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Quantum computing and quantum simulation can be implemented by concatenation of one- and two-
qubit gates and interactions. For most physical implementations, however, it may be advantageous to
explore state components and interactions that depart from this universal paradigm and offer faster or
more robust access to more advanced operations on the system. In this article, we show that adiabatic
passage along the dark eigenstate of excitation exchange interactions can be used to implement fast
multiqubit Toffoli (Ck-NOT) and fan-out (C-NOTk) gates. This mechanism can be realized by
simultaneous excitation of atoms to Rydberg levels, featuring resonant exchange interaction. Our
theoretical estimates and numerical simulations show that these multiqubit Rydberg gates are possible
with errors below 1% for up to 20 qubits. The excitation exchange mechanism is ubiquitous across
experimental platforms, and we show that similar multiqubit gates can be implemented in super-
conducting circuits.
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I. INTRODUCTION

In the circuit model paradigm of quantum computing, a
quantum algorithm is implemented as a sequence of one-
and two-qubit gates chosen from a suitable universal gate
set [1]. This paradigm mimics the models of classical
computers, and it allows direct assessment of the potential
of any candidate quantum system for quantum comput-
ing. Early proposals for quantum computing were thus
largely based on the identification of qubit degrees of
freedom in a physical system and interactions suitable for
two-qubit gates. The circuit model permits comparison of
the achievements of different candidate systems for
quantum computing by the execution time and fidelity
of their one- and two-qubit gates, and much effort has
thus gone into minimization of the one- and two-qubit
gate errors.
By concatenating infinitesimal steps of time evolution

with the one- and two-body gate interactions, it is possible
to synthesize more complex effective interactions [2–4],
but it has also been realized that the physical properties of
many quantum information candidate systems already

yield effective many-body interactions and allow efficient
implementation of certain multiqubit gates [5,6]. Use of
system-specific properties may significantly reduce the
number of operations and hence the errors incurred
during execution of a quantum algorithm. It complicates
the transfer of ideas and comparison of performance
among candidate platforms for quantum computing and
simulation, and along with the quantitative assessment of
the performance of a given scheme, it is hence worth-
while to identify and emphasize its generic features and
properties.
Trapped ions.—Quantum computing with trapped ions

employs the coupling of electronic excitation degrees of
freedom to a common motional vibration and permits a
direct implementation of the Toffoli gate [7]. Rather than
the original two-qubit gates [8,9], experimentalists now
routinely employ the joint vibrational coupling of all ions to
effectuate global operations on the entire quantum register.
A global S2x collective spin interaction, mediated by a
single vibrational mode, can produce Greenberger–Horne–
Zeilinger (GHZ) state in a single laser pulse [10–15], and
the multiqubit S2x interaction is sufficient, together with
single-qubit phase gates, for universal quantum computing
[5,7] and quantum simulation [16]. Ion-qubit interactions
mediated by multiple vibrational modes also permit physi-
cal motivated shortcuts to simulation of spin models with
tailored finite-range interactions [17].
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Superconducting qubits.—Superconducting qubits are
addressed and manipulated by their interaction with
cavities or waveguides, and multiqubit operations on
superconducting qubits in coupled cavities are discussed
in Refs. [18–20]. A recent work [21] presents a scheme for
single-step implementation of multiqubit Toffoli gates on
superconducting architectures without cavities but with
suitable Ising qubit-qubit interactions. Quantum simula-
tions of complex evolution dynamics benefit from the
physical properties offered by the superconducting qubit
systems and constitute an expanding field with consider-
able recent progress [22–24].
Atoms in optical lattices.—Ground-state interactions of

atoms in optical lattice or tweezer potentials have been
proposed for neutral-atom quantum gates [25–29]. Lattice
displacements and tunneling in conjunction with inter-
actions may simultaneously affect many atoms and may
hence be used for efficient quantum simulators of complex
many-body spatial and spin dynamics; see, for example,
Refs. [29–32].
Rydberg excited atoms.—Another prominent scheme for

quantum computing and simulation with neutral atoms
employs lasers to excite atoms to high lying and strongly
interacting Rydberg states. This scheme gives rise to the
excitation blockade mechanism [33], which also works on
ensemble qubits [34]. The ability of one atom to block the
excitation of a whole surrounding ensemble has led to
proposals for multiqubit gates [6,35–38]. Some studies
have proposed using adiabatic passage processes to prepare
strongly entangled states [39] and to entangle a single atom
with a mesoscopic ensemble [40]. In this article, we present
a new, robust adiabatic passage mechanism for multiqubit
gates. Rather than the blockade mechanism, our gate makes
use of the strong dipolar exchange interactions between
Rydberg excited atoms, and it employs adiabatic following
of a multiply Rydberg excited dark eigenstate under
variation of laser excitation amplitudes. This method leads
to robust implementation of the fan-out and Toffoli gates
with infidelities at the 1% level for up to k ¼ 20 control and
target qubits. Such small errors are compatible with surface
error correction codes for quantum computing [41], while
the multipartite GHZ states, prepared by a single pulse, are
of sufficient fidelity to offer metrological advances.
As the above-mentioned proposals are all very specific to

the given system (and they provide shortcuts of a very
different nature to multiqubit operations), it is difficult to
compare their performance. It may also be difficult to
generally assess the precise gain of adding a very specific
multiqubit gate operation to the already-available universal
gate set. However, we argue that the multiqubit fan-out and
Toffoli gates are so versatile—and so prominently applied
in quantum computing [35,42], simulation, and error
correction algorithms [43,44]—that they are worth includ-
ing and optimizing in any architecture where they can be
implemented efficiently. While Rydberg gates still lag

behind the fidelities of, e.g., the two-qubit ion trap gates,
with the multiqubit Rydberg gate capacity presented here,
the neutral-atom proposals may enter the stage and, for
certain tasks, even supersede the ion performance and offer
a more promising path for extension towards hundreds or
thousands of bits. The Rydberg-level structure and long-
range interactions are crucial for the detailed functioning of
the gates, but the central idea of the present proposal, i.e.,
the adiabatic following of the eigenstates of a multiqubit
system subject to resonant exchange interactions, may be
implemented in other systems, as we demonstrate for
superconducting circuits.
The article is organized as follows. In Sec. II, we briefly

summarize recent experimental and theoretical progress
with Rydberg atom quantum gates, and we describe the
level and excitation protocols of our multiqubit Toffoli and
fan-out gates. In Sec. III, we present the derivation of the
multiatom dark state responsible for the functioning of the
gates. In Sec. IV, we discuss error sources and estimate their
impact on the quantum gate fidelities. In Sec. V, we sketch
how key elements of our protocol can be applied to
superconducting qubits. In the Appendixes, we supplement
our error estimates with more detailed models, and we
present numerical simulations in support of the error
scalings identified in the main text.

