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We present a physically intuitive matrix approach for wave imaging and characterization in scattering
media. The experimental proof of concept is performed with ultrasonic waves, but this approach can be
applied to any field of wave physics for which multielement technology is available. The concept is that
focused beam forming enables the synthesis, in transmit and receive, of an array of virtual transducers
which map the entire medium to be imaged. The interelement responses of this virtual array form a focused
reflection matrix from which spatial maps of various characteristics of the propagating wave can be
retrieved. Here we demonstrate (i) a local focusing criterion that enables the image quality and the wave
velocity to be evaluated everywhere inside the medium, including in random speckle, and (ii) a highly
resolved spatial mapping of the prevalence of multiple scattering, which constitutes a new and unique
contrast for ultrasonic imaging. The approach is demonstrated for a controllable phantom system and for
in vivo imaging of the human abdomen. More generally, this matrix approach opens an original and
powerful route for quantitative imaging in wave physics.
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I. INTRODUCTION

In wave imaging, we aim to characterize an unknown
environment by actively illuminating a region and record-
ing the reflected waves. Inhomogeneities generate back-
scattered echoes that can be used to image the local
reflectivity of the medium. This concept forms the basis
of a multitude of technologies, including ultrasound im-
aging [1], optical coherence tomography [2], radar [3], and
reflection seismology [4]. This approach, however, rests on
the assumption of a homogeneous medium between the
probe and target. Large-scale fluctuations of the wave
velocity in the medium can result in wave-front distortion
(aberration) and a loss of resolution in the subsequent
reflectivity image. Smaller-scale inhomogeneities with a
high concentration and/or scattering strength can induce
multiple scattering events which can strongly degrade
image contrast. In the past, numerous methods such as
adaptive focusing have been implemented to correct for
these fundamental issues in reflectivity imaging [5–8].
However, such methods are largely ineffective in situations

where the focus quality inside the medium cannot be
determined. An extremely common example of this sit-
uation for ultrasound imaging is the presence of speckle, the
signal resulting from an incoherent sum of echoes due to
randomly distributed unresolved scatterers. Speckle often
dominates medical ultrasound images, making adaptive
focusing difficult.
Alternately, one can try to exploit effects which are

detrimental to reflectivity imaging (such as distortion and
scattering) to create different imaging modalities. In the
ballistic regime (where single scattering dominates), the
refractive index can be estimated by analyzing the distortion
undergone by thewave as it passes through themedium. This
approach is the principle of quantitative phase imaging [9] in
optics and computed tomography [10] in ultrasound imag-
ing. Most such imaging methods, however, require a trans-
mission configuration, which is not practical for thick
scattering media and which is impossible for most in vivo
or in situ applications inwhich only one side of themedium is
accessible. In reflection, recent work has leveraged the
relationship between the speed of sound c and wave-front
distortion to improve aberrated images [11–13] or tomeasure
c [14]. Based on comparisons between the spatial or temporal
coherence between emitted and detected signals at a trans-
ducer array, such approaches are promising for the correction
of wave-front distortions when single scattering dominates.
In the multiple-scattering regime, optical diffuse tomog-

raphy [15] is a well-established technique to build a map of
transport parameters. However, the spatial resolution of the
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resulting image is poor, as it scales with the imaging
depth. Moreover, this approach assumes a purely multiple-
scattering medium,which does not exist in practice.A single-
scattering contribution always exists and is, furthermore,
typically predominant in ultrasound imaging. To evaluate the
validity of such images, a local (spatially resolved) multiple-
scattering rate would be a valuable observable but is not
accessible with state-of-the-art methods.
Recently, a reflection matrix approach to wave imaging

was developed with the goals of (i) processing the huge
amount of data that can now be recorded with multielement
arrays [16–18] and (ii) optimizing aberration correction
[19–22] and multiple-scattering removal [23–26] in post-
processing. Such matrix approaches provide access to
much more information than is available with conventional
imaging techniques. Their recent successes suggest that
access to detailed information on aberration and multiple
scattering could be capitalized upon for more accurate
characterization of strongly heterogeneous media. In this
paper, we introduce a universal and noninvasive matrix
approach for new quantitative imaging modes in reflection.
Our method is based on the projection of the reflection

matrix into a focused basis [26,27]. This focused reflection
matrix can be thought of as a matrix of impulse responses
between virtual transducers located inside the medium [20].
These virtual transducers are created via numerical simu-
lation of wave focusing, i.e., combining all of the back-
scattered echoes in such a way as to mimic focusing at a set
of focal points that spans the entire medium, in both
transmit and receive. While each pixel of a confocal image
is associated with the same virtual transducer at emission
and reception, the focused reflection matrix also contains
the cross talks between each pixel of the image and, thus,
holds much more information than a conventional image.
Importantly, this matrix enables one to probe the input-
output point spread function (PSF) in the vicinity of each
pixel even in speckle. A local PSF in reflection is a
particularly relevant observable, since it allows a local
quantification of the contribution of aberration and multiple
scattering to the image. More precisely, we demonstrate
here the mapping of (i) a local focusing criterion that can
then be used as a guide star for wave velocity tomography
[28–30] in the medium and (ii) a spatially resolved
multiple-scattering rate which paves the way toward local
measurements of wave transport parameters [24,31,32]
such as the absorption length and the scattering mean free
path (the mean distance between two successive scattering
events). Not only are these parameters quantitative markers
for biomedical diagnosis in ultrasound imaging [33–38]
and optical microscopy [15], but they are also important
observables for nondestructive evaluation [39–41] and
geophysics [42–44]. In this paper, we present the principle
and first experimental proofs of concept of our approach in
the context of medical ultrasound imaging. However, the
concept can be extended to any field of wave physics for

which multielement technology (multiple sources and
receivers which can emit and detect independently from
one another) is available.
The paper is structured as follows: Section II presents

the concept and theoretical foundations of the focused
reflection matrix. Then, experiments on a tissue-mimicking
phantom are used to demonstrate proofs of concept in
Sec. III for spatial mapping of the quality of focus and
speed of sound and in Sec. IV for spatial mapping of
multiple scattering. Perspectives for each are discussed. In
Sec. V, these techniques are applied for in vivo quantitative
imaging of the human liver. Finally, Sec. VI presents
conclusions and general perspectives.

II. REFLECTION MATRIX APPROACH

A. Experimental measurement

The sample under investigation is a tissue-mimicking
phantom composed of subresolution scatterers which gen-
erate ultrasonic speckle characteristic of human tissue
[Fig. 1(a)]. The system also contains pointlike specular
targets placed at regular intervals and, at larger depths, two
sections of hyperechoic cylinders, each containing a differ-
ent (higher) density of unresolved scatterers. A 20-mm-
thick layer of bovine tissue is placed on top of the phantom
and acts as both an aberrating and scattering layer. This
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FIG. 1. Principle of the focused reflection matrix approach.
(a) Sketch of the experimental setup for the acquisition ofRuθðtÞ.
An ultrasonic transducer array is in direct contact with a layer of
bovine tissue placed on the top of a tissue-mimicking phantom.
RuθðtÞ is acquired by recording the time-dependent reflected
field at each transducer element uout, for each plane-wave
illumination θin. (b) Each pixel of a conventional image results
from confocal beam forming applied to Ruθ in emission and
reception. (c) Matrix imaging consists of performing focused
beam forming to probe distinct points rin and rout in emission
and reception. The set of impulse responses between such virtual
transducers form a focused reflection matrix Rxx at each depth.
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experiment mimics the situation of in vivo liver imaging, in
which layers of fat and muscle tissues generate strong
aberration and scattering at shallow depths. We acquire the
acoustic reflection matrix experimentally using a linear
ultrasonic transducer array placed in direct contact with the
sample [Fig. 1(a)]. The simplest acquisition sequence is to
emit with one element at a time and for each emission
record with all elements the time-dependent field reflected
back from the medium. This canonical basis was first used
to describe the so-called time-reversal operator [45] and is
now commonly used in nondestructive testing, where it is
referred to as the full matrix capture sequence [46].
A matrix acquired in this way can be written mathemati-
cally as RuuðtÞ≡Rðuout;uin; tÞ, where u is the position
of elements along the array, “in” denotes transmission, and
“out” denotes reception. Alternately, the response matrix
can be acquired using beam forming (emitting and/or
receiving with all elements in concert with appropriate
time delays applied to each element) to form, for example,
focused beams as in the conventional B mode [1] or plane
waves for high frame rate imaging [16]. To demonstrate the
compatibility of our method with state-of-the-art medical
technology, our data are acquired using plane-wave beam
forming in emission and recording with individual elements
in reception.
The experimental procedure is described in detail in the

Appendix A. A set of plane waves is used to probe the
medium of interest. For each plane wave emitted with an
incident angle θin, the time-dependent reflected wave field
is recorded by the transducers. The corresponding signals
are stored in a reflection matrix RuθðtÞ ¼ ½Rðuout; θin; tÞ�
[Fig. 1(a)]. An ultrasound image can be formed by
coherently summing the recorded echoes coming from
each focal point r, which then acts as a virtual detector
inside the medium. In practice, appropriate times delays are
applied to the recorded signals before their summation [16].
The images obtained for each incident plane wave are then
summed up coherently and result in a final compounded
image with upgraded contrast. This last operation generates
a posteriori a synthetic focusing (i.e., a virtual source) on
each focal point. The compounded image is thus equivalent
to a confocal image that would be obtained by focusing
waves on the same point in both the transmit and receive
modes.

