to behave
like ferromagnetic monodomains, provided that the temper-
ature is not too high, since ϕ is orders of magnitude smaller
than the width of any domain wall. Assuming, for sim-
plicity, that the atomic magnetic moments and the density
within the particles are bulklike (μb ¼ 2.2μB and bcc lattice
with a ¼ 0.29 nm), one finds that the total magnetic
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moment of the NPs is jμ⃗j ≃ 2.55 × 103μB. The extended
nanostructures are modeled with finite unit cells containing
N ¼ 36 particles and imposing periodic boundary condi-
tions. Moderate surface coverages c ¼ 0.28 for the square
and random ensembles and c ¼ 0.33 for the triangular
ensemble are assumed (cmax ¼ π=2

ffiffiffi
3

p ¼ 0.91). As dis-
cussed below, reasonable changes in the sample parameters
do not affect our conclusions. Results on the dependence
of average properties on N and c may be found in
Refs. [25–27].

A. Ground-state magnetic order

In Fig. 1, the ground-state magnetic configurations of
three representative ensembles are shown. In all cases, the
directions of the NP moments are almost perfectly within
the xy plane, as indicated by the arrows. The most stable
configuration of weakly disordered square-lattice structures
is similar to the so-called microvortex (MV) state, in which
the direction of μ⃗k alternates from site to site, forming an
angle�αwith the x axis as we move along a column or row
of the square lattice [see Fig. 1(a)] [28,78]. The presence of
disorder becomes apparent through minor deviations from
the perfect alternation. The optimal configuration is doubly
degenerate as any other since the dipole interaction is
invariant with respect to the inversion of all μ⃗k [see Eq. (1)].
It is interesting to note that the MV state also yields the
lowest energy when the lattice is perfectly periodic.
However, in this case, the energy is independent of the
tilting angle α. The continuous degeneracy is a conse-
quence of the C4 rotational symmetry of the periodic square
lattice, as can be demonstrated by group-theory arguments
[79–81]. Remarkably, the weakest degree of disorder
breaks this symmetry and lifts the continuous degeneracy
completely, by singling out one or a few specific values of α
and by keeping essentially the same type of long-range
correlations between the μ⃗k as in the periodic case. This
behavior is usually referred to as an order-by-disorder
effect [28,82–84]. Notice that time-inversion symmetry
implies that the ground state is degenerate with the one
obtained by reversing all spin directions. It is important to

remark that the actual orientation of μ⃗k in the ground state
(i.e., the MVangle α according to which μ⃗k alternates from
site to site) depends strongly on the particular realization of
the nanostructure, bearing no apparent correlation for
different disordered arrangements.
The most stable magnetic configuration of the weakly

disordered triangular ensembles is ferromagnetic, with only
minor local deviations of the direction of μ⃗k at different
nanoparticles k [85,86]. An example is shown in Fig. 1(b).
As in the square lattice, the long-range magnetic correla-
tions of the periodic case, where μ⃗k ¼ μ⃗ for all k, are
preserved. In the perfect triangular lattice, the energy E is
independent of the direction of μ⃗ within the xy plane since
E is a quadratic form of μx and μy and since the ðx; yÞ
representation of the C6 symmetry group is irreducible.
Disorder removes the point-group symmetry and, with that,
the continuous degeneracy by stabilizing a particular
average main direction of the magnetic moments. The
actual orientation of μ⃗ depends, of course, on the specific
locations of the NPs [28,82–84].
Finally, turning our attention to strongly disordered

ensembles, we find that all signs of long-range magnetic
order have disappeared. Instead, the ground state shows
short-range head-to-tail orientations of the moments, which
reflect the tendency to magnetic flux closure. An example
of a random NP arrangement is shown in Fig. 1(c). By
sampling a large number of different locations of the NPs in
the unit cell, we confirm that the orientation of the average
magnetization per particle m⃗ is uniformly distributed within
the xy plane. The calculated average absolute value forN ¼
36 particles in the unit cell of Fig. 1(c) is m̄ ¼ 0.13μ, and
the standard deviation is σ ¼ 0.11μ, where μ stands for the
NP magnetic moment. These values are somewhat smaller
than the average

ffiffiffiffiffiffi
m2

p
of N randomly oriented moments

(m ≃ μ=
ffiffiffiffi
N

p ¼ 0.17μ) which can be understood as the
consequence of flux closure. Similar results are obtained
for the average over all LM: m̄ ¼ 0.1μ and σ ¼ 0.1μ. This
randomness contrasts with the behavior of weakly disor-
dered structures where long-range correlations, either of
MVor FM type, are clearly preserved (see Fig. 1). Further

(a) (b) (c)

FIG. 1. Ground-state magnetic configurations of representative two-dimensional ensembles of nanoparticles: (a) weakly disordered
square structure (σr=r0 ¼ 0.05), (b) weakly disordered triangular structure (σr=r0 ¼ 0.05), and (c) nonoverlapping randomly distributed
particles. The unit cells are shown, on which periodic boundary conditions apply.
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details on the low-lying magnetic configurations in weakly
and strongly disordered systems are discussed in Sec. III C.

B. Kinetic networks

The ensembles of dipole-coupled magnetic NPs have a
large number of metastable states or basins, which are
connected by diverse transition states. A pair of minima
connected by a single intermediate saddle point constitutes
an elementary transition or relaxation process. By exten-
sion, this term also applies to the minimum energy path
(MEP), which links the minima along the gradient-
following curve passing through the saddle point. From
the point of view of the magnetic order, one observes that,
for strictly planar dipole-coupled NP arrangements, the
magnetic moments lie within the xy plane all along the
MEP, including the TS. Figure 2 shows the kinetic network,
i.e., the network of LM and TS, for the weakly disordered
square ensemble of Fig. 1(a). In this case, the number of
local minima and transition states are NLM ¼ 170 and
NTS ¼ 680. For each LM, the elementary transitions that
connect it to any other LM through a single first-order
saddle point are indicated by a grey segment. This
representation of the landscape is probably somewhat
confusing since the number of direct connections is quite
important. Not much physical understanding of the EL can
be inferred in this way. The situation changes profoundly
when one highlights (in black), for each minimum, the

transition that leads to a lower or equal energy and involves
the lowest energy barrier. These are the dynami-
cally dominant relaxation processes, at least in the low-
temperature limit where they yield the largest transition
rates [70–72]. A much simpler and intelligible picture
emerges. One observes that all the statistically relevant
transitions are channeled towards the hubs, which act as
veritable funnels of the magnetic configuration of the
system. From this perspective, the ELs of weakly disor-
dered ensembles share their main characteristics with other
good-structure-seeking systems, such as magic number
clusters, crystals, and good-folding proteins [87–94].
The network of LM in weakly disordered, square-lattice

ensembles is centered around the twofold degenerate
ground state and additional hubs. These states have huge
basins of attraction and can be regarded as distortions of the
continuously degenerate MV ground state of the periodic
lattice. They are therefore a direct consequence of the
symmetry breaking caused by disorder. For a given degree
of disorder, the number of hubs depends, to some extent, on
the specific location of the NPs. Values between 2 and 8
have been found for σr ¼ 0.05r0. Because of this hublike
structure, the network of LM has a very small average path
distance d̄ ¼ 2.7, diameter D ¼ 6, and radius R ¼ 3 (see
Table I). The number of elementary transitions required
to reach one of the ground states from any other state is
thus very small. In addition, the transitions leading towards
the ground states and hubs are mostly the ones with the
smallest energy barrier. One concludes that in weakly
disordered, square-lattice ensembles of magnetic NPs there

FIG. 2. Undirected kinetic network of the energy landscape of
the weakly disordered square-lattice ensemble illustrated in
Fig. 1(a). Each grey segment represents an elementary transition
between two local minima through a first-order saddle point. The
barrier heights and the lengths of the minimum energy paths
connecting the minima are disregarded at this stage. The two
degenerate ground states are indicated by red circles. Additional
hubs (ρc ¼ 0.33) of the kinetic network are indicated by orange
circles. The thick black segments highlight the transitions that,
starting from a given minimum, lead to a minimum having a
lower or equal energy involving the smallest energy barrier [95].

