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A lattice random walk is a mathematical representation of movement through random steps on a lattice at
discrete times. It is commonly referred to as Pólya’s walk when the steps occur in either of the nearest-
neighbor sites. Since Smoluchowski’s 1906 derivation of the spatiotemporal dependence of the walk
occupation probability in an unbounded one-dimensional lattice, discrete random walks and their
continuous counterpart, Brownian walks, have developed over the course of a century into a vast and
versatile area of knowledge. Lattice random walks are now routinely employed to study stochastic
processes across scales, dimensions, and disciplines, from the one-dimensional search of proteins along a
DNA strand and the two-dimensional roaming of bacteria in a petri dish, to the three-dimensional motion of
macromolecules inside cells and the spatial coverage of multiple robots in a disaster area. In these realistic
scenarios, when the randomly moving object is constrained to remain within a finite domain, confined
lattice random walks represent a powerful modeling tool. Somewhat surprisingly, and differently from
Brownian walks, the spatiotemporal dependence of the confined lattice walk probability has been
accessible mainly via computational techniques, and finding its analytic description has remained an open
problem. Making use of a set of analytic combinatorics identities with Chebyshev polynomials, I develop a
hierarchical dimensionality reduction to find the exact space and time dependence of the occupation
probability for confined Pólya’s walks in arbitrary dimensions with reflective, periodic, absorbing, and
mixed (reflective and absorbing) boundary conditions along each direction. The probability expressions
allow one to construct the time dependence of derived quantities, explicitly in one dimension and via an
integration in higher dimensions, such as the first-passage probability to a single target, return probability,
average number of distinct sites visited, and absorption probability with imperfect traps. Exact mean first-
passage time formulas to a single target in arbitrary dimensions are also presented. These formulas allow
one to extend the so-called discrete pseudo-Green function formalism, employed to determine analytically
mean first-passage time, with reflecting and periodic boundaries, and a wealth of other related quantities, to
arbitrary dimensions. For multiple targets, I introduce a procedure to construct the time dependence of the
first-passage probability to one of many targets. Reduction of the occupation probability expressions to the
continuous time limit, the so-called continuous time random walk, and to the space-time continuous limit is
also presented.
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I. INTRODUCTION

While random walks have their root in the 17th century
analysis of games of chance [1], they are associated with
Pearson who introduced them in 1905 [2], although many
of their properties had already been elucidated in 1900 by
Bachelier [3] whose work remained largely unknown until
the 1950s [4]. It was Smoluchowski, in 1906 [5], who first

derived the relation between diffusion and lattice random
walks (LRW), that is, walks in discrete space and time,
laying the foundations of the modern theory of stochastic
processes and Brownian motion [6–12] (see also Ref. [13]
for a more detailed historical account of the relevant
scientists and their contributions to the kinetic theory of
matter in the early part of last century). In mathematics,
LRW are a special class of Markov chains [14]; they were
popularized in the 1920s by Pólya’s seminal work [15,16]
on the dimensionality dependence of the recurrence prob-
ability, that is, the probability that a random walker on an
infinite space lattice eventually returns to its starting point.
With advances in chemistry and material sciences in the

1950s and 1960s, a theoretical need to characterize particle
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or excitation transport in disordered materials such as
amorphous semiconductors and molecular aggregates
emerged [17,18]. Theoretical techniques to estimate reaction
diffusion processes in such materials were the focus of LRW
research [19–23] and have continued since then [24–26].
The diffusive paradigm soon crossed disciplinary boun-

daries and pervaded other scientific disciplines. Researchers
began using random walk models, both discrete and con-
tinuous, in life sciences to represent the movement of
organisms in animal ecology [27–31] and cell biology
[32–36] and later in social sciences, e.g., in social network
analysis [37] and financial systems [38]. The incredible level
of sophistication and reach of randomwalks have made them
become de facto the null model to interpret a variety of
observations across many disciplines.
In physics, LRW have been extensively employed to

study anomalous diffusive processes [39,40], self-avoiding
walks [41], critical phenomena [42], and search processes
[43–46] and, more recently, excluded volume interactions
[47,48], fractional dynamics [49], record statistics [50,51],
and non-Markov processes [52,53].
In mathematics, from being instrumental to the develop-

ment of probability theory in the early part of the last
century [54], LRW have grown to encompass a large body
of work that draws from symbolic enumeration methods
and complex analysis to study fundamental structures such
as permutations, sequences, trees, and graphs [55–57].
Nowadays, LRW play a fundamental role in analytic
combinatorics [58], with wide ranging applications to areas
such as actuarial sciences [59], queuing theory, branching
processes, and dynamic data structure [60].
In comparison to processes in continuous space and time,

the discreteness of LRW has two theoretical advantages. In
the presence of spatial heterogeneities, the use of a lattice,
rather than a continuous space variable, avoids the need to
solve boundary value problems. Discrete time, resulting,
e.g., from regular sampling of certain observables, facilitates
the determination of time-dependent quantities as no process
may occur with an infinite number of steps in a very small
time interval. However, the convenience of spatiotemporal
discreteness is counteracted by the notorious difficulty of
finding closed-formed expressions in transport calculations
[43] when compared to discrete space and continuous
time as well as to continuous space and continuous time
formulations.
This difficulty is particularly evident when seeking

analytic formulas to represent the LRW occupation prob-
ability, the so-called Green’s function or propagator, in
bounded domains. While for unbounded domains the
spatiotemporal one-dimensional (1D) propagator, derived
by Smoluchowski [5,61], as well as its generating function
(discrete Laplace transform) in arbitrary dimensions [19],
are well known, for finite domains, only a few exact
results exist.
Confidence in the ability to analytically find the time

dependence of confined Pólya’s walk propagators stems

from the intimate connection [63,64] between the one-step
transition matrix and orthogonal polynomials. However,
over the years, it has become apparent that finding such
polynomials explicitly can be a challenge [65], in particu-
lar, for dimensions larger than one.
For 1D confined domains, the time-dependent propaga-

tor for absorbing boundaries [54] and periodic domains
[66] have been known for a long time. But for reflecting
boundaries, i.e., a 1D box, and with one absorbing and one
reflecting boundary, exact propagators have not appeared in
the literature. A recent attempt to approximate the fully
reflecting case has exploited the known propagator in a
periodic domain and the analogy of the geometry of a box
to that of a squeezed ring [67].
In higher dimensions, propagators in closed form exist

only for periodic domains [66]. No analytic results are
known for absorbing domains, reflecting domains, or
mixed reflecting and absorbing domains. But more impor-
tantly, a procedure to derive exact propagator expressions
in arbitrary dimensions with any combination of absorbing,
periodic, reflecting, or mixed boundaries is lacking.
Here, I bridge this knowledge gap by developing a

procedure to construct, for arbitrary dimensions, the ana-
lytic propagator in the time domain as well as its generating
function. I derive various time-dependent quantities asso-
ciated with the propagator, such as the first-passage
probability to one and multiple targets, the average
number of distinct sites visited, the return probability,
and the absorption probability at a partially absorbing trap.
Furthermore, I employ the propagators’ analytic expres-
sions to determine the mean first-passage time (MFPT) to a
set of targets in arbitrary dimensions as a function of the
elementary MFPT to single targets.
The content of the paper is organized as follows.

Section II treats the derivation of the 1D propagator and
its generating function in the presence of different boundary
conditions, pictorially represented in Fig. 1. The analytic
time dependence of quantities derived from the 1D propa-
gators, such as the first-passage probability, the return
probability, and the average number of distinct sites visited,
is shown in Sec. III, whereas 1D MFPT and mean exit time
expressions are presented in Sec. IV. Section V gives the
dimensionality reduction to obtain the spatiotemporal
dependence of LRW propagators in arbitrary dimensions
and arbitrary boundary conditions. The recovery of known
propagators in continuous time and continuous space is
also shown. In Sec. VI, I study the dynamics of partially
absorbing traps, while the determination of MFPT to a single
target in arbitrary dimensions, and its connection to the
pseudo-Green function formalism, is treated in Sec. VII. In
Sec. VIII, a formalism to construct the generating function of
the first-passage probability andMFPT to any of a number of
targets is presented. Concluding remarks and a discussion
of the applicability of the analytic findings to other problems
are given in Sec. IX.
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II. TIME-DEPENDENT PROPAGATOR FOR THE
SYMMETRIC RANDOM WALK IN ONE-

DIMENSIONAL DOMAINS

I start by considering the 1D dynamics of the so-called
symmetric lazy random walker (see, e.g., Ref. [68]) in an
unbounded domain. In this case, the transition probability
is identical to those in the bulk of a finite domain (red lattice
sites depicted in Fig. 1). The equation governing the
evolution of the site occupation probability, Qðn; tÞ, is
given by