B. Monochromatic focused reflection matrix

We now show how all of the aforementioned imaging
steps can be rewritten under a matrix formalism. The
reflection matrix can actually be defined, in general, as
containing responses between one or two mathematical
bases. The bases implicated in this work are (i) the
recording basis, which here corresponds to the transducer
array, (ii) the illumination basis, which is composed of the
incident plane waves, and (iii) the focused basis, in which
the ultrasound image is built. In the frequency domain,

simple matrix products allow ultrasonic data to be easily
projected from the illumination and recording bases to the
focused basis where local information on the medium
proprieties can be extracted.
Consequently, a temporal Fourier transform should be

first applied to the experimentally acquired reflection
matrix to obtain RuθðωÞ, where ω ¼ 2πf is the angular
frequency of the waves. The matrix RuθðωÞ can be
expressed as follows:

RuθðωÞ ¼ G⊤ðωÞ × Γ × T; ð1Þ

where the matrix Γ, defined in the focused basis, describes
the scattering process inside the medium. In the single-
scattering regime, Γ is diagonal, and its elements corre-
spond to the medium reflectivity γðrÞ. T ¼ ½Tðr; θÞ� is the
transmission matrix between the plane-wave and focused
bases. Each column of this matrix describes the incident
wave field induced inside the sample by a plane wave of
angle θ. G ¼ ½Gðu; rÞ� is the Green’s matrix between the
transducer and focused bases. Each line of this matrix
corresponds to the wave front that would be recorded by the
array of transducers along vector u if a point source was
introduced at a point r ¼ ðx; zÞ inside the sample.
The holy grail for imaging is to have access to these

transmission and Green’s matrices. Their inversion, pseu-
doinversion, or, more simply, their phase conjugation can
enable the reconstruction of a reliable image of the
scattering medium, thereby overcoming the aberration
and multiple scattering effects induced by the medium
itself. However, direct measurement of the transmission
and Green’s matrices T and G, respectively, would require
the introduction of sensors inside the medium, and, there-
fore, these matrices are not accessible in most imaging
configurations. Instead, sound propagation from the plane-
wave or transducer bases to the focal points is usually
modeled assuming a homogeneous speed of sound c. In
this case, the elements of the corresponding free-space
transmission matrix T0ðωÞ are given by

T0ðθ; r;ωÞ ¼ exp ½ikðz cos θ þ x sin θÞ�; ð2Þ
where x and z describe the coordinates of r in the lateral and
axial directions, respectively [Fig. 1(a)], and k ¼ ω=c is the
wave number. The elements of the free-space Green’s
matrix G0ðωÞ are the 2D Green’s functions between the
transducers and the focal points [47]

G0ðrout;uout;ωÞ ¼ −
i
4
Hð1Þ

0 ðkjrout − uoutjÞ; ð3Þ

where Hð1Þ
0 is the Hankel function of the first kind. T0ðωÞ

and G0ðωÞ can be used to project the reflection matrix
RuθðωÞ into the focused basis. Based on Kirchhoff’s
diffraction theory [48], such a double-focusing operation
can be written as the following matrix product:
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RrrðωÞ ¼ G�
0ðωÞ ×RuθðωÞ × T†

0ðωÞ; ð4Þ

where the symbols � and † stand for phase conjugate and
transpose conjugate, respectively. The matrices T†

0 and G�
0

contain the phase-conjugated wave fronts that should be
applied at emission and reception in order to project the
reflection matrix into the focused basis at both input (rin)
and output (rout). Equation (4) thus mimics focused beam
forming in postprocessing in both emission and reception.
Each coefficient of Rrr ¼ ½Rðrout; rinÞ� is the impulse
response between a virtual source at point rin and a virtual
detector at rout [Fig. 1(c)].
The aberration issue in imaging can be investigated by

expressing the matrix Rrr mathematically using Eqs. (1)
and (4):

RrrðωÞ ¼ H⊤
outðωÞ × Γ ×HinðωÞ; ð5Þ

where

HinðωÞ ¼ TðωÞ × T†
0ðωÞ ð6Þ

and

HoutðωÞ ¼ GðωÞ ×G†
0ðωÞ ð7Þ

are the input and output focusing matrices, respectively
[Fig. 1(b)]. Each column of Hin ¼ ½Hinðr; rinÞ� and
Hout ¼ ½Houtðr; routÞ� corresponds to the transmit and
receive PSFs, i.e., the spatial amplitude distribution of
the input and output focal spots. Their support defines the
characteristic size of each virtual source at rin and detector
at rout [Fig. 1(b)]. In the absence of aberrations, the
transverse and axial dimension of these focal spots, δx0
and δz0, respectively, are limited only by diffraction [49]:

δx0 ¼
λ

2 sin β
; δz0 ¼

2λ

sin2 β
; ð8Þ

where β is the maximum angle of wave illumination or
collection by the array and λ the wavelength. In the
presence of aberrations, i.e., if the velocity model is
inaccurate, there is a mismatch between the transmission
and Green’s matrices TðωÞ and GðωÞ, respectively, and
their free-space counterparts T0ðωÞ and G0ðωÞ. The focus-
ing matrices Hin and Hout are far from being diagonal
[Eqs. (6) and (7)]. The corresponding PSFs are strongly
degraded, and the virtual transducers can overlap signifi-
cantly. A better model of wave propagation is thus needed
to overcome aberrations and restore diffraction-limited
PSFs. In Sec. III A, we show how a multilayer model
can be used to reach a better estimate of T and G in the
experimental configuration depicted in Fig. 1(a).

C. Broadband focused reflection matrix

For broadband imaging, we can restrict our study to pairs
of virtual transducers, rin ¼ ðxin; zÞ and rout ¼ ðxout; zÞ,
located at the same depth z. Furthermore, an inverse Fourier
transform of the corresponding submatrices Rxxðz;ωÞ ¼
½Rðxout; xin; z;ωÞ� should be performed in order to recover
the excellent axial resolution of ultrasound images. For
direct imaging, only echoes at the ballistic time (t ¼ 0 in
the focused basis) are of interest. This ballistic time gating
can be performed via a coherent sum of Rxxðz;ωÞ over the
frequency bandwidth δω. A broadband focused reflection
matrix RrrðzÞ is thus obtained at each depth z:

RxxðzÞ ¼
Z

ωþ

ω−

dωRxxðz;ωÞ; ð9Þ

where ω� ¼ ωc � δω=2 and ωc is the central frequency.
Each element of RxxðzÞ contains the signal that would be
recorded by a virtual transducer located at rout ¼ ðxout; zÞ
just after a virtual source at rin ¼ ðxin; zÞ emits a pulse of
length Δt ¼ δω−1 at the central frequency ωc. The broad-
band focusing operation of Eq. (9) gives virtual transducers
which now have a greatly reduced axial dimension δz ∼
cΔt [Fig. 1(c)].
Figures 2(a) and 2(b) display Rxx at the bovine tissue

and phantom interface (z ¼ 18 mm) and in the phantom
(z ¼ 30 mm), respectively. In both cases, most of the signal
is concentrated around the diagonal. This result indicates
that single scattering dominates at these depths [26], since a
singly scattered wave field can originate only from the
point which is illuminated by the incident focal spot. In
fact, the elements of Rrr which obey rin ¼ rout hold the
information which would be obtained via multifocus (or
confocal) imaging, in which transmit and receive focusing
are performed at the same location for each point in the
medium. A line of the ultrasound image can, thus, be
directly deduced from the diagonal elements of RxxðzÞ,
computed at each depth:

IðrÞ≡ jRðx; x; zÞj2: ð10Þ

The corresponding image is displayed in Fig. 2(c). It is
equivalent to the coherent compounding image computed via
delay-and-sum beam forming of the same dataset [16],
constituting a validation of our matrix approach for imaging.
Interestingly, the matrix Rrr contains much more infor-

mation than a single ultrasound image. In particular,
focusing quality can be assessed by means of the off-
diagonal elements ofRxx. To understand why,Rxx shall be
expressed theoretically. To that aim, a time-gated version of
Eq. (5) can be derived:

RxxðzÞ ¼ H⊤
outðzÞ × ΓðzÞ ×HinðzÞ; ð11Þ

where HinðzÞ, ΓðzÞ, and HoutðzÞ are the time-gated
submatrices of Hin [Eq. (6)], Γ [Eq. (1)], and Hout
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[Eq. (7)] at depth z ¼ ct=2 and central frequency ωc. In the
single-scattering regime and for spatially and frequency-
invariant aberrations, the previous equation can be rewritten
in terms of matrix coefficients as follows:

Rðxout; xin; zÞ ¼
Z

dxHoutðx − xout; zÞ

× γðx; zÞHinðx − xin; zÞ: ð12Þ

This last equation confirms that the diagonal coefficients
of RxxðzÞ, i.e., a line of the ultrasound image, result from
a convolution between the sample reflectivity γ and the
confocal PSF Hin ×Hout. As we will see, access to the
off-diagonal elements of Rxx allows our analysis of
the experimental data to go far beyond a simple image
of the reflectivity. In particular, off-diagonal elements can
be used to extract the input-output PSF in the vicinity of
each focal point, which can lead to a local quantification of
the focusing quality.

III. LOCAL FOCUSING CRITERION

In this section, we detail how an investigation of the off-
diagonal points in Rxx can directly provide a focusing
quality criterion for any pixel of the ultrasound image.
To that aim, the relevant observable is the mean intensity
profile along each antidiagonal of Rxx:

Iðr;ΔxÞ ¼ hjRðxþ Δx=2; x − Δx=2; zÞj2i; ð13Þ

where h� � �i denotes an average over the pairs of points
rin ¼ ðxin; zÞ and rout ¼ ðxout; zÞ which share the same
midpoint r ¼ ðrout þ rinÞ=2 and Δx ¼ ðxout − xinÞ is the
relative position between those two points. We term
Iðr;ΔxÞ the common-midpoint intensity profile. Whereas
IðrÞ [Eq. (10)] contains only the confocal intensity
response from an impulse at point r, Iðr;ΔxÞ is a measure
of the spatially dependent intensity response to an impulse
at r. This means that, whatever the scattering properties of
the sample, Iðr;ΔxÞ allows an estimation of the input-
output PSFs. However, its theoretical expression differs
slightly depending on the characteristic length scale lγ of
the reflectivity γðrÞ at the ballistic depth and the typical
width δx of the input and output focal spots.
In the specular scattering regime [lγ ≫ δx; see Fig. 2(a)],

the common-midpoint intensity is directly proportional to
the convolution between the coherent input and output
PSFs Hin and Hout (see Appendix B):

Iðr;ΔxÞ ¼ jγðrÞj2 × jðHin �HoutÞðΔxÞj2; ð14Þ

where the symbol � stands for convolution. However, in
ultrasound imaging, scattering is more often due to a
random distribution of unresolved scatterers. In this speckle
regime [lγ < δx; see Fig. 2(b)], the common-midpoint

(a) (c) (d)

(e)

(f)

(b)

FIG. 2. Matrix approach applied to wave velocity mapping of the bovine tissue and phantom system described in Fig. 1(a). (a),(b) The
matrixRxx is displayed at depth z ¼ 18 and 30 mm, respectively, assuming a homogeneous wave velocity model (c ¼ 1542 ms−1). The
local image resolution w is extracted from each antidiagonal of Rxx. (c) Corresponding ultrasound image built from the confocal
elements ofRxx. (d) The optimized wave velocities are displayed versus depth for the bovine tissue, found using a homogeneous model
(blue open symbols), and the phantom, found using a bilayer model (red solid symbols). (e) The focusing criterion F, averaged over the
depth ranges [17.4, 19.4] (blue circles) and [30, 32] mm (red disks), is displayed versus the wave velocity hypothesis c. (f) Ultrasound
image built from the confocal elements of Rxx using the optimized wave velocity model (ct ¼ 1573 m=s, cp ¼ 1546 m=s). (g),(h)
Corresponding reflection matrices Rxx are shown for depths z ¼ 18 mm and z ¼ 30 mm.
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intensity Iðr;ΔxÞ is directly proportional to the convolution
between the incoherent input and output PSFs jHinj2 and
jHoutj2 (see Appendix B):

Iðr;ΔxÞ ¼ hjγðrÞj2i × ðjHinj2 � jHoutj2ÞðΔxÞ: ð15Þ

The ensemble average in Eq. (15) implies access to several
realizations of disorder for each image, which is often not
possible for most applications. In the absence of multiple
realizations, a spatial average over a few resolution cells is
required to smooth intensity fluctuations due to the random
reflectivity of the sample while keeping a satisfactory
spatial resolution. To do so, a spatially averaged intensity
profile Iavðr;ΔxÞ is computed at each point r of the field of
view, such that

Iavðr;ΔxÞ ¼ hIðr0;ΔxÞiðr0−rÞ∈A; ð16Þ

where the symbol h� � �i denotes an average over the set of
focusing points r0 contained in an areaA centered on r. The
compromise between intensity fluctuations and spatial
resolution guides our choice of a 7.5-mm-diameter disk
for A.
Whatever the scattering regime, the averaged common-

midpoint intensity profile Iavðr;ΔxÞ is a direct indicator of
the focusing resolution at each point r of the medium. One
can then build a local focusing parameter

FðrÞ ¼ w0ðrÞ=wðrÞ; ð17Þ

where the input-output focusing resolution wðrÞ is defined
as the full width at half maximum (FWHM) of Iavðr;ΔxÞ
and w0ðrÞ is a reference value based on the theoretical
diffraction limit for a homogeneous medium. This param-
eter is bounded between 0 (w ≫ w0, bad focusing) and 1
(w ¼ w0, perfect focusing). FðrÞ is the equivalent in the
focused basis of the coherence or focusing factor originally
introduced by Mallart and Fink [8] in the transducer basis.
The definition of a focusing parameter in the focused basis
offers an important advantage in that the wave focusing
quality and the image resolution can now be probed locally.
Figure 3(a) shows the focusing criterion FðrÞ calculated

for the bovine tissue and phantom system [corresponding to
the reflectivity image in Fig. 2(c)]. The reference resolution
w0ðrÞ is computed under a speckle scattering hypothesis
[Eq. (B2)]. The poor quality of focus over a large part of the
image can be attributed to the fact that the presence of the
bovine tissue layer is not taken into account in our
(homogeneous) model of the system [Eqs. (2)–(4)].
Fortunately, as discussed in the following section, the
focused reflection matrix approach enables the determi-
nation of a more accurate model for this a priori unknown
medium.