TABLE I. Topological parameters of the kinetic networks of
stationary points. Results are given for the weakly disordered
(WD) and strongly disordered (SD) nanostructures illustrated in
Fig. 1, for the average of over more than 200 different arrange-
ments of the magnetic NPs, and for a random network having the
same number of nodes and edges: diameter D, radius R, average
path distance between all nodes d̄, and transitivity C. Distances
are measured in numbers of elementary transitions. See also
Figs. 2–4 and Sec. II C.

Lattice D R d̄ C

WD square
ensemble

6 3 2.7 0.11

Average 5.4� 0.6 3.1� 0.4 2.7� 0.2 0.11� 0.03
Random network 5.7� 0.5 4.0� 0.0 3.0� 0.0 0.04� 0.01

WD triangular
ensemble

4 2 2.3 0.06

Average 5.0� 0.7 2.9� 0.5 2.5� 0.2 0.09� 0.03
Random network 6.5� 0.5 4.0� 0.2 3.3� 0.0 0.03� 0.01

SD ensemble 14 10 7.0 0.11
Average 15.6� 3.4 10.0� 1.9 7.4� 1.4 0.10� 0.02
Random network 10.0� 0.6 6.9� 0.3 5.0� 0.1 0.00� 0.00
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are no obstacles to a thermally activated relaxation dynamics,
which should therefore be simple and relatively fast [96].
Figure 3 shows the kinetic network of the weakly

disordered triangular ensemble illustrated in Fig. 1(b). The
number of local minima NLM ¼ 200 and transition states
NTS ¼ 822 is larger than in the disordered square-lattice
ensemble. However, the average path distance d̄ ¼ 2.3,
diameter D ¼ 4, and radius R ¼ 2 are similar to or even
somewhat smaller than in the square systems. These trends
hold, in general, irrespectively of the precise geometrical
realization or of the number of particles in the unit cell.
Furthermore, for the square (triangular) lattice, the average
over a large number of realizations with the same degree of
disorder yields N̄LM ¼ 180 and N̄TS ¼ 600 (N̄LM ¼ 230 and
N̄TS ¼ 940) and average topological parameters hd̄i ¼ 2.7,
hRi ¼ 3.1, and hDi ¼ 5.4 (hd̄i ¼ 2.5, hRi ¼ 2.9, and
hDi ¼ 5.0). In the triangular case, the network of stationary
points is also centered around the twofold degenerate ground
state and additional hubs that stem from the continuously
degenerate ground state of the periodic lattice. They preserve
strong FM correlations, somewhat distorted as a result of the
disorder-induced symmetry breaking. As already mentioned
for the disordered square arrangements, the full network of
LM and first-order SP is rather cumbersome and confusing.
A clear picture emerges, however, when the most probable
relaxation pathways are highlighted (black segments
in Fig. 3). One observes, again, that the dominant transi-
tions are systematically funneled towards the hubs. Weakly
disordered triangular ensembles also have good structure-
seeking ELs and should therefore show unhindered relax-
ation properties.
A completely different physical picture emerges from the

kinetic networks of strongly disordered ensembles. In
Fig. 4, the kinetic network corresponding to the ensemble

illustrated in Fig. 1(c) is shown. In this case, one finds a
remarkably large number of local minima NLM ¼ 2810 and
transition states NTS ¼ 8958. Furthermore, the topography
of the EL is far more complex, even if one focuses on the
dominant transitions. The kinetic network is no longer
centered around the two degenerate ground states. Instead,
the network is quite dispersive, tending to decompose into a
number of subgraphs. As a consequence, the random
system has a much larger average path distance d̄ ¼ 7.0,
diameter D ¼ 14, and radius R ¼ 10. Hence, the distances
between the different local minima, as measured by the
number of elementary transitions needed to connect them,
are much longer, in general.
The remarkable increase in the number of LM in the

strongly disordered system is consistent with the changes in
the correlation length between the magnetic moments in the
LM-TS-LM transitions [27]. In weakly disordered ensem-
bles, the spatial extension of the change in magnetic
configuration along the MEPs is quite large. This means
that changes in the direction of a single magnetic moment
induce changes in the direction of a large number of other
magnetic moments, even if the latter are located at
relatively large distances. Consequently, there are relatively
few different metastable magnetic configurations since
smaller parts of the ensemble cannot rearrange independ-
ently from each other. Because of the long correlation
length, the metastable configurations need to match the

FIG. 3. Undirected kinetic network of the energy landscape of
the weakly disordered, triangular NP ensemble illustrated in
Fig. 1(b). The two degenerate ground states are indicated by the
red circles. Additional hubs (ρc ¼ 0.3) are indicated by orange
circles. The thick black segments highlight the transitions that,
starting from a given minimum, lead to a lower or equal energy
involving the smallest energy barrier [95].

FIG. 4. Undirected kinetic network of the energy landscape of
the strongly disordered ensemble illustrated in Fig. 1(c). The two
degenerate ground states are indicated by the red circles. The
thick black segments highlight the transitions that, starting from a
given minimum, lead to a lower or equal energy involving the
smallest energy barrier. Note that even the ground states do not
qualify as hubs (ρc ¼ 10−3) [95].
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symmetry of the underlying lattice. Thus, the average
volume in configurational space of the attraction basins
is comparatively large. In contrast, in strongly disordered
systems, the correlation length between the magnetic
moments is much shorter [27]. As a result, smaller domains
of magnetic moments are able to rearrange fairly freely
with respect to each other, which allows a wide variety of
slightly different metastable configurations. Consequently,
the volume per minimum and the average distance between
them in configurational space are much smaller. A com-
parison of the basic properties of the networks of stationary
points for different lattice structures and degrees of disorder
is given in Table I.
It is interesting to take a closer look at the hubs of the