Qðn; tþ 1Þ ¼ q
2
Qðn − 1; tÞ þ q

2
Qðnþ 1; tÞ

þ ð1 − qÞQðn; tÞ; ð1Þ

with n representing a lattice site on the line and t being
time. As shown later in Sec. V C, changes in the probability
q correspond to a linear rescaling of the rate of jumps
between neighboring sites in continuous time and discrete
space, and a linear rescaling of the diffusion constant for
Brownian walks. The classical Pólya’s walk, also called the

Bernoulli walk, corresponds to q ¼ 1 [69,70] and repre-
sents a walker that always moves when in the bulk.
It is straightforward to find (see the Appendix A)

the generating function, or z transform, Q̃n0ðn; zÞ ¼P∞
t¼0Qn0ðn; tÞzt, of Eq. (1) with the initial condition

Qðn; 0Þ ¼ δn;n0 , where δl;l0 is a Kroneker delta. From
Q̃n0ðn; zÞ, the propagator in bounded space, P̃n0ðn; zÞ, can
be obtained by considering the contribution from each
of the infinite number of images of the initial condition,
which account for the multiple interactions of the walker
with the boundaries [5,9,24]. With boundaries located at
n ¼ 1 and n ¼ N, the propagator takes the general form
(see derivation in Appendix B)

P̃ðγÞ
n0 ðn; zÞ ¼

2DðγÞ½n; n0; N; z�
zq sinh½ζðzÞ� ; ð2Þ

with cosh½ζðzÞ� ¼ 1þ ð1=qÞ½ð1=zÞ − 1�, sinh½ζðzÞ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − zÞ½1 − ð1 − 2qÞz�p
=qz, and the symbols γ ¼ r, p,

a, andm representing the various cases drawn in Fig. 1. The
functional dependence of the function DðγÞ½n; n0; N; z� is

DðγÞ½n; n0; N; z� ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

cosh½ðN − n> þ 1
2
ÞζðzÞ� cosh½ðn< − 1

2
ÞζðzÞ�

sinh½NζðzÞ� γ ¼ r

cosh½ðN − jn − n0jÞζðzÞ� þ cosh½jn − n0jζðzÞ�
2 sinh½NζðzÞ� γ ¼ p

sinh½ðN − n>ÞζðzÞ� sinh½ðn< − 1ÞζðzÞ�
sinh½ðN − 1ÞζðzÞ� γ ¼ a

cosh ½ð2N − n> − 1
2
ÞζðzÞ� cosh ½ðn< − 1

2
ÞζðzÞ� − cosh ½ðn − 1

2
ÞζðzÞ� cosh ½ðn0 − 1

2
ÞζðzÞ�

sinh½ð2N − 1ÞζðzÞ� γ ¼ m;

ð3Þ

where n> ¼ ðnþ n0 þ jn − n0jÞ=2 and n< ¼ ðnþ n0 −
jn − n0jÞ=2. Note that for γ ¼ m, the reflecting boundary
is at n ¼ 1 [that is, P̃n0ð1; zÞ − P̃n0ð0; zÞ ¼ 0], whereas the
absorbing boundary is at n ¼ N [that is, P̃n0ðN; zÞ ¼ 0].
These 1D generating functions for the reflecting (r), perio-
dic (p), and absorbing case (a) for q ¼ 1 have appeared in
the literature—respectively, in Refs. [54,66,71]—while the
mixed boundary case (m) appears to be unknown.
The z inversion requires the complex integration of

Eq. (2) via fðtÞ¼ð2πiÞ−1H dzf̃ðzÞz−t−1 [72], with jzj<1

and with the integration contour being counterclockwise.
As all poles of f̃ðzÞ are in the region jzj ≥ 1, with the
change of variable z ¼ 1=s, one transforms the complex
integral to fðtÞ ¼ ð2πiÞ−1 H dsf̃ð1=sÞst−1, with the contour
in the region jsj > 1 and with all poles now inside the
contour jsj ≤ 1. The integral is thus the sum of the residues
at the poles located at s ¼ 1, s ¼ 1–2p and at

sðγÞk ðqÞ ¼ 1 − qþ q cos ðπN ðγÞ
k Þ; k ¼ 1;…;ωðγÞ;

ð4Þ

with N ðrÞ
k ¼ k=N, N ðpÞ

k ¼ 2k=N, N ðaÞ
k ¼ k=ðN − 1Þ,

and N ðmÞ
k ¼ ð2k − 1Þ=ð2N − 1Þ and with ωðrÞ ¼ ωðpÞ ¼

ωðmÞ ¼ N − 1 and ωðaÞ ¼ N − 2. Evaluation of the
residues then gives the corresponding time-dependent
propagator

PðγÞ
n0 ðn; tÞ ¼

XωðγÞ

k¼wðγÞ
gðγÞk ðn; n0Þ½sðγÞk ðqÞ�t; ð5Þ

with wðrÞ ¼ wðpÞ ¼ 0 and wðaÞ ¼ wðmÞ ¼ 1 (note that wðγÞ is
the lower limit of the summation, while ωðγÞ is the upper
limit), and with
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gðγÞk ðn; n0Þ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

αk cos ½ðn − 1
2
Þ πkN � cos ½ðn0 − 1

2
Þ πkN �

N
γ ¼ r

cos ½ðn − n0Þ 2πkN �
N

γ ¼ p

2 sin ðn−1N−1 kπÞ sin ðn0−1N−1 kπÞ
N − 1

γ ¼ a

4 cos ½ðn − 1
2
Þ 2k−1
2N−1 π� cos ½ðn0 − 1

2
Þ 2k−1
2N−1 π�

2N − 1
γ ¼ m;

ð6Þ

where αk ¼ 1 when k ¼ 0 and 2 for any k > 0. As the
generating function of Eq. (5) represents an alternative

closed-form expression of P̃ðγÞ
n0 ðn; zÞ in Eq. (2), it provides

finite trigonometric series identities in the complex domain.
Its generalizations, presented in Appendix E, are exploited
extensively in deriving the propagators in higher dimensions.
While the time dependence for q ¼ 1 is already present

in the literature for the absorbing (see, e.g., Ref. [54]) and

periodic cases (see, e.g., Ref. [66]), the other two cases
appear to be unknown. Recently, for the case q ¼ 1, an
alternative representation for the reflecting and absorbing
cases has been proposed using the method of images with
the unbounded space and time-dependent propagator [73],
but its computability is limited given that it is expressed in
terms of two infinite series.
An alternative procedure to find the exact propagator

when γ ¼ r, a, and m is to solve the eigenvalue problem
associated with the discrete diffusion equation

Pðn; tþ 1Þ ¼
XN
l¼1

AnlPðl; tÞ; ð7Þ

equivalently, P⃗ðtþ 1Þ ¼ A · P⃗ðtÞ, in vectorial notation.
Equation (7) describes the dynamics of the probability
through the tridiagonal transition matrix A. In the bulk,
that is, for n ≠ 1, N, Eq. (7) represents the same dynamics
of the unbounded case in Eq. (1). The matrix A is such
that Anm¼ð1−qÞδn;mþðq=2Þδn;mþ1þðq=2Þδn;m−1, when
ðn;mÞ ≠ ð1; 1Þ or ðN;NÞ, while the corner elements A11

and ANN change depending on the boundary conditions.
For the reflecting case, A11 ¼ ANN ¼ 1 − q=2, and for the
absorbing case, A11 ¼ ANN ¼ 1 − q (that is, the diagonal
elements of the matrix are all identical); when the reflection
is at n ¼ 1 and the absorption is at n ¼ N, one has A11 ¼
1 − q=2 and ANN ¼ 1 − q.
Note that P⃗ðtÞ in Eq. (7) can be iteratively constructed

from the initial condition as P⃗ðtÞ¼At ·P⃗ð0Þ¼EHtE−1P⃗ð0Þ,
where H, E, and E−1 represent, respectively, the diagonal
matrix of eigenvalues, and the matrix of the left and the
right eigenvectors. As matrix A is a special tridiagonal
Toeplitz matrix with two perturbed corners, its eigenvalues
and eigenvectors can be determined exactly [74], leading to
Eq. (5) for γ ¼ r, a, and m.