A. Wave velocity mapping

The ability to locally probe the focus quality offers
enormous advantages for local characterization of hetero-
geneous media, in particular, for a quantitative mapping of
their refractive index or, more specifically, as shown in the
following, the speed of sound.
We begin by observing the focusing criterion FðrÞ at the

bovine tissue–phantom interface as a function of the wave
velocity ct assumed in the bovine tissue. The result is
displayed in Fig. 2(e). The corresponding focusing criterion
is optimized for ct ¼ 1573 m=s. Figure 2(g) shows the
reflectionmatrixRxx obtained by considering this optimized
wave velocity. The comparison with the original matrix
displayed in Fig. 2(a) shows a narrowing of the input-output
PSFs along the antidiagonal ofRxx; the focusing resolution
wðrÞ is nowmuch closer to the diffraction limitw0 due to the
use of the optimized ct.
This approach works for a reasonably homogeneous

medium (the tissue layer). However, our assumption of a
homogeneous wave velocity model does not conform to the
bilayer system under experimental investigation [Fig. 1(a)].
To probe more deeply into the system, we extend our
approach to model a multilayer medium. Using the ultra-
sound image [Fig. 2(c)] as an approximate guide, we define
two layers: one at z ¼ 0–18 mm with our measured ct and
a second for depths below z ¼ 18 mm with unknown wave
velocity cp. New transmission and Green’s matrices T1

x (mm) x (mm)

(a) (b)

FIG. 3. Maps of local focusing parameter FðrÞ for the bovine
tissue and phantom system, superimposed over the echographic
image in Fig. 2(c). (a) The homogeneous model with a constant
speed of sound (c ¼ 1542 m=s) results in a poor quality of
focus in some areas. (b) The two-layer model used to construct
Rrr results in close to ideal focus quality throughout the image.
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and G1, respectively, are computed using this two-layer
wave velocity model. A new reflection matrix R0

xx is then
built via

R0
xxðzÞ ¼

Z
ωþ

ω−

dω G�
1ðz;ωÞ ×RuθðωÞ × T†

1ðz;ωÞ: ð18Þ

Figure 2(h) displays R0
xx at depth z ¼ 30 mm. The

corresponding focusing criterion FðrÞ, averaged over the
full width of the image and a 2 mm range of depths, is
shown as a function of the phantom speed of sound
hypothesis cp in Fig. 2(e). The optimization of F yields
a quantitative measurement of the speed of sound in the
phantom: cp ¼ 1546 m=s.
To build an entire profile of wave velocity throughout the

medium, the F optimization is repeated for each depth. The
resulting depth-dependent velocity estimate is shown in
Fig. 2(d). The presence of two layers can be clearly seen,
corresponding to the bovine tissue with mean wave velocity
hcti ¼ 1570 m=s (z < 18 mm) and the phantom with
hcpi ¼ 1547 m=s (z > 30 mm). These values are in excel-
lent agreement with the manufacturer’s specification for the
phantom (cp ¼ 1542� 10 m=s) and the speed of sound
estimated from the travel time of the pulse reflected off of
the tissue-phantom interface (ct ≈ 1573 m=s). At depths
just below the interface between the two layers, the
measurement of cp appears to be less precise. This effect
can be explained by the fact that the measurement error
Δcp=cp on the wave velocity scales as the inverse of zp, the
depth of the focal plane from the phantom surface [see
Appendix D, Eq. (D9)]:

�
Δcp
cp

�
2

∼
1

ðkpzpÞ2
sin β

atanhðsin βÞ − β2= sin β
ΔF
F

; ð19Þ

with kp ¼ ωc=cp. As the precision with which the focusing
criterion F can be measured is ΔF=F ∼ 5 × 10−4 [see
Fig. 2(e)], a precision ofΔcp ∼ 5 m=s for the wave velocity
in the second layer (the phantom) will be reached only for
zp ≳ 10 mm. This value is in qualitative agreement with the
axial resolution of the wave velocity profile displayed in
Fig. 2(d).
Figure 2(f) shows the ultrasound image deduced from the

confocal elements of R0
xx. Compared with the homo-

geneous model [Fig. 2(c)], it can be seen by eye that the
two-layer model slightly improves the imaging of bright
targets but that there is no clear difference in areas of
speckle. However, the result for FðrÞ after optimization
with the two-layer model shows that a significant improve-
ment in quality of focus is obtained with the two-layer
model (Fig. 3). The significance of this result is that, in
regions of speckle,FðrÞ is far more sensitive than the image
brightness to the quality of focus and speed of sound.
As most state-of-the-art methods for speed of sound

measurement are based on image brightness [50–52],
FðrÞ thus constitutes an important new metric for speed
of sound measurement in heterogeneous media.

B. Discussion

The study of the focused reflection matrix yields a
quantitative, local focusing criterion. To our knowledge,
our demonstration of the spatial mapping of focus quality is
the first of its kind (e.g., Fig. 3). While this information is
useful to evaluate the reliability of the associated ultrasound
images, it has even more potential for therapeutic ultrasound
methods which rely on precisely focused beams for energy
delivery, such as high-intensity focused ultrasound [53],
ultrasound neuromodulation [54], and histotripsy [55].
Going further, the local focusing parameter FðrÞ con-

stitutes a sensitive guide star to map the wave velocity of an
inhomogeneous scattering medium. The perspective of this
work is to go beyond a depth profile of the wave velocity to
map its variations in 2D (1D probe) or 3D (2D array).
In this respect, we mention the recent work of Jaeger et al.
[28,30] that investigates the local phase change at a point
when changing the transmit beam steering angle. Looking
at this local phase change under a matrix formalism would
be a way to make the best of the two approaches. An
inverse problem would then have to be solved to retrieve a
map of the local phase velocity [28,30]. Again, a matrix
formalism could be relevant to optimize this inversion.
In the same context, we also mention the work of Imbault

et al. [29] that investigated the correlations of the reflected
wave field in the transducer basis for a set of focused
illuminations. Combined with a time-reversal process
consisting in iteratively synthesizing a virtual reflector in
speckle [56], the wave speed is measured by maximizing a
focusing criterion based on the spatial correlations of the
reflected wave field [8]. The downside of this approach is
that the construction of the virtual reflector requires that the
focusing algorithm be iterated several times before the
guide star becomes pointlike. Moreover, the whole process
should be both averaged and repeated over each isoplanatic
patch of the image [57], which limits the spatial resolution
and the practicability of such a measurement.
Inspired by previous works [8,20,29,56], novel potential

applications can be imagined for FðrÞ. It could, for
instance, be used as a guide star for a matrix correction
of aberration. Based on its maximization, the goal would be
to converge toward the best estimators of the transmission
matrices T andG. An inversion or pseudoinversion of these
matrices would then lead to an optimized image whose
resolution would be limited only by diffraction.
The developments presented thus far are based on a

single-scattering assumption. However, multiple scattering
is often far from being negligible in real-life ultrasound
imaging, whether it be, for example, in soft human tissues
[24] or coarse-grain materials [40]. In the following, we
show how the reflection matrix approach suggests a
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solution for the multiple-scattering problem and how it
can furthermore be exploited to create a new contrast for
ultrasound imaging.

IV. MULTIPLE SCATTERING

In the previous sections, we develop a local focusing
criterion by considering the near-confocal elements ofRxx.
We now turn our attention to the points which are farther
from the confocal elements, i.e., for which jxout − xinj > w.
Figure 4(a) shows Rxx at a depth of z ¼ 60 mm. At points
far from the diagonal, signal can still be observed. Because
each matrix Rxx is investigated at the ballistic time
(t ¼ 2z=c), the only possible physical origin of echoes
between distant virtual transducers is the existence of
multiple-scattering paths occurring at depths shallower
than the focal depth, as sketched in Fig. 4(b). In this
section, we see that a significant amount of multiple
scattering takes place in our bovine tissue and phantom
system. The signal from such multiple-scattering processes
has traditionally been seen as a nightmare for classical
wave imaging, as it presents as an incoherent background
which can greatly degrade image contrast. However,
because they are extremely sensitive to the microarchitec-
ture of the medium, multiply scattered waves can be a
valuable tool for the characterization of scattering media
[24,31,32]. In the following, we show how our matrix
approach enables the measurement of a local multiple-
scattering rate for each pixel of the ultrasound image. This
multiple-scattering rate can be directly related to the
concentration of scatterers, paving the way toward a novel
contrast for ultrasound imaging.

A. Multiple scattering in the focused basis

For our experimental configuration, multiple scattering
can be investigated by examining the averaged spatial
intensity profiles Iavðr;ΔxÞ [Eq. (16)]. Each intensity
profile is composed of three contributions.

(i) The single-scattering component IS.—Signals from
single scattering mainly lie along the near-confocal
elements of Rxx [Δr < wðrÞ]. This contribution is
investigated in the previous sections.

