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The efficient simulation of quantum systems is a primary motivating factor for developing controllable
quantum machines. For addressing systems with underlying bosonic structure, it is advantageous to utilize
a naturally bosonic platform. Optical photons passing through linear networks may be configured to
perform quantum simulation tasks, but the efficient preparation and detection of multiphoton quantum
states of light in linear optical systems are challenging. Here, we experimentally implement a boson
sampling protocol for simulating molecular vibronic spectra [J. Huh et al., Nat. Photonics 9, 615 (2015)] in
a two-mode superconducting device. In addition to enacting the requisite set of Gaussian operations across
both modes, we fulfill the scalability requirement by demonstrating, for the first time in any platform, a
high-fidelity single-shot photon number resolving detection scheme capable of resolving up to 15 photons
per mode. Furthermore, we exercise the capability of synthesizing non-Gaussian input states to simulate
spectra of molecular ensembles in vibrational excited states. We show the reprogrammability of our
implementation by extracting the spectra of photoelectron processes in H2O, O3, NO2, and SO2. The
capabilities highlighted in this work establish the superconducting architecture as a promising platform for
bosonic simulations, and by combining them with tools such as Kerr interactions and engineered
dissipation, enable the simulation of a wider class of bosonic systems.
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I. INTRODUCTION

Simulation of quantum systems with quantum hardware
offers a promising route toward understanding the complex
properties of those systems that lie beyond the computa-
tional power of classical computers [1]. A particularly
efficient approach is one that utilizes the natural properties
of the quantum hardware to simulate physical systems that
share those properties. This approach serves as the foun-
dation for bosonic quantum simulation, where the natural
statistics and interference between bosonic excitations are

directly exploited. A prominent example of this is the
manipulation of bosonic atoms in an optical lattice to
explore various types of many-body physics [2–4].
Boson sampling is another example of a computationally

challenging task that can be performed by manipulating
bosonic excitations [5,6]. Conventionally described in the
context of linear optics, boson sampling, in its many forms,
involves the single photon detection of nonclassical states
of light passing through a linear interferometric network.
Current technologies for optical waveguides allow the
creation of complex interferometers across many modes.
An outstanding challenge in the optical domain, however,
is generating and detecting nonclassical states of light with
high efficiencies.
In the microwave domain, nonlinearities provided by

Josephson junctions enable the powerful preparation and
flexible quantum nondemolition (QND) measurement of
quantum states of light in superconducting circuits [7,8].
The ability to perform QND photon number measurements
not only enables the high-fidelity measurement of bosonic
qubits via repeated detections [9,10], but also enables the

*christopher.wang@yale.edu
†robert.schoelkopf@yale.edu
‡Current address: Pritzker School of Molecular Engineering,

University of Chicago, Chicago, Illinois 60637, USA.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 10, 021060 (2020)
Featured in Physics

2160-3308=20=10(2)=021060(18) 021060-1 Published by the American Physical Society

https://orcid.org/0000-0002-4297-2508
https://orcid.org/0000-0002-7944-1305
https://orcid.org/0000-0002-0272-5481
https://orcid.org/0000-0002-6470-5494
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.10.021060&domain=pdf&date_stamp=2020-06-17
https://doi.org/10.1038/nphoton.2015.153
https://doi.org/10.1103/PhysRevX.10.021060
https://doi.org/10.1103/PhysRevX.10.021060
https://doi.org/10.1103/PhysRevX.10.021060
https://doi.org/10.1103/PhysRevX.10.021060
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


construction of more complex measurement operators.
The circuit QED platform has also demonstrated universal
control over individual bosonic modes as well as robust
beam splitter operations between separate modes [11–13].
These capabilities motivate an alternative approach to
performing both boson sampling [14] and bosonic quantum
simulation protocols [15] using superconducting circuits.
An instance of bosonic quantum simulation that maps

onto a generalized boson sampling problem is obtaining
molecular vibronic spectra associated with electronic tran-
sitions [16]. The algorithm requires, in addition to beam
splitters, single-mode displacement and squeezing opera-
tions. Furthermore, the output will generally be a multi-
mode multiphoton state, thus requiring a series of photon
number resolving detectors at the output. Experimental
imperfections in the controls, photon loss, and detector
inefficiency have made a linear optical implementation of
this algorithm challenging [17]. Recent work leveraging the
bosonic nature of two phonon modes of a single trapped ion
has been successful in generating more accurate spectra
[18]; however, an efficient detection scheme capable of
directly sampling from the exponentially growing bosonic
Hilbert space remains elusive. Alternative approaches to
this problem that directly emulate an electronic transition
in a superconducting architecture via quenching dynamics
have been proposed [19], but such quenching may be
experimentally challenging to implement with high pre-
cision on a large scale.
Previous experimental work on simulating molecular

vibronic spectra in superconducting systems has been
restricted to a single vibrational mode [20,21]. Here, we
experimentally implement a two-mode superconducting
bosonic processor with a full set of controls that enables
the scalable simulation of molecular vibronic spectra. The
processor combines arbitrary (Gaussian and non-Gaussian)
state preparation and a universal set of Gaussian operations
enabled by four-wave mixing of a Josephson potential.
Most importantly, we implement a single-shot QND photon
number resolving detection scheme capable of resolving
the first nmax ¼ 16 Fock states per mode. This detection
scheme, when operated without errors on a multiphoton
distribution bounded by nmax states per mode, extracts the
maximum possible amount of information from the under-
lying spectra per run of the experiment.

II. BOSONIC ALGORITHM FOR
FRANCK-CONDON FACTORS

The mapping of molecular vibronic spectra onto a
bosonic simulation framework can be understood by
considering the nature of vibrational dynamics that accom-
panies an electronic transition. In keeping with the tenets of
the adiabatic Born-Oppenheimer approximation, the pre-
sumed separability between electronic and nuclear degrees
of freedom results in distinct electronic states, each of
which forms a potential-energy surface (PES) that supports

a distinct manifold of vibrational eigenstates. The normal
modes of vibration for a given electronic state are obtained
by expanding the PES in powers of displacement coor-
dinates referenced to the minimum-energy (equilibrium)
configuration and retaining only up to quadratic terms.
Under this harmonic approximation, the corresponding
transformation of the set of creation and annihilation
operators â ¼ ðâ1;…; âNÞ for N vibrational modes may
be expressed using the Duschinsky transformation [22]
which can be decomposed into Gaussian operations via the
Doktorov operator [23]:

â → ÛDokâÛ
†
Dok; ð1Þ

ÛDok ¼ D̂ðαÞŜ†ðζ 0ÞR̂ðUÞŜðζÞ; ð2Þ

where

D̂ðαÞ ¼ D̂ðα1Þ ⊗ D̂ðα2Þ ⊗ � � � ⊗ D̂ðαNÞ; ð3Þ

Ŝð†Þðζð0ÞÞ ¼ Ŝð†Þðζð0Þ1 Þ ⊗ Ŝð†Þðζð0Þ2 Þ ⊗ � � � ⊗ Ŝð†Þðζð0ÞN Þ ð4Þ

correspond to a tensor product of single-mode displace-
ment and squeezing operations across all N modes,
respectively. R̂ðUÞ is an N-mode rotation operator corre-
sponding to a N × N rotation matrix U which can be
decomposed into a product of two-mode beam splitter
operations (see Appendix A) [24]. For N ¼ 2, U is a two-
dimensional rotation matrix parametrized by a single
angle θ. The set of dimensionless Doktorov parameters
α ¼ ðα1;…;αNÞ, ζ ¼ ðζ1;…; ζNÞ, ζ 0 ¼ ðζ01;…; ζ0NÞ and U
originate from molecular structural information in the
different electronic configurations (see Appendix A).
Applying ÛDok to an initial state jψ0i of the bosonic
processor directly emulates the physical process of a
pretransition molecular vibrational state experiencing a
sudden change in the electronic PES and being expressed
in the post-transition vibrational basis. This projection
gives rise to the Franck-Condon factors (FCFs) defined
as the vibrational overlap integrals of an initial pretransition
vibrational eigenstate, jn⃗i ¼ jn;m;…i, with a final post-
transition vibrational eigenstate, jn⃗0i ¼ jn0; m0;…i:

FCFjn⃗;n⃗0 ¼ jhn⃗0jÛDokjn⃗ij2: ð5Þ

In spectroscopic experiments, the validity of this “sudden
approximation” depends on the vastly different energy
scales that typically characterize electronic and nuclear
motions (≫10 000 cm−1 versus ∼100–1000 cm−1, respec-
tively). By further assuming that the transition electric
dipole moment does not depend on nuclear coordinates
(i.e., the Condon approximation), the relative intensities of
features appearing in vibrationally resolved absorption
and emission spectra will be directly proportional to the
corresponding FCFs. Indeed, the practical importance of
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these quantities often stems from the structural and
dynamical insights that they can provide about excited
electronic states, information that can be challenging to
obtain through other conventional spectroscopic means.