III. TIME DEPENDENCE OF RETURN
PROBABILITY, FIRST-PASSAGE PROBABILITY,
AND MEAN NUMBER OF DISTINCT VISITED

SITES IN ONE DIMENSION

The first time an event occurs is often an important fea-
ture of a stochastic system. The event might be represented

FIG. 1. Pictorial representation of the transition probabilities
for a 1D LRW between neighboring lattice sites in the four
boundary conditions studied, respectively, (r) reflecting, (p)
periodic, (a) absorbing, and (m) mixed with one reflecting (left)
and one absorbing (right). The boundaries are located at n ¼ 1
and n ¼ N. Any red lattice site represents a lattice in the bulk of
the domain for which the probability to move to a nearest-
neighbor site is q=2 (0 < q ≤ 1) and the probability of staying in
place is 1 − q. The boundary lattice sites are colored differently.
At a reflecting site (blue circle), the probability of staying is
1 − q=2, and q=2 is the probability of moving towards the inside
of the domain. In the translationally invariant periodic case, a
dotted line connecting sites n ¼ 1 and n ¼ N to indicate
equivalence between site 0 and site N has been drawn. In such
a case, all lattice sites are colored red as each one represents a site
in the bulk of the domain. At an absorbing lattice point (green
circle), only the transition probability 1 − q into the site is
possible. For clarity, the transition probabilities have been written
only for a subset of the arrows in the figure.
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by a random walker reaching a specific location on the
lattice or returning to the starting location. The probabilities
associated with the occurrence of these two events are
called, respectively, first-passage probability and return
probability. Their dynamics is linked to the one of the
propagator via the renewal equation (see, e.g., Ref. [19]),
Pn⃗0ðn⃗; tÞ ¼ δt;0δn⃗;n⃗0 þ

P
t
s¼0 Fn⃗0ðn⃗; sÞPn⃗ðn⃗; t − sÞ, which

has been represented in vectorial notation given its general
validity. The equation links the propagator Pn⃗0ðn⃗; tÞ to the
first-passage probability Fn⃗0ðn⃗; tÞ to reach n⃗ for the first
time at time t starting from n⃗0, and to the return probability
Rn⃗ðtÞ when n⃗ ¼ n⃗0. It provides mathematical relations
between the generating function of the return probability
or the first-passage probability and the propagator. The
first-return probability to site n⃗ is related via R̃n⃗ðzÞ ¼
1 − 1=P̃n⃗ðn⃗; zÞ, while the first-passage probability is
related via F̃n⃗0ðn⃗; zÞ ¼ P̃n⃗0ðn⃗; zÞ=P̃n⃗ðn⃗; zÞ. Both relations
are obtained by z transforming the renewal equation.
For 1D domains, making use of the γ ¼ r propagator

derived in Eq. (2), one can straightforwardly derive the
relations for reflecting boundaries:

R̃ðrÞ
n ðzÞ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ð1 − 2qÞ − 2zð1 − qÞ þ 1

p
sinh½NζðzÞ�

2 cosh ½ðN − nþ 1
2
ÞζðzÞ� cosh ½ðn − 1

2
ÞζðzÞ�

ð8Þ

and

F̃ðrÞ
n0 ðn; zÞ ¼

cosh ½ðN − n> þ 1
2
ÞζðzÞ� cosh ½ðn< − 1

2
ÞζðzÞ�

cosh ½ðN − nþ 1
2
ÞζðzÞ� cosh ½ðn − 1

2
ÞζðzÞ� :

ð9Þ

As expected, Eqs. (8) and (9) depend explicitly on n
and n0. This dependence is not the case for the periodic
case for which translational invariance makes the return
probability

R̃ðpÞðzÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ð1 − 2qÞ − 2zð1 − qÞ þ 1

p
sinh½NζðzÞ�

cosh½NζðzÞ� þ 1
;

ð10Þ

independent of n and the first-passage probability

F̃ðpÞ
n0 ðn; zÞ ¼

cosh ½ðN
2
− jn − n0jÞζðzÞ�

cosh ½N
2
ζðzÞ� ; ð11Þ

dependent only on the difference n − n0. The analytic time
dependence of Eqs. (8) and (10) is reported, respectively, in
Eqs. (S3) and (S5) of Ref. [75], while the one for Eqs. (9)
and (11) can be found, respectively, in Eqs. (C2) and (C4).
The first-passage probability to either of the two boun-

daries, En0→ð1;NÞðtÞ, one at n ¼ 1 and one at n ¼ N, is

related to the survival probability, Sn0ðtÞ, via En0→ð1;NÞðtÞ ¼
Sn0ðt − 1Þ − Sn0ðtÞ with Sn0ðtÞ ¼

P
N
n¼1 P

ðaÞ
n0 ðn; tÞ [see

explicit expression for En0→ð1;NÞðtÞ in Eq. (C5)]. In trans-
port calculations [43], one refers to this case as the
absorption mode, to distinguish it from the reflection mode
and transmission mode, which occur when both an
absorption and a reflecting lattice site are present. If the
initial condition is near the absorbing (reflecting) boundary,
one refers to it as the reflection (transmission) mode. The
first-passage dynamics is very different in the two modes.
In the reflection mode, the problem is similar to the first-
passage probability in an unbounded domain, and the time
dependence has a very slow, power-law-like dynamics,
whereas at later times, once the reflecting boundary has
been reached, the dynamics is exponential. In the trans-
mission mode, with only the length scale of the size of the
domain affecting the dynamics, an exponential dependence
is instead already present at short times. In Fig. 2, I show
these different dynamics by plotting, on a log-log plot, the
time dependence of the first-passage probability in the
absorption, transmission, and reflection modes.
Another quantity directly related to the propagator

generating function is the number of distinct sites visited.
While finding its probability is a formidable challenge, the
mean is readily accessible and given by [19]

fMn⃗0ðzÞ ¼
1

ð1 − zÞ2P̃n⃗0ðn⃗; zÞ
; ð12Þ

written explicitly in vectorial notation since it will be used
later in Sec. V B when dealing with LRW in higher
dimensions. Through a residue calculation, the 1D case
can also be found analytically [see Eqs. (D1) and (D3),
respectively, for reflecting and periodic boundaries].

FIG. 2. Time dependence of the first-passage probability
in a 1D domain of size N ¼ 51 with q ¼ 0.7. The curve in
the absorption mode is the plot of En0→ð1;NÞðtÞ in Eq. (C5)
with n0 ¼ 25. The reflection and transmission modes display

FðrÞ
n0 ðN; tÞ from Eq. (C2) with, respectively, n0 ¼ 5 and n0 ¼ 50.

The reflection mode exhibits a power-law dependence in time,
whereas an exponential dependence is present for the trans-
mission and absorption modes.
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IV. MEAN FIRST-PASSAGE TIME
IN ONE DIMENSION

In various instances, the estimation of the mean of the
first-passage probability, that is, the MFPT, provides a
valuable estimate with which to interpret empirical find-
ings, e.g., agent reactivity in chemical reactions [76] and
animal foraging efficiency [30]. Analytic knowledge of the
generating function of the first-passage probability pro-
vides a convenient way to compute the MFPT via

Tn⃗0→n⃗ ¼
dF̃n⃗0ðn⃗; zÞ

dz

����
z¼1

; ð13Þ

a well-known relation, which is also valid for arbitrary
dimensions.
In 1D, the MFPT for the reflecting and periodic cases can

be derived by taking the generating function of the propa-
gator in Eq. (5) and, subsequently, exploiting the identities
(E2) and (E4), resulting in the compact expression

TðrÞ
n0→n ¼ 1

q
½Njn − n0j þ ðn − n0Þðnþ n0 − 1 − NÞ�; ð14Þ

for the reflecting domain, and

TðpÞ
n0→n ¼ 1

q
ðN − jn − n0jÞjn − n0j; ð15Þ

for the periodic domain. Comparison of the two expres-
sions shows that there are values for n for which

TðpÞ
n0→n > TðrÞ

n0→n. It is easier to determine the range of
such values by considering separately N odd or even.

When N is odd, and n0 > ðN þ 1Þ=2, TðpÞ
n0→n > TðrÞ

n0→n

whenever ðN þ 1Þ=2 < n < n0, while TðpÞ
n0→n ¼ TðrÞ

n0→n

when n0 ¼ ðN þ 3Þ=2. Similarly, when n0 < ðN þ 1Þ=2,
TðpÞ
n0→n > TðrÞ

n0→n whenever n0<n< ðNþ1Þ=2 and TðpÞ
n0→n ¼

TðrÞ
n0→n when n0 ¼ ðN − 1Þ=2. In all other cases, TðpÞ

n0→n <

TðrÞ
n0→n. This result is intuitively understandable as the range

of values found corresponds to, with n0 > ðN þ 1Þ=2, the
case when the target position n is to the right of the halfway
point in the domain and n0 is in between the target site n
and lattice site n ¼ N. The presence of the boundary at
n ¼ N increases the chance of reaching n when compared
to the periodic case for which trajectories may also reach n
by taking the longer route by moving mostly to the right
and then reaching n from the left. The other case, that is,
when n0 < ðN þ 1Þ=2, corresponds to when the target
position n is to the left of the halfway point in the domain
and n0 is in between the target site n and lattice site n ¼ 1.