various NP ensembles by analyzing how the local connec-
tivity density ρc of the most relevant and highly coordinated
LM(i.e., the ground states and potential hubs) depends on the
NP arrangement and degree of disorder [see Eq. (2)]. In the
case of the weakly disordered ensembles, the values of ρc for
the ground states and hubs are substantial. For example, for
the square lattice illustrated in Fig. 1(a), we have ρc ¼ 0.35
for the ground states and ρc ¼ 0.22 for the hubs
(NLM ¼ 170). Similarly, for theweakly disordered triangular
lattice of Fig. 1(b), we find ρc ¼ 0.47 for theground state and
ρc ¼ 0.3 for the hubs (NLM ¼ 230). Thus, the ground states
and hubs are directly connected to an important fraction of all
otherLMof the network.These results are consistentwith the
picture inferred from the kinetic networks (Figs. 2 and 3) and
with the fact that the basins of attraction of the hubs are
extremely large. Random ensembles [e.g., Fig. 1(c)] behave
profoundly different in this respect. The local connectivity
density of the ground state is negligible: ρc ¼ 0.001, and no
other LM qualifies as a hub (NLM ¼ 2810). The most
coordinated one has only ρc ¼ 0.002. According to our
criterion for hub formation (ρc ≥ 0.1), there are no hubs in
the strongly disordered systems, while there are four hubs in
the considered weakly disordered systems.
The small-world behavior of the kinetic networks of

good structure-seeking Morse clusters and structural-glass
formers has been investigated in Ref. [97] by comparing
their average path distance d̄ and transitivity C with those
of random networks having the same average degree and
number of LM. In this way, the authors were able to show
that the networks of good structure-seeking clusters are
small-world-like, whereas networks of the structural-glass
formers are not [97]. Remarkably, magnetic NP ensembles
show both contrasting behaviors, depending on the degree
of disorder. Indeed, the kinetic networks of the weakly
disordered, square (triangular) ensembles have a smaller
average path distance d̄ ¼ 2.7 (d̄ ¼ 2.3) and a larger
transitivity C ¼ 0.11 (C ¼ 0.06) than the corresponding
random network, for which d̄ ¼ 3.0 and C ¼ 0.04 (d̄ ¼ 3.3
and C ¼ 0.03). Thus, the weakly disordered arrangements
show small-world properties. In contrast, for the strongly
disordered NP ensemble of Fig. 1, we obtain d̄ ¼ 7.0,

which is significantly larger than the corresponding
random-network value d̄ ¼ 5.1. One therefore concludes
that the strongly disordered NP ensembles do not have
small-world kinetic networks. These results confirm that
the former are good structure seekers while the latter show
glassy behavior.
The changes in the topography of the landscape caused

by structural disorder are crucial for the dynamical proper-
ties. In the weakly disordered ensembles, we have seen
that the ground states and closely connected hubs can be
regarded as the center of the energy landscape. Moreover,
the dominant elementary transitions out of the excited
states are all funneled towards them (see Fig. 2). These are
the characteristics of a good structure-seeking behavior, in
which very few intermediate relaxation steps are involved.
In contrast, the relaxation mechanisms in strongly disor-
dered ensembles are far more complex. If one looks at the
dynamically relevant processes with the lowest energy
barrier (highest rate), one sees that the graph breaks down
into a set of poorly connected subgraphs. This result
implies that the relaxation pathways become longer and,
more important, that they are not systematically directed
towards the ground states anymore. In contrast to the nearly
periodic cases, the dynamics of strongly disordered ensem-
bles can easily lead to very different magnetic configura-
tions depending on the initial state. Consequently, the
approach to equilibrium is likely to involve more than
one characteristic timescale. At first, the system is expected
to evolve rather rapidly within the subgraph or superbasin
corresponding to its initial state, as conditioned by the
dominant elementary transitions (i.e., the thick black seg-
ments in Fig. 4). Depending on temperature, this process
can lead to a nearly thermalized distribution throughout the
LM of the given subgraph. Subsequently, only on much
slower stages does the relaxation between the different
superbasins set in. The evolution towards thermal equilib-
rium, as implied by the ergodicity of our finite network of
LM, involves processes that become more and more rare.
The relaxation is therefore expected to be hindered by
trapping. This behavior, which is reminiscent of spin
glasses, may lead to a breakdown of ergodicity in the
thermodynamic limit [39]. The link between multiple
relaxation timescales, broken ergodicity, glassy behavior,
and multifunnel energy landscapes has been extensively
studied for atomic and molecular clusters since they serve
as excellent benchmarks for the sampling of energy land-
scapes, global optimization, and rare-event kinetics [98–
100]. One concludes that disorder profoundly reshapes the
energy landscape of magnetic nanostructures by trans-
forming good structure-seeking NP ensembles into bad
structure-seeking glassy systems.

C. Disconnectivity graphs

A very interesting complementary perspective in order
to understand the energy landscapes of nanoparticle
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ensembles is provided by the disconnectivity graphs shown
in Figs. 5–7. As discussed in Sec. II C, the focus here no
longer resides in the kinetic network of LM but in the
energies of the metastable states, taking into account the
energy barriers to be surmounted along the connecting
MEPs. In Fig. 5, the disconnectivity graph of a weakly
disordered square-lattice ensemble is shown. One easily
recognizes the degenerate ground states as well as the
additional hubs, which lie at a close-by energy and are
separated from the former by a very small energy barrier.
The strong asymmetry of the energy profiles along the
MEPs is also worth noting. Indeed, energy barriers from the
excitations to the ground states and hubs are far smaller
than those involved in the reversed transitions. Therefore,
starting from any given initial state, the system is expected
to relax quite rapidly into one of the two ground-state
configurations or hubs, even at relatively low temperatures.
The insets of Fig. 5 illustrate the magnetic order in one of

the ground states and in the first metastable minimum
connected to it, which is also an important hub of the
kinetic network (see also Fig. 2). Although the details of the
moment orientations depend on the precise location of

the NPs, a number of important features are common to the
large majority of weakly disordered square systems. One
observes that the ground state is a strongly noncollinear
MV state showing flux closure within the NN square
plackets. In fact, according to the order parameters intro-
duced in Ref. [32], the ground state shown in Fig. 5
corresponds to 98% of the perfect periodic MV state. This
result is consistent with the work of Prakash et al., who
predicted that disorder stabilizes a noncollinear MV con-
figuration [28]. The first metastable states and major hubs
are issued from the same continuously degenerate MV
ground-state manifold of the periodic case. However, they
are qualitatively different from the ground state in the sense
that they are closer to the collinear staggered-striped state
(see Fig. 5). According to the order parameters introduced
in Ref. [32], the hubs in Fig. 5 correspond to 93% of the
perfectly alternating striped state. A further point of
considerable interest is to compare the volume in spin-
configurational space of these two remarkable low-lying
states since the associated entropy should give us insight on
their relative stability at finite T. Indeed, one obtains that
the local curvatures of the EL at the first metastable hubs
are significantly smaller than at the ground state, which
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FIG. 5. Disconnectivity graph of the weakly disordered, square-
lattice ensemble illustrated in Fig. 1(a). Notice that the degenerate
global minima (red circles) and hubs (orange circles) are
distinctly more stable than all other local minima. The insets
illustrate the magnetic configuration at one of the global minima
(E0) and the closest hub (E1). The twofold degeneracy is a
consequence of time-inversion symmetry. See also Fig. 2 [95].
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FIG. 6. Disconnectivity graph of the weakly disordered,
triangular-lattice ensemble illustrated in Fig. 1(b). As in the
square lattice (Fig. 5), the doubly degenerate global minima (red
circles) and hubs (orange circles) can be clearly distinguished
from the remaining higher-lying local minima, which show
particularly small energy barriers towards the ground states.
The insets illustrate the magnetic configuration at a global
minimum (E0) and its closest hub (E1). See also Fig. 3 [95].
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implies a higher local density of states and a larger entropy
in the harmonic approximation. This conclusion agrees
with the temperature-induced MV-to-AF transition pre-
dicted in Ref. [32] as a function of increasing T.
The disconnectivity graph corresponding to the weakly