II. RYDBERG ATOM QUANTUM GATES

The strong dipolar interaction between Rydberg excited
atoms has a high potential for application in quantum
information processing [33,34,45–61] and for implemen-
tation and simulation of quantum many-body physics with
neutral atoms [36–38,62–65]. Single-qubit gates are
achieved by coherent driving of transitions between the
ground hyperfine qubit states in the individual atoms, while
in, e.g., the two-qubit blockade gate [33], Rydberg exci-
tation of the control qubit atom shifts the nearby target-
atom Rydberg-state energy enough to prevent its sub-
sequent laser excitation. After years of experimental
research, we now have atomic arrays with tens or hundreds
of atoms, and the proposal to use Rydberg interactions for
neutral-atom quantum computing has finally reached the
conditions for high-fidelity operations [51,52].
Our goal in this article is to propose and analyze

multiqubit gates, and the Rydberg blockade mechanism
may, indeed, apply simultaneously to a number of target
atoms that are all shifted in energy and that may thus
undergo the same conditional evolution due to the excita-
tion of a single control atom, as, e.g., required in the fan-out
gate, implemented as a C-NOTk with one control and k
target qubits. It is also possible to implement a multiqubit
Toffoli, C2-NOT [66,67], Ck-NOT [6], and Ck-Z [35,68],
conditioned on k control qubits being all in the logical
state j1i.
However, already for two atoms, the blockade

scheme is vulnerable to weak off-resonant excitation and
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accumulation of phase errors. Also, the dipolar forces cause
decoherence through entanglement with the relative atomic
motion [45]. These errors accumulate proportionally to the
number of qubits in the proposed multiqubit gate oper-
ations [6]. Recently, a dark-state approach was proposed to
enhance the fidelity of Rydberg two-qubit gates [69]. In
that proposal, resonant laser excitation and dipole-dipole
interaction between pairs of Rydberg product states result
in the formation of an adiabatically varying energy eigen-
state with vanishing energy shift. Adiabatic following of
this “two-atom dark state” is inherently robust; it yields
very little population and phase error, and it induces no
forces between the atoms.
In the following sections, we provide schemes to

implement the C-NOTk and Ck-NOT gates on an arbi-
trary number of atoms by similar adiabatic processes. It
is a priori far from clear that a similar dark state would
exist in a multiatom system, where simultaneous exci-
tation of a large number of atoms may occur, and the
dipolar exchange interaction couples all atoms in a highly
intricate manner. If one, optimistically, assumes that a
single collectively and multiply excited dark state could
be found, one might reasonably fear that any variation in
atomic interaction strengths would break the symmetry
of the state and cause population of state components
in a highly noncontrollable manner. But this symmetry
breaking does not happen. We show, by analyses and
simulations, that a simple pulse sequence, indeed, drives
the many-atom state along a multiatom excited eigenstate
and back to the stable qubit states, in a manner that
implements the desired gates with up to 20 control or
target qubits.

A. Toffoli and fan-out gate schemes

The physical implementation of our multiqubit gates is
illustrated in Fig. 1. The qubit basis consists of long-lived
hyperfine ground levels j0i and j1i that can be coupled
coherently with Rabi frequency Ωμ with a microwave or
optical Raman transition. The qubit states j0ci and j1ti
are resonantly coupled with Rabi frequency Ωc;t to the
Rydberg state jrc;ti by a one-photon or two-photon process.
We assume that a resonant dipolar interaction with strength
B1 couples near resonant product states jrc; rti≡ jrci ⊗
jrti and jac;t; bc;ti, and we incorporate a resonant coupling
with strength B2 among the control or target product states
jbc;t; rc;ti and jrc;t; bc;ti.
Toffoli, Ck-NOT gate.—The Toffoli gate applies a

NOT operation to the target qubit, conditioned on all
control qubits being in state j1ci. We compose the
Toffoli gate by applying target qubit Hadamard oper-
ations before and after a Ck-phase gate implemented
with the following steps: A simultaneous π pulse
transfers those control atoms that are in j0ci to the
Rydberg state jrci. By supplying external fields, we can
tune the atomic resonances so that these excited atoms

experience negligible mutual interaction for the chosen
interatomic distances; see Appendixes A and D. We then
apply a smooth 2π pulse to the single target-atom in
resonance with the j1ti − jrti transition. In the absence
of any Rydberg excited control atom, the target state j1ti
thus acquires a factor (−1), while the presence of any
Rydberg excited control atom jrci leads to adiabatic
following along a dark state with no phase shift (see
next section). Application of a second simultaneous π
pulse on the control atoms returns the jrci population
to j0ci.
Fan-out, C-NOTk gate.—The fan-out gate is equivalent

to the application of a C-NOT gate with a single control
qubit and a number of target qubits. It can be carried out
sequentially, but we propose a protocol using simultaneous
adiabatic driving of the joint state of the control and all the
target qubits. Like the Toffoli gate, the fan-out gate applies
Hadamard target qubit gates before and after a suitable
phase gate: A π pulse transfers j0ci to the control atom
Rydberg state jrci, followed by a smooth 2π pulse on the
j1ti − jrti target atom transition. If the control atom is not
Rydberg excited (populates j1ci), the target atoms evolve
independently and acquire a phase by the 2π pulse, while
in the presence of the jrci excited state, the system
adiabatically follows a dark state (see below) and acquires
no phase. A subsequent π pulse restores the control
qubit state.
To show why the controlled phase evolution leads to

the desired fan-out gate, assume, for simplicity, that all
the targets are initially in state j1ti and, hence, in the
state jici⊗ ½ðj0ti− j1tiÞ=

ffiffiffi
2

p �⊗k ¼ 2−k=2jici⊗
P

k
j¼0ðkjÞ×

ð−1Þjj1ti⊗jj0ti⊗k−j after application of the first Hadamard
gate. The phase acquired by each component in this
state during the 2π pulse is ð−1Þj if the control atom
is in state j1ci and unity if the control is in state jrci.

(a) (b)

FIG. 1. Level scheme for three-qubit (a) Toffoli and (b) fan-out
gates. States j0c;ti, j1c;ti are long-lived qubit basis states, and
jrc;ti, jac;ti, and jbc;ti are Rydberg states of the control and target
atoms. Hadamard qubit gates (π=2 pulses) on the target atoms are
implemented by the Ωμ classical field. Control states j0ci and
target states j1ti are coupled to the Rydberg levels jrc;ti by Ωc;t

lasers. The resonant exchange interaction between control and
target Rydberg atoms jrcrti ↔ jac;tbc;ti with strength B1 ≫ Ωt

drives the dark-state dynamics, while an intracomponent ex-
change interaction B2 perturbs the gate operation.
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The j1ci component becomes j1ci⊗ 2−k=2
P

k
j¼0ðkjÞ×

ð−1Þ2jj1ti⊗jj0ti⊗k−j ¼ j1ci⊗ ½ðj0tiþ j1tiÞ=
ffiffiffi
2

p �⊗k, which,
after the second Hadamard target operation, results in the
C-NOTk gate.