When N is even, one has a slight modification: TðpÞ
n0→n

cannot be equal to TðrÞ
n0→n, and with n0 > ⌈ðN þ 1Þ=2⌉ (⌈x⌉,

called the “ceiling” of x, represents the least integer greater

than or equal to x), one has TðpÞ
n0→n > TðrÞ

n0→n when
⌈ðN þ 1Þ=2⌉ ≤ n < n0; however, with n0 > bðN þ 1Þ=2c
(bxc, called the “floor” of x, represents the greatest

integer less than or equal to x), one has TðpÞ
n0→n > TðrÞ

n0→n

when n0 < n ≤ bðN þ 1Þ=2c. For all other cases,

TðpÞ
n0→n < TðrÞ

n0→n.
From the first-passage probability En0→ð1;NÞðtÞ, it is

straightforward to determine the mean time to either of
the two boundaries, Tn0→ð1;NÞ ¼

P∞
t¼0 tEn0→ð1;NÞðtÞ, the

so-called mean exit time. The resulting expression is the
counterpart of the well-known continuous space-time result
(see, e.g., Ref. [77]) and is given by

Tn0→ð1;NÞ ¼
1

q
ðN − n0Þðn0 − 1Þ: ð16Þ

V. PROPAGATORS IN HIGHER DIMENSIONS

A. Two-dimensional propagator
with reflecting boundaries

I start with 2d, in particular, analyzing the case of a
domain of size N1 × N2 with four reflecting boundaries.
To proceed, one needs to first consider an analogous pro-
blem, that of a LRW confined along one direction, char-
acterized by coordinates n1 (1 ≤ n1 ≤ N1), and unbounded
along the other, characterized by coordinates n2. Away
from the boundaries, the walker along each coordinate has a
chance to move to a neighboring site with probability qi=4,
with i ¼ 1 and 2, and a chance to stay with probability
1 − ðq1 þ q2Þ=2. The discrete master equation governing
the 2D dynamics of the semibounded probability
Pðn1; n2; tÞ in the bulk (P has been chosen to distinguish
it from the fully bounded propagator P), that is, when away
from any of the boundaries, is given by

Pðn1; n2; tþ 1Þ

¼
�
1 −

q1 þ q2
2

�
Pðn1; n2; tÞ

þ q1
4
½Pðn1 − 1; n2; tÞ þ Pðn1 þ 1; n2; tÞ�

þ q2
4
½Pðn1; n2 − 1; tÞ þ Pðn1; n2 þ 1; tÞ�; ð17Þ

and for any site with coordinates ð1; n2Þ and ðN1; n2Þ, the
dynamics of the probability satisfies the following two
equations, respectively:
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Pð1; n2; tþ 1Þ ¼
�
1

2
−
q1
4
þ 1 − q2

2

�
Pð1; n2; tÞ þ

q1
4
Pð2; n2; tÞ þ

q2
4
½Pð1; n2 − 1; tÞ þ Pð1; n2 þ 1; tÞ�;

PðN; n2; tþ 1Þ ¼
�
1

2
−
q1
4
þ 1 − q2

2

�
PðN; n2; tÞ þ

q1
4
PðN − 1; n2; tÞ þ

q2
4
½PðN; n2 − 1; tÞ þ PðN; n2 þ 1; tÞ�: ð18Þ

I first seek the solution of the semibounded problem defined in Eqs. (17) and (18) with initial conditions
Pðn1; n2; 0Þ ¼ δn1;n01δn2;n02 .
With the movement along the vertical axis being unrestricted, one can Fourier transform Eqs. (17) and (18) and write an

effective 1D discrete master equation analogous to Eq. (7) of the form

P̂ðn1; κ2; tþ 1Þ ¼
XN1

l¼1

Bn1lP̂ðl; κ2; tÞ; ð19Þ

where P̂ðn1; κ2; tÞ ¼
Pþ∞

n2¼−∞ e−iκ2n2Pðn1; n2; tÞ. The matrix B is tridiagonal with elements of the upper and lower
diagonals equal to q1=4, and with diagonal elements Bll ¼ 1 − q1=2 − q2½1 − cosðκ2Þ�=2 when l ≠ 1, N1 and
B11 ¼ BN1N1

¼ 1 − q1=4 − q2½1 − cosðκ2Þ�=2. As matrix B is a Toeplitz matrix with perturbed corners, the exact solution
is of the same form of Eq. (5), namely,

P̂n⃗0ðn1; κ2; tÞ ¼
XN1−1

k1¼0

αk1
N1

cos

��
n1 −

1

2

�
πk1
N1

�
cos

��
n01 −

1

2

�
πk1
N1

��
1 −

q1
2
þ q1

2
cos

�
πk1
N1

�
−
q2
2
þ q2

2
cosðκ2Þ

	
t
e−iκ2n02 ;

ð20Þ

where the symbol n⃗0 stands for ðn01; n02Þ. The next step requires the generating function of Eq. (20) and, subsequently, its
inverse Fourier transform. Then, employing the method of images to the resulting expression for reflecting boundaries at
n2 ¼ 1 and n2 ¼ N2 provides the generating function of the exact solution in the fully bounded 2D domain. And finally,
through an inverse z transformation, one obtains the exact spatiotemporal dependence (see further details in Ref. [75]),

Pn⃗0ðn1; n2; tÞ ¼
1

N1N2

XN1−1

k1¼0

XN2−1

k2¼0

αk1αk2 cos

��
n1 −

1

2

�
πk1
N1

�

× cos

��
n01 −

1

2

�
πk1
N1

�
cos

��
n2 −

1

2

�
πk2
N2

�
cos

��
n02 −

1

2

�
πk2
N2

�

×

�
1 −

q1 þ q2
2

þ q1
2
cos

�
πk1
N1

�
þ q2

2
cos

�
πk2
N2

��
t
; ð21Þ

with αki ¼ 1 when ki ¼ 0 and 2 otherwise.
In Fig. 3, I plot Eq. (21) and the numerical (iterative)

solution of the equation

Pðn1; n2; tþ 1Þ ¼
XN1

l¼1

XN2

r¼1

An1l;n2rPðl; r; tÞ; ð22Þ

where Anl;mr is a fourth-order tensor that accounts for the
bulk dynamics as well as the dynamics along the four
boundaries. With the walker always moving (q1 ¼ q2 ¼ 1),
at short enough times, parity dependencies appear in the
shape of Pðn1; n2; tÞ, for which, at odd (even) times, only
locations that are an odd (even) number of steps away from
the initial position have nonzero probability. In this case, it
is evident that all ðn1; n2Þ elements for which n1 þ n2 −

n01 − n02 is even have Pðn1; n2; 5Þ ¼ 0. As the walker is
equally likely to be found anywhere at long times—
ðN1N2Þ−1 is the long time limit of Eq. (21)—the walker
gradually loses this parity-dominated dynamics after reach-
ing any boundary point where it always has a chance
to stay.

B. Propagator in arbitrary dimensions and
arbitrary boundary conditions

The procedure to derive the 2D analytic propagator for
the case of four reflecting boundaries can be followed to
construct the solution in arbitrary dimensions for a bounded
domain of size

Q
i Ni with any combination of boundary

conditions along each direction i and any parameter
0 < qi ≤ 1, with qi=ð2dÞ representing the jump probability
to either of the nearest-neighbor sites along direction i. It is
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an eight-step hierarchical construction based on the knowl-
edge of the analytic solution of the associated problem in
d − 1 dimensions. For ease of understanding, a visual
representation of this hierarchical construction is drawn
in Fig. S1 in Ref. [75], where some additional details of the
derivation are also reported. The first step consists of
writing a master equation for a LRW in d dimensions,
whose dynamics represent a walker moving in unbounded
space along the dth dimension while confined along the
remaining d − 1 dimensions. The dynamics governing the
walker movement when at a boundary site along any of
the d − 1 bounded dimensions are chosen according to the
specified boundary conditions. In the second step, after a
Fourier transformation along the dth dimension is per-
formed, one is left with a master equation for a walker in an
effective d − 1-dimensional space. The analytic solution of
this master equation can be found by realizing that the only
difference from the solution of the fully bounded problem
in d − 1 dimensions is that the probability of staying
contains the cosine of the Fourier coefficients along the
unbounded dth direction in the bulk and the appropriate
correction when at any of the boundary sites. In the third
step, one can thus write the time-dependent propagator for
the d − 1 bounded dimensions, which contains as param-
eters Fourier coefficients associated with the dth dimen-
sion. The fourth and fifth steps involve, respectively,
writing the generating function of the propagator and then
its inverse Fourier transform. With the resulting generating
function of the propagator now bounded along d − 1
dimensions and unbounded along the dth dimension, the
method of images, for the boundary conditions specified by

the problem, along the dth dimension is employed in the
sixth step to obtain the generating function for the fully
bounded propagator. In the seventh step, the propagator
generating function is rewritten in terms of Chebyshev
polynomials, and the appropriate identities presented in
Appendix E are used to obtain the propagator generating
function in terms of d finite nested sums. The eighth
(and final) step is an inverse z transform to obtain the
following spatiotemporal dependence of the propagator in
d dimensions:

Pn⃗0ðn1;…; nd; tÞ ¼
Xωðγ1Þ
1

k1¼w
ðγ1Þ
1

…
XωðγdÞ
d

kd¼w
ðγdÞ
d

�Yd
i¼1

gðγiÞki
ðni; n0iÞ

�

×
�
sðγ1Þk1

ðq1Þ
d

þ � � � þ sðγdÞkd
ðqdÞ
d

�t
: ð23Þ

Recall that the function sðγÞk ðqÞ and gðγÞk ðn; n0Þ are defined,
respectively, in Eqs. (4) and (6), that the lower summati
on limit wðγÞ ¼ 0 when γ ¼ r or p, wðγÞ ¼ 1 when γ ¼ a or
m, and that the upper summation limit ωðγÞ ¼ N − 1 when
γ ¼ r, p, or m and ωðaÞ ¼ N − 2.
The structure of the general propagator in Eq. (23) is

relatively simple. It is made up of a nested finite series
whereby the spatial components (eigenbases) appropriate
for the boundary conditions along each direction are
multiplied, while the temporal dependence for each direc-
tion is summed first and then evaluated to the power t.
The advantage of the analytic expression for Pn⃗0ðn1;…;

nd; tÞ is that it bypasses the construction of the appropriate
multidimensional array that represents the jump transition
probability. It thus avoids the need to iteratively solve the
discrete master equation, whose computational cost would
scale as ½ð2dþ 1ÞQd

i¼1 Ni�t, where 2dþ 1 stems from the
number of allowed nearest-neighbor jump probability for a
Pólya’s walk in a space of dimensions d. This linear time
cost should be compared to ðQd

i¼1NiÞ logð
Q

d
i¼1 NiÞ when

computing the nested sums in Eq. (23) at any given time t,
e.g., through the use of fast Fourier transforms. In other
words, by using the analytics, there is a gain in computation
from being linearly dependent on time to be independent
from it.
The convenience in employing the exact propagators is

particularly evident when analyzing the dynamics for
derived quantities that have been so far accessible only
via stochastic simulations. An example is the time depend-
ence of the average number of distinct visited sites,Mn⃗0ðtÞ,
whose generating function has been defined in Eq. (12).
In a box of size Nd, even with the choice N ¼ 10, the
computational cost to generate stochastic simulation out-
puts is prohibitive as d grows, while the numerical z
inversion of the analytic expression allows one to plot in
Fig. 4 the resulting dynamics straightforwardly. From the

FIG. 3. Two-dimensional propagator in a lattice with reflecting
boundaries and size N ¼ M ¼ 10 at time t ¼ 5 starting from
the initial condition Pðn1; n2; 0Þ ¼ δn1;5δn2;5. The open circles
are obtained from the analytic expression in Eq. (21) with
q1 ¼ q2 ¼ 1, while the colored bars are obtained by iteratively
solving Eq. (22).
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figure, it is noticeable that the cases for d ¼ 1 and d ¼ 2 are
qualitatively different from the remaining ones. This differ-
ence is due to the recurrent or transient nature of the
associated Pólya’s walks in unbounded space, which are
recurrent in 1D and 2D, and transient in d ≥ 3 [15,16].

C. Propagators in the continuous limit

Known results in the continuous time limit can be
recovered with standard procedures (see, e.g., Ref. [24])
by considering the propagator Cn⃗0ðn1; n2;…; nd; τÞ ¼P∞

s¼0Wðs; τÞPn⃗0ðn1; n2;…; nd; sÞ, where Wðs; τÞ is the
probability for s jump events to occur in (continuous) time
τ. With ψðτÞ, the waiting time probability distribution for a
jump event to occur at time τ, one can construct W̄ðs; ϵÞ ¼
f½1 − ψ̄ðϵÞ�=ϵgψ̄ sðϵÞ, where f̄ðϵÞ ¼ R∞

0 dt e−ϵtfðtÞ is the
Laplace transform of fðtÞ, and carry through the infinite
summation to obtain

C̄n⃗0ðn1; n2;…; nd; ϵÞ

¼
Xωðγ1Þ
1

k1¼w
ðγ1Þ
1

…
XωðγdÞ
d

kd¼w
ðγdÞ
d

½1 − ψ̄ðϵÞ�Qd
i¼1 g

ðγiÞ
ki

ðni; n0iÞ

ϵ
n
1 − ψ̄ðϵÞ

hsðγ1Þk1
ðq1Þ
d þ � � � þ s

ðγdÞ
kd

ðqdÞ
d

io :

ð24Þ

With the choice ψðτÞ ¼ 2dRe−2dRτ, with R a rate
[i.e., ψ̄ðϵÞ ¼ 2dR=ðϵþ 2dRÞ], and subsequent Laplace

inversion, one recovers the factorized form characteristic
of the discrete space and continuous time limit,

Cn⃗0ðn1; n2;…; nd; τÞ ¼
Yd
i¼1

CðγiÞ
n0i ðni; τÞ; ð25Þ

with

CðγiÞ
n0i ðni; τÞ ¼

XωðγiÞ
i

ki¼w
ðγiÞ
i

gðγiÞk ðni; n0iÞe−2Rqiτ½1−cos ðπN
ðγiÞ
ki

Þ�; ð26Þ

where the various symbols are the same as in Eq. (23). The

analytic form of CðγÞ
n0iðni; τÞ can also be found in multiple

sources; see, e.g., Refs. [71,78,79].
From Eq. (25), for the continuous spatial limit, one

considers a lattice spacing of size b, with b → 0, Ni, n, n0,
R → þ∞, such that x ¼ nb, x0 ¼ n0b, Li ¼ Nib, with Li

the domain size (0 ≤ xi, x0i ≤ Li), and qiRb2 → Di, with
Di the diffusion constant. With the above limits, Eq. (26)
transforms into

CðγÞ
x0i ðxi; τÞ ¼

Xþ∞

k¼k̄γ

hði;γÞk ðxi; x0iÞe−ðDiπ
2k2γ=L2

i Þτ; ð27Þ

where hði;rÞk ðx; x0Þ ¼ αk cosðπkx=LiÞ cosðπkx0=LiÞ=Li,

hði;pÞk ðx; x0Þ ¼ cos½2πkðx − x0Þ=Li�=Li, hði;aÞk ðx; x0Þ ¼
2 sinðπkx=LiÞ sinðπkx0=LiÞ=Li, and hði;mÞ

k ðx; x0Þ ¼
2 cos½πðk − 1=2Þx=LiÞ cos½πðk − 1=2Þx0=Li�=Li, and with
k̄r;p ¼ 0, k̄a;m ¼ 1, kr;a ¼ k, kp ¼ 2k, km ¼ ð2k − 1Þ=2.
These functional dependencies match the space-time
continuous propagators found in multiple references
(see, e.g., Refs. [80–82]).
In Sec. II, it was mentioned that the parameter control-

ling the probability to move to nearest-neighboring sites is
only a rescaling of the jump rate in continuous time or the
diffusion constant in the space-time continuous limit. From
Eq. (26), one can clearly see that qi is a rescaling of the
jump rate R between lattice sites along each direction, or a
rescaling of the diffusion constant along each direction,
when inspecting Eq. (27).

VI. DYNAMICS IN THE PRESENCE OF A
DEFECTIVE SITE

Besides boundary sites, in many finite systems there
exist other special spatial locations, often called defects,
that affect the movement steps of a random walker. These
defects may either change the probability of a walker to
move to a neighboring site [83,84], or they may be partially
absorbing traps [21,22]. The absorbing case is particularly
important and has been the subject of past [85–87]
and renewed interest [88,89]. In the presence of partially

FIG. 4. Time dependence of the average number of distinct
visited sites in a box (with reflective boundary conditions along
each side) of size Nd. The 1D case is plotted by using Eq. (D1),
while all the remaining ones are obtained through a numerical z
inversion of Eq. (12). The starting location, for i ¼ 1;…; d, is at
n0i ¼ 1, and qi ¼ 2d=ð2dþ 1Þ so that in any dimension the
transition probabilities at each time step to move to either
of the adjacent sites, qi=ð2dÞ, or to stay, 1 −

P
d
i¼1 qi=ðdÞ, are

all identical, and equal to 1=ð2dþ 1Þ, when away from the
boundaries.
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absorbing traps, two temporal scales affect the LRW
dynamics: the time it takes for a walker to reach either of
the traps and the reaction time, that is, the time to be
absorbed at the trap site. The former is controlled by the
dynamics of the first-passage probability to reach either of
the traps, while the latter is controlled by the probability ρ of
being absorbed when at one of the traps. While there exist
two limiting cases [90,91]—the reaction-limited case when
ρ ≪ 1, and the motion limited case, also called geometry-
controlled limit, when qi ≪ 1—in general, there is a rich
temporal dependence as a function of ρ, qi, the domain size
and the initial location relative to the trap [92]. To describe
the dynamics in the general case, the full time dependence of
the absorption probability becomes necessary.
For the simple case of one trap, one can apply the well-

known defect technique [93,94] and write the generating

function of the absorption probability at site n⃗ starting from
site n⃗0 as

Ãn⃗0ðn⃗; zÞ ¼
P̃n⃗0ðn⃗; zÞ

1
ρ − 1þ P̃n⃗ðn⃗; zÞ

: ð28Þ

In Fig. 5, I show the time dependence for the case of a
single trap in a 2D domain of size N × N with periodic
boundaries. The difference between the mode of the
absorption probability and the mean absorption time,

An⃗0→n⃗ ¼ Tn⃗0→n⃗ þ
�
1

ρ
− 1

�
Nd; ð29Þ

is strikingly visible and points to different regimes of
temporal dependence as observed for Brownian walks
[92,95,96].

