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Active matter, composed of self-propelled entities, forms a wide class of out-of-equilibrium systems that
display striking collective behaviors, among which, the so-called active turbulence where spatially and
time-disordered flow patterns spontaneously arise in a variety of active systems. De facto, the active
turbulence naming suggests a connection with a second seminal class of out-of-equilibrium systems,
inertial turbulence, even though the latter is of very different nature with energy injected at global system
scale rather than at the elementary scale of single constituents. Indeed, the existence of a possible strong tie
between active and canonical turbulence remains an open question and a field of profuse research. Using an
assembly of self-propelled interfacial particles, we show experimentally that the statistical properties of
particles’ velocities display a turbulentlike behavior, as described by the celebrated 1941 phenomenology
of Kolmogorov. Moreover, the analogy between the dynamics of the self-propelled particles and inertial
turbulence is observed to hold consistently both in the Eulerian and Lagrangian frameworks. Unlike the
swimmers’ velocities distribution, the subsurface fluid flow is found not turbulent, thus making Marangoni
surfers’ assemblies different from other active systems generating turbulence, such as living matter.
Identifying an active system in the universality class of inertial turbulence not only benefits its future
development but may also provide new insights into the long-standing description of turbulent flows,
arguably one of the biggest remaining mysteries in classical physics.

DOI: 10.1103/PhysRevX.10.021065 Subject Areas: Fluid Dynamics, Nonlinear Dynamics,
Soft Matter

I. INTRODUCTION

Active living organisms, such as bacterial suspensions,
birds, fishes, etc., tend to self-organize (in swarms, schools,
flocks, etc.) and develop coherent collective motions, with
important consequences in terms of, for instance, nutrient-
finding strategies or protection against predators [1–6].
Such systems share the feature of being intrinsically out
of equilibrium, as energy is constantly injected at the level
of each individual entity. This property makes their
statistical modeling a conceptual challenge, as usual tools
from statistical thermodynamics at equilibrium cannot be
used. Interestingly, the emergence of large-scale collective
dynamics while energy sources are at small scale, underlies

the existence of multiscale correlations driven by interenti-
ties’ interactions.
This scenario naturally resonates with the energy cascade

phenomenology, the cornerstone of inertial turbulence
description. A direct turbulent energy cascade describes
the process where mechanical energy injected into a flow at
some large-scale L (e.g., by steering of shearing the fluid)
flows down to smaller scales (generating intricate multi-
scale motions) until it is dissipated into heat by viscous
friction at some small-scale η. Such a direct cascade drives
the multiscale dynamics of 3D turbulence (2D turbulence
exhibits an inverse cascade, where energy flows from small
to large scales).
In 1941, Kolmogorov proposed a self-similar description

of this process [7]. He predicted that there exists an inertial
range of length scales in between a dissipative small-scale η
and a large forcing scale L, for which the statistical
moments of velocity increments depend only on the scale
r and energy dissipation per unit mass ϵ. This self-similar
mechanism gave the first quantitative interpretation of the
well-known k−5=3 energy spectrum of inertial turbulence,
where k ¼ 2π=r is the wave number [8]. Although
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Kolmogorov’s approach has been rapidly shown to fail
predicting high-order moments (typically n > 4) due to
intermittency [9], it has so influenced the field that it is
referred to as K41 phenomenology.
The analogy between active matter and turbulence first

emerged from qualitative observations of mesoscale pat-
terns (such as whirls, jets, and vortices) in dense biological
suspensions [10], which seem ubiquitous in a wide variety
of active systems [11] and are visually reminiscent of
typical structures of inertial turbulence. On a more quanti-
tative level, multiscale energy spectra were reported for a
few dense active systems, for which a continuum approach
allowed one to define a Eulerian flow field from the
particles’ dynamics [2,12,13], and several studies inves-
tigated how active systems can be described as hydrody-
namical flows based on generalized Navier-Stokes
equations with tunable nonlinearity [2,13–16]. However,
such descriptions were found to generally exhibit flow
spectra with nonuniversal scaling exponents depending on
model parameters. For instance, a recent numerical and
analytical study suggests that while displaying multiscale
energy spectrum, turbulence in active nematic systems falls
into a universality class distinct from inertial turbulence, for
which the energy is injected and dissipated at the same
scale with no underlying cascade [17]. On the contrary, in a
different class of active system made of small active
spinners, experimental observations made on the generated
fluid flow evidenced a kinetic energy spectrum compatible
with Kolmogorov theory [18], thus fostering the analogy.
To date, most studies questioned such an analogy by