III. EXPERIMENTAL IMPLEMENTATION

Our superconducting processor is designed to manipu-
late the bosonic modes of two microwave cavities, ĉA and
ĉB (Fig. 1). In our design, a coupler transmon t̂C dis-
persively couples to both cavities, enabling beam splitter
[13] and squeezing operations through driven four-wave
mixing processes. The coupler transmon is also disper-
sively coupled to a readout resonator r̂C. Displacement
operations on the cavity modes are performed via resonant
drives through local coupling ports. Additional ancillary
transmon-readout systems ft̂A; r̂Ag and ft̂B; r̂Bg are
inserted into the device and couple to each cavity for the
purposes of state preparation and tomography.
The goal of the present simulation is to emulate the

transformation of a molecular vibrational state due to an
electronic transition using the photonic state of the quantum
processor. The processor is first initialized in a state jψ0i
corresponding to the pretransition molecular vibrational
state of interest. A vacuum state of both bosonic modes is
prepared through feedback cooling protocols, and Fock
states jn;mi are initialized using optimal control techniques
[12] (see Appendix D). The ability to reliably synthesize
arbitrary Fock states translates to the powerful capability of
simulating FCFs starting from vibrationally excited states, a
task which is challenging in most other bosonic simulators.
The Doktorov transformation is then applied, producing a
basis change to that of the post-transition vibrational

Hamiltonian. In our case where N ¼ 2, the rotation
operator corresponds directly to enacting a single beam
splitter. Both the single-mode squeezing and beam splitter
operations utilize the four-wave mixing capabilities of the
coupler transmon. Two pump tones that fulfill the appro-
priate frequency matching condition (ω1 þ ω2 ¼ 2ωA=B for
the squeezing operation and ω2 − ω1 ¼ ωB − ωA for the
beam splitter operation, where ω1=2 are the two pump
frequencies and ωA=B are the cavity frequencies) are sent
through a port that primarily couples to the coupler trans-
mon, which enacts the desired Hamiltonians [13]:

ĤBS=ℏ ¼ gBSðtÞðeiφĉAĉ†B þ e−iφĉ†AĉBÞ; ð6Þ

Ĥsq;i=ℏ ¼ gsq;iðtÞðeiϕi ĉ2i þ e−iϕi ĉ†2i Þ; ð7Þ

where i ∈ fA;Bg. Importantly, the phase of the operations
fφ;ϕA;ϕBg implemented by these Hamiltonians is con-
trolled by the phase of the pump tones, allowing the
microwave control system to generate the correct family
of beam splitter and squeezing operations for performing
ÛDok. A set of transmon measurements is then carried out
for the purpose of postselecting the final data on measuring
all transmons in their ground states. This verification step
primarily aims to reject heating events of the transmons out
of their ground state; the heating of these ancillas otherwise
dephases the cavities while coupler heating effectively halts
the pumped operations by shifting the requisite frequency
matching conditions. This postselection also serves to
ensure that the ancillas begin in their ground states for
the subsequent measurement of the cavities. In our experi-
ment, we reject 5%–10% of the data depending on which

FIG. 1. Circuit schematic of the superconducting bosonic processor. The device consists of two microwave cavity modes (blue ĉA, and
green ĉB) which represent the symmetric-stretching and bending modes of a triatomic molecule in the C2v point group, respectively.
Ancilla measurement and control modules (shaded in blue and green) consisting of a transmon qubit ðt̂A; t̂BÞ and readout resonator
ðr̂A; r̂BÞ couple to each cavity mode for state preparation and measurement. The coupler module (shaded in red) consists of a coupler
transmon t̂C and readout resonator r̂C. The coupler transmon is used to facilitate bilinear Gaussian operations on the two cavity modes
through four-wave mixing, and the readout resonator is used for both characterization and postselection. This configuration is extensible
to a general linear array of N cavity modes with nearest-neighbor coupler modules and N ancillary modules, as depicted in light gray.
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transformation is simulated. Finally, averaging many mea-
surements of the cavities in a photon number basis,
fn0; m0g, gives the desired FCFs. The full set of controls
is detailed in Table I; the relatively small error rates due to
photon loss provide a sense of scale for attainable circuit
depths while maintaining high-fidelity performance (see
Sec. VI C).

IV. MEASUREMENT PROTOCOLS

Two complementary measurement schemes are used to
extract FCFs from the final state of the processor, both of
which utilize the dispersive coupling of each microwave
cavity to its ancillary transmon-readout system [Fig. 2(a)]:
Ĥint=ℏ ¼ −

P
i∈fA;Bg χiĉ

†
i ĉit̂

†
i t̂i, where the dispersive inter-

action strengths in our experiment are χA ¼ 2π × 748 kHz
and χB ¼ 2π × 1240 kHz. Fundamentally, the difference
between these two measurement schemes arises from the
ability of the latter to extract more than one bit of
information on a given single shot of the experiment.

A. Single-bit extraction

The first scheme [Fig. 2(b)] maps a given joint cavity
photon number population fn0; m0g onto the joint state of
the two transmons via state-selective π pulses. These pulses
have frequencies ωtA ¼ ω0

tA − n0χA þ ðn02 − n0Þðχ0A=2Þ and
ωtB ¼ ω0

tB −m0χB þ ðm02 −m0Þðχ0B=2Þ, where the small
second-order dispersive shift is also taken into account:
Ĥ0

int=ℏ ¼ P
i∈fA;Bgðχ0i=2Þĉ†i ĉ†i ĉiĉit̂†i t̂i. In our experiment,

χ0A ¼ 2π × 1.31 kHz and χ0B ¼ 2π × 1.35 kHz. The pulses
are applied with a Gaussian envelope truncated at �2σt
such that the bandwidth is approximately σf ¼ 1=ð2πσtÞ,
where σt is the standard deviation of the pulse in time. The
selectivity is defined as the probability of exciting the
ancilla given occupation in an adjacent photon number state
of interest. Pulses with σt ¼ 1 μs for both ancillas are used

in the experiment, which give selectivities above 99.9% and
implement the following mapping for a general state of the
two cavities jψi ¼ P

i;j cijji; ji for a chosen set of photon
numbers fn0; m0g to probe:X
i;j

cijji;ji⊗ jg;gi

→
X

i≠n0;j≠m0
cijji;ji⊗ jg;giþ

X
i≠n0

cim0 ji;m0i⊗ jg;ei

þ
X
j≠m0

cn0jjn0;ji⊗ je;giþcn0m0 jn0;m0i⊗ je;ei; ð8Þ

where jgi and jei are the ground and first excited state of
each ancilla transmon. The transmons are then individually
read out using standard dispersive techniques, and the
results are correlated on a shot-by-shot basis to extract a
single bit of information for each joint photon number state
probed. We thus call this measurement scheme single-bit
extraction.
Extracting FCFs using the single-bit extraction scheme,

however, is not scalable. The bosonic Hilbert space grows
exponentially with the number of modes N as nNmax, where
nmax is the maximum number of Fock states considered for
each mode (so for instance, nmax ¼ 16 corresponds to
j0i − j15i). Thus, any measurement protocol that only
extracts a single bit of information from the underlying
distribution at a time must necessarily query the exponen-
tially growing number of final states. This is the case for a
recent implementation of this simulation using two phonon
modes of a single trapped ion [18].