(ii) The multiple-scattering component IM.—This con-
tribution can be split into two terms: an incoherent
part, which corresponds to interferences between
waves taking different paths through the medium,
and a coherent part, which corresponds to the
interference of waves with their reciprocal counter-
parts [see the blue and red paths in Fig. 4(b)].
Referred to as coherent backscattering (CBS), this
interference phenomenon results in an enhancement
(of around two) in intensity at exact backscattering.
Originally discovered in the plane-wave basis
[58–61], this phenomenon also occurs in a point-
to-point basis, whether the points be real sensors
[62–64] or created via focused beam forming
[31,65]. In the point-to-point basis, contributions
from multiple scattering give to the backscattered
intensity profile the following shape: a narrow, steep
peak (the CBS peak) in the vicinity of the source
location [Δx < wðrÞ], which sits on top of a wider
pedestal (the incoherent contribution).

(iii) Electronic noise IN .—This contribution can de-
crease the contrast of an ultrasound image in the
same way as IM. Noise contributes to a roughly
constant background level to the backscattered
intensity profiles Iavðr;ΔxÞ.

To estimate the level of each contribution, the relevant
observables are the mean confocal intensity (Ion) and off-
diagonal intensity (Ioff ) ofRxx. The confocal intensity Ion is
given by

IonðrÞ ¼ Iavðr;Δx ¼ 0Þ ¼ ISðrÞ þ 2IMðrÞ þ IN; ð20Þ

where the factor of 2 accounts for the CBS enhancement of
the multiple-scattering intensity at the source location. Ioff
is the sum of the multiple-scattering incoherent background
and of the additive noise component:

IoffðrÞ ¼ hIavðr;ΔxÞiΔx>wðrÞ ¼ IMðrÞ þ IN; ð21Þ

where h� � �iΔx>wðrÞ indicates an average over off-diagonal
elements which obey Δx > wðrÞ. This average constitutes
an average over several realizations of disorder, which is
necessary to suppress the fluctuations from constructive
and destructive interference between the various possible
multiple-scattering paths through the sample. Figure 5(a)
shows three examples of normalized intensity profiles
Iavðr;ΔxÞ=Iavðr;Δx ¼ 0Þ. Each profile is averaged over
a different zone of the ultrasound image [Fig. 5(c)]: Green
and blue curves (solid and dotted rectangles) correspond to
zones situated, respectively, above and below the bright
speckle disk. It is clear that the incoherent background
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FIG. 4. (a) The modulus of matrix Rxx is shown at depth
z ¼ 44.5 mm. Signals from multiple scattering can be seen at
elements far from the diagonal. (b) Sketch of multiple-scattering
paths (red or blue path) involved in the matrix Rxx. The
constructive interference between reciprocal paths (red and blue
paths) occurs only when jrout − rinj < δx (CBS).
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Ioff is higher in the deeper (blue) zone, suggesting that
multiple scattering is greatly enhanced behind the reflective
object. Surprisingly, the incoherent background Ioff is far
from being negligible in the red zone at shallower depths
(dashed line rectangle).
To investigate these phenomena further, we define two

new observables: (i) the multiple-to-single-scattering ratio

ρðrÞ≡ IM
IS

ð22Þ

and (ii) the multiple-scattering-to-noise ratio

ϵðrÞ≡ IM
IN

: ð23Þ

To calculate these quantities, it is necessary to be able to
distinguish between IM, IN , and IS.

B. Coherent backscattering as a direct probe
of spatial reciprocity

Discrimination between IM and IN can be achieved by
exploiting the spatial reciprocity of propagating waves in a
linear medium. While the multiple-scattering contribution
gives rise to a random but symmetric reflection matrix Rxx
[26,27], additive noise is fully random. Thus, the symmetry
of Rxx gives us a tool to determine the relative weight
between noise and multiple scattering in the incoherent
background of Rxx.
An elegant approach to probe spatial reciprocity is the

measurement of the CBS effect in the plane-wave basis (the
far field). The CBS effect can be observed by measuring
the average backscattered intensity as a function of the angle

Δθ≡ jθin − θoutj between the incident and reflected waves.
In the presence of multiple scattering, this profile displays a
flat plateau (the incoherent background), on top of which sits
a CBS cone centered around the exact backscattering angle
Δθ ¼ 0. The cone is solely due to constructive interference
from waves following reciprocal paths inside the sample
[Fig. 5(b), inset]. Thus,CBS in the far field is a direct probe of
spatial reciprocity in the focused basis [31,65].
Appendix D describes how to eliminate the single-

scattering contribution and extract a far-field intensity profile
Iðr;ΔθÞ for the area A surrounding each focusing point r.
In Fig. 5(b), normalized intensity profiles Iavðr;ΔθÞ=
Iavðr;Δθ ¼ 0Þ are shown for the three areas A highlighted
in Fig. 5(c). For each area, a CBS cone is clearly visible,
showing that the experimental data contain contributions
from multiple scattering. Just as with the CBS peak in the
focused basis [Fig. 5(a)], the highest amount of multiple
scattering is observed for the red zone at shallow depths.
To estimate the relative weight of the noise and multiple-

scattering contributions, we examine the mean intensity for
two cases: (i) at exact backscattering

Iavðr;Δθ ¼ 0Þ ¼ 2IMðrÞ þ INðrÞ ð24Þ

and (ii) at angles away from the CBS peak [Fig. 5(d)]

hIavðr;ΔθÞiΔθ>θc ¼ IMðrÞ þ INðrÞ; ð25Þ

where θc is the width of the CBS peak and h� � �iΔθ>θc
indicates an average over all angles Δθ which obey
Δθ > θc. The enhancement factor of the CBS peak is
given by
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FIG. 5. Local mapping of multiple scattering. Normalized mean intensity profiles for (a) the focused basis Iavðr;ΔxÞ and (b) the far
field Iavðr;ΔθÞ are displayed for the different areas highlighted in (c) the corresponding ultrasound image (formed using the two-layer
model in Sec. III A). Maps of multiple-scattering rates (d) ρðrÞ [Eq. (22)] and (e) ϵðrÞ [Eq. (23)] are shown, superimposed on the
ultrasound image. Some structures in the bovine tissue layer (indicated by white arrows) cause a significant amount of multiple
scattering to occur behind them (outlined by dashed lines). The solid lines outline the image area that suffers from artifacts due to the
double-reflection event between the probe and the bovine tissue–phantom interface.
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χðrÞ ¼ Iavðr;Δθ ¼ 0Þ
hIavðr;ΔθÞiΔθ>θc

: ð26Þ

χðr0Þ can have values ranging from 1 to 2; it is at a
minimum when IM ¼ 0 and a maximum when all back-
scattered signal originates from multiple scattering.

C. Maps of multiple-scattering rates

The multiple-scattering-to-noise ratio ϵðrÞ [Eq. (23)] can
be expressed as a function of the enhancement factor χðrÞ
by injecting Eqs. (24) and (25) into Eq. (26):

ϵðrÞ ¼ χðrÞ − 1

2 − χðrÞ : ð27Þ

The multiple-to-single-scattering ratio ρðrÞ [Eq. (22)] can
be derived by injecting the last equation into Eqs. (20)
and (21):

ρðrÞ ¼ ½χðrÞ − 1� · IoffðrÞ
IonðrÞ − χðrÞ · IoffðrÞ

: ð28Þ

Figures 5(d) and 5(e) show experimental results for ρðrÞ
and ϵðrÞ, respectively, superimposed onto the original
ultrasound image. Both of these maps constitute new
contrasts which are complementary to the reflectivity maps
produced by conventional ultrasound imaging. To begin
with, ρðrÞ can be used as an indicator of the reliability of a
reflectivity image [such as that in Fig. 5(c)]. Because the
single-to-multiple-scattering ratio is a direct indicator of the
validity of the single-scattering (Born) approximation,
the reliability of the ultrasound image should scale as
the inverse of ρðr0Þ. An interesting example is displayed in
Fig. 5(d) at a depth of 37 mm (white solid rounded
rectangle), where a high multiple-to-single-scattering rate
is observed. This abrupt increase of ρðrÞ can be accounted
for by double-reflection events between the probe and the
tissue-phantom interface. We can thus conclude that the
structures that seem to emerge in Fig. 5(c) at the same depth
are, in fact, artifacts due to multiple reflections.
With respect to the quantification of multiple scattering,