focusing solely on the spatial correlations (or spectra in
Fourier space) computed from snapshots of a Eulerian
velocity field with such a field defined using the fluid if
there is one, or as a continuous flow by local averaging over
particles’ velocities in dense systems. Yet, turbulent flows

exhibit both temporal and spatial fluctuations, which are
such that the timescales measured in the Lagrangian
framework are related by a specific scaling to the length
scales measured in the Eulerian framework [19]. Exploring
the possible strong ties between active systems and inertial
turbulence thus requires that we also look into the self-
consistency of possible analogies in both the Lagrangian
and Eulerian frameworks. Overall, These different elements
leave the question whether classes of active systems can be
described in the inertial turbulence framework essen-
tially open.
Finding such active systems exhibiting the same multi-

scale dynamics as observed in turbulence would not only
benefit the future development of active systems but may
also provide new insights into the long-standing description
of turbulent flows. This is precisely the purpose of the
present work to design and explore a synthetic active
system displaying complex spatiotemporal dynamics ame-
nable to combined Lagrangian and Eulerian characteriza-
tion. The abiotic system considered is made of a dilute
assembly of Oð30Þ self-propelled camphor swimmers
which generate their own spatiotemporal fluctuations when
confined in a box [Fig. 1(a)]. It is therefore very different
from the other systems described previously, as no con-
tinuous description can be employed. In light of classical
statistical indicators from turbulence, we analyze the
dynamics of the swimmers (rather than the one of the
fluid in between them as was done in Ref. [18]).
Our experiments reveal striking similarities with inertial

turbulence as both the Lagrangian and Eulerian dynamics of
the active particles are found, to a large extent, indistinguish-
able from that of fluid tracers in turbulence. In particular,
Eulerian statistics exhibit a well-identifiable inertial range of
scales following remarkably classicalK41 scalings of inertial
turbulence with a turbulent Reynolds number compatible
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FIG. 1. (a) Top view of the experiment. Thirty self-propelled camphor disks move at an air-water interface. Arrows represent the
instantaneous velocity direction, colored according to the velocity magnitude. Avideo is available as online Supplemental Material [23].
(b) Superposition of the trajectories of the 30 particles over a 5-min recording.
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with the timescales measured in the Lagrangian framework.
Here, the turbulent behavior is observed only on the statistics
of the swimmers, as the subsurface fluid flow is found to be at
most chaotic, so that the present system differs from other
types of active turbulence as generated, for instance, by living
matter.

II. EXPERIMENTAL SETUP

The scientific community has been prolific in the last
decade in developing synthetic active particles and in
investigating their individual and collective behaviors, with
the goal to unveil generic physical properties of active
matter [11]. Here, we consider macroscopic synthetic
swimmers based on the historical realization of camphor
boats [20]. More precisely, we use agar gel disks loaded
with precipitated camphor [21], with radius a ¼ 2.5 mm
and height h ¼ 0.6 mm. When individually deposited at an
air-water interface, the disks self-propel (with typical swim
velocityUs in the order of 10 mms−1 [22]) by a Marangoni
effect arising from the camphor spreading at the interface.
The individual hydrodynamical Reynolds number of such
swimmers, Rep ¼ Usa=ν (with ν ¼ 1 × 10−6 m2 s−1 the
kinematic viscosity of water), is of the order of 25,
and no fluid turbulence is induced in the particles’ wakes.
Figure 1(a) shows a top view of our experiment, with 30 such
self-propelled disks swimming on water in a 140-mm-
diameter Petri dish filled with 1 cm of water. A video of
the motion of the self-propelled disks is given as
SupplementalMaterial [23]. Themotion of the self-propelled
disks is recorded at a frame rate of 30 fps with a 1-Mpx
digital camera, and their motion is analyzed using classical
2D particle tracking to reconstruct the Lagrangian trajec-
tories of each individual camphor disk. Simultaneous
trajectories about 5-min long are retrieved for all particles.
Figure 1(b) shows the superposition of the 30 trajectories
simultaneously recorded, emphasizing that the available
domain is explored ergodically. This is because great care
is taken to adjust the level of water so that the surface
remains horizontal at the edge of the vessel in order to
prevent attraction or repulsion of the particles due to
capillary forces. From the diameter of the particles image
(35 pixels), the error on the particle position is estimated as
δX ¼ 0.5=