disordered triangular ensemble shown in Fig. 6 is quali-
tatively very similar to the square-lattice one. As in Fig. 5,
one finds that the ground states and additional hubs have
similar energies and are much more stable than any other
excited configuration. Moreover, the energy barriers around
the metastable states leading to the ground states or hubs
are all very small. These types of DGs (Figs. 5 and 6)
correspond to good structure seekers and are usually
referred to as palm-tree-like [41,67]. Quantitatively, the
ground-state energy per particle E0 and the barrier ΔE
separating the ground states are similar to the values
obtained for the weakly-disordered square lattice: E0 ¼
−7.84 meV and ΔE ¼ 0.14 meV in the triangular case,
while E0 ¼ −7.44 meV and ΔE ¼ 0.20 meV in the square
case. Furthermore, the dynamically relevant energy barriers
at the metastable states have similar heights. The parallel-
ism suggests that in these weakly disordered structures, the
symmetry of the underlying periodic structure (square or
triangular) and the corresponding ground-state magnetic
order (microvortex or ferromagnetic) do not qualitatively
affect the topography of the magnetic energy landscape and
the resulting relaxation dynamics. These similarities are

probably a consequence of the continuous degeneracy
of ground-state magnetic order in the perfectly periodic
case, which not only can be easily lifted by disorder but
also implies that the ground-state basin of attraction is
particularly large. Further studies for other periodic-lattice
symmetries are necessary before this analysis can be
generalized. Among other options, systematic studies of
weakly disordered honeycomb and kagome lattices seem
particularly worthwhile since the former show a continuous
ground-state degeneracy in the periodic case while the latter
do not [28,101–103].
Concerning the low-lying magnetic configurations illus-

trated in the insets of Fig. 6, one observes that both the
ground state and the first metastable hub preserve the FM
long-range order of the continuously degenerate periodic
ground state from which they are issued. The same holds
for the transition state connecting them. In general, disorder
singles out a few magnetization directions in the low-lying
metastable states, with only minor, though clearly appreci-
able, local deviations in the direction of μ⃗k at different NPs
[28,82–84]. As in the weakly disordered square lattice, the
long-range magnetic correlations of the periodic case are
preserved to a large extent. In the present case, we obtain
that the ground state (first metastable hub) matches the
order parameter of a perfectly aligned FM state to 98%
(94%) [see Eq. (12)]. Although the orientations of the NP
moments depend on the precise location of the NPs, the
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FIG. 7. Disconnectivity graph of the strongly disordered ensemble of nonoverlapping NPs illustrated in Fig. 1(c). In graph (a), all
calculated LM are taken into account, whereas graph (b) focuses on the lowest 400 LM. Notice the numerous low-lying local minima,
which are separated by important energy barriers that are often much larger than the energy differences between the LM. The energy
barriers from the metastable minima towards the low-lying superbasins tend to decrease as the excitation energy increases. The insets
illustrate the magnetic configuration in the ground state (E0) as well as the second (E2) and third (E3) excited configurations. The first
excited configuration (not shown) is very similar to the ground state [95].
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above-mentioned trends are found to be valid in general, as
verified in a large number of different arrangements (about
200), including different numbers of particles and unit
cells.
As disorder increases, a completely different physical

behavior emerges. Figure 7 shows the disconnectivity
graph of the strongly disordered ensemble illustrated in
Fig. 1(c). The contrast to the weakly disordered case can
hardly be more forceful. If disorder is strong, one finds a
large diversity of low-lying metastable states whose ener-
gies are close to the ground state. Some of these low-lying
configurations are illustrated in the insets. As already
observed in previous studies [25–27], they show a strong
noncollinearity and a clear tendency toward head-to-tail
flux closure (see Fig. 7). Moreover, the changes in spin
configuration between different low-lying states involve
highly correlated cooperative rearrangements of a limited
number of NP moments. The localized character of the spin
rearrangements in the strongly disordered ensembles con-
trasts with the delocalized nature of the elementary LM-TS-
LM transitions found in the case of weakly disordered
square and triangular lattices (cf. the insets of Figs. 5–7).
This behavior is in agreement with the previously observed
localization of the elementary transitions with an increasing
degree of disorder [25–27] and is consistent with the strong
increase in the number of local minima and disaggregation
of the kinetic networks discussed in Sec. III B.
Although the energy barriers at the high-energy minima

remain quite small, those separating the low-lying con-
figurations are quite large, much larger than the energy
differences between them. Consequently, the relaxation
from high-energy states towards the low-lying states should
still be rather fast [96]. However, the thermalization among
the low-lying states and the approach to equilibrium should
happen on much longer timescales. Qualitatively, the DG in
Fig. 7 has many features in common with the banyan-
tree-like graphs [67], particularly at low energies. It closely
resembles those found for structural glasses [104–108],
which suggests that, in the limit of strong disorder, the
ensembles of NPs having weak local anisotropy should
behave like superspin glasses. A more detailed comparison
with other complex systems is presented in Sec. III D.
Consider a magnetic NP ensemble in some initial high-

energy configuration and follow its relaxation towards
equilibrium at a given finite temperature. In the case of
weakly disordered ensembles, we know from the connec-
tivity analysis that the dynamically relevant transitions—
thosewith the lowest energybarriers—lead directly or almost
directly to one of the ground-state configurations (see Figs. 2
and 3). Moreover, the disconnectivity graphs shown in
Figs. 5 and 6 tell us that the energy barriers to overcome
in these transitions are much smaller than the energy barriers
in the reverse direction. This implies a veryhigh net transition
rate from the excited states towards the ground states.
Consequently, weakly disordered ensembles should behave

like good structure seekers with a fast relaxation dynamics
even at pretty low temperatures. In contrast, in the case of
strongly disordered NP ensembles, there are no such unhin-
dered relaxation pathways anymore. In fact, the actual
relaxation path depends on the initial excited state, which
can lead to a number of different magnetic configurations.
The disconnectivity graph of Fig. 7 shows quite clearly that
the energy barriers around a given metastable state strongly
increase as the energy of this state decreases. Particularly, at
the bottom of the spectrum, where many low-lying magnetic
configurations are present, the energy barriers are much
larger than the energy differences between them. This
suggests the appearance of multiple timescales along the
dynamics, with relatively large transition rates at the early
stages of the relaxation (high energies) and a progressive
slowing down as equilibrium is approached (low energies)
[96], in agreement with the previous analysis of the kinetic
networks (Sec. III B). One may therefore conclude, quite
generally, that the ensembles of magnetic NPs undergo a
transition from good-structure-seeking to glassy behavior as
the degree of structural disorder increases.
In order to verify a number of conclusions and assess the