III. DARK STATES

The resonant excitation in the presence of the exchange
interaction between control and target atoms results in the
formation of a multiqubit dark state. In the analyses in this
section, we disregard the variation of the dipole interaction
strengths B1 and B2 due to the different distances between
the atoms. This simplification allows for an effective
treatment of the problem in a reduced basis of symmetric
states. The full model is assessed by numerical simulations
with atoms on a regular lattice.
Toffoli gate.—Our gate relies on the dipole-dipole

interaction jrcrti⥨
B1 jacbti, which may be tuned into

exact resonance by application of external fields. The
always-resonant intracomponent exchange interaction

jrcbci⥨
B2 jbcrci will yield a perturbation on our dark-state

dynamics and must also be taken into account.
We thus split the Hamiltonian into the following two

parts (ℏ ¼ 1):

Vcc ¼ B2

X
i<l

ðjbcirclihrcibcl j þ H:c:Þ;

Hd ¼ Ωt=2ðjrtih1tj þ H:c:Þ

þ
Xk
i¼1

B1ðjbciatihrcirtj þ H:c:Þ; ð1Þ

with atomic indices i and l. Subject to Hd, while slowly
turning on the target Rabi frequency Ωt, the system initially
populating a state with j Rydberg excited control atoms and
no target excitations, jrjc1ti, acquires a component of the

state jbcrj−1c ati, forming a superposition similar to the
“dark state” in stimulated Raman adiabatic passage
(STIRAP) processes [70]; i.e., the coupling to the inter-
mediate state jrjcrti vanishes due to destructive interference
of the transition amplitudes,

jdit ¼ cosðθtÞjrjc1ti − sinðθtÞjbcrj−1c ati; ð2Þ

where tanðθtÞ ¼ ðΩt=2
ffiffi
j

p
B1Þ and jbcrj−1c ati is the sym-

metric state, with one of the j atoms transferred from the rc
to the bc Rydberg level. The coherent coupling of states is
illustrated in Fig. 2(a).
While Eq. (2) is a zero-energy eigenstate of Hd, the

intracomponent interactions Vcc disturb the state and
contribute a loss of fidelity together with other error
mechanisms that we assess in detail in the following
sections and in the Appendixes. We can estimate the error

due to Vcc to be of magnitude P̄jbcrj−1c ati
B2τt ¼

½ðπΩtB2Þ=ð4jB2
1 þ Ω2

t Þ� for j > 1, where P̄jbcrj−1c ati
is the

average population of the interacting state over the duration
τt of the 2π rotation of the target atom. As expected, this
error is negligible in the interesting regime of Fig. 4.
We have tested the validity of the adiabatic eigenstate

[Eq. (2)] of Hd by solving the time-dependent Schrödinger
equation for the system subject to Hd and Vcc with realistic
experimental parameters and with atoms occupying a
regular lattice geometry. As shown in Fig. 3(a), the
infidelity is very small, and the initial state is retrieved
with minimal nonadiabatic loss [71]. Appendix B presents
further discussion of the adiabatic following.
Fan-out gate.—To explain the dark state that is formed

from control-target interaction in the fan-out gate, we
consider the case where initially a single control qubit
is excited to jrci with a π pulse. In the next step, we
apply a 2π pulse, which is resonant with the transition
j1ti ↔ jrti of the target atoms, while the system is

subject to the dipole-dipole interactions jrcrti⥨
B1 jacbti

and jrtbti⥨
B2 jbtrti with the couplings B1 and B2. The

Hamiltonian is thus

H ¼
Xk
i¼1

½Ωt=2ðjrtiih1tj þ H:c:Þ þ B1ðjacbitihrcritj þ H:c:Þ�

þ B2

X
i<l

ðjbitrltihritbltj þ H:c:Þ: ð3Þ

(a)

(b)

FIG. 2. Dark states in (a) Toffoli and (b) fan-out gates. Only the
state components shown in bold face get populated. In the fan-out
gate (b), the system undergoes up to j STIRAP transfer processes.
The collective states’ notation, indicated by the overline, is
defined in the text.
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Starting from the initial state with j target atoms
in j1ti, the state evolves adiabatically under the dark-
state interference mechanism shown in Fig. 2(b).
The figure shows a ladder of state components (bold
solid lines), occupied with amplitudes that ensure
vanishing coupling to the rightmost ladder of states
(dashed lines). Here, jrcrmt i is the normalized sum of
all possible configurations with m target atoms in the
Rydberg state and j −m target atoms remaining in the
state j1ti, while k − j atoms are in the uncoupled
state j0ti. In the mth two-photon step, the coupling
strengths are given by ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðj −mþ 1Þp
Ωt=2;

ffiffiffiffi
m

p
B1�

and ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm − 1Þðj −mþ 1Þp
Ωt=2;

ffiffiffiffi
m

p
B1� for odd and

even m, respectively, The corresponding fan-out dark
state reads

jdif ¼
Xj=2
i¼0

cosðθfðj−2iÞ!Þ sinðθfð2iÞ!Þjrcr2it i

−
Xj=2−1
i¼0

cosðθfðj−2i−1Þ!Þ sinðθfð2iþ1Þ!Þjacbtr2it i; ð4Þ

where tanðθfm¼2iÞ ¼ ðΩt=2B1Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j −mþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffi
m − 1

p
=

ffiffiffiffi
m

p Þ
and tanðθfm¼2iþ1Þ ¼ ðΩt=2B1Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j −mþ 1

p ffiffiffiffi
m

p
=

ffiffiffiffi
m

p Þ and

tanðθfm!Þ≡
Q

m
l¼1 tanðθfl Þ with tanðθf0!Þ≡ 1. Figure 3(b)

shows that the time-dependent solution of the
Schrödinger equation follows the adiabatic eigenstates
very well. The probability of exciting m Rydberg atoms
is given by Pm ¼ ðtan θfm!Þ2. Since the states are less
populated for higher m, the most important contribution

of the target interaction comes from jacbtr2t i populated
with probability ðtan θf3!Þ2. The perturbation of the dark
state by the exchange interaction is quantified by
f½jðj − 1Þðj − 2Þ�=2gðΩt=2B1Þ6B2, which has a negli-
gible effect in the regime of interest of Fig. 4.

IV. ERROR ESTIMATES

In this section, we address the effects of spontaneous
emission, errors in population rotations, and nonadiabatic
dynamics on the gate fidelity. In Appendixes D and E, we
further discuss the effects of atomic motion and of
nonresonant Rydberg channels leading to unwanted phases
and population loss. We first provide simple estimates of
the errors, and in Fig. 4, we compare them with the more
elaborate results obtained in Appendix C with the atoms
positioned on a real lattice.
Toffoli.—The Rydberg state decay rate is given by Γ

[72]. Over each 2π pulse between the ground state and
Rydberg level, the average decay and thus error probability
of an atom are given by ð2π=ΩÞΓ. Similarly, an atom has a
probability to decay if it is maintained in an excited state
during the gate operation. In the Toffoli gate, the control
atoms do not block each other, and all j atoms in state j0ci

get excited to the Rydberg level. The maximum target
Rydberg state population in the dark state is ðΩ2

t =4jB2
1Þ

when there are j control atoms in the Rydberg level and 1
when j ¼ 0. Therefore, the average spontaneous emission
errors from target and control atoms are estimated by

Ese;t ¼
2πΓ
Ωt

1

2kþ1

�
1þ

Xk
j¼1

�
k

j

�
Ω2

t

4jB2
1

�

Ese;c ¼
�
2π

Ωc
þ 4π

Ωt

�
Γ
1

2k

Xk
j¼1

�
k

j

�
j ¼

�
2π

Ωc
þ 4π

Ωt

�
kΓ
2
;

ð5Þ
where Γ ≃ 1 kHz at T ¼ 77 K is the maximum decay rate
of the applied Rydberg levels with n ≃ 100. During
population rotation between the ground and Rydberg
levels, another error of magnitude ½ðj − 1Þ2D2

cc=Ω2
c�

appears for each control atom due to the unwanted
interaction Dcc ¼ ðCmm

6 =r6ccÞ between the control atoms
where the interaction coefficient Cmm

6 is provided for a set
of states in Table I. Finally, nearby Rydberg levels detuned
by δr¼c;t ¼ ½UðnÞ −Uðn − 1Þ� ¼ Ry=n3, where Ry is the
Rydberg energy, cause rotation errors, and we summarize
the error contributions,