VII. MEAN FIRST-PASSAGE TIME TO A SINGLE
TARGET AND PSEUDO-GREEN FUNCTIONS

IN ARBITRARY DIMENSIONS

Knowledge of the propagator in arbitrary dimensions
gives one the ability to analytically determine the MFPT to
a single target for periodic and reflecting domains for any d
as a finite series of a nested sum. Here, I present the MFPT
when boundaries are all reflecting or all periodic, but it is
straightforward to construct the case when there is a
mixture of reflecting and periodic boundaries along differ-
ent directions.
As mentioned earlier in Sec. IV, the MFPT is obtained

using Eq. (13) and can be written in a compact way by first
defining the d-dimensional set of vectors I⃗ ¼ I1;…; Id,
with Ii ¼ f0; 1g, which has 2d possible elements, and
considering the function

Kðk⃗Þ ¼
�
cos2

��
n1 −

1

2

�
πk1
N1

�
…cos2

��
nd −

1

2

�
πkd
Nd

�

− cos

��
n1 −

1

2

�
πk1
N1

�
cos

��
n01 −

1

2

�
πk1
N1

�
…

… × cos
��

nd −
1

2

�
πkd
Nd

�
cos

��
n0d −

1

2

�
πkd
Nd

�	

×

�Xd
i¼1

qi½1 − cos

�
πki
Ni

��	−1

: ð30Þ

The MFPT to a single target in a d-dimensional box
(reflecting boundaries) is given by

Tn⃗0→n⃗ ¼ d
Xd
i¼1

2i
X⃗N
k⃗

X
I⃗∈Mi

KðI⃗ · k⃗Þ; ð31Þ

where
P

N⃗
k⃗

represents d summations for ki ¼ 1;…; Ni,

with i ¼ 1;…; d, and Mi ¼ fx⃗ ∈ I⃗∶
P

d
j¼1 xj ¼ ig; that is,

Mi represents the subset of all combinations of the vectors

FIG. 5. Plot of the absorption probability An⃗0ðn⃗; tÞ in a 2D
periodic domain of size 30 × 30 as a function of time obtained
from a numerical z inversion of Eq. (28) with the walker having
q1 ¼ q2 ¼ q in P̃n⃗0ðn⃗; zÞ. The partially absorbing target is
located at n⃗ ¼ ð21; 9Þ, and the initial condition is at site
n⃗0 ¼ ð4; 18Þ. The top panel is drawn for absorption values in
the range 0.001 ≤ ρ ≤ 1 and q ¼ 0.8, while the bottom panel is
drawn for 0.001 ≤ q ≤ 1 and ρ ¼ 0.8. The solid line is the mean
of the distributions, while the dashed line represents the mode.
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in I⃗ that have d − i elements equal to zero. Application of
Eq. (31) for a 4D lattice with reflecting boundaries is
presented later in Sec. VIII B where an analysis of the
MFPT to either of a set of three targets is carried out.
Equations (30) and (31) allow me to make contact with

the pseudo-Green function formalism developed to ana-
lytically calculate the MFPT and a wealth of other quan-
tities in 1D, 2D, and 3D for LRWs that move at each time
step via [45,97–99]

Tn⃗0→n⃗ ¼
�Yd

i¼1

Ni

�
½Hðn⃗jn⃗Þ −Hðn⃗jn⃗0Þ�: ð32Þ

By using

HðrÞðk⃗Þ ¼
�
cos

��
n1 −

1

2

�
πk1
N1

�
cos

��
n01 −

1

2

�
πk1
N1

�
…

×cos
��

nd −
1

2

�
πkd
Nd

�
cos

��
n0d −

1

2

�
πkd
Nd

�	

×

�Xd
i¼1

qi

�
1 − cos

�
πki
Ni

��	−1

; ð33Þ

the pseudo-Green function for reflecting domains Hðn⃗jn⃗0Þ
in d dimensions and for arbitrary qi (0 < qi ≤ 1) is
given by

Hðn⃗jn⃗0Þ
d

¼
�Xd
i¼1

2i
XN⃗
k⃗

X
I⃗∈Mi

HðrÞðI⃗ · k⃗Þ
��Yd

i¼1

Ni

�−1

: ð34Þ

A similar analysis for the periodic lattices shows that

Hðn⃗jn⃗0Þ
d

¼
�Xd
i¼1

XN⃗
k⃗

X
I⃗∈Mi

HðpÞðI⃗ · k⃗Þ
��Yd

i¼1

Ni

�−1

; ð35Þ

with

HðpÞðk⃗Þ ¼
cos ½ðn1 − n01Þ 2πk1N1

�… cos ½ðnd − n0dÞ 2πkdNd
�P

d
i¼1 qi½1 − cosð2πkiNi

Þ� :

ð36Þ

VIII. FORMALISM FOR FIRST-PASSAGE
PROCESSES WITH MULTIPLE TARGETS

A. Relation between propagator and first-passage
probability to either of two targets

The construction of the first-passage probability to either
of two targets proceeds through a stepwise increase of the
number of targets. I start from the case of two targets by
finding a relation between the first-passage probability

Gð1Þ
n⃗0
ðn⃗1; tjn⃗2Þ to reach n⃗1 starting from n⃗0 at time t and not

having reached n⃗2 (between time 0 and time t), and the
first-passage probability Fn⃗0ðn⃗2; tÞ to reach n⃗2 at time t
starting from n⃗0. The superscript (1) for G indicates that
only one lattice site is not reached—the superscript would
be (2) if two lattice sites were not reached, and so on. For
two targets, one can write the following relation [100]:

Gð1Þ
n⃗0
ðn⃗2; tjn⃗1Þ

¼ Fn⃗0ðn⃗2; tÞ −
Xt

t0¼0

Gð1Þ
n⃗0
ðn⃗1; t0jn⃗2ÞFn⃗1ðn⃗2; t − t0Þ: ð37Þ

Notice that Gð1Þ
n⃗0
ðn⃗2; tjn⃗1Þ is not normalized, as one

realizes by summing Eq. (37) over all times. To construct
the normalized conditional probability, one needs to con-

siderGð1Þ
n⃗0
ðn⃗2; tjn⃗1Þ=Gð1Þ

n⃗0
ðn⃗2; z ¼ 1jn⃗1Þ; that is, one needs to

divide Gð1Þ by the splitting probability of reaching n⃗2 and
not ever going to n⃗1.
The generating function of Eq. (37) and of the alternative

equation with n⃗2 exchanged with n⃗1 can be used jointly to

obtain Gð1Þ
n⃗0
ðn⃗2; zjn⃗1Þ and Gð1Þ

n⃗0
ðn⃗1; zjn⃗2Þ and, from them, the

first-passage probability in the z domain to either target,

Ẽn⃗0→ðn⃗1;n⃗2ÞðzÞ
¼ fF̃n⃗0ðn⃗1; zÞ½1 − F̃n⃗1ðn⃗2; zÞ� þ F̃n⃗0ðn⃗2; zÞ
× ½1 − F̃n⃗2ðn⃗1; zÞ�g½1 − F̃n⃗2ðn⃗1; zÞF̃n⃗1ðn⃗2; zÞ�−1: ð38Þ
After a numerical z inversion of Eq. (38), I plot in

Fig. 6 the time-dependent first-passage probability to
either target, namely, En⃗0→ðn⃗1;n⃗2ÞðtÞ, for all possible n⃗0.
When n⃗0 ≠ n⃗1, n⃗2, the data represent the first-passage
probability, whereas when n⃗0 coincides with the target at n⃗1
or n⃗2, the values at those points represent the probability,
starting from n⃗0, to either return to n⃗0 or reach the other

target. In other words, Gð1Þ
n⃗0
ðn⃗0; tjn⃗2Þ þGð1Þ

n⃗0
ðn⃗2; tjn⃗0Þ and

Gð1Þ
n⃗0
ðn⃗0; tjn⃗1Þ þ Gð1Þ

n⃗0
ðn⃗1; tjn⃗0Þ.