B. Photon number resolved sampling

In optical systems, detectors that can simultaneously
resolve the photon number and do so with a high quantum
efficiency [25,26] are a necessary ingredient for protocols

TABLE I. Full set of controls of the bosonic processor. The subscripts i ∈ fA; Bg correspond to operations on each cavity and their
respective ancillary modules. κA and κB are the intrinsic linewidths of the cavity modes. Optimal control pulses that utilize both resonant
cavity and ancilla drives with complex envelopes, εiðtÞ and ϵiðtÞ, respectively, generate a desired initial Fock state (see Appendix D).
jn0; m0i denotes a particular joint photon number to be measured in the cavities, and fbig represent the bits associated with the binary
decomposition of the photon number. For example, j5i ¼ j0101i. The third column presents an estimate of the expected limits on
fidelity due to photon loss for the hardware in this current implementation of the simulator.

Interaction Error rate

State preparation
Optimal control ĤdriveðtÞ ¼ ε�i ðtÞĉi þ εiðtÞĉ†i þ ϵ�i ðtÞt̂i þ ϵiðtÞt̂†i κiτprep;i ∼ 10−3 − 10−2

Operations
Displacement ε̃�i ðtÞĉi þ ε̃iðtÞĉ†i κiτdisp;i ∼ 10−4

Squeezing gsq;iðtÞðe−iϕi ĉ2i þ eiϕi ĉ†2i Þ κi=gsq;i ∼ 5 × 10−2

Beam splitter gBSðtÞðeiφĉAĉ†B þ e−iφĉ†AĉBÞ κiτBS ∼ 10−2

Measurement
Single-bit extraction M̂0 ¼ jn0; m0ihn0; m0j, M̂1 ¼ 1̂ − M̂0 κiτmeas ∼ 10−3 − 10−2

Sampling jn0i ¼ jb3; b2; b1; b0i κiτmeas ∼ 10−2 − 10−1
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such as quantum computing [27] and communication based
on repeater networks [28], among others. The boson
sampling algorithm implemented in this work also requires
photon number resolved detection, as the output distribu-
tion usually has multiple photons per mode.
Our second measurement scheme implements single-

shot photon number resolving detection [Fig. 2(c)] that
overcomes the scalability issue associated with the single-
bit extraction method. At the heart of this technique is the
dispersive Hamiltonian between each cavity mode ĉ and
their respective transmon ancilla t̂:

Ĥ=ℏ ¼ −χĉ†ĉt̂†t̂: ð9Þ

It can be shown that driving the transmon with numeri-
cally optimized waveforms ϵðtÞ,

Ĥdrive=ℏ ¼ ϵ�ðtÞt̂þ ϵðtÞt̂†; ð10Þ

enables the QND mapping of any binary valued operator of
the cavityHilbert space onto the state of the transmon [11,12].
Our strategy for measuring the number of photons for a
given cavity state is to represent photon number in binary
jni ¼ jΠkmax

k¼0bki, where n ¼ Pkmax
k¼0 2

bk and fbkg ∈ f0; 1g,
and then to sequentially measure each bit bk on a given run of
the experiment. This amounts to identifying a set of parity

operators P̂k in the cavity Hilbert space whose eigenvalues
λk;� ¼ �1 correspond to bk ¼ f0; 1g, respectively, with the
following matrix elements ij:

ðP̂kÞij ¼

8>><
>>:

0 if i ≠ j

1 − 2

��
i
2k

�
ðmod 2Þ

�
if i ¼ j;

ð11Þ

where b·c denotes the floor function. We synthesize a set of
optimal control pulses ϵkðtÞ, k ∈ f0; 1; 2; 3g, that excite the
transmon from its ground state jgi to the excited state jei
conditioned on the cavity state’s projection onto the parity
operators P̂k. In our experiment, these pulses are numerically
optimized for theHilbert space of each cavity up tonmax ¼ 16
and have a duration between 800 and 1200 ns.
The QND nature of each of these mapping pulses on the

cavity state ensures that the pulses can be applied sequen-
tially (with transmon measurements following each pulse)
to project an initial cavity state jψi ¼ P

15
n¼0 cnjni with

bounded support within nmax ¼ 16 into a definite Fock
state jniwith a probability jcnj2. In order to minimize errors
due to decoherence when the transmon is excited, after the
kth bit is mapped onto the transmon and measured, the
transmon is reset to its ground state using real-time feed-
forward control to prepare for the measurement of the

(a)

n n

(b)

Single-bit
extraction

0
6 1415

1 0 10 10 10

n

P
n

666 142 01 4186402

87

(c)

Sampling

b b
1

b
2

b
3

FIG. 2. QND measurements of cavity photon number. (a) Depiction of two 3D λ=4 coaxial cavities dispersively coupled to individual
ancillary modules (outlined in black), each consisting of an ancilla qubit and a readout resonator. From the point of view of the
measurement, the ancillary modules serve as reconfigurable black boxes used to detect the photon number in each cavity. The dotted
trace serves to illustrate that the state of the two cavities can generally be entangled. (b) Single-bit extraction. In this scheme, on a given
run of the experiment, each ancilla is excited conditioned on a predetermined photon number n in its respective cavity. (c) Sampling.
Here, instead of having a binary output, each detection module serves as a photon number resolving detector. Sequential QND
measurements of the operators associated with the first four bits of each photon number’s binary decomposition resolve up to 15 photons
per mode. For a general state of the cavity, each measurement projects the state into the eigenspace of the outcome, ultimately projecting
out a single Fock state with its corresponding probability. In the schematic, a sequence sampling the 6 photon component (j6i ¼ j0110i)
from a displaced Fock state is shown. The state is first probabilistically measured to be in the b0 ¼ 0 (even parity) subspace, thus
projecting out only even photon numbers. The next measurement further projects this state into the b1 ¼ 1 subspace, and so on, until the
measurement converges on a single photon number.
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(kþ 1)th bit of the same cavity state. This protocol is
performed simultaneously on each cavity, which returns a
sample from the underlying joint photon number distribu-
tion on a shot-by-shot basis. This measurement scheme
thus implements bosonic sampling of the final state
distribution, which we simply call sampling. These binary
detectors optimally resolve the photon number in the
cavities in N log2ðnmaxÞ measurements, but are prone to
more errors due to transmon decoherence that are, in
principle, correlated bit to bit. Errors in the measurement
of individual bits can lead to unintuitive misassignments of
the photon number—for instance, j8 ¼ 1000i would be
misassigned as j0 ¼ 0000i if a single error misassigns b3.
We leave the task of characterizing these errors in full
detail, optimizing the technique, and potentially applying
deconvolution methods [29] to improve the accuracy of the
sampled distribution as the subject of future work.
The advantage of the sampling protocol compared to the

single-bit extraction method can thus be seen by comparing
the required number of simulator runs for a desired statistical
error on all output probabilities (see Supplemental Material
[30]). Specifically, the latter method requires a factor of nNmax
more runs, directly reflecting the need to independently
query each state in the entire Hilbert space.

V. SIMULATED PHOTOELECTRON SPECTRA

The full set of FCFs for a given electronic transition can
provide, within the Condon approximation, the relative
intensities of vibronic progressions appearing in corre-
sponding photoelectron spectra. The algorithm exploited in
this work extracts FCFs under the commonly deployed
harmonic approximation. As such, the resulting relative
intensities will deviate from those measured in actual
molecular spectra owing to the effects of vibrational
anharmonicity in the true PES. We simulate four different
photoelectron processes starting in various vibrational

initial states jψ0i ¼ jn;mi: H2O→
hν

H2OþðB̃2B2Þ þ e−,

O−
3 →

hν
O3 þ e−, NO−

2 →
hν

NO2þe−, and SO2 →
hν

SOþ
2 þ e−.