Er1;c ¼
1

2k

Xk
j¼2

�
k

j

�
j
ðj − 1Þ2D2

cc

Ω2
c

¼ k3 − k
8

D2
cc

Ω2
c
;

Er2;c ¼
1

2kþ1

Xk
j¼1

�
k

j

�
Ω2

c

4ðδc � ðj − 1ÞDccÞ2
;

Er2;t ¼
1

2

Ω2
t

4δ2t
: ð6Þ

More detailed discussions of these estimates are presented
in Appendix C.
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FIG. 3. The infidelity of the numerical solution to the time-
dependent Schrödinger equation with respect to the time-
dependent dark eigenstate (2) for the Toffoli gate (a), and (4)
for the fan-out gate (b). The Rydberg qubit states are j101S; 109Si,
with interaction strengths listed in Table I in Appendix A. The
target Gaussian 2π pulse with duration τ and maximum Rabi
frequencyΩt ¼ 0.1B1 is applied to atoms on a square latticewith a
lattice constant of 10 μm. The atomic system is chosen to
maximize the values of B1 and minimize the ones of B2.
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Adiabatic manipulation of Ωt prevents the scattering of
population from the dark into the bright states and ensures
the return of the atomic population to the qubit basis.
Nonadiabaticity during the Toffoli gate is quantified in
Appendix B by the error

Eadi ¼
1

2kþ1

Xk
j¼1

�
k

j

�
Ω4

t

640B4
1j

2
: ð7Þ

The trade-off between errors Ese, Er1 and Eadi, Er2 yields
optimal laser intensities that fulfill Dcc;Γ ≪ Ωc ≪ δc and
Γ ≪ Ωt ≪ B1, δt.
Fan-out.—In fan-out gates the number of Rydberg

excited target atoms is j for the case of j1ci, and in the
case of j0ci, the population may be approximated by Pt ¼
ðjΩ2

t =4B2
1Þ in the weak driving regime, The average errors

in fan-out gates are quantified along the same lines as

Ese;c ¼
1

2

�
2π

Ωc
þ 4π

Ωt

�
Γ;

Ese;t ¼
2πΓ
Ωt

1

2kþ1

Xk
j¼1

�
k

j

��
jþ jΩ2

t

4B2
1

�
≈
πkΓ
2Ωt

;

Er1 ¼
1

2kþ1

Xk
j¼2

j
½ðj − 1ÞDtt�2

Ω2
t

�
k

j

�
¼ k3 − k

16

D2
tt

Ω2
t
;

Eadi ¼
1

2kþ1

Xk
j¼0

�
k

j

�
jΩ4

t

640B4
1

¼ kΩ4
t

2560B4
1

;

Er2 ¼
Ω2

c

4δ2c
þ 1

2kþ1

Xk
j¼1

�
k

j

��
jΩ2

t

4ðδt � ðj − 1ÞDttÞ2
þ jΩ2

t

4δ2t

�
;

ð8Þ
where in Ese;t and Er2 , the elements in brackets correspond
to j1ci and j0ci states. Adiabatic errors are derived in
Appendix B, and Dtt ¼ ðCmm

6 =r6ttÞ is the intracomponent
interaction between target atoms at separation rtt.
The total infidelity of the dark-state gates vs number

of qubits k operating on a square lattice of Cs atoms
is plotted in Fig. 4, where the circles represent the
analytical error estimates [73] and crosses report the
average lattice-dependent error from a more detailed
calculation with atoms positioned in a square lattice;
see Appendix C. The targeted Rydberg states are
j101S; 109Si; see Table I in Appendix A for the corres-
ponding interaction strengths. All dynamical parameters
are optimized. The upper limit Ωt=B1 < 0.42 is con-
sidered to minimally perturb the energy of the dark
states and to fulfill the adiabatic error scaling; see
Appendix B. In calculating Ese, the environment tem-
perature of T ¼ 77k is considered. Room-temperature
performance is quantified in Fig. 6 of Appendix A. A
lattice constant of r > 8 μm is sufficient to preserve the

dark state, avoid population leakage to nonresonant
Rydberg pairs, and keep the associated unwanted
phases small; see Appendix D. The infidelities shown
with cross symbols in Fig. 4(b) are obtained with the
optimized dynamical parameters 16 kHz < Ωt=2π <
8 MHz, Ωc=2π ¼ 16 MHz and a lattice constant of
r ¼ 8 μm for the Toffoli gate, and 1 MHz < Ωt=2π <
8 MHz, Ωc=2π ¼ 16 MHz and 8 μm < r < 10 μm for
the fan-out gate. Following the parameter optimization,
Fig. 4 shows that the dark-state multiqubit gates can be
realized for up to k ¼ 20 atoms with less than 1%
errors, making them suited for entanglement generation
schemes and surface-code error correction [41].
The adiabatic dark-state evolution improves the

fidelity compared with the blockade scheme by reducing
different rotation errors and by decoupling the motional
degrees of freedom; see Appendix E. The conven-
tional blockade scheme entails a blockade leakage error
Er3, while the dark-state approach suppresses rotation
errors in Eqs. (7) and (8) by a factor ðEadi=Er3Þ ¼
ðΩ2

t =160B2
1Þ; see Appendix B. Also, in the blockade

schemes, the control-target interaction results in level
shifts that enhance off-resonant excitation of neighbor-
ing Rydberg pairs with resulting gate errors Eblo

r2;t ¼
ð1=2kþ1Þ½Pk

j¼1ðkjÞfΩ2
t =½4ðδ� jBctÞ2�gþ ðΩ2

t =4δ2Þ� in the

Toffoli gate and Eblo
r2;t ¼ ð1=2kþ1ÞPk

j¼1ðkjÞf½jΩ2
t =4ðδ�

ðj − 1ÞDttÞ2� þ ½jΩ2
t =4ðδ� BctÞ2�g in the fan-out gate.

In comparison with the errors of the dark-state gates,
shown in Fig. 4, the blockade Toffoli scheme, working
with simultaneous pulses, results in the error range of
0.02 < E < 0.09 for 3 < k < 24 [6] and in the range
0.015 < E < 0.35 for the fan-out gate for the same
range of k numbers. Comparing with the filled circles
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FIG. 4. Total infidelity of dark-state gates vs (a) atomic
separation and (b) number of qubits k (we use Rydberg states
j101S; 109Si of Cs atoms with intracomponent and intercompo-
nent interaction coefficients given in Table I in Appendix A). In
panel (a), gates with k ¼ 6 (solid lines) and k ¼ 20 (dashed lines)
are carried out at the environment temperature of T ¼ 77K. In
panel (b), filled circles represent the analytical error estimate in
Sec. IV, while crosses show more elaborate estimates determined
with atoms located on a square lattice; see Appendix C. All the
dynamical parameters are optimized for each point.
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in Fig. 4(b), the dark-state multiqubit gates reduce the
infidelity by 1 to 2 orders of magnitude while operating
at less demanding Rabi frequencies.