dependence of the results on the size of the unit cells, we have
performed the energy landscape analysis for systems having
unit cells of N ¼ 64 particles with varying degrees of
disorder. The major consequence of considering larger unit
cells is a strong increase in the number of LM and TS
irrespectively of the degree of disorder. This increase is, in
fact, expected to be exponential, at least in the thermody-
namic limit where statistical independence can be assumed
[109,110]. However, the overall topography of the energy
landscapes is not qualitatively altered. For example, in the
case of weakly disordered ensembles and despite the much
larger total number of local minima, there are still only
very few local minima around the lowest energy; they define
a single clear funnel and act as network hubs. In contrast,
for strongly disordered systems, the number of low-lying
local minima separated by large energy barriers increases
significantly. We therefore conclude that the characteristic
properties of the energy landscapes of magnetic NP
ensembles—and, in particular, the transition from good to
bad structure-seeking behavior as a consequence of increas-
ing disorder—are not qualitatively affected by the size of
the unit cell.
Before closing this section, let us observe that the

energies of the most stable local minima are significantly
lower in strongly disordered ensembles than in weakly
disordered systems. This trend is consistent with the
previously reported decrease of the average dipole energy
of the ensembles with an increasing degree of positional
disorder [26]. It can be qualitatively explained in terms of
the distance dependence of the dipole interaction and its
statistical distribution. When the distance rij between two
particles i and j is randomly varied around a given average
value r0 defined by the surface coverage, one finds
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that h−1=r3iji ≤ −1=r30. Moreover, the difference between
h−1=r3iji and −1=r30 increases with increasing interparticle-
distance variance σ2r . For the same reason, the landscapes
are stretched along the energy axis as the ensembles
become increasingly disordered (cf. Figs. 5–7).

D. Comparison with related energy landscapes

The results discussed in previous subsections have
revealed most remarkable qualitative changes in the proper-
ties of the energy landscapes of magnetic nanostructures as
a function of the degree of disorder in the NP arrangements.
This transformation concerns not only the way in which the
metastable magnetic configurations and basins are con-
nected with each other and with the ground state, as
reflected by the kinetic networks discussed in Sec. III B,
but also the energy distribution of the local minima and
transition states, as shown in the disconnectivity graphs of
Sec. III C. It is therefore interesting to compare the internal
organization of ELs of the nanoparticle ensembles with
those of other archetypal complex systems and to identify
analogies and specificities.
The ELs of spin systems have previously been inves-

tigated in the framework of the classical XY model with NN
interactions [91]. Despite their common emphasis on the
magnetic degrees of freedom, the basic physical character-
istics of disordered ensembles of magnetic NP are quite
different from those described by the XY model. The latter
concerns spins interacting through NN ferromagnetic
couplings on a periodic lattice and therefore lacks any
competing interactions or disorder. The intrinsic continu-
ous 2D spin-rotational symmetry is artificially removed for
the calculations by keeping one spin fixed [91]. In contrast,
the present NP ensembles involve dipolar magnetic inter-
actions, which are anisotropic, long ranged, and frustrating.
Moreover, the spin-rotational degeneracy often found in the
periodic NP arrangements is naturally removed by the
structural disorder that is inherent to the nanostructure
preparation. Nevertheless, it is interesting to observe that
the EL of the XY model corresponds to an efficient
relaxation towards the global minimum, i.e., to a good
structure seeker. This behavior is qualitatively similar to
what we observe in weakly disordered NP ensembles,
particularly in the case of triangular ensembles, which show
a FM ground state. Furthermore, the downhill energy
barriers separating the metastable minima and the lower-
lying spin arrangements are, in both cases, very small—
somewhat smaller in the XY model. The trend to larger
barriers is probably a consequence of the long-range and
partly frustrating nature of the dipolar couplings among the
magnetic NPs, which lead to more complicated cooperative
rearrangements of the local moments along the MEPs.
The ferromagnetic nearest-neighbor XY model is, as

expected, incapable of describing the glasslike behavior
found in strongly disordered NP ensembles. However,

simple, classical Ising models with random interactions,
such as the Edward-Anderson and Sherrington-Kirkpatrick
models, have attracted a great deal of attention in the
context of spin glasses [40,111,112]. Although the discrete
Ising models are difficult to compare with the present
continuous vector model of NP ensembles, some indica-
tions of glasslike disconnectivity graphs have been reported
[113–115]. Therefore, it would be very interesting to
determine the kinetic networks and disconnectivity graphs
of XY-like and Heisenberg-like spin-glass models, for
different degrees of disorder and parameter regimes, and
to compare the results with the present calculations.
Molecular clusters bonded by electric dipolar and

quadrupolar interactions are governed by anisotropic,
potentially frustrating couplings in a similar way as the
magnetic nanoparticle ensembles considered in the pre-
vious sections. It is therefore interesting to compare our
results with their structural properties and underlying
potential energy landscapes, which have been determined
in Refs. [92,116]. Several similarities, as well as some
qualitative differences, may be observed. Small dipolar-
bonded clusters are found to be good structure seekers,
mainly single-funneled or double-funneled, which is quali-
tatively similar to the results found in weakly disordered
square or triangular magnetic NP ensembles. Moreover, it
has been shown that the number of minima in the energy
landscape of the clusters increases when the dipolar
interactions are switched on, provided that they remain
weak so that the optimal structures are not significantly
modified with respect to the purely Lennard-Jones case.
This has been explained in Ref. [116] as the appearance of
multiple arrangements of the electric dipoles within the
clusters, which are separated from the low-lying minima by
small energy barriers. An analogous behavior is observed
in weakly disordered ensembles, as discussed in Sec. III C.
As the strength of the dipole couplings in the clusters is

increased, more complex energy landscapes and larger
energy barriers between the local minima are found along
the relaxation path leading to the global minimum [116].
Still, no evidence is found for the kind of glasslike behavior
observed in strongly disordered NP arrangements, revealing
some noteworthy differences in the underlying physics. In
the case of magnetic NP ensembles, it is experimentally
relevant to investigate the energy landscape and the dynam-
ics as a function of the orientation of the magnetic moments,
keeping the geometrical arrangement of the NPs fixed. In
contrast, in dipolar-bonded clusters, it is important to allow
for repositioning of the molecules carrying the dipoles, until
the total interatomic forces vanish. Consequently, dipolar
clusters tend to modify the local molecular environment by
changing their geometry in order to avoid major frustrations
of the dipolar couplings. For example, the clusters adopt
nearly unfrustrated head-to-tail ring structures when the
dipolar interactions are strong enough [116]. As a result, the
energy landscapes of the dipolar-bonded clusters are much

DAVID GALLINA and G.M. PASTOR PHYS. REV. X 10, 021068 (2020)