Experimental results for photoionization of water starting
in jψ0i ¼ j0; 0i and photodetachment of the ozone anion
starting in jψ0i ¼ j1; 2i, respectively, are presented in
Fig. 3 (see Supplemental Material for additional data [30]).
We highlight the results for these two processes due to the
long vibronic progressions they possess, thus verifying the
capability of our simulator to generate and measure large
photon numbers. The particular electronic state of the water
cation considered here ðB̃2B2Þ is the second excited state
of doublet spin multiplicity, with the attendant electronic
wave function having B2 symmetry. The other processes
consider transitions beginning and ending in electronic
ground states. All of the triatomic molecules targeted here
retain C2v point-group symmetry for their equilibrium
configurations in both the pretransition and post-transition
electronic states, thereby ensuring that analyses can be

restricted to the two-dimensional subspace of the symmet-
ric-stretching and bending modes.
A figure of merit for quantifying the quality

of the quantum simulation is the distance D ¼
1
2

Pnmax
i¼0

Pnmax
j¼0 jpmeas

ij − pideal
ij j between the measured prob-

abilities fpmeas
ij g and the ideal distribution fpideal

ij g. The

(b)

(a)

O O

O

O
H H

Ideal spectra
Single-bit
Sampling

Wave number (cm–1)

Wave number (cm–1)

R
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e 
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e 
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FIG. 3. Experimental Franck-Condon factors.Measured data for
(a) photoionization of water to the ðB̃2B2Þ excited state of the

cation H2O→
hν

H2OþðB̃2B2Þ þ e− starting in the vacuum (vibra-
tionless, n ¼ 0, m ¼ 0) state and (b) the photodetachment of
the ozone anion to the ground state of the neutral species

O−
3 →

hν
O3 þ e− starting from a vibrational eigenstate possessing

one quantum of symmetric-stretching and two quanta of bending
excitation (n ¼ 1, m ¼ 2). The abscissa scale corresponds to
vibrational term values (energies in cm−1) within the final (post-
transition) electronic PES calculated from the harmonic frequen-
cies for symmetric-stretching and bending degrees of freedom:
ν̃ ¼ n0ν̃0stretch þm0ν̃0bend. Solid lines depict theoretical FCFs, arti-
ficially broadened with Lorentzian profiles (10 cm−1 FWHM).
Circles represent experimental data using the single-bit extraction
(purple) and sampling (red)measurement schemes explained in the
main text; statistical error bars for the latter measurement are not
visible on this scale (see Supplemental Material [30]). Systematic
errors associatedwith transmon decoherence during the selective π
pulses are corrected for (see Appendix E). Additional errors are
present in the sampled values, owing to decoherence effects during
the binary decomposition measurement chain.
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distances for the two simulated processes in Fig. 3 are D ¼
0.049 (H2O) and 0.105 (O3) for the single-bit extraction
scheme and D ¼ 0.152 (H2O) and 0.148 (O3) for the
sampling scheme. The sampling distance will ultimately be
the relevant figure of merit for evaluating the practical
performance of this approach as it is scaled up. The other
relevant metric is run time. As previously discussed in
Sec. IV B, the single-bit extraction scheme requires a factor
of nNmax more runs compared to the sampling scheme for a
desired statistical error. Our experiment operates at an
effective repetition rate of roughly ∼300 Hz, thus requiring
∼7 h versus ∼100 s of data acquisition, respectively, for
∼3 × 104 samples of the photoionization of water.
Furthermore, these distance metrics are accompanied with

a success probability due to postselection of transmon heating
events, which are 95% and 93% for the aforementioned
simulations. The heating events are dominated by the coupler
transmon; the dynamics of a driven Josephson element for
engineered bilinear operations presents a multidimensional
optimization problem that seeks to maximize the desired
interaction rates while minimizing induced decoherence and
dissipation rates [31]. Self-Kerr Hamiltonian terms of the
form ĤKerr=ℏ ¼ −

P
i∈fA;BgðKi=2Þĉ†i ĉ†i ĉiĉi, photon loss,

and imperfect state preparation account for errors that are
undetected by postselection. The first two effects are captured
through full time-domain master equation simulations (see
Supplemental Material [30]). The magnitudes of these two
errors depends on the molecular process; each corresponding
Doktorov transformation will have different squeezing and
rotation parameters thus leading to varying lengths of the
pumped operations. Simulations of shorter length circuits
will therefore have lower error rates. Additionally, errors due
to self-Kerr interactions of the cavities are larger for higher
photon number states.

VI. RESOURCE REQUIREMENTS
AND SCALABILITY

A. Classical methods

To properly contextualize the efficiency of the bosonic
algorithm implemented in our work, it is useful to consider
state-of-the-art computational methods for calculating
Franck-Condon factors using classical computers. A perva-
sive and representative approach is one that utilizes generating
functions to compute a single Franck-Condon overlap inte-
gral hn1; n2;…; nN jψ0i in terms of other integrals with fewer
occupations fhn1 − i1; n2 − i2;…; nN − iN jψ0ig. This can
be compactly represented through a recursion relation
[32,33], which means that the total number of necessary
integrals to compute a Franck-Condon factor with a total
number of quanta M ¼ P

N
i¼1 ni over N modes is [34]�

N þM − 1

M

�
: ð12Þ

Therefore, the formal task of obtaining the full
Franck-Condon profile, which by itself contains an expo-
nential number of entries corresponding to the size of the
Hilbert space nNmax, can be seen to be at least exponentially
challenging.
In practice, however, electronic spectra of many polya-

tomic molecules initially cooled to near their rovibronic
ground states typically exhibit vibronic progressions con-
fined to a small region in the vibrational Hilbert space. This
stems primarily from two effects. First, a single electronic
transition in large molecules typically does not induce large
shifts of the equilibrium coordinates for a significant
fraction of all the normal modes, which keeps nmax for
most modes relatively low. Second, following sym-
metry considerations, there typically is structure in the
Duschinsky rotation matrix which allows it to be approxi-
mated as block diagonal [34]. This is significant because
each block-diagonal subspace can be treated independently
as they do not couple to the remaining vibrational degrees
of freedom of the molecule. This effectively reduces the
dimensionality of the problem from N to several subpro-
blems with dimensionality of each block. In the limit where
no mode mixing occurs, i.e., U ¼ 1, the full multimode
Franck-Condon integrals can be easily and efficiently
computed via the product of all single-mode Franck-
Condon integrals.
Consequently, classical methods can implement conver-

gence criteria that can provide a trade-off between accuracy
and computational resources [35]. In cases where the
Duschinsky rotation matrix cannot be well approximated
as block diagonal, however, recursive methods inevitably
need to explore the entire Hilbert space and therefore
become intractable for large system sizes. The advantage of
using a quantum simulator that samples from the full
distribution would then be to quickly identify the relevant
FCFs with large weights, for which a classical computation
can then be done for the specific FCFs of interest. Thus, the
utility of the quantum simulator for obtaining Franck-
Condon factors in large polyatomic molecules will depend
on the configurational details for each electronic transition
on a case-by-case basis.

B. Resource comparison: Bosonic versus
qubit processor

The central advantages of simulating the transformation
of a bosonic Hamiltonian using a bosonic system lie in both
the native encoding and the efficient decomposition of
the Doktorov transformation into Gaussian operations.
A recent proposal for obtaining Franck-Condon factors
on a conventionally envisioned spin-1=2 quantum com-
puter [36] needs to map the problem onto qubits and a
univeral gate set. This first requires encoding the Hilbert
space of size nNmax onto nq ¼ Nlog2ðnmaxÞ qubits. The
choice of nmax is dependent on the initial state as well as the
magnitude of the displacement and squeezing; both
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operations can produce states with large photon numbers.
Using quantum signal processing [37], the approximate
number of gates ng then needed to implement ÛDok

using a universal qubit gate set to within an error ε is
ng ¼ O½N2n2max log3ð1=εÞ�. For our experiment with
N ¼ 2 modes, taking nmax ¼ 16 and desiring an error
ε ¼ 5 × 10−2, this translates to nq ¼ 8 qubits and ng ¼
Oð103Þ gates. The coherence requirements for performing
such a computation this way is thus relatively demanding
and exceeds the capabilities of current technologies, where
we do not yet have fault tolerant quantum processors. By
comparison, our native bosonic simulator containing N
modes simply requires 2N squeezing operations, N dis-
placement operations, and a maximum of NðN − 1Þ=2
nearest-neighbor beam splitter operations [24,38]. This
translates to a total of OðN2Þ operations and a correspond-
ing circuit depth of OðNÞ when nonoverlapping beam
splitters are applied simultaneously. A possible advantage
of the qubit-based algorithm, however, is the ability to
systematically incorporate anharmonicities in the PES, a
task which still needs to be theoretically investigated for the
bosonic implementation.