the parameter ϵðrÞ seems to be particularly relevant. The
areas in Fig. 5(e) highlighted by dashed lines exhibit a
strong and extended multiple-scattering background. While
deeper speckle regions with a low scatterer density exhibit a
weak scattering rate, the bright speckle area in the phantom
(z ∼ 60 mm, white dashed-dotted circle) contains a suffi-
cient concentration of scatterers to generate multiple
scattering events. At shallower depths, high amounts of
multiple scattering can be attributed to several small
structures indicated by white arrows in Fig. 5(c): (i) Two
regions in the bovine tissue layer contain air bubbles that
generate resonant scattering, thereby inducing a strong
multiple scattering “tail” behind them; (ii) a set of bright
targets close to each other give rise to strong multiply

scattered echoes at depth z ¼ 50 mm. Figure 5(e) thus
demonstrates how the parameter ϵðrÞ can provide a highly
contrasted map of the multiple-scattering rate—a quantity
which is directly related to the density of scatterers [66].
Finally, the use of both maps for the interpretation of

specific regions can be instructive. While it could be
suggested that the enhancement of ρðrÞ [Fig. 5(d)] at the
upper dotted lines is due to acoustic shadowing (a decrease
in IS), ϵðrÞ indicates that the level of multiple scattering
dominates above noise [Fig. 5(e)]. Thus, one can conclude
that multiple scattering is truly increased in this area. On the
contrary, the area on the top left of the phantom shows a
large increase of ρðrÞ [Fig. 5(d)] but a weak multiple-
scattering-to-noise ratio ϵðrÞ [Fig. 5(e)]. Hence, the high
value of ρðrÞ is here induced by the acoustic shadow of the
bovine tissue layer upstream.
An important technical note is that the study of spatial

reciprocity in the reflection matrix requires, in principle,
that the bases of reception and emission be identical.
Because this requirement is not the case for our exper-
imental measurements, we tend to slightly underestimate
IM. Relatedly, here we employ the CBS effect to probe
spatial reciprocity, but an equivalent measurement can be
performed directly in the focused basis by computing
correlations between symmetric elements of Rxx.

D. Discussion

The maps of ρðrÞ and ϵðrÞ help to provide an overall
assessment of the factors impacting the image quality. For
instance, they can be used to explain the apparent poor
focus quality in some areas in Fig. 3(b), which appear even
after correction for wave-front distortion. The compensa-
tion for an incorrect hypothesis for c does not compensate
for the effect of multiple scattering or reflections [e.g., in
the highlighted areas in Fig. 5(e)]. Thus, the multiple-
scattering rates combined with the measurement of FðrÞ
provide a sensitive local mapping of the heterogeneities in
the medium which includes both small- and large-scale
variations of the refractive index. In this context, we
mention the recent work of Velichko [67], which measures
a quantity similar to ρðrÞ as a function of depth and
frequency. While noise is not treated separately from
multiple scattering, their results emphasize the clear rela-
tion between local measurements of multiple scattering and
the reliability of ultrasound images. Integration of our
focused reflection matrix approach [Eq. (11)] could
improve their axial resolution and help extend their analysis
to 2D spatial mapping.
Beyond image reliability, the maps displayed in Figs. 5(d)

and 5(e) provide a great deal of quantitative information
about the system under investigation. Because ϵðrÞ is
calculated from the off-diagonal elements ofRxx, it contains
only negligible contributions from single scattering and,
thus, constitutes an interesting new contrast for imaging
which is much more sensitive to the microstructure of the
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medium than it is to its reflectivity. Conversely, because ρðrÞ
is independent of noise, it can constitute a useful biomarker
for medical imaging deep inside tissue and a potentially
valuable tool for future research seeking to characterize
multiple-scattering media, even at large depths where IN
becomes important.
The perspective of this work is to extract from ρðrÞ

quantitative maps of scattering parameters, such as the
elastic mean free path or the absorption length [24,40], and
transport parameters, such as the transport mean free path
[62,68,69] or the diffusion coefficient [62,63,70]. While
diffuse tomography in transmission provides only a macro-
scopic measurement of such parameters, preliminary stud-
ies demonstrate how a reflection matrix recorded at the
surface can provide transverse measurements of transport
parameters [31,32,65,71]. The focused reflection matrix
we introduce here connects each point inside the medium to
all other points. Hence, a 2D or 3D map of transport
parameters can now be built by solving the radiative
transfer inverse problem.

V. IN VIVO QUANTITATIVE IMAGING OF
HUMAN TISSUE

In this section, we use the focused reflection matrix
approach for in vivo quantitative imaging of human tissue.
Whereas conventional ultrasound is mostly qualitative,
producing images to be analyzed by eye, qualitative ultra-
sound imaging aims to provide numbers which are directly
related to the properties of tissue and structures in the body,
with the goal of providing information complementary to
that of the ultrasound image. As previously discussed, both
the speed of sound c and the characteristics of acoustic
multiple scattering can be directly related to tissue proper-
ties: Indeed, there currently exist techniques which use

these measurements for qualitative imaging. However,
current measurements are greatly limited in terms of spatial
resolution, while our approach enables well-resolved maps
of c and multiple scattering. Here, we present such maps of
the human abdomen and discuss the perspectives for
quantitative ultrasound imaging.
The reflection matrix Ruθ is acquired with the probe in

contact with the abdomen of a healthy volunteer. The
ultrasound sequence is the same as the one use for the
in vitro phantom study in Secs. III and IV. The study is
performed in conformation with the declaration of
Helsinki. The resulting ultrasound image (computed using
a four-layer model) is shown in Fig. 6(a). Quantitative
imaging maps are calculated in postprocessing—computa-
tional details are discussed in Appendix C.
Figure 6(b) shows the speed of sound plotted as a

function of the depth. From this plot, four distinct tissue
layers can be identified: skin, fat, muscle, and liver tissue.
We are thus able to estimate c for each tissue. In the skin,
previous authors report speed of sound values in the range
of cskin ≈ 1500–1750 m=s, with an average value of cskin ∼
1625 [72]. The wide range of values for cskin is most likely
due to the significant sensitivity of this parameter on skin
hydration, as well as variations in the temperature, age of
the cadaver skin examined, and region of the body from
which the skin is extracted. Thus, more accurate
approaches for this measurement would be valuable. Our
method gives an estimate of cskin ≈ 1651 m=s, which to our
knowledge constitutes the first in vivo measurement of cskin
in this frequency range. In the fat layer, we find an average
value of cfat ¼ 1413� 6 m=s. (The standard deviation of the
values in this layer is used as an estimate of the experimental
uncertainty.) Our result agrees with previously reported
results of cfat ¼ 1427� 12.7 m=s [73]. In the muscle layer,
our measured average value of cmuscle ¼ 1582� 9 m=s
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FIG. 6. In vivo imaging of a human liver using the focused reflection matrix approach. (a) Ultrasound image calculated using a four-
layer model [Eq. (10)]. The four layers can be identified as skin, fat, muscle, and liver tissue. (b) The speed of sound is calculated for
each depth via the optimization of F (Sec. III A). (c) The ratio quantity ϵðrÞ is shown in the same region of interest as (a).
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agrees with the commonly cited value of cmuscle ¼ 1576�
1.1 m=s [74]. Finally, we find an average speed of sound in
the liver of cliver ¼ 1559� 8 m=s, consistent with previous
measurements in a healthy human liver [29,30,75,76].
Overall, this approach enables the simultaneous measure-
ment of c in four human tissue layers using one experimental
dataset, with no dependence on the initial guess for c. It thus
constitutes a significant advance over state-of-the-art meth-
ods for cmeasurement in human tissue (cf. Refs. [29,30,77]).
Figure 6(c) shows a spatial map of ϵðrÞ, the ratio of

multiple scattering to noise. Discrete areas in which ϵðrÞ is
very high (> 0 dB) are indicative of artifacts caused by
multiple reverberations from the tissue layers (z ¼
10–30 mm) or in structures such as veins, for instance, at
ðz; xÞ ≈ ð56; 5Þ mm. Strikingly, we also find a significant
amount of multiple scattering relatively evenly distributed
across areas of speckle (compared to the phantom in Fig. 5).
Acoustic multiple scattering is extremely sensitive to