021068-14



less intricate than those of strongly disordered magnetic NP
ensembles or structural glasses.
Previous theoretical studies of glass formers have shown

that the energy landscapes of glasses are highly frustrated,
showing many LM that are separated by large energy
barriers [104–108]. Moreover, no signs of an organization
of the landscape in a few dominating funnels can be
recognized. As a result, a rapid cooling of the system
from a high-temperature disordered state almost inevitably
leads to trapping in a more or less limited region of its
configurational space corresponding to an amorphous state.
Even though a global minimum representing the crystal
structure of the solid exists, the supercooled liquid is not
able to reach it on the experimental or simulation timescale
[107,108]. Our results for strongly disordered magnetic NP
ensembles (Figs. 4 and 7) display, quite clearly, all of the
above-described glassy features. There is neither a clear
global minimum nor any identifiable funnel organization.
The barrier heights around the low-lying LM are very large,
particularly in comparison with the LM-energy differences.
However, it is also interesting to note that the strongly
disordered NP ensembles do not show any crystal-like,
distinctive, global minimum at all. This feature is in
contrast with most structural glass formers, for which a
crystalline state does exist somewhere in the landscape
[104]. If the NP positions were allowed to relax in 2D and
the magnetic NP ensemble would adopt a weakly disor-
dered arrangement, the emergence of a crystal-like, dom-
inant, global minimum can be expected (see Figs. 5 and 6).
Another interesting characteristic of structural glasses is

the possibility that the particles in the supercooled liquid
get trapped within the cage defined by its nearest neighbors.
This aspect has been shown to be important since caging
restricts the mobility and the diffusion dynamics, particu-
larly at low temperatures. A recent analysis of the energy
landscape of a molecular glass former has shown that cage-
breaking transitions play a central role in the connectivity
of the network of metastable states, thus confirming their
importance for diffusion [108]. In the case of magnetic NP
ensembles, no clear separation in diffusive and nondiffusive
transitions involving different barrier heights could be
observed. The distribution of energy barriers is not only
broad and rather continuous, but in addition, there is no
simple correlation between the change in spin configuration
and the height of the barrier separating the metastable
states. Overcoming small barriers can lead to both small
and very important spin rearrangements. Examples of the
latter are the transitions from high-energy to low-energy
local minima (see Figs. 5–7). These differences with
structural glasses are most probably a consequence of
the fact that, in spin systems, there are no inaccessible
regions in the configurational space, where the energy
essentially diverges (excluded volume). In contrast, in
molecular systems, short-distance repulsions result in a
relatively clear separation of the energies involved in

diffusive and nondiffusive transitions. Although not sig-
nificant for the dynamics, it is interesting to observe that
magnetic NP ensembles also show some transitions where
the barrier energy and MEP length are substantial but the
configurational change between the local minima is very
small or even strictly zero (loop MEP). Finally, one may
note that a good correlation is generally found between the
cumulative LM-TS-LM distance, which gives a rough
measure of the length of the MEP, and the average of
the uphill and downhill barriers.

E. Markovian relaxation dynamics

In order to clarify the relation between the properties of
the ELs for the different degrees of disorder and the actual
relaxation dynamics of the nanostructures, we have per-
formed numerical simulations of the Markovian dynamics
of the ensembles illustrated in Fig. 1. Two complementary
physical situations or protocols have been followed in order
to prepare the initial probability distribution pið0Þ (see
Sec. II E). In the first one, which we refer to as relaxation
after quenching (RAQ), the system is first thermalized at a
temperature T� ¼ 750 K, which is clearly larger than the
energy of all metastable states (kBT� ¼ 2.15 meV, see
Figs. 5–7). At time t ¼ 0, the system is rapidly quenched to a
low temperature T, which is in the range of the interesting
energy differences and energy barriers of the system and
which is kept constant throughout the simulation. In the
present case, typical values of T are in the range of
5 K ≤ T ≤ 30 K. This simulation protocol corresponds to
a symmetric starting configuration, in which the occupation
probabilities of each state are defined by the Maxwell-
Boltzmann distribution at T�. In the second protocol, we
simulate an isothermal relaxation after saturation (RAS).
Starting from a fully polarized configuration along an
arbitrary direction, the external field is removed at time
t ¼ 0, so the system falls into the nearest LM j of the field-
free EL. Note that the initial magnetic configuration of the
LM j is not fully polarized in general, since it involves a
barrierless relaxation starting from the nearest fully polarized
state. This case corresponds to an asymmetric configuration,
in which the initial occupation probability pið0Þ ¼ δij of the
LM i is zero, except for onemagnetic state j, which is defined
by the saturating magnetic field direction.
In order to quantify the time dependence of the long-

range magnetic order, we introduce the FM order parameter

ηFM ¼ m2
x þm2

y; ð12Þ

where

m⃗ ¼ 1

Nμ

X
k

μ⃗k ð13Þ

is the average magnetization of the system measured in
units of the NP moment μ. The FM order parameter is
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useful for analyzing the behavior of the triangular and
random ensembles. In the case of the square-lattice
ensembles, it is more meaningful to follow the time
dependence of the MV order parameter

ηMV ¼ m̃2
x þ m̃2

y; ð14Þ

where

m̃x ¼
1

Nμ

X
kl

ð−1Þlμxkl ð15Þ

and

m̃y ¼
1

Nμ

X
kl

ð−1Þkμykl ð16Þ

are the components of a staggered magnetization adapted
to the MV state [29]. In Eqs. (15) and (16), μxkl (μ

y
kl) is

the x (y) component of the magnetic moment of the NP
located at the kth row and lth column of the square
arrangement. Notice that ηMV ¼ 1 for any MV state,
irrespectively of the MV angle α, and that ηMV ¼ 0 in a
fully polarized FM state or in a fully disordered infinite
sample.
A further interesting property in this context is the

configurational entropy of the system given by

S ¼ −kB
XNLM

i¼1

pi lnpi; ð17Þ

where pi is the occupation probability of the metastable
state i. Notice that S represents the entropy of the
probability distribution fpig, which, in general, depends
on time according to the master equation (8). The entropy
associated with the fluctuations of the NP moments μ⃗k
within each attraction basin is thereby ignored.
In Fig. 8, the time dependences of the MV order

parameter ηMV and entropy S of the weakly disordered
square ensemble of Fig. 1(a) are displayed for both RAQ
and RAS simulations. The dynamics after quenching shows
that ηMV increases monotonically with t, while S decreases.
This means that the occupation probabilities of a relatively
small number of states with strong MV correlations
increase at the expense of most others. One also observes
that the equilibrium values of ηMV decrease with increasing
T since the magnetic configurations with larger ηMV are, in
general, more stable. At low temperatures (T ≤ 10 K), the
relaxation dynamics does not depend strongly on T,
although a clear trend to faster relaxation is found as T
increases (T ≥ 20 K).
In the RAS, the time dependence of ηMV is very similar

to the RAQ case, even though, from a microscopic
perspective, the starting configurations are completely
different. However, the entropy S shows a number of

nonequilibrium features that are not present in the RAQ
[see Fig. 8(d)]. Since saturation implies that the system is
prepared in a well-defined state, we have pið0Þ ¼ δij and
Sð0Þ ¼ 0. When the system relaxes, S increases at first, as
the probability distribution pi diffuses out of its initial state
and a variety of magnetic configurations are adopted. In
this nonequilibrium process and for low temperatures
(T ≤ 10 K), S reaches values that are larger than the
equilibrium one [see Fig. 8(d)]. Since the initial saturated
state is strongly asymmetric and the dominant transitions
from it lead preferentially to one of the ground states (see
Figs. 2 and 3), the initial dynamics favors the occupation of
one of the ground states rather than the other. This process
tends to reduce the configurational entropy at low temper-
atures. Therefore, S reaches values that are smaller than
the equilibrium one at intermediate times [see Fig. 8(d)
for T ¼ 10 K]. Subsequently, on a longer timescale, the
entropy rises again as the system equilibrates between
the two degenerate ground states. At very low temperatures,
the separation of timescales between the relaxation towards
one of the ground states and the overall thermalization is
such that S can display a minimum as a function of t.

FIG. 8. Time dependence of the MV order parameter ηMV and
configurational entropy S in the weakly disordered square-lattice
ensemble illustrated in Fig. 1(a). The simulations describe the
RAQ or the RAS at different temperatures T as indicated.