C. Scalability and error budget

As shown in Fig. 1, a linear array of bosonic memories
with nearest-neighbor coupling is sufficient for scaling to
larger system sizes. In our architecture of fixed frequency
cavity modes, the bilinear Gaussian operations are enacted
via robust frequency converting four-wave mixing proc-
esses that obviate the need for any in situ frequency tuning.
As the hardware is scaled up, the fidelity of the

individual operations will determine the fidelity of the
overall simulation. Though different photoelectron proc-
esses will have different errors, we can consider a sim-
plified model for quantifying performance with system
size. We associate a success probability for each operation
fρig where the index i encompasses state preparation (SP),
displacements (D), squeezing (sq), beam splitters (BS), and
measurements (M). For simplicity, we assume a uniform
probability for each operation across all modes. We then
specify a target success probability threshold ρth that
reflects the accuracy of the full simulation. The number
of modes that can be accurately simulated for a given ρth,
therefore, can be determined by

ρNSPρ
2N
sq ρ

N
Dρ

NðN−1Þ=2
BS ρNM > ρth: ð13Þ

Each of these probabilities can be taken to be the average
fidelity of each operation across a representative set of
Doktorov transformations. Taking the expected bounds on
the error rates of the operations due to photon loss in our
experiment (Table I), while assuming a measurement error
rate of 10−2 and targeting ρth ¼ 0.5, we get N ≈ 5. Modest
improvements in cavity lifetimes [39,40] and further circuit

optimization for engineering the bilinear interactions [31] can
reduce the error rate of the squeezing and beam splitter
operations to 10−3, which increases the number of modes to
N ≈ 25. Beyond this, further reduction of the error rates or
implementingbosonic error correctionprotocols that preserve
bosonic statistics at the logical level [41] will be required for
maintaining performance with increasing system size.

VII. DISCUSSION AND OUTLOOK

The superconducting platform demonstrated here is
capable of successfully integrating all of the necessary
components for performing a high-fidelity, scalable imple-
mentation of a practical computational task of interest.
Looking ahead, there exist concrete steps toward scaling
up, improving performance, and mitigating sources of
error. High-Q superconducting modules controlling up to
three modes have been experimentally demonstrated [42],
which would allow simulations to encompass nonlinear
triatomic molecules of Cs symmetry. In general, a molecule
composed of M atoms will have 3M − 6 vibrational
degrees of freedom (3M − 5 for linear species), which sets
the requirement for the number of modes needed in the
simulator. The self-Kerr Hamiltonian terms of the cavity
modes may be cancelled with extra off-resonant pump
tones, or three-wave mixing methods that avoid self-Kerr
nonlinearities altogether may be used [43].
To simulate a broader class of molecular systems, the

quantum simulator needs the capability of systematically
incorporating inevitable deviations from harmonic behavior
in the potential energy surfaces [19]. This is certainly an
interesting and exciting direction to pursue in future
experiments, especially given that classical computational
methods have difficulty incorporating such anharmonic
effects even for relatively modest system sizes. Combining
Josephson nonlinearities with external flux control, circuits
with higher-order nonlinearities can be designed. These
nonlinear modes can then represent distinct vibrational
modes such that, when combined with bilinear [13] or
higher-order interaction terms [44], a broader class of
anharmonic molecular Hamiltonians can be represented
accurately. More generally, for condensed matter many-
body systems, the tools utilized here enable the simulation
of tight-binding lattice Hamiltonians, and the inclusion of
controllable self-Kerr interactions widens the scope to
extended Bose-Hubbard models [45,46]. The ability to
use Josephson nonlinearities to manipulate microwave
photons in these rich and diverse ways opens up promising
avenues for the simulation of bosonic quantum systems in a
superconducting platform.
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APPENDIX A: OBTAINING
DOKTOROV PARAMETERS

The Doktorov parameters originate from the physical
properties of a given molecule in the two electronic states of
interest. Specifically, it is the structural information of the
molecular configurations and the relationship between the
two that fully parametrize the problem.

1. Description of quantum-chemical analyses

Theoretical predictions of optimized equilibrium
geometries (with imposed C2v symmetry constraints),
harmonic (normal-mode) vibrational displacements, and
Franck-Condon parameters (Duschinsky rotation matrices
and associated shift vectors) exploited the commercial
(G16 rev. A.03) version of the GAUSSIAN quantum-chemical
suite (Table II) [47], with canonical Franck-Condon matrix
elements for specific vibronic bands being evaluated
through use of the open-source ezSpectrum (version 3.0)
package [48]. All analyses relied on the CCSD(T) coupled-
cluster paradigm, which includes single and double exci-
tations along with noniterative correction for triples.
Dunning’s correlation-consistent basis sets [49–51] of
triple-ζ quality augmented by supplementary diffuse func-
tions (aug-cc-pVTZ≡ apVTZ) were deployed for all
targeted molecules except water, where a larger doubly
augmented, quadruple-ζ basis was employed (daug-
cc-pVQZ≡ dapVQZ).
The Duschinsky rotation matrices and associated shift

vectors provided by the commercial package GAUSSIAN are
defined via

Q0 ¼ JQ00 þK; ðA1Þ

whereQ0 andQ00 are mass-weighted normal coordinates of
the pre- and post-transition molecular configurations,
respectively. Because our simulation considers the trans-
formation from a vibrational state in the pretransition
configuration to the post-transition configuration, we must
redefine the Duschinsky rotation matrices and associated
shift vectors accordingly:

U ¼
�
cos θ − sin θ

sin θ cos θ

�
¼ JT; ðA2Þ

d ¼ −JTK: ðA3Þ

2. Conversion from molecular parameters
to Doktorov parameters

The Doktorov transformation as given in Eq. (2) of the
main text is

ÛDok ¼ D̂ðαÞŜ†ðζ 0ÞR̂ðUÞŜðζÞ; ðA4Þ

where for N ¼ 2 modes, the squeezing and displacement
operations are defined as

Ŝð†Þðζð0ÞÞ ¼ Ŝð†ÞA ðζð0Þ1 Þ ⊗ Ŝð†ÞB ðζð0Þ2 Þ

¼ exp

�
1

2
ðζ�ð0Þ1 ĉ2A − ζð

0Þ
1 ĉ†2A Þ

�

⊗ exp
�
1

2
ðζ�ð0Þ2 ĉ2B − ζð

0Þ
2 ĉ†2B Þ

�
; ðA5Þ

D̂ðαÞ ¼ D̂Aðα1Þ ⊗ D̂Bðα2Þ
¼ expðα1ĉ†A − α�1ĉAÞ
⊗ expðα2ĉ†B − α�2ĉBÞ; ðA6Þ

where ζð
0Þ
i ¼ lnð

ffiffiffiffiffiffi
ν̃ð

0Þ
i

q
Þ and ν̃ð

0Þ
i is the vibrational fre-

quency of mode i in the pretransition (post-transition)

TABLE II. Theoretically optimized molecular parameters. Vibrational frequencies for the symmetric-stretching and bending modes of
each molecule in pre- (ν̃) and post-transition (ν̃0) states are provided in wave numbers (cm−1), which is related to angular frequency ω via
ν̃ ¼ ω=2πc, where c is the speed of light. The rotation angle corresponding to the Duschinsky rotation matrix is defined in Eq. (A2). The
shift vectorK ¼ ðk1; k2Þ is provided in mass weighted normal coordinates (where a0 is the Bohr radius andme is the electron mass) and
reflects the relative displacement of equilibrium geometries between the two molecular configurations.