V. IMPLEMENTATION WITH
SUPERCONDUCTING CIRCUITS

In this section, we show that the adiabatic following
of excitation-exchange eigenstates, analyzed in detail
for Rydberg excited atoms, can also be employed for
multiqubit gates in superconducting circuit architectures
[74]; see Fig. 5(a). The role of control (target) qubits in
the Toffoli (fan-out) gates is held by the upper red
circuit elements, 1…k, and the target (control) qubit is
shown as the lower blue circuit element. Figure 5(b)
shows the qubit-level structure for the Toffoli gate, with
logical qubit states j0ðc;tÞi and j1ðc;tÞi and auxiliary
states j2ðc;tÞi and j3ti. The circuit parameters are chosen
to make the product states j3t1ci and j2t2ci degenerate
and coupled by strength B1 while minimizing the
resonant exchange coupling strengths B2 between the
control qubits.
The gate operation is similar to the atomic implementa-

tion discussed in Sec. II A. The Hamiltonian of the system
while applying the classical drive in resonance with the
j1ti − j2ti transition is given by

Ht ¼
Ωt

2
ðj1tih2tj þH:c:Þ þ

Xk
i¼1

B1ðj3t1icih2t2icj þH:c:Þ;

Hf ¼
Xk
i¼1

�
Ωt

2
ðj1itih2itj þH:c:Þ þB1ðj3it1cih2it2cj þH:c:Þ

�
;

ð9Þ

for Toffoli and fan-out gates, respectively (see details in
Appendix F). In the presence of at least one control and one
target excitation, the evolution of the dark states during the
target 2π pulse is given by

jdit ¼ cosðθÞj2jc1ti − sinðθÞj1c2j−1c 3ti;
jdif ¼ cosðθÞj2c1jti − sinðθÞj1c2j−1t 3ti ð10Þ

in the Toffoli and fan-out gates, respectively; see Figs. 5(c)
and 5(d). Like in the atomic implementation discussed
above, the overline symbols represent the normalized sum
of states where one of the j (control) target atoms is (de)
excited and tanðθÞ ¼ ðΩt=2

ffiffi
j

p
B1Þ. In Appendix F, we

briefly present how the qubit interaction parameters are
obtained from the circuit capacitances and Josephson
energies, and we discuss the multiqubit gate fidelities
achievable with realistic physical parameters.

VI. CONCLUSION

In this article, we have proposed and analyzed multi-
qubit gates based on adiabatic evolution of Rydberg
excited multiatom dark states, formed by an interference
between coherent driving terms and resonant dipole-
dipole excitation transfer among pairs of atoms.
Previous works [69] have shown that such dark-state
dynamics has the potential to achieve better error scaling
for two-qubit gates than the conventional Rydberg block-
ade mechanism, and our work has demonstrated the
viability of the same mechanism for many atoms. We
show that simple estimates of the errors give rise to
acceptable gate fidelities and that one may conceivably
apply the gate to up to 20 atoms to prepare multiqubit
entangled states by very short and fast laser pulse
sequences. Similar performance is predicted in this paper
for an implementation with superconducting qubits.
Schemes using a similar mechanism may be employed
for Toffoli and fan-out multiqubit gates on trapped ions
(to be published).
For quantum computing and error correction, the fan-

out and Toffoli gates are useful, and already for just two to
four target and control qubits, multiqubit gates that
employ adiabatic following of exchange interaction eigen-
states may have advantages over sequential operation
of one- and two-qubit gates [6,35,68]. Such gates are
much faster and include fewer pulses and may hence
have higher fidelity [75] (a C20-NOT gate based on

(a)

(c) (d)

(b)

FIG. 5. Implementation of adiabatic multiqubit gates with
superconducting circuits. (a) The k-control (target) qubits and
a single-target (control) qubit applied in the multiqubit Toffoli
(fan-out) gate. (b) Level structure of two control and one target
qubit systems for the Toffoli gate, showing the resonant exchange
processes with strengths B1 and B2. (c) [(d)] Coupling of levels
leading to multiqubit dark superposition states (10) in the Toffoli
(fan-out) gates where only the state components shown in bold
face are populated. The overline symbols in the state kets are
explained in the text.
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concatenated one- and two-qubit Rydberg gates would
require about 690 sequential laser pulses addressing
individual sites [76,77]).
Toffoli and fan-out gates play key roles in quantum

error correction [43,44], the Grover search algorithm
[35], and Shor’s factoring algorithm [42], and their
implementation by few operations will impact the
prospects for fault-tolerant quantum computing. The
multitude of theoretical proposals for quantum comput-
ing and quantum simulations making use of higher-
order interactions [78,79] provide promising targets for
the gates presented in this article on both superconduct-
ing architectures and atoms in regular spatial configu-
rations in 1D [37,80], 2D [62,81–89], and 3D [90,91].
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APPENDIX A: INTERACTIONS BETWEEN
RYDBERG EXCITED ATOMS

Here, we identify candidate Rydberg levels that are
useful for the proposed gate implementation. We denote
by the subscript m the state associated with the k ≥ 1

control (target) qubits in the Ck-NOT (C-NOTk) gate.
The state occupied by the single-target (control) qubit
is represented here by the subscript s. A natural choice
of Rydberg states would be rm ¼ as ¼ nS1=2 and
rs ¼ bm ¼ nP3=2, with a resonant control-target exchange
interaction.
However, in addition to unwanted coupling to other

pairs of Rydberg states [69], with this choice, the
control and target qubits may exchange their excited-
state components and hence ruin the multiqubit gate
performance. To preserve the strong intercomponent
interaction, we use Stark-shifted resonant Rydberg pairs
instead of excitation-exchange resonant Rydberg pairs.

Therefore, we choose different states and use an electric
field to tune only the desired states into resonance.
Applying the external electric field perpendicular to the
planar array of atoms preserves isotropic interaction
among atoms, and it also improves the ratio of the
intercomponent interaction CB1

3 to the unwanted intra-
component interaction Cmm

6 between multiqubit states;
see Sec. IV.
Rydberg atom pairs jrmrsi and jambsi are chosen to be

in resonance in the presence of the external field E.
Interaction coefficients of states jrsrmi, jrmbmi, and
jrmrmi are represented by CB1

3 , CB2

3 , and Cmm
6 , respec-

tively. The Stark shifts of the levels and the van der
Waals interaction coefficients Cmm

6 are calculated with
perturbation theory for a range of Rydberg pairs within
�3 variation in principal quantum numbers and angular
momentum 0 < l < 4. Table I represents three candidate
level schemes with different principal numbers in Cs.
Similar level schemes could be applied in Rb with the
application of stronger electric fields. When choosing
the levels, we have optimized the CB1

3 =Cmm
6 to reduce

rotation gate errors.
The fidelities of the dark-state gates are compared for the

three qubit states represented in Table I and for different
environment temperatures in Fig. 6. While j101S; 109Si
seems to be an optimum choice of state, moderate changes
of the principal number are indeed possible [92]. The
dynamic parameters for the states j150S; 160Si are d ∈
½19 μm; 26 μm�, Ωc=2π ∈ ½8 MHz; 9.5 MHz�, Ωt=2π ∈
½1 MHz; 3 MHz� for the Toffoli gate and d ∈ ½20 μm;
30 μm�, Ωc=2π¼10MHz, Ωt=2π ∈ ½0.8 MHz; 2.4 MHz�
for the fan-out gate. Choosing j87S; 95Si, the ranges of
parameters are d ∈ ½5 μm; 7.5 μm�, Ωc=2π ¼ 24 MHz,
Ωt=2π ∈ ½5.5 MHz; 19 MHz� for the Toffoli gate
and d ∈ ½5 μm; 9.5 μm�, Ωc=2π ¼ 24 MHz, Ωt=2π ∈
½2.7 MHz; 19 MHz� for the fan-out gate. Note that the
critical distance defined in Appendix D is dc ¼ 4.5 μm for
this choice of states. The ranges of parameters for T ¼
300 K in Fig. 6 are d ∈ ½8 μm; 9.5 μm�, Ωc=2π ¼
24 MHz, Ωt=2π ∈ ½5 MHz; 8 MHz� for the Toffoli gate
and d ∈ ½8 μm; 12.5 μm�, Ωc=2π ¼ 10 MHz, Ωt=2π ∈
½2 MHz; 16 MHz� for the fan-out gate.