DAVID GALLINA and G.M. PASTOR PHYS. REV. X 10, 021068 (2020)

021068-16



In Fig. 9, results are presented for the relaxation
dynamics of the weakly disordered triangular NP arrange-
ment shown in Fig. 1(b). The time dependences of ηFM and
S are qualitatively similar to the square-lattice ensemble,
with the notable exception that ηFM is nearly independent of
time in the RAS. The reason for this is that ηFM is already
very close to its large equilibrium value in the initial
saturated state. Moreover, all the dominant states involved
in the equilibration process show very strong FM correla-
tions, although the total sample magnetization M⃗ may point
in different directions. As in the RAS simulations for the
square-lattice ensembles, the relaxation among the ground
states and low-lying configurations with inverted NP
moments involves a much longer time than the relaxation
towards the ground state that is closest to the initial
saturated state. As a result, the time dependence of the
entropy S is nonmonotonous at low T [see Fig. 9(d)].
Notice, moreover, that the timescales for the relaxation in
the triangular and square ensembles are comparable,
although the precise values depend on the energy-barrier
heights.

The time dependence of the order parameters ηMV and
ηFM of the weakly disordered ensembles can be approxi-
mated by the following stretched exponential law:

ηðtÞ ¼ ηeq − ðηeq − η0Þ exp ½−ðt=τÞβ�; ð18Þ

where τ is the relaxation time, β the stretching parameter,
η0 the order parameter at t ¼ 0, and ηeq the order
parameter in thermal equilibrium. The fitted values of τ
and β for the RAQ and RAS simulations are shown in
Table II. One observes, as expected, that τ decreases as a
function of increasing temperature since all transition
rates increase. A more detailed analysis shows that at
low temperatures (T ≤ 10 K), τ follows approximately an
Arrhenius law, i.e., lnðτÞ ∝ 1=T. For higher temperatures,
lnðτÞ decreases faster than proportional to 1=T with
increasing T, which is sometimes referred to as pre-
Arrhenius behavior [117].
The deviations from the purely exponential time depend-

ence, as quantified by the stretching coefficient β, are
interesting since they provide us with a valuable insight on
the nature of the relaxation mechanisms. In the large
majority of cases, we obtain that β is smaller than 1 and
that it depends weakly on T (see Table II). Stretched
exponential relaxation (β < 1) means that the dynamics is
faster than exponential for short times and slower for long
times, which is the consequence of the presence of a
distribution of energy barriers [118]. Physically, it can be
qualitatively explained as follows: Starting from a high-
energy metastable state where the surrounding energy
barriers are typically small, the system is, at first, rapidly
funneled towards the low-energy spin configurations.
Subsequently, once the system reaches the low-energy part

FIG. 9. Time dependence of the FM order parameter ηFM and
configurational entropy S in the weakly disordered, triangular-
lattice ensemble illustrated in Fig. 1(b). The simulations corre-
spond to the RAQ or to the RAS at different temperatures T as
indicated.

TABLE II. Relaxation time τ and stretching parameter β as
obtained by fitting the calculated time dependence of the order
parameters ηMVðtÞ of the weakly disordered square ensemble and
ηFMðtÞ of the weakly disordered triangular ensemble at different
temperatures T [see Eq. (18)]. The first index s (t) refers to the
square (triangular) lattice, while the second index Q (S) denotes
the relaxation after quenching (saturation). The standard devia-
tions of the fits are very small, in the range 10−5–10−3.

T [K] 5.0 10.0 20.0 30.0

τs;Q (ns) 3.31 2.09 0.83 0.34
βs;Q 0.88 0.83 0.82 0.84

τs;S (ns) 3.14 2.83 1.59 0.97
βs;S 0.96 0.93 0.94 0.93

τt;Q (ns) 1.99 1.07 0.67 0.37
βt;Q 0.88 0.91 0.87 0.86

τt;S (ns) 1.52 0.81 0.45 0.38
βt;S 1.00 1.00 1.00 0.80
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of the landscape, the energy barriers are larger and the
relaxation is slowed down. One concludes that despite the
apparent simplicity of the kinetic network of dominant
transitions (Figs. 2 and 3) and the palm-tree-like structure
[67] of the disconnectivity graphs of weakly disordered
ensembles (Figs. 5 and 6), there is still a significant slowing
down of the low-temperature dynamics (β < 1) as com-
pared to the straightforward exponential decay (β ¼ 1).
For a small number of weakly disordered NP arrange-

ments, more complicated time dependences of the order
parameters are observed in the RAS—for example, com-
pressed exponential (β > 1) or even nonmonotonous
behaviors. However, these situations are not representative.
In fact, the averages of ηMV and ηFM over more than 200
different NP arrangements with the same degree of disorder
follow Eq. (18) with β ≤ 1. There are two reasons why such
anomalies are noticeable in some particular NP arrange-
ments. First, the considered simulation cells that allow an
exhaustive characterization of the energy landscape are not
large enough to guarantee self-averaging. Second, the
initial magnetic state in the RAS is very narrowly defined,
which precludes any averaging over different initial basins
in the landscape. In this aspect the RAS strongly contrasts
with the RAQ of a high-temperature configuration.
Figure 10 shows the relaxation dynamics of a strongly

disordered arrangement of NPs [see Fig. 1(c)]. In the RAQ,
one observes that ηFM is small at all times since the FM
order parameter in the initial RAQ state is very close to its
nearly vanishing equilibrium value. Furthermore, there is
no sign of FM order in the LM involved throughout the
relaxation, regardless of their energy. This behavior is
consistent with the tendency to flux closure observed in the
ground states as well as in the metastable excited configu-
rations [see Fig. 1(c) and the insets of Fig. 7]. Notice that
the relaxation of the entropy after quenching, i.e., starting
from a fully disordered state, is much slower than in weakly
disordered systems [cf. Figs. 8(b), 9(b), and 10(b)]. The
approach to equilibrium takes place on a completely
different timescale, which is orders of magnitude larger
than in the weak disorder situations. It is also important to
note that at low temperatures, the relaxation is qualitatively
different and much slower than any exponential law. In fact,
for T ¼ 5 K, S decreases almost linearly as a function of
lnðtÞ over several orders of magnitude, which means that
the relaxation timescale grows roughly at the same pace as
the simulation time. Such an extremely slowed-down
behavior can be regarded as the manifestation of a super-
spin-glass state.
In the RAS shown in Fig. 10(c), ηFM decreases with

increasing t, which confirms the absence of FM correlations
in the low-energy configurations and is consistent with the
already-mentioned trend to flux closures. Moreover, notice
that the time dependence of ηFM is nonmonotonous at all
considered temperatures. This feature further demonstrates
quantitatively that the equilibration within smaller regions

of the configurational space and the wider equilibration
between these regions take place at completely different
timescales. The remarkably nonmonotonous time depend-
ence of the entropy in the RAS is a clear indication of
trapping [see Fig. 10(d)]. Although not completely absent,
these subtle dynamical effects tend to soften at the highest
considered temperature (T ¼ 30 K) when the energy bar-
riers responsible for trapping can be more effectively over-
come within the simulation time.