Molecular photoelectron process ν̃stretch (cm−1) ν̃bend (cm−1) ν̃0stretch (cm−1) ν̃0bend (cm−1) θ (deg) K ða0 ffiffiffiffiffiffi
me

p Þ

H2O→
hν

H2OþðB̃2B2Þ þ e− 3830.91 1649.27 2619.09 1602.85 −0.16598 (5.05, 49.47)

O−
3 →

hν
O3 þ e− 1031.10 582.58 1147.04 713.39 −0.0417 (27.36, 14.33)

NO−
2 →

hν
NO2 þ e− 1297.27 783.55 2633.34 796.94 2.401 46 (35.67, −38.01)

SO2 →
hν

SOþ
2 þ e− 1136.38 506.27 1056.79 396.11 0.190 12 (−8.86, −58.34)

EFFICIENT MULTIPHOTON SAMPLING OF MOLECULAR … PHYS. REV. X 10, 021060 (2020)

021060-9



configuration and αi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωi=2ℏÞ

p
di where fdig are the

vector elements of d in Eq. (A3).
The Duschinsky rotation matrixU generates the N-mode

rotation operator R̂ðUÞ. The multimode mixing elements
implemented in this experiment are two-mode beam
splitters, necessitating a decomposition of U into near-
est-neighbor rotations, and thus R̂ into nearest-neighbor
beam splitters. R̂ðUÞ becomes a product of two mode beam
splitters parametrized by fθkg and fik; jkg, a sequence of
angles and rotation axes derived from the decomposition
of U ¼ Q

k Rik;jkðθkÞ. We can then write

R̂ðUÞ ¼
Y
k

exp½θkðĉik ĉ†jk − ĉ†ik ĉjkÞ�: ðA7Þ

The decomposition of U is analogous to generalizing Euler
angles to SO(N); any rotation in RN can be written as a
product of rotations in a plane Rik;jkðθkÞ, known as Givens
rotations. Following an algorithm similar to that in
Refs. [24,38], but simplified to real orthogonal matrices,
produces a decomposition of U as a product of nearest-
neighbor rotation matrices. The Duschinsky matrix for
N ¼ 2 is a single Givens rotation parametrized by an angle
θ which is enacted with one beam splitter:

R̂(ÛðθÞ) ¼ exp½θðĉ†AĉB − ĉAĉ
†
BÞ�: ðA8Þ

3. Optimization of squeezing parameters

The modification of the creation and annihilation oper-
ators under the mode transformation is given in [16]

â0† ¼ 1

2
½L − ðLTÞ−1�âþ 1

2
½Lþ ðLTÞ−1�â† þ α⃗; ðA9Þ

where

L ¼ Ω0UΩ−1; ðA10Þ

Ω ¼

0
BBB@

ffiffiffiffiffi
ν̃1

p
0

. .
.

0
ffiffiffiffiffiffi
ν̃N

p

1
CCCA; ðA11Þ

Ω0 ¼

0
BBB@

ffiffiffiffiffi
ν̃01

p
0

. .
.

0
ffiffiffiffiffiffi
ν̃0N

p

1
CCCA: ðA12Þ

The structure of L allows for a free scaling parameter η
which leaves L invarant; namely,

Ω̃ð0Þ ¼ Ωð0Þ=η; ðA13Þ

LðΩ;Ω0Þ ¼ LðΩ̃; Ω̃0Þ: ðA14Þ

Given that the squeezing operations of the Doktorov
transformation take ζ ¼ lnðΩ⃗Þ as inputs, an optimization
may be performed, as done in Ref. [18], that minimizes the
total amount of squeezing while leaving the unitary
invariant. This is desirable as less squeezing corresponds
to shorter gate times in the simulation, which reduces the
overall error rate. Table III lists the final set of dimension-
less Doktorov parameters used in the experiment.

APPENDIX B: THEORETICALLY PREDICTED
HAMILTONIAN TERMS

1. Derivation of ancilla-mediated operations

In this Appendix, we derive the ancilla-mediated beam
splitter and single-mode squeezing interactions as shown in
the main text as well as the associated ancilla-induced
cavity frequency shifts. Derivations based on the perturba-
tive four-wave frequency mixing enabled by a weak ancilla
nonlinearity have been presented previously in Ref. [13].
Here, we follow the formalism used in Ref. [31] and sketch
the general results without assuming weak ancilla non-
linearity or weak pumps. We also give explicit expressions

TABLE III. Dimensionless Doktorov parameters. All values are truncated to the precision that the operations are
able to be implemented experimentally.

H2O→
hν

e− þ H2OþðB̃2B2Þ O−
3 →

hν
O3 þ e− NO−

2 →
hν

NO2 þ e− SO2 →
hν

SOþ
2 þ e−

ζ1 0.262 0.104 0.035 0.242
ζ2 −0.160 −0.181 −0.217 −0.162
θ −0.166 −0.042 2.402 0.19
ζ01 0.072 0.157 0.389 0.206
ζ02 −0.174 −0.080 −0.208 −0.285
α1 −1.0162 −1.4278 0.0546 −0.1140
α2 −2.8977 −0.5311 −2.2207 1.7713
η 47.6381 28.9364 34.7639 26.4676
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for the strength of the engineered interactions in the case of
weak pumps.
We start from the Hamiltonian of the two bare cavity

modes A and B coupled to the coupler transmon in
module C:

Ĥ=ℏ¼ωAĉ
†
AĉAþωBĉ

†
BĉBþ ĤCþ ĤIþ ĤpumpðtÞ: ðB1Þ

We emphasize that here the operators ĉA and ĉB are the
annihilation operators for the bare cavity modes whereas
in the main text the operators correspond to the dressed
cavity modes that are weakly hybridized with the ancilla
transmons.
ĤC is the Hamiltonian of the bare coupler transmon in

module C. After expanding the transmon potential energy
to fourth order in the phase across the Josephson junction
and neglecting counterrotating terms, we obtain [52]

ĤC=ℏ ¼ ωCt̂
†
Ct̂C −

KC

2
t̂†2C t̂2C; ðB2Þ

where t̂ð†ÞC again is the bare annihilation (creation) operator
for the coupler transmon with frequency ωC and anharmo-
nicity KC.
ĤI is the interaction energy between the coupler trans-

mon and the two cavity modes. Neglecting counterrotating
terms, it may be written as

ĤI=ℏ ¼ ðgAĉA þ gBĉBÞt̂†C þ H:c: ðB3Þ

ĤpumpðtÞ represents two pumps on the coupler transmon:

ĤpumpðtÞ=ℏ ¼ ðΩ1e−iω1t þΩ2e−iω2tÞt̂†C þ H:c: ðB4Þ
Of primary interest to us is the dispersive regime where

the cavity-transmon coupling strengths are much smaller
than their detuning: jgA;Bj ≪ jωA;B − ωCj [53]. In this
regime, we can treat the cavity-transmon interaction as a
perturbation (while treating the remaining parts of the
Hamiltonian exactly), and to second order in the interaction
strength, we obtain an effective Hamiltonian after perform-
ing a unitary on Ĥ

Ĥeff=ℏ ¼
X
m

ðδωA;mĉ
†
AĉA þ δωB;mĉ

†
BĉBÞ⊗ jΨmihΨmj þ V̂;

ðB5Þ

where jΨmi is the mth Floquet state that quasiadiabatically
connects to the mth Fock state jmi of the bare transmon
as the pumps are ramped up or down [31]. At zero pump
amplitudes, jΨmi ¼ jmi. The first term in Ĥeff thus
represents transmon-induced cavity frequency shifts
δωA;m and δωB;m when the transmon is in jΨmi.
The difference between δωA;m or δωB;m with different

m leads to cavity-photon-number-dependent transmon

transition frequencies. In particular, at zero pump ampli-
tudes, the transmon’s transition frequency from the ground
to the first excited state decreases linearly with the cavity
photon number with a proportionality constant:

χiC ¼ δωi;0 − δωi;1 ¼ 2KC

				 giδi
				2 δi
δi þ KC

; i ∈ fA;Bg;

ðB6Þ

where δi ¼ ωi − ωC. Physically, the factor jgi=δij2 quan-
tifies the participation ratio of cavity A or B in the coupler
transmon. In the experiment, this factor is 0.3% for cavity A
and 0.2% for cavity B.
Pumps on the coupler transmon can induce effective

inter- or intracavity interactions (single-mode squeezing or
beam splitter) denoted as V̂ in Ĥeff . For the case of the
beam splitter interaction ðω2 − ω1 ¼ ωB − ωAÞ, we have