ffiffiffiffiffi
35

p
≤ 0.1 pixels, a very small value as com-

pared to the typical particle displacement dX ≃ 5 pixels
between two frames. Even if this level of noise is small,
velocity and acceleration of the camphor boats are com-
puted by convolution with first and second derivatives of a
Gaussian kernel [24] to filter small-scale noise.
In agreement with previous observations [25], we find a

transition between a dilute and an interacting swimming
regime. In the dilute regime, particles weakly affect each
other, with individual trajectories essentially straight except
for short collisionlike events or when a particle hits the
boundaries. The interacting regime reveals, on the contrary,

a much richer random collective dynamics with persistent
high activity periods exhibiting large-scale correlations,
emblematic of the concept of active matter. This transition
can be seen, for instance, from the mean-square displace-
ment (MSD) of the camphor boats as a function of time t:

σ2MSDðtÞ ¼ h(X⃗ðtþ tsÞ − X⃗ðtsÞ)2i; ð1Þ

where X⃗ is the instantaneous position of a camphor boat
and h•i an average over particles and starting time ts [see
Fig. 2(a)]. For a small number of boats (typicallyNp < 20),
the MSDs exhibit two trivial regimes: (i) At short times, the
MSD grows ballistically (σ2MSD ∝ t2); (ii) at long times, the
MSD oscillates around an asymptotic constant value. These
regimes are consistent with a simple dynamics where
particles essentially undergo a straight ballistic motion,
with periodic reorientation at the boundaries due to the
finite size of the experiment. For a large number of particles
(Np ≳ 20), a third intermediate regime appears, where the
MSD grows diffusively (σ2MSD ∝ t). This regime is char-
acteristic of a randomization of the individual dynamics,
with a finite correlation timescale, as observed, for in-
stance, for passive particles following a Langevin dynamics
and also for tracers in inertial turbulence, which is known to
exhibit at large scales a similar effective turbulent diffusive
behavior [26,27]. Beyond the occurrence of this dilute-to-
interacting transition, the present article aims to further
explore the possible analogies between interacting active
systems and inertial turbulence. The global behavior of the
aforementioned transition for the collective dynamics of
camphor boats has indeed already been addressed in
previous studies [25], which have shown, for instance,
that the transition occurs above a given threshold (setup
dependent) of the total perimeter length lp ¼ 2Npπa and
that the activity of the system then decreases (and even-
tually freezes for very dense systems). In our system, the
dilute-to-interacting transition occurs around Np ≈ 20 (cor-
responding to a surface fraction of particles of ϕs ≈ 2% and
a total perimeter length lp ≈ 300 mm), while the system is
observed to freeze for Np ≳ 60. The decrease of the
individual activity when increasing the number of particles
is also revealed in Fig. 2(a) from the shift of the different
curves in the ballistic regime at increasing Np as the MSD
is related to the velocity variance, σ2v ¼ hv2xi þ hv2yi, by the
relation log σ2MSD ¼ log σ2v þ 2 log t.
Because the details of the transition are outside the scope

of the present work, we rather focus on unveiling the rich
collective and multiscale dynamics in the interacting
regime (Np > 20), which we characterize using statistical
diagnoses borrowed from the turbulence community. As
turbulence is a spatiotemporal phenomenon, correlation
timescales extracted in the Lagrangian framework (follow-
ing fluid particle trajectories) are directly related to length
scales estimated in the Eulerian framework (from the
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analysis of the velocity field). We therefore study the
statistics of the active particles in both the Lagrangian
and Eulerian frameworks in order to explore possible
quantitative analogies between the collective motion of
the active disks and inertial turbulence. The results dis-
cussed in the sequel are obtained with the number of
particles fixed at Np ¼ 30, which corresponds to a typical
situation with rich collective dynamics and strong individ-
ual activity.

III. LAGRANGIAN DYNAMICS OF ACTIVE
TURBULENCE

In this section, we analyze the Lagrangian dynamics of
the present active system at the light of inertial turbulence.
As we see, characterization of relevant timescales allows us
to determine an equivalent Reynolds number for our
system, the consistency of which with Eulerian multiscale
spectra is explored in the subsequent section.