In Fig. 6, the complex structure of the surface plot is due
to the locations near the targets having the first-passage
probability already past their maximum value, compared to
the lattice sites further away from the targets for which the
first-passage probability has barely increased from its initial
zero value. In addition, the marked asymmetry in the
surface plot, when comparing lattice sites around each of
the two targets, is due to the higher chance of staying at the
boundaries near lattice site (2,9).
Expression (38) can be exploited to derive other relevant

quantities such as the MFPT to either of two targets via
Eq. (13) to get

Tn⃗0→ðn⃗1;n⃗2Þ

¼ Tn⃗0→n⃗1Tn⃗1→n⃗2 þ Tn⃗0→n⃗2Tn⃗2→n⃗1 − Tn⃗1→n⃗2Tn⃗2→n⃗1

Tn⃗1→n⃗2 þ Tn⃗2→n⃗1

; ð39Þ
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or the splitting probability to eventually reach n⃗2 without
having reached n⃗1,

Gð1Þ
n⃗0
ðn⃗2; z ¼ 1jn⃗1Þ ¼

Tn⃗0→n⃗1 þ Tn⃗1→n⃗2 − Tn⃗0→n⃗2

Tn⃗1→n⃗2 þ Tn⃗2→n⃗1

; ð40Þ

and its counterpart Gð1Þ
n⃗0
ðn⃗1; z ¼ 1jn⃗2Þ. Equations (39) and

(40) match past results presented in Refs. [101,102].

B. First-passage probability to either of multiple targets

To construct the first-passage probability to either of a
larger number of targets, one has to proceed stepwise. For
three targets at n⃗i, n⃗j, and n⃗k, one writes a relation between
Gð1Þ and Gð2Þ, namely,

Gð2Þ
n⃗0
ðn⃗i; tjn⃗j; n⃗kÞ

¼ Gð1Þ
n⃗0
ðn⃗i; tjn⃗kÞ −

Xt

t0¼0

Gð2Þ
n⃗0
ðn⃗j; t0jn⃗i; n⃗kÞGð1Þ

n⃗j
ðn⃗i; t − t0jn⃗kÞ;

ð41Þ
which gives the first-passage probability of reaching n⃗i
and not having reached n⃗j or n⃗k. The first term of

Gð2Þ
n⃗0
ðn⃗i; tjn⃗j; n⃗kÞ is given by the first-passage probability

Gð1Þ
n⃗0
ðn⃗i; tjn⃗kÞ given in Eq. (37) of having reached n⃗i at time

t and not n⃗k (but with no constraints on the number of times

the walker has gone through n⃗j) minus the contribution of
having reached n⃗j at some earlier time t0 and never n⃗k and
n⃗i, and subsequently, in the time t − t0 having reached n⃗i
and not n⃗k. By additionally writing Gð2Þ

n⃗0
ðn⃗i; tjn⃗j; n⃗kÞ with

n⃗i, n⃗j, and n⃗k permuted, it is possible to derive the analytic
expression for the generating function of the first-passage
probability Ẽn⃗0→ðn⃗i;n⃗j;n⃗kÞðzÞ to one of three targets [see
Eq. (S21) in Ref. [75] ].
The procedure shown for the three-target case can be

extended to an arbitrary number m of targets by writing an
equation analogous to Eq. (41) that links Gðm−1Þ to Gðm−2Þ.
Although the procedure to build the relations is tedious
because it requires one to write a number of equations
equal to the number of permutations of the m − 1 targets in
the Gðm−1Þ equation, it is possible, in principle, to construct
the general first-passage probability to either of the m
targets.

C. Mean first-passage time to either
of multiple targets

I apply the general formalism above to find the MFPT to
either of a set of targets. The construction of such MFPT
expressions represents an alternative to the use of the
pseudo-Green function formalism for which the multitarget
MFPT is expressed by seeking a solution of a set of m
simultaneous equations for the splitting probabilities and

FIG. 6. First-passage probability En⃗0→ðn⃗1;n⃗2ÞðtÞ from any lattice
site n⃗0 to either of two targets, located at (2,9) and (7,4), in a
square domain with reflecting boundaries of size N ¼ 10 at time
t ¼ 10. At the location of the targets, the plot represents the return
probability to the starting lattice without having been to the other
target. The choice q1 ¼ q2 ¼ 1=3 has been selected for the
propagator Pn⃗0ðn1; n2; tÞ in Eq. (21). The open white circles
represent the numerical inversion of Eq. (38), while the shaded
surface represents the ensemble average of 106 stochastic
simulations.

FIG. 7. Mean first-passage time in a 4D domain with reflecting
boundaries of size Ni ¼ 21, with i ¼ 1, 2, 3, 4, to either of three
targets as a function of the n1;1 coordinate. The walker initial
position is at n⃗0 ¼ ð5; 4; 2; 1Þ. The coordinates of the first target
are n⃗1 ¼ ðn1;1; 8; 9; 9Þ, with 2 ≤ n1;1 ≤ 20, while the second and
third targets are fixed at n⃗2 ¼ ð8; 2; 1; 10Þ and n⃗3 ¼ ð6; 5; 8; 7Þ.
The lines are obtained using the MFPT to either of three targets
displayed in Eq. (S24) in Ref. [75], with the MFPT between any
two lattice sites provided by Eq. (31), while the dots are obtained
by averaging 106 stochastic simulations.
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the pairwise pseudo-Green functions [see Eqs. (25) and
(26) in Ref. [103] ].
I study, in particular, the case of three targets, as for a

larger number of targets, the expressions are quite impos-
ing. Using Ẽn⃗0→ðn⃗i;n⃗j;n⃗kÞðzÞ, I obtain the MFPT, Tn⃗0→ðn⃗i;n⃗j;n⃗kÞ,
to either of three targets in arbitrary dimensions [see
Eq. (S24) in Ref. [75] ]. I study the case of a 4D domain
with reflective boundaries with two targets fixed; in Fig. 7 I
show the MFPT as a function of the coordinate of the third
target along one axis and for different values of the
probability of staying at a site, qi, set equal to q for each
i. When qi ¼ q the MFPT to either target has a trivial q−1

dependence.

IX. CONCLUSIONS

The diffusion equation is one of a small set of funda-
mental equations that has left a legacy across a vast number
of disciplines. The version where space and time are
continuous variables is commonly used and has been
solved exactly in unbounded and bounded domains in
arbitrary dimensions. Surprisingly, the same could not
be said about the space-time discrete diffusion equation.
While closed-form expressions are known for unbounded
d-dimensional space, in finite d-dimensional domains,
propagators are only known for periodic domains and
for some 1d cases, e.g., absorbing boundaries. The gen-
erating function and the time-dependent expression for
arbitrary boundary conditions and arbitrary domains have,
until now, remained an outstanding problem.
The work presented here has a brought a resolution to

this outstanding problem by finding the analytic form of the
LRW propagator in various bounded domains, namely,
reflecting boundaries, periodic boundaries, absorbing
boundaries, and a mixed scenario with one reflecting
and one absorbing boundary. Given the vast applicability
of the diffusion equation, the findings in this work represent
a fundamental contribution to the arsenal of tools that are
consistently employed to analyze and predict random
processes across scales and disciplines.
The exact form of the confined LRW propagator

bypasses the need to construct and seek the solution of a
master equation, and it allows one to quantify the time
dependence of a variety of transport processes. Quantities
such as the first-passage probability, return probability, and
average number of distinct sites, which were mainly
accessible via stochastic simulations or numerical tech-
niques [99,104,105], can now be obtained analytically in
1D or through a numerical inversion of the associated
generating function in higher dimensions.
With the analytic expression of the propagator generat-

ing function, it has also been possible to straightforwardly
derive the MFPT to a single target in arbitrary dimensions.
The sought-after MFPT formulas have allowed me to find
the discrete pseudo-Green functions for reflecting and
periodic domains in arbitrary dimensions, going beyond

the formulas known so far only up to 3D. A procedure to
analytically determine the first-passage probability and the
MFPT with multiple targets (and arbitrary dimensions) has
also been presented. Although it has been discussed in the
context of confined Euclidean lattices, it has general validity.
It is thus applicable to study LRW in other types of
geometries as well as in networks [106].
By relaxing certain assumptions of the statistical features

of the walk, one can study cases other than the symmetric
nearest-neighbor LRW that I have studied here. It is, in fact,
possible to derive analytic representations of the propagators
for next-nearest-neighbor and biased LRW in confined
lattices of arbitrary dimensions, and one may also attempt
to analytically derive the propagator for 1D and 2D
correlated LRW [107] in confined domains for which, so
far, the MFPT has been the main focus of the analyses in
Refs. [108,109]. Extensions to situations where the lattice is
not Euclidean (e.g., a triangular lattice in 2D [26]), when
reflection at a boundary is only partial [110], and, more
generally, to disordered lattices are also interesting future
directions.
Of relevance to a plethora of empirical situations is a

general theory of transport in disordered lattices [18]
whereby the spatial disorder is replaced by a temporal
memory [111] transforming the Markov master equation
representing the movement of the walk to a non-Markov
description in the form of a generalized master equation
(in discrete time) [112,113]. As the key ingredient to develop
such a theory is knowledge of the analytic expression of the
propagator generating function, an effective medium theory
of LRW in finite disordered lattices is within reach.
Potential future directions include the study of other

statistical features of the walk (which so far has been
tackled only for translationally invariant systems such as
the expected lattice random walk maximum [114]), and the
analysis of meanderers, bridges, excursions [115], and
record statistics [116,117]. With the help of the present
findings, more complex movement processes in confined
space could also be studied, including resetting walks
[118–122], self-avoiding walks [26], loop-erased walks
[123], and reinforced walks [53,124].
It is also worth citing the possibility to analyze various