IV. CONCLUSION

The ELs of 2D ensembles of dipole-coupled magnetic
NPs have been systematically explored. The ergodic con-
nected networks of LM and TS have been determined for
various representative NP arrangements. The correspond-
ing kinetic networks and disconnectivity graphs have been
derived. A remarkable transformation of the EL has been
revealed as a function of the increasing degree of structural
disorder. By comparing periodic and weakly disordered
square-lattice and triangular-lattice structures, we have
shown that even a very weak disorder removes the

FIG. 10. Time dependence of the FM order parameter ηFM and
configurational entropy S in the random ensemble of nonover-
lapping NPs illustrated in Fig. 1(c). Results are given for the RAQ
and for the RAS at different temperatures T.
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continuous degeneracy of the ground state by singling out a
particular magnetic configuration, which preserves the
long-range magnetic correlations found in the periodic
case (e.g., microvortex-like in the square lattice or ferro-
magnetic in the triangular lattice). The actual orientations
of the NP magnetic moments μ⃗i in the broken-symmetry
ground state depend strongly on the particular realization of
the nanostructure, bearing no correlation for different
disordered arrangements. This consequence of breaking
the local point-group symmetry of the lattice can be
regarded as an order-by-disorder effect [83,84,119].
A detailed analysis of the topography of the ELs and of

the corresponding relaxation dynamics shows that the
characteristics of weakly and strongly disordered magnetic
nanostructures are profoundly different. For weak disorder,
the relaxation processes are funneled towards the ground-
state configurations. This mechanism involves very few
elementary minimum-saddle-minimum transitions with
small energy barriers. TheMarkovian dynamics is therefore
simple, thermally activated, and relatively fast, as in good
structure-seeking systems. In contrast, for strong disorder,
the relaxation processes comprise a large number of
elementary transitions, which are not necessarily directed
towards a dominant ground state. The approach to thermal
equilibrium requires overcoming increasingly large energy
barriers as the energy of the magnetic configuration
decreases. The associated rare processes are hindered by
trapping, thus leading to multiple characteristic timescales.
This behavior is reminiscent of spin glasses and might lead
to a breakdown of ergodicity in the thermodynamic limit
[39]. Our quantitative simulations of the relaxation dynam-
ics for different degrees of disorder and initial configura-
tions demonstrate that structural disorder profoundly
reshapes the collective behavior of magnetic nanostructures
by transforming good structure-seeking systems into
trapped glassy systems.
An interesting perspective in this context is to system-

atically follow the evolution of the ELs, as characterized by
their kinetic networks, small-world properties, disconnec-
tivity graphs, and magnetic relaxation dynamics as a
function of the degree of disorder. On the one hand, these
studies would allow us to understand, in more detail, the
breaking of translational and point-group symmetry and
the lifting of the continuous ground-state degeneracy in the
limit of very weak disorder. On the other hand, one is eager
to characterize the crossover from good-structure seeker to
glassy behavior from a microscopic perspective. Is the
transition sharp or smooth as the degree of disorder
increases? Should we expect a coexistence between
good-structure-seeker behavior at short length scales and
glassy behavior at longer length scales for intermediate
degrees of disorder? How does this crossover manifest
itself in the relaxation dynamics accessible to experiments?
Exploring these questions—for example, using the above-
discussed methodology—would boost the experimental

and theoretical progress in the field of magnetic nano-
structures and motivate further developments.
In the course of this work, a large number of different

realizations of the nanostructures have been investigated for
different sets of sample parameters. The precise magnetic
configurations of the LM and TS, as well as their number,
certainly depend on the actual positions of the NPs.
However, the general topography of the landscapes is
not qualitatively affected by such structural details, pro-
vided that the degree of disorder remains the same.
Increasing the size of the unit cell (for a fixed coverage)
improves the flexibility of the model by allowing a more
accurate description of long-range correlations and by
reducing the effects of the periodic boundary conditions.
Unfortunately, it also implies an exponential increase of the
number of LM and TS. For a moderate number of particles
N in the cell (e.g., N ¼ 36), it is possible to find essentially
all stationary points, which is certainly an advantage with
respect to large system sizes, for which one must content
oneself with a representative sampling of the landscape.
Our results for larger systems (e.g., N ¼ 64) show that
increasing the system size does not affect the conclusions
on the physical behavior. Despite a remarkable increase of
the number of stationary points, the distinctness of the
ground state, the connectivity of the kinetic networks, the
distribution of energy barriers, etc., remain qualitatively
unchanged. These results also suggest that a restricted
sampling of a subset of the most relevant LM and TS
should accurately reflect the global properties of larger
ensembles and should therefore be a valid statistical
approach, at least in the present physical context.
The focus of this paper has been on the interparticle

interactions and on the cooperative many-body effects
resulting from the interplay between interactions and
disorder. Still, in view of a comprehensive comparison
with experiment, it is important to take into account other,
a priori simpler, single-particle contributions to the energy
and to quantify how they affect the EL and the dynamics. In
this context, one should mention the magnetocrystalline
and shape anisotropies of the NPs, which can be tuned
experimentally, to some extent, by changing the compo-
sition and synthesis procedure. Local uniaxial anisotropies

Kð2Þ
i introduce an additional, most often aleatory compo-

nent to the problem, which should tend to favor a more
localized, single-particle character of the magnetic excita-
tions. Indeed, larger NP anisotropies imply that the
elementary transitions involve fewer particles—in extreme
cases, even single-particle magnetization reversals along
predefined local easy axes. Thus, interesting changes of the

ELs are expected as a function of Kð2Þ
i and its statistical

distribution.
A further important single-particle contribution of par-

ticular experimental and theoretical relevance is the cou-
pling to external magnetic fields [51]. This problem
deserves special attention since magnetic fields are usually
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applied to trigger the dynamics. For example, it would be
interesting to quantify the magnetization dynamics of the
NP ensembles by considering other time-dependent exper-
imental protocols such as frequency-dependent periodic
hysteresis loops. External fields are expected to modify the
nature of the landscape in a significant way, even if they are
static or low frequency, since they tend to remove meta-
stable LM surrounded by small energy barriers and thus
lead to catastrophes. Such strong qualitative changes have
already been observed in dipolar clusters under the action
of external electric fields [120,121]. A systematic analysis
of the changes in the ELs of disordered NP ensembles as a
function of applied magnetic fields is currently in progress.
From a more general perspective, the universality of the

above-discussed trends concerning the role of disorder
remains an open question, particularly in connection with
different types of interparticle couplings and NP arrange-
ments. Let us mention, for instance, the substrate-mediated
interactions between NPs deposited on metal surfaces, the
exchange interactions between particles having direct
metal-metal contacts, and the exchange-bias couplings at
interfaces with antiferromagnets. In all of these cases, the
essential ingredients for spin-glass behavior, namely, frus-
tration and disorder, happen to be present. Furthermore, as
already shown by our own results, the geometrical arrange-
ment of the particles conditions not only the magnetic
response but also the way in which it is affected by disorder.
Therefore, it is most promising to extend our investigations
to other situations of experimental and theoretical interest.
In this context, the study of magnetic NP ensembles in
disordered kagome and honeycomb lattices deserves spe-
cial attention since the nature of their ground states is
qualitatively different, even in the absence of disorder
[28,101–103]. These alternative interactions and lattices
could be straightforwardly investigated by applying the
calculation and analysis methods presented in this work.
Therefore, identifying common features and specificities
are a further worth pursuing challenge.
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