TABLE I. Two Rydberg atom pairs jrsrmi and jasbmi are in resonance in the presence of a static external field E. The multiqubit state
is represented by the subscript m, associated with k control (target) qubits in the Ck-NOT (C-NOTk) gate. The single-qubit state is
represented by the subscript s. The interaction coefficients of states jrsrmi, jrmbmi, and jrmrmi are represented by CB1

3 , CB2

3 , and Cmm
6 ,

respectively.

CB1

3 CB2

3
Cmm
6 E

jrsi jrmi jasi jbmi ð2πGHz:μm3Þ ð2πGHz:μm3Þ ð2πGHz:μm6Þ ðV=mÞ
95S1=21=2 87S1=21=2 95P3=23=2 87P3=23=2 −5.6 −1.56 −5 31.8
109S1=21=2 101S1=21=2 109P3=23=2 101P3=23=2 −10.2 −2.87 −27.9 15.2
160S1=21=2 150S1=21=2 160P3=23=2 150P3=23=2 −49 −14.3 −4300 2
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APPENDIX B: NONADIABATIC ERRORS

In this Appendix, we quantify the nonadiabatic errors in
the Toffoli and fan-out gates. Results obtained by the
numerical solution of the Schrödinger equation are shown
by the filled symbols and compared with analytical
estimates in Fig. 7.
Analytical estimates for Toffoli gate.—The nonadiabatic

loss of population from the dark state jdit in Eq. (2) during
the Toffoli gate is estimated by Eadi ¼ ½_θ2t =ðΩ2

t =4þ jB2
1Þ�,

where _θt¼f½ð _ΩtÞ=ð2
ffiffi
j

p
B1Þ�=½1þ tan2ðθtÞ�g. Here, we con-

sider a Gaussian target pulse of ΩðtÞ ¼ Ωtðe−½ðt−T=2Þ2=2σ2�−
e−ððT=2Þ2=2σ2ÞÞ, with a rms width of σ ¼ T=5 and a pulse
duration of T given by

R
T
0 ΩðtÞdt ¼ 2π. The scattered

population out of the dark state at the end of the target
pulse is evaluated to

Et
adi ≈

Ω4
t

640πj2B4
1

: ðB1Þ

In the conventional Toffoli blockade gate scheme, any
blockade leakage population would directly affect the
conditional phase and thus lead to an error, Et

r3 ¼
ðΩ2

t =4j2B2
1Þ. This value is plotted as the dashed lines

in Fig. 7(a).
Analytical estimates for fan-out gate.—In the weak

driving regime ðΩt=2 ≪ B1Þ, the main population remains
in the first three levels of the STIRAP process; see
Fig. 2(b). Restricting the Hamiltonian to these levels,
Hðm¼1Þ ¼ ð ffiffi

j
p

=2ÞΩðtÞðjrc1jtihrcr̄tj þ H:c:Þ þ B1ðjacb̄ti×

hrcr̄tj þ H:c:Þ, the dynamics in the time-dependent eigen-
basis of Hðm¼1Þ is governed by

H̃ðm¼1Þ ¼

0
BBB@

ωþðtÞ −i
_θf
1

2
0

i
_θf
1

2
0 i

_θf
1

2

0 −i
_θf
1

2
ω−ðtÞ

1
CCCA; ðB2Þ

where ω�ðtÞ and 0 are the eigenvalues of Hðm¼1Þ, and
tanðθfðm¼1ÞÞ ¼ ½ ffiffi

j
p

ΩðtÞ=2B1� is defined after Eq. (4). To

preserve the population in the dark eigenstate, the off-
diagonal elements must be sufficiently smaller than the
bright state energies j_θf1ðtÞj ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj=4ÞΩ2ðtÞ þ B2

1

p
. Using

the Gaussian target pulse with σ ¼ T=5, we obtain the
nonadiabatic error

Ef
adi ≈

jΩ4
t

640πB4
1

; ðB3Þ

at the end of the target pulse. The corresponding rotation
error in the higher two-photon steps in the EIT ladder of
Fig. 2(b) is multiplied by their excitation probability
ðtan θfm!Þ2 and does not contribute in the weak driving
regime.
The numerical evaluation in Fig. 7 shows that the

maximum loss of population to the bright states is governed
by the nonadiabatic estimate in Eqs. (B1) and (B3) (the
simple estimate has been corrected by a factor 3, which is
compatible with the magnitude of the oscillations of the
nonadiabatic population in Fig. 3). It is interesting to note
that this error is again significantly smaller than the
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FIG. 7. Nonadiabatic loss of population from the dark state in
the (a) Toffoli and (b) fan-out gates as a function of Ωt=B1.
Scattered symbols represent results of numerical simulations with
the atoms positioned on a square atomic lattice with a lattice
constant of 10 μm. We employ j101S; 109Si Rydberg levels, and
we assume physical parameters maximizing (minimizing) the
average value of B1 (Bave

2 ). The solid lines show the simple
estimate of the loss of population to the bright states [cf. Eqs. (B1)
and (B3)] multiplied by a factor of 3. The dashed lines show the
rotation error of the corresponding blockade gates.
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FIG. 6. Fidelity of dark-state gates as a function of qubit
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in panel (c) are j101S; 109Si. The ranges of dynamic parameters
are stated in the text.
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blockade gate rotation error Ef
r3 ¼ ðjΩ2

t =4B2
1Þ, plotted with

the dashed lines in Fig. 7(b). The ratio of the errors in the
adiabatic and blockade gates is given by Eadi=Er3 ∝
ðΩ2

t =160B2
1Þ, which suggests that the dark-state approach

may work at stronger driving regimes and hence allow
faster operation.

APPENDIX C: GATE ERRORS FOR ATOMIC
CONFIGURATIONS ON A LATTICE

Unlike in the error estimates in the main text, here
we take into account that different qubit configurations
with equal Rydberg atom numbers do not lead to the
same errors, due to the different interaction strengths
over the lattice. We thus evaluate these interaction
strengths for definite spatial configurations, and we
calculate the average gate fidelity over the 2kþ1 qubit
states. The main influence of the varying interactions
occurs in the rotation errors.
Numerical evaluation.—For k ≤ 4, it is possible to solve

the Schrödinger equation numerically and quantify the gate
fidelity averaged over all input qubit states [93],

F ¼ ½TrðMM†Þ þ jTrðMÞj2�=½nðnþ 1Þ�; ðC1Þ

withM ¼ U†
idUgate, whereUid andUgate represent ideal and

realistic gate operations. Here, Ugate is obtained from
numerical simulation of the gate for all possible 2kþ1 qubit
product state configurations, taking into account the atomic
interactions imposed by the lattice geometry. In practice,
we solve the Schrödinger equation on the tensor product
space of (kþ 1) five-level atoms (representing qubit and
Rydberg levels, including extra Rydberg levels to simulate
the second type of rotation errors estimated by Er2 in the
text). The results are depicted with the triangle symbols
in Fig. 8 for the parameters listed in the figure caption.
The cross symbols are obtained by averaging analytical
estimates for each classical qubit configuration, as
described in the following.
Toffoli gate.—In the qth qubit configuration