V̂=ℏ ¼ ĤBS=ℏ ¼
X
m

gBS;mðeiφðmÞ
ĉAĉ

†
B þ e−iφ

ðmÞ
ĉ†AĉBÞ

⊗ jΨmihΨmj: ðB7Þ

For the case of single-mode squeezing (ω1 þ ω2 ¼ 2ωA or
2ωB), we have

V̂=ℏ ¼ Ĥsq;i=ℏ ¼
X
m

gsq;i;mðeiϕ
ðmÞ
sq;i ĉ2i þ e−iϕ

ðmÞ
sq;i ĉ†2i Þ

⊗ jΨmihΨmj; i ∈ fA; Bg: ðB8Þ

Similar to the transmon-induced frequency shifts on the
cavities, here both the strength and phase of the transmon-
mediated interactions depend on the state of the transmon.
Of primary interest to us is the strengths of the transmon-
mediated interactions when the transmon is in the Floquet
state jΨ0i. For weak drives, these strengths are

gBS;0 ≈ 2KC

				 gAδA
gB
δB

Ω1

δ1

Ω2

δ2

δA þ δ2
δA þ δ2 þ KC

				
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χACχBC
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi				 ðδA þ KCÞðδB þ KCÞ
δAδB

				
s

×

				Ω1

δ1

Ω2

δ2

δA þ δ2
δA þ δ2 þ KC

				; ðB9Þ

gsq;i;0 ≈ 2KC

				
�
gi
δi

�
2Ω1

δ1

Ω2

δ2

δi
2δi þ KC

				
¼ χiC

				Ω1

δ1

Ω2

δ2

δi þ KC

2δi þ KC

				; i ∈ fA; Bg; ðB10Þ

where δ1;2 ¼ ω1;2 − ωC. In the case where the transmon
anharmonicity KC is small compared to the detunings
jδ1;2;A;Bj, the expressions above reduce to those obtained
based on perturbative multiwave frequency mixing [13].
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Note that the interaction strengths presented in the main
text and the rest of the appendixes refer to the values of
gBS;0 and gsq;i;0.
For weak drives, Eqs. (B9) and (B10) show that the

strengths of the engineered beam splitter and single-mode
squeezing increase linearly with both drive amplitudes
Ω1;2. For strong drives, this dependence becomes nonlinear
in Ω1;2 and can be accurately captured using Floquet theory
for the driven transmon [31]. We have verified that the
experimentally measured beam splitter and single-mode
squeezing rates match the expressions (B9) and (B10) for
weak drives and the full Floquet analysis at strong drives.

2. Transmon-induced cavity Kerr

Another important effect and a source of infidelity is the
cavity nonlinearity induced by the transmons. To fourth
order in the cavity-transmon coupling, this nonlinearity is a
Kerr nonlinearity and has the following form:

ĤKerr=ℏ ¼
X
m

�
−
KA;m

2
ĉ†2A ĉ2A −

KB;m

2
ĉ†2B ĉ2B

− KAB;mĉ
†
AĉAĉ

†
BĉB

�
⊗ jΨmihΨmj; ðB11Þ

where KA;m and KB;m are the self-Kerr of cavities A and B
and KAB;m is the cross-Kerr between cavities A and B when
the transmon is in the state jΨmi.
First, we consider the case in the absence of pumps. Of

interest to us is the cavity Kerr when the transmon is in the
ground state j0i:

Ki;0 ¼ 2KC

				 giδi
				4 δi
2δi þ KC

¼ χ2iC
2KC

ðδi þ KCÞ2
δið2δi þ KCÞ

;

i ∈ fA;Bg; ðB12Þ

KAB;0 ¼ 2

				 gAδA
gB
δB

				2 KCðδA þ δBÞ
δA þ δB þ KC

¼ χACχBC
2KC

ðδA þ KCÞðδB þ KCÞ
δAδB

δA þ δþ B
δA þ δB þ KC

:

ðB13Þ

Also of interest to us is the difference between Ki;0 and
Ki;1. This difference leads to a nonlinear dependence of the
transmon transition frequency on the cavity photon number.
This difference is usually denoted as

χ0iC ¼ Ki;0 − Ki;1

2
¼ χ2iC

δi
fðδ1=KCÞ;

i ∈ fA; Bg; ðB14Þ

where fðxÞ ¼ ð18x3 þ 30x2 þ 22xþ 6Þ=½4ðxþ 1Þð4x2þ
8xþ 3Þ�. We note that there is also a contribution to χ0iC
from a term in the sixth-order expansion of the transmon
cosine potential, but for ωC ≫ jδij this correction is
negligible.
Here we have only considered the cavity Kerr induced by

the coupler transmon. In general, the transmon ancillas in
modules A and B also induce Kerr in their respective
cavities. The total Kerr of each cavity will then be the sum
of all contributions.
In the presence of pumps on the coupler transmon, the

cavity Kerr can be strongly modified due to a relatively
strong hybridization between cavity photons and excita-
tions of the coupler transmon. To illustrate this effect,
we consider as an example the pumps used in generating
the beam splitter interaction between the two cavities. For
the choice of pumps used in the experiment, the sum of the
frequency of cavity A and the higher-frequency pump is
close to the frequency of transition from transmon ground
to the second excited state: ωA þ ω2 ≈ ω02. As a result, the
cavity photons become relatively strongly hybridized with
the second excited state of the transmon, thus modifying
their nonlinearity. Using a sixth-order perturbation theory
(fourth order in gA and second order inΩ2), we find that the
modification to the cavity Kerr is

δKA;0 ≈ 2KC

				Ω2

δ2

				2 χ2ACΔ2

ð2δ2 þ KCÞδ2
ðδ2 þ KCÞðδ2 − KCÞ

; ðB15Þ

where Δ ¼ ωA þ ω2 − ω02, and ω02 is the Stark shifted
transmon transition frequency from the ground to the
second excited state. The above expression, which applies
for small jΔj, qualitatively captures the observed enhanced
self-Kerr of cavity A in the experiment during the beam
splitter operation. Comparing this expression with that of
the bare cavity Kerr KA;0 without pumps, we see that δKA;0

becomes comparable to KA;0 when KCjΩ2=δ2j ∼ jΔj.
We note that such dependence of the cavity Kerr on the
drive parameters also potentially provides a knob to control
the cavity Kerr for the purpose of simulating nonlinear
bosonic modes.

APPENDIX C: SYSTEM CHARACTERIZATION

1. Calibration of Gaussian operations

In the dispersive regime, the transition frequency ωl
ti of

ancilla t̂i depends on the photon number l in the respective
cavity:

ωl
ti ¼ ω0

ti − lχi þ ðl2 − lÞ χ
0
i

2
; ðC1Þ

whereω0
ti is the ancilla frequency when there are no photons

in its respective cavity and χi and χ0i are the dispersive shifts
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originating from fourth- and sixth-order Hamiltonian terms,
respectively, as introduced in the main text. Using this, the
photon number population of each cavity can be extracted
via π pulses selective on each photon number after applying
various strengths of each operation (Fig. 4). These popu-
lations are then fit to the corresponding expected models,
including an overall offset and scaling factor to take into
account errors due to ancilla relaxation and readout imper-
fections (Table IV). For the beam splitter, we assume an
effective detuning between cavitiesA andB in a framewhere
δBS ¼ 0 if the beam splitter resonance condition is satisfied.
Transmon heating leads to fluctuations in δBS, which
dephases the beam splitter operation with a dephasing rate:
κBSph ¼ R

∞
0 hδBSðtÞδBSð0Þidt. Thus, the oscillating popula-

tions of a single photon in each cavity P10=01 is given to
leading order in κA;B=gBS and κBSph =gBS by the expression in

Table IV,where κ̄ ¼ ðκBSA þ κBSB Þ=2 and κBSA;B are the effective
linewidths of cavities A and B during the beam splitter
operation.