A. Single-time statistics

Figure 2(b) shows the probability density functions
(PDFs) of the components of the camphor boats’ velocity
ðvx; vyÞ and acceleration ðax; ayÞ where the variables are
centered—although the mean velocity and acceleration are
vanishingly small due to confinement of the system—and

reduced so that the shapes of the curves can be compared.
Several points can be noted: (i) The PDFs are identical for
the two components, revealing the isotropy of the dynam-
ics; (ii) the PDFs of velocity and acceleration are identical.
In the context of inertial turbulence, such a result would be
interpreted as the absence of internal intermittency in the
Lagrangian framework [28]. (iii) The PDFs are not
Gaussian (but without any stretched tail), a feature com-
monly reported in 2D fluid turbulence [29–31]. Because of
the observed isotropy, the statistics are further investigated
in the sequel considering only the x component of the
motion.

B. Two-times statistics

In addition to the mean-square displacement previously
discussed, two of the most fundamental indicators used to
explore the multiscale Lagrangian dynamics of turbulence
are the autocorrelation functions of the velocity and
acceleration components:

RviviðtÞ ¼ hviðt0Þviðtþ tsÞi=hv2i i; ð2Þ

RaiaiðtÞ ¼ haiðt0Þaiðtþ tsÞi=ha2i i; ð3Þ

where again, averages are taken over particles and starting
time ts. These functions are important statistical tools
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FIG. 2. (a) Normalized mean-square displacements (σ2MSD=2hr2i, where hr2i is the average square radial position) of the camphor
boats for experiments with different number of particles Np. At large times, the MSD oscillates around and eventually saturates to 1, due
to the finite size of the experiment. For small numbers of particles (typically Np < 20), the MSDs before saturation exhibit a dominant
trivial ballistic motion (where the MSD grows as the square of time). For larger numbers of particles, an intermediate diffusivelike
regime (where the MSD grows linearly with time) appears, revealing a nontrivial random dynamics with a finite correlation timescale.
(b) Probability density functions of velocity and acceleration components. Because of the boundedness of the system, the mean velocity
and acceleration components are zero. The standard deviation of the velocity components is σvx ¼ σvy ¼ hv2i i1=2i¼x;y ¼ 12.1 mms−1

(corresponding to a root-mean-square velocity amplitude σjvj ¼ 17.1 mms−1); the standard deviation of acceleration components is

σax ¼ σay ¼ ha2i i1=2i¼x;y ¼ 33.2 mms−2 (corresponding to a root-mean-square acceleration amplitude σjaj ¼ 46.9 mms−2).
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allowing us to quantify the multiscale temporal dynamics
of turbulence in terms of a hierarchy of relevant dynamical
regimes: the Lagrangian dissipative regime at small scales
where the dynamics is smooth and regularized by viscosity,
the Lagrangian inertial regime at intermediate scales where
the dynamics is rough and correlated, and the Lagrangian
uncorrelated regime at large scales. The existence of an
extended range of inertial scales is one of the most
important features of inertial turbulence. In classical tur-
bulence, two important timescales are defined based on the
correlation properties of velocity and acceleration, which
delimit the extent of the inertial range: (i) the integral
Lagrangian timescale, which we define here as TL ¼R∞
0 jRvvjdt (absolute values are requested here because
the particle position is bounded [32]) and (ii) the dissipative
Lagrangian timescale τLη , traditionally taken as [33] τLη ¼R t0
0 RaaðtÞdt [with t0 the shortest time for which
Raaðt0Þ ¼ 0]. The dynamics occurring at scales smaller than
τLη is then referred to as dissipative, the dynamics at scales
larger than TL is referred to as uncorrelated. and the
dynamics at scales intermediate between τLη and TL is
referred to as inertial. TL and τLη then define the
Lagrangian Reynolds number [27] ReL ¼ ðTL=τLη Þ2 which
characterizes the extent of the Lagrangian inertial range of
timescales.
Here we analyze the multiscale random Lagrangian

dynamics of the active camphor disks within the same
framework of inertial turbulence just described. Figures 3(a)
and 3(b) show the velocity and acceleration autocorrelation
functions for the active camphor disks. The corresponding
integral and dissipativeLagrangian timescales areTL ≈ 0.6 s
and τLη ≈ 0.2 s, leading to an equivalent Lagrangian
Reynolds number ReL ≈ 9. Although this number may seem

small at first sight, the Lagrangian Reynolds number is
known in inertial turbulence to be significantly smaller
than the classical integral Eulerian Reynolds number
ReE ¼ ðLE=ηÞ4=3, where LE is the Eulerian (spatial) corre-
lation length scale of the velocity fluctuations. Numerical
simulations of inertial turbulence show that ReE and ReL are
empirically related [27] by ReE ≈ 88.6ReL