tissue microstructure and, thus, can be a useful indicator of
tissue health. Based on this concept, there are current
methods which attempt to quantify observables of acoustic
scattering. Statistical parameters measured from the back-
scatter coefficient (BSC) of ultrasonic speckle [a quantity
related to our ρðrÞ] can give estimates of the scatterer size
and density [78,79]. However, BSC measures the entire
backscattered energy and, thus, does not distinguish
between multiple and single scattering. Our measurement
of ϵðrÞ, on the other hand, provides two-dimensional, well-
resolved, spatial maps of the rate of multiple scattering
inside human tissue with a negligible dependence on tissue
echogeneity. It is thus truly a new quantitative imaging
contrast. Previous works show that the rate of acoustic
multiple scattering can be used to distinguish between
healthy and unhealthy tissue [24,80]; thus, ϵðrÞ and ρðrÞ
present an important advance for qualitative ultrasound
imaging. Our mapping approach could also be used to help
increase the spatial resolution of statistical analyses such as
those based on the BSC. Our approach also offers a
significant advantage for assessing image reliability. In
recent work, a coherence-based approach is used to
calculate acoustic multiple scattering and thermal noise
for an image quality metric [81]; however, the two con-
tributions are not separated, and an average must be taken
over relatively large areas of the region of interest. By
separating and contrasting these contributions, our method
is sensitive to the origin of a decrease in reliability (thermal
or acoustic noise), thus giving a more informed picture of
the system under study. Moreover, our double-focusing
approach and the subsequent common-midpoint analysis
should provide, in principle, a better spatial resolution.
Finally, we discuss the experimental limitations of the

methods presented in this section. The measurement of cðzÞ
is limited primarily by the depth from which singly
scattered echoes can be detected. The speed of sound
estimation is based on the minimization of aberrations

undergone by singly scattered signals. The major physical
limitation is thus linked to the amount of singly scattered
signals detected. For imaging through bones or through air,
this ratio is most highly impacted by attenuation; thus, the
depth limitations here are similar to those for other conven-
tional imaging techniques (the ratio of singly scattered
signals to noise). For imaging in lungs, bone, and other
highly scattering media, the depth is most strongly limited
by the ratio of singly to multiply scattered signals. Deeper
than one transport mean free path l�, signals become
completely randomized by multiple scattering, and no
singly scattered signals will be measurable. Weakly scat-
tering tissue can be characterized as that in which singly
scattered signals exist, but in which multiple scattering
significantly degrades the quality of conventional ultrasound
images. In these tissues, such as breast or muscle, our
measurements of c should still be effective [24]. In more
highly scattering tissue, however, our current method may
not be ofmuchuse: For example, values ofl� ≈ 0.3–1.1 mm
have been measured at 8 MHz in lung tissue [32].
On the other hand, it will be interesting (and is

immediately possible) to create maps of ρðrÞ and ϵðrÞ in
scattering media such as breast, lung, and bone. Recent
work such as that by Mohanty et al. [80] suggests that such
maps may be better at imaging heterogeneous scattering
media than conventional echographic ultrasound. However,
for bone and flat layers of tissue such as muscle, a current
limitation is the coexistence of multiple scattering and
artifacts from reverberant echoes or reflections caused by
interfaces between tissues with different acoustic imped-
ances. The separation of these effects will be the subject of
future work.

VI. CONCLUSION AND PERSPECTIVES

In summary, a powerful and elegant matrix approach for
quantitative wave imaging has been presented. By focusing
at distinct points in emission and reception, one can build
a focused reflection matrix that contains the impulse
responses between a set of virtual transducers mapping
the entire medium. From this focused reflection matrix, a
local focusing parameter can be estimated at any point of
the inspected medium. Because it can be applied to any
type of media, including in the speckle regime or in the
presence of specular reflectors, this focusing criterion is
suitable to any situation encountered in medical ultrasound
and enables wave velocity mapping of the medium. In this
paper, we have demonstrated proofs of concept for this
approach using a two-layer phantom system, as well as
in vivo measurements on the human abdomen in which c
was simultaneously measured for four separate tissue
layers. This physically intuitive approach does not depend
on arbitrary parameters such as image quality or the initial
guess for c and does not require guide stars or complex
iterative adaptive focusing schemes. Knowledge of the
spatial variation of velocity can, in turn, be used with the
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focused reflection matrix to overcome wave-front distor-
tions. The contrast and resolution of the image could then
be restored almost as if the inhomogeneities had disap-
peared. We have shown not only how to measure cðzÞ, but
how it can then be applied to overcome phase aberration
using the same experimental dataset. Importantly, this
method has the potential to treat spatially varying aberra-
tions: This perspective will be the subject of future works.
We have also shown that the focused reflection matrix

enables a local examination of multiple-scattering proc-
esses deep inside the medium. We have demonstrated the
effectiveness of using fundamental interference phenomena
such as coherent backscattering—a hallmark of multiple-
scattering processes—to discriminate between multiple
scattering and measurement noise. A novel imaging
method is proposed based on the multiple-scattering con-
trast. To our knowledge, such 2D maps have never before
been demonstrated, and current state-of-the-art methods
cannot produce such well-resolved local information about
acoustic multiple scattering. Unexplored but promising
perspectives for this work include the quantitative imaging
of parameters such as the scattering, absorption, or trans-
port mean free paths.
One limit of the reflectionmatrix approach lies in the linear

theory on which it relies, meaning that it is inherently
incapable of accounting for nonlinear effects. Nevertheless,
in our opinion, the focused reflection matrix can still be of
interest for optimizing tissue harmonic imaging [82]. First,
aberration correction or a better wave velocitymodel can lead
to an optimized input focusing process and a more efficient
nonlinear conversion at the focus.Moregenerally, a nonlinear
reflectionmatrix linking, for instance, input focusingpoints at
the fundamental frequency and output focusing points at the
harmonic frequency may be a useful tool to optimize the
nonlinear conversionprocess.Amatrix approachof harmonic
imaging will be the subject of future works.
Finally, we emphasize that we have concentrated here

only on the relationship between virtual transducers located
in the same focal planes at the ballistic time. Morever, this
approach has been applied to a medium which can be
modeled by a stack of various horizontal layers. However,
it is equally possible to consider responses between, for
example, angled or curved focal planes, which could
simplify similar quantitative imaging in organs such as
the brain. More generally, there is enormous further
potential for the analysis of the entire focused matrix
Rrr across the whole medium and beyond the ballistic
time, which will be explored in future works. Last but not
least, our matrix approach of wave imaging is very general
and could be applied to any kind of system for which
emission and detection of waves can be varied in a
controllable way. Thus, the potential of this work goes
far beyond ultrasound imaging, with immediate foreseeable
impacts in a range of wave physics including optical
microscopy, radar, and seismology.
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APPENDIX A: EXPERIMENTAL PROCEDURE

The experimental setup consists in an ultrasound phased-
array probe (SuperLinear™ SL15-4, Supersonic Imagine)
connected to an ultrafast scanner (Aixplorer®, SuperSonic
Imagine, Aix-en-Provence, France). This 1D array of 256
transducers with a pitch p ¼ 0.2 mm is used to emit 41
plane waves with an angle of incidence θin spanning from
−20° to 20° [Fig. 1(a)]. The emitted signal is a sinusoidal
burst of central frequency fc ¼ 7.5 MHz, with a frequency
bandwidth spanning from 2.5 to 10 MHz. In reception, all
elements are used to record the reflected wave field over a
time length t ¼ 124 μs at a sampling frequency of 30 MHz.
The ultrasound sequence is driven by using the research
pack of the Aixplorer device (SonicLab, Supersonic
Imagine, France). The matrix acquired in this way is
denoted RuθðtÞ≡ Rðuout; θin; tÞ.

APPENDIX B: DERIVATION OF THE
COMMON-MIDPOINT INTENSITY PROFILE

The theoretical expression of the common-midpoint
intensity profile Iðr;ΔxÞ is derived in the specular and
speckle scattering regimes.
In the specular scattering regime, the characteristic size

lγ of reflectors is much larger than the width of the focal
spot δx: γðrÞ can thus be assumed as invariant over the
input and output focal spots. Equation (12) then becomes

Rðr;ΔxÞ ¼ γðrÞ × ðHin �HoutÞðΔxÞ: ðB1Þ

The injection of Eq. (B1) into Eq. (13) yields the expression
of Iðr;ΔxÞ given in Eq. (14).
In the speckle scattering regime, lγ ≪ δx. This regime is

the most common in ultrasound imaging, as scattering is
more often due to a random distribution of unresolved
scatterers. To a first approximation, such a random medium
has the property that

hγðr1Þγ�ðr2Þi ¼ hjγj2iδðr2 − r1Þ; ðB2Þ
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where δ is the Dirac distribution. The combination of
Eqs. (12), (13), and (B2) gives directly Iðr;ΔxÞ as
expressed in Eq. (15).