(1 < q < 2kþ1), with jq control atoms occupying the
j0ci state, the first type of rotation error is estimated by

the sum of each control atom’s error EðqÞ
r1 ¼ Pjq

l¼1ðΔl=ΩtÞ2,
where Δl ¼

Pjq
m≠l DccðrlmÞ is the interaction of the lth

atom with all the jq − 1 other control atoms in the jrci state.
The second type of rotation error from control atoms is

estimated by EðqÞ
r2;c ¼

Pjq
l¼1½Ω2

c=4ðδc � ΔlÞ2�, where δc is
the level spacing of the closest accessible Rydberg level to
jrci, while an error contribution from the target atom is

given by EðqÞ
r2;t ¼ ðΩ2

t =4δ2t Þ when the target atom is in
state j1ti and zero otherwise. Finally, the average lattice-
dependent error is given by averaging over all qubit
configurations.

Fan-out.—In the qth qubit configuration, with jq target
atoms that are in the j1ti state, the first type of rotation error
for the j1ci state is estimated by EðqÞ

r1 ¼ Pjq
l¼1ðΔl=ΩtÞ2,

where Δl ¼
Pjq

m≠l DttðrlmÞ is the level shift of the lth atom
due to the jq − 1 other target atoms in the j1ti state. The
second rotation error is estimated by EðqÞ

r2 ¼ Pjq
l¼1f½Ω2

t =
4ðδr � ΔlÞ2� þ ðΩ2

t =4δ2t Þg, where δt is the level spacing
of the closest Rydberg state to jrti. The two terms in
brackets correspond to j1ci, j0ci states, respectively. For
the initial j0ci state, the probability of exciting two target
atoms is low in the regime of interest of Fig. 4, and hence
target-target interactions do not contribute to errors. The
main control-target interaction channel due to B1 then
populates the jacbti pairs as desired and does not cause
rotation error.
The good quantitative agreement between the results of

the full quantum evolution and the refined analytical
estimates gives confidence in the latter approach and
qualifies its use for large atom numbers in Fig. 4 of the
main paper.

APPENDIX D: LEAKAGE TO NONRESONANT
RYDBERG PAIRS

In our derivation of the dark states followed by our
quantum system, we only included the main resonant
exchange interactions B1 and B2 and neglected the weaker
off-resonant channels. The coupling to other nonresonant
Rydberg pairs may lead to population loss and deviation
from the ideal phase. Here, we recall the Rydberg states
introduced in Table I, rs ¼ 109S1=21=2, rm ¼ 101S1=21=2,
as ¼ 109P3=23=2, and bm ¼ 101P3=23=2. With the atomic
plane perpendicular to the quantization axis and with a
15.2 V=m electric field along the quantization axis to make
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FIG. 8. Comparison of analytical and numerical error calcu-
lations of multiqubit gates over a square optical lattice. In our
numerical simulations, the Schrödinger equation is solved on the
tensor product space of the atoms. The gates are operating on
atoms populating neighboring positions in a square lattice with a
lattice constant of 8 μm. We assume an environment temperature
of T ¼ 77 K and laser coupling strengths Ωt=B1 ¼ 0.42 and
Ωc=2π ¼ 16 MHz, exciting the Rydberg states j101S; 109Si; see
Table I for the values of interaction parameters.
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jrsrmi resonant with jasbmi, we obtain the physical
couplings listed in Table II.
To calculate the effects of the near-resonant Rydberg

pairs in Fig. 9, we fixΩt=B1 ¼ 0.1 and simulate the Toffoli
(C2-NOT) and fan-out (C-NOT2) gate operations with a
five-level single-qubit atom and two control or target atoms
with nine levels (see Table II).
The main reduction of fidelity comes from the third

state listed in Table II. Below a critical distance
dc ¼

ffiffiffiffiffiffiffiffiffiffi
C3=δ

3
p ¼ 8 μm, the coupling to that state is larger

than its energy detuning and disturbs the dark state at the
heart of the scheme. Figure 9(b) shows that leakage out of
the desired state becomes smaller than the adiabatic loss
Efan
adi ¼ ðjΩ4

t =640B4
1Þ and ETof

adi ¼ ðΩ4
t =640j2B4

1Þ (dashed
lines) for lattice constants above 8 μm. At lattice constants
above 8 μm, almost all of the leakage channels experience
weaker interactions and hence accumulate smaller
unwanted phases, which is why we assume lattice constants
larger than 8 μm in the optimization of gate fidelities in
Fig. 4 in the main text.

APPENDIX E: MOTIONAL DEGREES OF
FREEDOM AND GATE ERRORS

The main dipole-dipole control-target interaction
causes the system to follow a time-dependent dark state
with zero value and hence gradient of the energy with
respect to the atomic spatial coordinates. As a result,
despite the strong interactions, there will be no mechani-
cal force between the atoms excited to the Rydberg
level. This characteristic is an additional advantage of
the current proposal as it eliminates (to leading order)
any unwanted entanglement of the qubit states with the
atomic motion. Only nonadiabtaic corrections and the
weak intracomponent and intercomponent interaction
channels contribute a small correction to the ideal
adiabatic evolution, and hence the motional entangle-
ment is suppressed.

APPENDIX F: IMPLEMENTATION WITH
SUPERCONDUCTING CIRCUIT

The Lagrangian of the circuit in Fig. 5(a) is given by

L ¼
Xk
i¼0

�
Ci

2
_ϕ2
i þ Ei cosðϕiÞ

�
þ
Xk
i¼1

Cxi

2
ð _ϕi − _ϕ0Þ2; ðF1Þ

where ϕi represent node flux variables. The node charges
are the conjugate momenta of the node flux variables,
qi ¼ ð∂L=∂ _ϕiÞ. Expanding the cosine function to fourth
order yields the Hamiltonian

Ĥ ¼ 1

2
⃗q̂TC−1 ⃗q̂ −

Xk
i¼0

Ei

�
ϕ̂2
i

2
−
ϕ̂4
i

24

�
; ðF2Þ

where the capacitance matrix C has the form (for k ¼ 2)

C ¼

0
B@

C0 þ Cx1 þ Cx2 −Cx1 −Cx2

−Cx1 C1 þ Cx1 0

−Cx2 0 C2 þ Cx2

1
CA: ðF3Þ

TABLE II. List of near-resonant Rydberg pairs. Subscripts s andm represent the single (e.g., target in Toffoli) and
multiple atoms (e.g., controls in Toffoli).