0.61
. In the inertial

turbulence context, a Lagrangian Reynolds number ReL ≈ 9
is therefore equivalent to an integral Reynolds number
ReE ≈ 340. To fix these ideas, such conditions would
correspond to a moderate turbulence, such as generated in
a large-scale (metric size test section) wind tunnel blowing
at 3 ms−1 downstream a passive grid with 7-cm mesh
size [34,35].
Overall, our active system of small (millimetric) cam-

phor boats shows Lagrangian temporal signatures which
are consistent with expectations for a typical inertial
turbulence system. Based on this comparable multiscale
random dynamics, it is possible to determine the integral
Reynolds number ReE ≈ 340 of the equivalent fluid sys-
tem, which suggests a moderate turbulence regime. For a
meaningful analogy to hold between the camphor inter-
facial swimmers and classical turbulence, it is mandatory
that the spatial multiscale dynamics of our active system be
consistent with expected signatures in the very same
turbulence regime. To that aim, we now turn to the study
of Eulerian properties.

IV. EULERIAN DYNAMICS OF ACTIVE
TURBULENCE

In this section, we investigate the Eulerian multiscale
dynamics of the camphor disks by considering the spatial
correlations between their instantaneous velocity across the
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FIG. 3. Single particle—two-times Lagrangian statistics. (a) Lagrangian autocorrelation function Rνν of velocity component vx. The
light red colored area represents the estimate of the Lagrangian correlation timescale TL. (b) Lagrangian autocorrelation function Raa of
acceleration component ax. t0 corresponds to the shortest time such as Raaðt0Þ ¼ 0. The light red colored area represents the estimate of
the Lagrangian dissipative timescale τLη .
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system rather than their temporal correlations along indi-
vidual disks’ trajectories, as in the previous section.
According to the results of the Lagrangian dynamics, to
match the properties of an equivalent inertial turbulence
system (ReE ≈ 340; Rλ ≈ 70), the camphor swimmers
dynamics should exhibit a narrow, but still visible inertial
range of spatial scales. In particular, the second-order
Eulerian structure function SE2 would exhibit a
Kolmogorovian scaling [SE2 ðrÞ ∝ r2=3] over slightly less
than one decade of scales r (or equivalently, the power
spectral density would exhibit a narrow range of scales in
Fourier space with a k−5=3 regime). Given the small number

of active particles in the system, it is impossible to define a
Eulerian velocity field by binning particles velocities in
space as was done in Wensink and Löwen [12] for dense
suspensions. However, such a field is not required for the
computation of Eulerian structure functions of the velocity
differences:

SkpðrÞ ¼
����� ½v⃗iðtÞ − v⃗jðtÞ� · r⃗ij

rij

����
p
�
; ð4Þ

where r represents a bin of spatial scales, and the average
is taken over all pairs ði; jÞ of particles with separation
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interparticle separation r. The dashed line represents the K41 prediction for inertial turbulence Sk2 ∝ r2=3. (∘) Sk2ðrÞ for the fluid flow at
the surface computed from the velocity field measured by particle tracking velocimetry (PTV) using 200-μm floating tracers. (b) Power
spectral density obtained as the Fourier transform of the Eulerian correlation function of the camphor boats’ velocity. The dashed line
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smaller that the particles’ diameter. The Kolmogorov spectrum extends over almost one decade of scales, down to scales of the order of

the particles’ diameter. (c) High-order longitudinal structure functions Skn (for n ≤ 5). Dashed lines indicate the corresponding

nonintermittent K41 predictions (Skn ∝ rn=3). The light gray area qualitatively indicates the corresponding inertial range for which K41
scalings hold. (d) Crossed acceleration-velocity Eulerian structure function, whose amplitude in inertial turbulence is twice the energy
flux, and the sign indicates the direction (direct or inverse) of the energy cascade: The negative sign here points toward a direct (from
large- to small-scale) scenario.
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rij within that bin. Figure 4(a) shows the longitudinal

second-order Eulerian structure function Sk2ðrÞ as a function
of the separation between the active particles. At small

scales, Sk2ðrÞ vanishes for distances approaching the disk
diameter (5 mm), as particles cannot interpenetrate. For

large distances, Sk2ðrÞ tend to a constant asymptotic value

Sk∞2 ≈ 290 mm2 s−2 (which corresponds to σ2jvj, the vari-
ance of the velocity module) as expected for uncorrelated
particles. At intermediate separations, a range of scales

is observed, where Sk2ðrÞ ∝ r2=3, reminiscent of a
Kolmogorovian inertial range. This Kolmogorovian inertial
range of active turbulence is also visible in the Eulerian
energy spectrum (estimated as the Fourier transform of the
Eulerian correlation function)