2. Measurement of system parameters

Static and pump-induced self-Kerr Hamiltonian terms,
−ðKA=2Þĉ†2A ĉ2A and −ðKB=2Þĉ†2B ĉ2B, are estimated using the
protocol detailed in Ref. [54] (Fig. 5). For the pump-
induced cases, one of the two pumps is detuned by δ ¼ 20
and 50 kHz for squeezing and beam splitter operations,
respectively, to make the engineered interaction off reso-
nant. We assume that the induced self-Kerr is not a strong
function of this detuning.
Static and pump-induced cavity decay rates are mea-

sured via T1 experiments (Fig. 6). A single photon is
prepared in each cavity, followed by either a delay or an off-
resonant pumped operation (with the same detunings as
above). Again, we assume that the pump-induced decay
rates are not a strong function of the pump detuning. The
ancillas are then flipped via selective π rotations condi-
tioned on n ¼ 1 photon. In both cases, the data are
postselected on the ancilla being in the ground state before
the selective π rotation. We attribute the higher decay rate to
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FIG. 4. Calibrations for Gaussian operations. (a) Displacement calibrations for cavities A (top) and B (bottom) starting in vacuum.
Here, the amplitude of a resonant pulse is varied. (b) Squeezing calibration for cavities A (top) and B (bottom) starting in vacuum. Here,
the length of two squeezing pump tones is varied. Legends indicate population in photon number n. (c) Beam splitter calibration for
beginning with a single photon in cavities A (top, jψ0i ¼ j1; 0i) and B (bottom, jψ0i ¼ j0; 1i). The length of two beam splitter pump
tones is varied, and the probability that the photon remains in the cavity that it started in is plotted over time.

TABLE IV. Calibrated rates of Gaussian operations. The amplitude of a displacement operation of fixed length τ ¼ 72 ns is calibrated
for generating a coherent state with α ¼ 1 [Fig. 4(a)]. The rates for the squeezing and beam splitter operations are extracted from the fits
[Figs. 4(b) and 4(c)].

Operation Model Cavity Calibrated rate

Displacement PðlÞ ¼ ðjαj2l=l!Þ expð−jαj2Þ A τα¼1 ¼ 72 ns
B τα¼1 ¼ 72 ns

Squeezing Pð2lÞ ¼ ½ð2lÞ!=22lðl!Þ2�½tanh2lð2gsqtÞ= coshð2gsqtÞ� A gsq ≈ 60 kHz
B gsq ≈ 60 kHz

Beam splitter P10=01 ¼ 1
2
e−κ̄ðt−t0Þ × f1þ e−κ

BS
ph ðt−t0Þ=2 cos½2gBSðt − t0Þ�g A

gBS ≈ 2π × 44 kHz
B
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the hybridization of the cavities with the shorter-lived
coupler transmon. Measured cavity Kerr and T1 values
are given in Table V.

APPENDIX D: CIRCUIT IMPLEMENTATION

The full quantum circuit implemented in our experiment
is shown in Fig. 7. State preparation in our experiment
(Fig. 8) consists of first performing measurement-based
feedback cooling of all modes to their ground state (this
protocol is described in full detail in the Supplemental
Material of Ref. [10]). For preparing Fock states, optimal
control pulses are then played that perform the following
state transfers:

j0iA ⊗ jgitA → jniA ⊗ jgitA ;
j0iB ⊗ jgitB → jmiB ⊗ jgitB : ðD1Þ

These state transfers, however, suffer a finite error prob-
ability on the order of a few percent due to decoherence
during the operation. This error is suppressed by perform-
ing a series of QND measurements of each cavity photon
number and postselecting on outcomes that verify that the
correct state was prepared. This is done via k selective π
rotations on the ancilla transmons conditioned on the
desired photon numbers in the cavities, followed by
transmon measurements—even if the desired state is joint
vacuum. The final data are postselected on the ancilla
measurement outcomes being ð“e; ”“g”Þ⊗k=2 for both
modules, where k is chosen to be even. In our experiment,
we choose k ¼ 2 for the single-bit extraction measurement
scheme and k ¼ 6 for the sampling measurement scheme.
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FIG. 5. Estimation of intrinsic and pump-induced self-Kerr. In all plots, the y coordinate corresponds to the effective frequency of a
coherent state with average photon number n̄ on the x coordinate. The slope determines the self-Kerr, and the offsets reflect pump-
induced Stark shifts. Experiments for estimating the self-Kerr in the (a) absence of pumps, (b) presence of off-resonant squeezing
pumps, and (c) presence of off-resonant beam splitter pumps for cavity A (top panels) and B (bottom panels).
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FIG. 6. Measurement of intrinsic and pump-induced decay
rates. Cavity T1 experiments with either a varying delay (red) or
the application of an off-resonant squeezing operation (purple)
during the delay for cavities A (top) and B (bottom).

TABLE V. Estimated cavity Kerr and T1 values. The beam
splitter decay rates are extracted from the fit performed in the
calibration of the operation in Fig. 4(c) assuming that
κBSA ¼ κBSB ¼ κ̄.

Cavity Operation K=2π (kHz) T1 (μs)

A Native 1.8 280
Squeezing 2 200

Beam splitter 30 170

B Native 3.2 320
Squeezing 1.9 280

Beam splitter 5 170
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APPENDIX E: CORRECTING SYSTEMATIC
ERRORS DUE TO TRANSMON DECOHERENCE

DURING SINGLE-BIT EXTRACTION

Errors due to ancilla decoherence during the single-bit
extraction measurement scheme may be systematically
calibrated out. Specifically, decay and heating events
during selective π rotations and readout errors result in a
systematic bias in the final estimate of the photon number
population. For the case of a single ancilla qubit coupled to
a single cavity, these effects result in a reduction of contrast
for a Rabi experiment when both the ancilla and the cavity
are prepared in their ground state (Fig. 9).
When using this pulse to infer cavity photon number

populations, we assume that there is no photon number
dependence to either the Rabi or decoherence rates of the
ancilla. Under this model, we can relate the measured
probabilities Q⃗ to the true probabilities P⃗ via
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FIG. 7. Circuit implementation of the Franck-Condon simulation. (a) Overview of the quantum simulation algorithm, consisting of
state preparation, unitary Doktorov transformation, and measurement. A set of verification measurements is performed after the unitary
Doktorov transformation for the purpose of postselecting the final data on measuring the transmons in their ground state. (b) The two-
mode circuit decomposition of the Doktorov transformation used in this experiment. The nonlinearity of the coupler transmon is
primarily utilized to perform all three pumped operations, though in principle that of the ancilla transmons could have been used as well.
(c) Single-bit extraction. Selective π pulses ðRπÞ flip each ancilla transmon conditioned on having n0 andm0 photons in cavities A and B,
respectively, for a given run of the experiment. The ancillas are then simultaneously read out using standard dispersive techniques.
Subsequent runs of the experiment thus need to scan n0 and m0 over the photon number range of interest up to the desired nmax.
(d) Sampling. Optimal control pulses are designed to excite each ancilla transmon from jgi to jei conditioned on the value of the binary
bits bi of each cavity state, followed by dispersive readouts. Here, we measure the first 4 bits on a given run of the experiment, thus
resolving the first 16 Fock states for each cavity. Real-time feed-forward control is used to dynamically reset the state of the ancilla in
between bit measurements to minimize errors due to ancilla relaxation.
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FIG. 8. Circuit implementation of heralded state preparation.
Measurement-based feedback cooling techniques prepare the full
system in its ground state (i.e., both cavities in j0i and all
transmons in jgi). Optimal control pulses of the form listed in
Table I of the main text are played simultaneously on each
module to prepare a desired photon number state, followed by a
set of k check measurements.
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P⃗ ¼ Q⃗ − f
t − f

; ðE1Þ

where f and t are the probabilities of assigning the ancilla
measurement to the excited state when it is prepared in the
ground and excited states, respectively. Thus, inferring the
true probabilities from the measured probabilities is a
relatively straightforward task.
For two modes, however, the problem becomes more

complicated as a measurement of a joint probability relies
on shot-by-shot correlations of the individual ancilla out-
comes. Thus, false positive counts due to heating and
readout errors lead to misassignment in a nonlinear fashion.
We can again write what a given joint measured probability
Qnm is in terms of the true distribution Pnm:

Qnm¼ tAtBPnmþtAfBPnm̄þfAtBPn̄mþfAfBPnm: ðE2Þ
Equation (E2) may be solved for Pnm by noting that

Pn̄m ¼
X
k

ð1 − δnkÞPkm;

Pnm̄ ¼
X
l

ð1 − δlmÞPnl;

Pnm ¼ 1 − Pnm: ðE3Þ
It is worth noting that this requires Qnm to be a square
matrix, which translates to measuring both n0 andm0 up to a
prespecified nmax.
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