C3=2π δ=2π

Number Coupled pairs GHz.μm3 MHz

1 jrsrmi ↔ jasbmi −10.2 0
2 jrmbmi ↔ jbmrmi −2.9 0
3 jrsrmi ↔ j109P1=2ð−1=2Þ; 101P3=2ð−1=2Þi 5 9.5
4 jrmrmi ↔ j101P3=23=2; 101P3=23=2i −8.6 382
5 jasbmi ↔ j108D5=25=2; 99D5=25=2i −6.5 52
6 jasrmi ↔ j108D5=25=2; 100P3=23=2i −14 −207
7 jrmbmi ↔ j100P1=2ð−1=2Þ; 100D5=21=2i 3 3
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FIG. 9. Effects of nondegenerate channels (see Table II) on
(a) the acquired unwanted phase and (b) population leakage from
the dark state after C-NOT2 and C2-NOT gate operation. The
atoms assume a linear configuration with the single control or
target qubit in the middle. For distances larger than 8 μm, the
phase is negligible, and the population leakage from the dark state
is comparable to the nonadiabatic loss (dashed line). We assume
laser coupling strengths Ωt=B1 ¼ 0.1 and Ωc=2π ¼ 16 MHz,
exciting the Rydberg states j101S; 109Si.
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We introduce oscillator raising and lowering operators
through ϕ̂i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiðZi=2Þ
p ðb̂†i þ b̂iÞ and q̂i ¼ ði= ffiffiffiffiffiffiffi

2Zi
p Þ×

ðb̂†i − b̂iÞ, with the impedances Zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðCii=EiÞ

p
, where

the inverse capacitance matrix elements are defined as
Cij ¼ ðC−1Þði;jÞ. The Hamiltonian can thus be written in
terms of the bosonic raising and lowering operators,

Ĥ ¼
Xk
i¼0

��
Cii

2Zi
þ EiZi

2

�
b̂†i b̂i þ

EiZ2
i

16
b̂†i b̂

†
i b̂ib̂i

�

−
1

2

Xk
i>j¼0

Cijffiffiffiffiffiffiffiffiffiffi
ZiZj

p ðb̂†i b̂j þ b̂†j b̂iÞ: ðF4Þ

The first line defines anharmonic ladders of energy levels,
while the second line represents the excitation exchange.
The energy of the nth level (i.e., nth Fock state) of the ith
artificial atom is given by

ωni ¼ ni
ffiffiffiffiffiffiffiffiffiffiffi
EiCii

p
þ Cii

16
niðni − 1Þ: ðF5Þ

We define the energy detuning between product states of

two artificial atoms i and j by δ
n2in2j
n1i;n1j

¼ ðωn2i þ ωn2jÞ−
ðωn1i þ ωn1jÞ, and the anharmonicity of energy levels in
unit i is αi ¼ ðω2i

− ω1i
Þ − ðω1i

− ω0i
Þ.

Table III provides sample parameters that could be used
for realization of the adiabatic gates. Identical circuit
parameters are assumed for the i ¼ 1;…; k control (target)
qubits, which are different from the ones of the sole target
(control) qubit (labeled by 0) for the Toffoli (fan-out) gate.
The parameters are tuned to establish degeneracy between

control-target pairs δ3t1c2t;2c
¼ 0 [see Fig. 5(b) in the main

text], and the dynamics is controlled by the two degenerate
intercomponent (i.e., control-target) B1 ¼ ðC0i=

ffiffiffiffiffiffiffiffiffiffi
Z0Zi

p Þ
and intracomponent B2 ¼ ðCij=

ffiffiffiffiffiffiffiffiffiffi
ZiZj

p Þ exchange inter-
actions. While B1 is required for the formation and
following of the dark state, B2 causes bit-flip errors.
Table III shows that reducing the ratio of coupling
capacitance over qubit capacitance ðCxi=CiÞ suppresses
ðB2=B1Þ. Hence, the exchange Hamiltonian in the rotating-
frame approximation may be limited to the desired pair for
the dark-state formation, i.e., B1j2t2cih3t1cj.

1. Gate errors

Here, we address the effects of dissipation, errors in
population rotations, excitation exchange, and nonadiabatic
dynamics on the gate fidelity. The dissipation results inffiffiffi
γ

p j0ih1j and ffiffiffiffiffi
2γ

p j1ih2j Lindblad terms associated with
decay and dephasing in qubit dynamics. To estimate the
errors for gates with large qubit numbers, we only consider
the decay phenomenologically. The average dissipation
error in the Toffoli and fan-out gate is estimated by

Et
dis ¼

k
2

2π

Ωc
γ þ 1

2

�
4π

Ωc
þ 2π

Ωt

�
γ;

Ef
dis ¼

1

2

2π

Ωc
γ þ k

2

�
4π

Ωc
þ 2π

Ωt

�
γ; ðF6Þ

where the first and second terms address the errors in
control and target units, respectively. The level anharmo-
nicity is necessary to drive a specific transition, and
the rotation errors, discussed also in atomic systems, are
given as

Et
rot ¼ k

Ω2
c

α2c
þ Ω2

t

α2t
;

Ef
rot ¼

Ω2
c

α2c
þ k

Ω2
t

α2t
: ðF7Þ

The intracomponent resonant exchange interaction among
target or control qubits leads to an average error of

Et
ex1 ¼

2

2k

Xk=2
j¼0

�
k

j

��
2π

Ωc

�
2

jB2
2;

Ef
ex1 ¼

2

2k

Xk=2
j¼0

�
k

j

��
4π

Ωc
þ 2π

Ωt

�
2

jB2
2; ðF8Þ

and the off-resonant intercomponent exchange interactions
yield an error of

Eex2 ¼
1

2

��
B1

δ1t1c2t0c

�
2

þ
�

B1

δ0t1c1t0c

�
2
�
: ðF9Þ

TABLE III. Example parameters (rounded values) for the
implementation of adiabatic multiqubit gates in superconducting
circuits. The scheme parameters in this table for Toffoli (fan-out)
are E0 ¼ 20 ð1.25Þ ns−1, Ei ¼ 1.25 ð20Þ ns−1, Ci ¼ 5 (20) pF.
The detuning parameters in Toffoli (fan-out) are δ1t1c2t0c

=2π ¼ 3.2

(18.6) GHz, δ1t0c0t1c
=2π ¼ 2.2 (5.4) GHz, αt=2π ¼ 0.87 (4) GHz,

and αc=2π ¼ 4 (13.4) GHz. The presented coupling and detuning
strengths are calculated for k ¼ 2. Adjustment is required for
other qubit numbers k to preserve the same coupling parameters.
For example, in the k ¼ 20 Toffoli (fan-out) gate, the adjusted
value of row 2 is C0 ¼ 21.8953 (1.3854) pF.

Number Cxi=Ci C0 ðpFÞ B1ð2πMHzÞ B2=B1

Toffoli
1 10−1 24.54 140 2.7 × 10−3

2 10−2 22.79 16 2.7 × 10−4

3 10−3 22.62 1.6 2.7 × 10−5

Fan-out
1 10−2 1.40 123 8.5 × 10−3

2 10−3 1.48 12.6 8.5 × 10−4

3 10−4 1.48 1.3 8.5 × 10−5
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Considering the similarity of the dark-state level scheme in
Figs. 2(a), 5(c), and 5(d), the average error due to non-
adiabatic transitions for a Gaussian excitation pulse is
estimated by Eq. (7) for both the Toffoli and fan-out gates.
The resulting accumulated gate error, i.e., the sum of all

of these terms, is plotted as a function of the number of
qubits k in Fig. 10 for the parameters presented in row 2
of Table III. In Fig. 10, the decay rate of γ=2π ¼ 5.7 kHz
is chosen, corresponding to the relaxation time of
T1 ¼ 30 μs; these are realistic values, cf. T1 ¼ 70 μs
and T2 ¼ 95 μs excitation and coherence times reported
in Ref. [94]. With realistic parameters, we achieve infidel-
ities below 0.02 in superconducting circuits for k < 20.
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