RE
vvðrÞ ¼ 1 −

Sk2ðrÞ
σ2jvj

ð5Þ

shown in Fig. 3(b), which exhibits a noticeable k−5=3

regime down to wave numbers corresponding to the particle
diameter. We also estimate higher-order Eulerian structure

functions SknðrÞ [Fig. 3(c)] which are found, within the
range of inertial scales just identified, to follow non-

intermittent K41 inertial scalings SknðrÞ ∝ rn=3. Such a
result is consistent with the absence of internal intermit-
tency that is observed in the Lagrangian framework when
investigating velocity and acceleration PDFs of the
particles.
From these results, one may think that the Marangoni

surfers are randomly forcing the flow at the surface so that a
classical turbulent flow takes places. In order to check that
it is not the case, we compute the second-order structure
function from 22 000 trajectories obtained by tracking
Oð500Þ small passive floating tracers freely advected in
between the camphor particles. Figure 4(a) shows that the
structure function for the fluid flow is much smaller than
the one for the active particles, indicating that the forcing at
the surface is not very efficient, except in the vicinity of
swimmers. This inefficiency is the reason why no inertial
regime with an exponent 2=3 is observed for the fluid in the
intermediate range of scales. Indeed, the fluid displays a
smoother behavior than the particles with no clear scaling,
so that the fluid flow may be regarded as chaotic, but not as
turbulent.

V. DISCUSSION

Altogether, our results concerning the collective dynam-
ics of the camphor boats show that it shares remarkable
quantitative analogies with turbulence, from both the
Lagrangian and the Eulerian points of view: Indeed, the
nonintermittent scalings that we find for the high-order
Eulerian structure functions are reminiscent of the inverse
cascade regime in 2D fluid turbulence [36,37]. Considering

that in active matter, energy is primarily injected at the
particle level, it is therefore tempting to link the absence of
intermittency to the existence of an inverse energy cascade
of active turbulence. Figure 4(d) represents the energy flux
across scales, as it could be estimated for inertial turbu-
lence, based on the crossed velocity-acceleration Eulerian
structure function [38] SEavðrÞ ¼ hδra⃗ · δrv⃗i of the active
particles. The negative value of SEav over the range of scales
previously identified as inertial reveals that the turbulent-
like energy cascade in the present system is actually not
inverse, but direct (energy flows from large to small scales,
as in 3D inertial turbulence, for which SEav ∼ −2ϵ). The
multiscale Eulerian dynamics is therefore not associated
here with an upward energy flux originating from individ-
ual particles as energy source. Rather, it originates from
large-scale interactions, forcing down to smaller scales the
collective dynamics of the particles. In the present situation,
the chemical background of the dissolved camphor left
behind the active particles could be the vector of such long-
range interactions. Indeed, given the small Reynolds
number of the particles Rep ∼ 25, no direct inertial cascade
of turbulence can take place in the fluid forced by the
swimmers. This is confirmed from the investigation of the
motion of small tracers floating on the surface [lowest
curve in Fig. 4(a)] that proves that the surface flow is not
turbulent, although slightly agitated. To support the sce-
nario of a chemically mediated interaction, it would be
enlightening in future studies to monitor the chemical
camphor background at the same time as the particles’
dynamics.
In the context of active matter, our results are important

as they show the first example of active turbulence with
inertial range dynamics quantitatively similar to a direct
energy cascade in K41 inertial turbulence. To which extent
this connection between active and inertial turbulence can
be extended to other active systems, in particular, with
long-range interactions (chemical, hormonal, visual, etc.),
is an important opening of this work.
In the context of inertial turbulence, our results are also

important as they provide a simple experimental model of a
nonintermittent direct cascade of energy. The absence of
intermittency may be related to the absence of a dissipative
cutoff in the energy spectrum and structure functions,
which follow K41 scalings down to scales of the order
of the particle diameter. The small-scale dynamics is
therefore limited here by particle-particle collisions, but
does not exhibit any effective viscosity behavior. In 2D
turbulence, the absence of intermittency in the inverse
cascade tends indeed to be associated with the idea that as
energy flows upwards in scales, the effect of viscous
dissipation at small scales may be disregarded [37]. In
this respect, the parallel between active and inertial turbu-
lence may help in the future to better understand the origin
and the modeling of intermittency, which remains one of
the biggest mysteries of turbulence in fluids.
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