APPENDIX C: COMPUTATIONAL DETAILS

All calculations shown in this paper are performed in
MATLAB. To quantify the resources required for these
computations, we can compare the time required for our
quantitative matrix approach with that required to create a
plane-wave compounded ultrasound image [16]. For a
single plane-wave transmission, the imaging time t1 com-
bines the time required to record the reflected wave field
and that to focus at reception (with software) on the Nx ×
Nz points of the image. The acquisition of 70-mm-depth
images can be typically produced for a time t1 ∼ 100 μs
(approximately 10 kfps [83]). To estimate the common-
midpoint intensity profile over a distanceΔxmax, we need to
record NΔx ¼ Δxmax=δx0 subdiagonals of the focused
reflection matrix RxxðzÞ [see Eq. (13) and the accompany-
ing text]. To retrieve these subdiagonals, the reflection
matrix Rrθ should be initially recorded with a set of NΔx
plane waves. In our case, NΔx ¼ 41 (see Appendix A).
Those recorded wave fields are then focused at reception
and recombined at emission to form the focused reflection
matrices. The time tM for getting the set of matricesRxxðzÞ
is, thus, tM ¼ NΔx × t1 ∼ 4 ms (approximately 250 fps).
Once this set of matrices is synthesized, the multiple-
scattering analysis is straightforward. Maps of the multiple-
scattering rates ρðrÞ and ρðrÞ can thus be easily obtained in
real time (>25 fps), since it approximately requires the
same number NΔx of transmits as that required to build the
compounded image. If needed, this time can be greatly
decreased by selecting only a limited region of interest in
which to map ϵðrÞ or ρðrÞ.
To perform the optimization over the wave velocity c,

we need to perform the aforementioned operations for a
number Nc of test values of c. The time required for the
speed of sound mapping is then tc ¼ Nc × tM ¼
Nc × NΔx × t1 ∼ 80 ms (approximately 12 Hz). If we take,
for example, a range of c ¼ 100 m=s with a step of 5 m=s,
then Nc ¼ 20. To reach real-time imaging, one possibility
is to reduce NΔx, since the single-scattering contribution
lies along the near-diagonal coefficients of RxxðzÞ. Only a
few of its subdiagonals (NΔx ∼ 10) are thus needed to
assess the focusing criterion FðrÞ. The range of c can also
be narrowed and parallel computing employed to cut down
on processing time. Because of these considerations, we
expect that this computation could in the near future be
performed in real time.
Of the analyses presented in this paper, only the

measurement of cðzÞ is not fully automated, as it requires
the user to identify the approximate regions in which
different values of c should be anticipated [i.e., to differ-
entiate between the four different layers in Fig. 6(a)].
To make the process completely user independent would

require more sophisticated coding to perform this image
segmentation—something that is, we believe, feasible in an
industrial setting but beyond the scope of this paper.

APPENDIX D: MEASUREMENT ERRORS ON
THE FOCUSING CRITERION AND THE SPEED

OF SOUND

In this work, we define the focusing parameter F as the
ratio between the width w0 of the ideal diffraction-limited
PSF and the width w of the experimentally measured PSF.
In optics, the Strehl S ratio is generally used to quantify an
aberration [84]. It is defined as the ratio between the
maximum of the PSF intensity I and that in the ideal
diffraction-limited case, I0. Because of energy conserva-
tion, we have I0 × w0 ¼ I × w. The focusing criterion and
Strehl ratio, as well as their relative measurement errors, are
thus equivalent:

F≡ S ðD1Þ

and

ΔF
F

≡ ΔS
S

: ðD2Þ

S can also be expressed as the square magnitude of the
averaged aberration transmittance eiϕðsin θÞ [84]:

S ¼ jheiϕðsin θÞisin θj2; ðD3Þ

where ϕðsin θÞ is the far-field phase delay induced by the
mismatch between the propagation model and the real
medium in the θ direction.
In Fig. 2, a two-layer medium is used to model the

bovine tissue and phantom system. Assuming that the wave
velocity ct is properly estimated in the first layer (bovine
tissue), the phase ϕðsin θÞ accumulated in the phantom is
given by

ϕðsin θÞ ¼ kpzp cosðθpÞ; ðD4Þ

where kp ¼ ω=cp is the wave number in the phantom and
θp is the refraction angle in the phantom, obeying
sin θp=cp ¼ sin θ=ct. If a wrong value of cp is used to
model sound propagation in the phantom, the resulting
phase distortion is given by

Δϕðsin θÞ ¼ −
kpzp
cos θp

η; ðD5Þ

where η ¼ Δcp=cp is the relative error of the speed of
sound hypothesis in the phantom. For the sake of simplic-
ity, we assume in the following that cos θ ∼ cos θp. This
approximation is justified by the small relative difference
between cp and ct. Assuming relatively weak aberrations
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[Δϕðsin θÞ ≪ π], the transmittance aberration function
eiΔϕðsin θÞ can be expanded as

eiΔϕðsin θÞ ∼ 1 − i
kpzp
cos θ

η −
1

2

�
kpzp
cos θ

�
2

η2 þOðη3Þ: ðD6Þ

The angular average of eiϕðsin θÞ is then deduced:

heiΔϕðsin θÞisin θ ¼
1

sin β

Z
sin β

0

eiΔϕðsin θÞdðsin θÞ

∼ 1 − ikpzpη
β

sin β
−
1

2
ðkpzpηÞ2

atanhðsin βÞ
sin β

þOðη3Þ: ðD7Þ

Injecting the last expression into Eq. (D3) leads to the
following expression of the Strehl ratio:

S ∼ 1 −
ðkpzpηÞ2
sin β

�
atanhðsin βÞ − β2

sin β

�
þOðη3Þ: ðD8Þ

For weak aberrations (F, S ∼ 1), the relative error ΔF=F
[Eq. (D2)] of the focusing criterion can then be directly
deduced from the previous expansion of the Strehl ratio:

ΔF
F

¼ ðkpzpηÞ2
sin β

�
atanhðsin βÞ − β2

sin β

�
: ðD9Þ

APPENDIX E: COMPUTATION OF LOCAL
INTENSITY PROFILES IN THE

PLANE-WAVE BASIS

To quantify the CBS effect, we first need to eliminate
contributions from single scattering. To this end, the
reflection matrices RxxðzÞ are first normalized such that
their diagonal at each depth exhibits a constant mean
intensity:

R̄ðx − Δx; xþ Δx; zÞ ¼ Rðx − Δx; xþ Δx; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iavðr;ΔxÞ

p : ðE1Þ

This operation eliminates the dominant contribution to
intensity from diagonal elements in Rxx, which is equiv-
alent to removal of the single-scattering component. The
matrix formalism makes it easy to then project R̄xxðzÞ into
the plane-wave basis. The matrix approach also means that
it is simple to project only a subspace of R̄xxðzÞ into the
plane-wave basis. For each point r of the image, we define a
subspace matrix Mxxðz; rÞ whose nonzero coefficients
Mðxout; xin; z; rÞ are associated with common midpoints
r0 ¼ ðrin þ routÞ=2 belonging to the area A surrounding r:

Mðxout; xin; z; rÞ ¼
�
R̄ðxout; xin; zÞ for ðr0 − rÞ ∈ A;

0 elsewhere:

With this set of submatrices Mxxðz; rÞ, one can locally
probe the far-field CBS. Projection of Mxxðz; rÞ into the
plane-wave basis is performed at each depth using the
transmission matrices T0ðz;ωcÞ [Eq. (2)]:

Mθθðz; rÞ ¼ T⊤
0 ðz;ωcÞ ×Mxxðz; rÞ × T0ðz;ωcÞ:

Mθθðz; rÞ contains the normalized reflection coefficients in
the θout direction for an angle of incidence θin induced by
scatterers contained in the area A centered around r. An
averaged far-field mean intensity can now be calculated as a
function of the reflection angle Δθ:

Iavðr;ΔθÞ ¼ hjMðθ þ Δθ=2; θ − Δθ=2; z; rÞj2iθ;z;

where the symbol h� � �i denotes an average over the
variables in the subscript, i.e., all angles which obey θ ¼
ðθin þ θoutÞ=2 and the thickness of the area A.
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