quantities that have already been studied in the past for
confined lattices and that could be further explored. They
include occupation times [125], mortal walkers and killing
times [26], narrow escape times [126–128], cover times
[129,130], and encounter times [131,132]. Moreover, some
important models of movement in confined space where a
walker interacts with its environments or with other
individuals, e.g., a bias towards a focal point [31,133] or
the transmission of an infection [134,135], have surpris-
ingly been studied mainly via Brownian walks, despite
being perfectly suited for LRW.
The formalism presented here could also be used as a

starting point for many-body problems such as in the
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presence of excluded volume interactions, e.g., single-file
dynamics in finite lattices for which the occupation
probability in continuous space and time is known ana-
lytically [136,137].
For walks in continuous time but discrete space, the

formalism developed in Sec. V C connects to a wide body
of literature on continuous time random walks [138–141],
which naturally allows one to extend the findings presented
here to situations in which the walker displays anomalous
diffusive characteristics. The present work could be used to
study phenomena such as ergodicity breaking [142,143]
and its connection to fractional diffusion [144,145] in the
context of bounded domains.
I conclude by pointing to the fact that the existence of

different analytic expressions in 1D to represent the propa-
gator generating function, through either a finite series with
trigonometric functions or its sum, allows one to generate
various trigonometric identities. Such identities appear to
be absent from the literature on analytic combinatorics
[58,146], Chebyshev polynomials [147,148], or finite trigo-
nometric sums [149–154]. While I have presented a few
examples of such identities in this paper, including the ones
necessary to construct the propagators in higher dimensions,
there are various others that can be deduced.
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APPENDIX A: PROPAGATOR IN 1D
INFINITE DOMAIN

The Fourier transform solution of Eq. (1) is Q̂ðκ; tÞ ¼
Q̂ðκ; 0Þ½1 − qþ q cosðκÞ�t, where Q̂ðκ;tÞ¼Pþ∞

n¼−∞e−iκn×

Qðn;tÞ with its generating function ˜̂Qðκ; zÞ ¼ Q̂ðκ; 0Þ×
f1 − z½1 − qþ q cosðκÞ�g−1. The inverse Fourier
transformation,

Q̃ðn; zÞ ¼ 1

2π

Z þπ

−π
dκ

cos½ðn − n0Þκ�
1 − z½1 − qþ q cosðκÞ� ; ðA1Þ

can be performed explicitly through the variable change
κ ¼ tanðx=2Þ—and can also be found in Eq. (3.613) of
Ref. [155]—resulting in

Q̃n0ðn; zÞ ¼
ð 1
βðzÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

β2ðzÞ − 1
q

Þ−jn−n0j

½1 − zð1 − qÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2ðzÞ

p ; ðA2Þ

where

βðzÞ ¼ zq
1 − zð1 − qÞ : ðA3Þ

APPENDIX B: METHOD OF IMAGES:
1D FINITE DOMAIN PROPAGATORS

The method of images is employed in the reflecting
and absorbing case by considering the contribution
rom an infinite number of images as P̃ðrÞ

n0 ðn;zÞ¼Pþ∞
k¼−∞ ½Q̃n0þ2kNðn;zÞþQ̃−n0þ1þ2kNðn;zÞ� for the reflec-

tive case and P̃ðaÞ
n0 ðn; zÞ ¼

Pþ∞
k¼−∞ ½Q̃n0þ2kðN−1Þðn; zÞ−

Q̃−n0þ2þ2kðN−1Þðn; zÞ� for the absorbing case. For the
domain with one reflective boundary and one absor-
bing boundary, I consider a domain of 2N − 1 lattice
sites with reflective boundaries and construct the pro-

pagator P̃ðr;2N−1Þ
n0 ðn; zÞ ¼ Pþ∞

k¼−∞ Q̃n0þ2kð2N−1Þðn; zÞ þ
Q̃−n0þ1þ2kð2N−1Þðn; zÞ, where the additional superscript
2N − 1 is used to distinguish it from the propagator

PðrÞ
n0 ðn; zÞ that, by definition, has 1 ≤ n ≤ N. I then employ

the method of images for a single absorbing boundary

located halfway at n ¼ N and obtain P̃ðmÞ
n0 ðn; zÞ ¼

P̃ðr;2N−1Þ
n0 ðn; zÞ − P̃ðr;2N−1Þ

−n0þ2N ðn; zÞ. Finally, for the periodic
case, I simply wrap the infinite propagator onto itself over

N sites by taking P̃ðpÞ
n0 ðn; zÞ ¼

Pþ∞
k¼−∞

eQn0þkNðn; zÞ. These
technical steps give the various expressions in Eq. (2).
Details of the derivations are given in Ref. [75].

APPENDIX C: TIME DEPENDENCE OF 1D
DERIVED QUANTITIES

Here, I present the time dependence of the return pro-
bability, the first-passage probability to one target, and the
average number of distinct sites visited for the reflecting
and periodic cases. In order to do so, one has to rewrite the
propagator with the help of Chebyshev polynomials [147]
T nðsÞ, UnðsÞ, and VnðsÞ, respectively, of the first, second,
and third kinds (of order n). The propagator generating
functions in Eq. (2) are rewritten using the relations
T nðsÞ ¼ cosh½n arcCoshðsÞ�, UnðsÞ ¼ sinh½n arcCoshðsÞ�=
sinh½arcCoshðsÞ�, and VnðsÞ¼ cosh½ðnþ1=2ÞarcCoshðsÞ�=
cosh½arcCoshðsÞ=2� for jsj ≥ 1.

1. First-passage probability with
reflecting boundaries

The generating function of the first-passage probability
in Eq. (9) is rewritten as

F̃ðrÞ
n0 ðn; zÞ ¼

VN−n>ð1þ 1
q ½1z − 1�ÞVn<−1ð1þ 1

q ½1z − 1�Þ
VN−nð1þ 1

q ½1z − 1�ÞVn−1ð1þ 1
q ½1z − 1�Þ :

ðC1Þ
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To obtain the time dependence, it can be conveniently split into two expressions depending on whether the target site is to
the left or right of the initial position. With the factorization [156] VmðxÞ ¼ 2m

Q
m
k¼1 fx − cos ½ð2k − 1Þπ=2mþ 1�g, the

calculation of the residues at the poles gives

FðrÞ
n0 ðn; tÞ ¼

8<
:

P
n−1
m¼1

2qð−1Þmþ1

2n−1 cos
h
ð2n0−1Þð2m−1Þ

2n−1
π
2

i��� sin h2m−1
2n−1 π

i���h1 − qþ q cos


2m−1
2n−1 π

�i
t−1

n > n0P
N−n
m¼1

2qð−1Þmþ1

2ðN−nÞþ1
cos

h
f2ðN−n0Þþ1gð2m−1Þ

2ðN−nÞþ1
π
2

i��� sin h 2m−1
2ðN−nÞþ1

π
i���h1 − qþ q cos



2m−1

2ðN−nÞþ1
π
�i

t−1
n < n0;

ðC2Þ

which is valid for t ≥ 1, while one has Fn0ðn; 0Þ ¼ 0 for any n ≠ n0.

2. First-passage probability with periodic boundaries

The time dependence of the first-passage probability in the periodic case is conveniently derived by rewriting Eq. (11) as

F̃ðpÞ
n0 ðn; zÞ ¼

T N−jn−n0jþ1ð 1
βðzÞÞ − T N−jn−n0j−1ð 1

βðzÞÞ þ T jn−n0jþ1ð 1
βðzÞÞ − T jn−n0j−1ð 1

βðzÞÞ
2ð 1

β2ðzÞ − 1ÞUN−1ð 1
βðzÞÞ

; ðC3Þ

valid for any n ≠ n0. In this case, the factorized form UnðσÞ ¼ 2n
Q

n
k¼1 fσ − cos ½ðπkÞ=ðnþ 1Þ�g allows me to calculate the

residues at the poles. The inversion provides the sought-after expression for t ≥ 1,

FðpÞ
n0 ðn; tÞ ¼

q
N

XN−1

k¼1

½1 − ð−1Þk� sin
�jn − n0jπk

N

�
sin

�
πk
N

��
1 − qþ q cos

�
πk
N

��
t−1

; ðC4Þ

with Fn0ðn; 0Þ ¼ 0.

3. First-passage probability to either of two boundaries

In the presence of two lattice sites where a walker may be absorbed, the first-passage probability to either of them is

En0→ð1;NÞðtÞ ¼
q

N − 1

XN−2

k¼1

½1 − ð−1Þk� sin
�
n0 − 1

N − 1
πk

�
sin

�
πk

N − 1

��
1 − qþ q cos

�
πk

N − 1

��
t−1

; ðC5Þ

with F n0ðn; 0Þ ¼ 0. It is not surprising that the expres-
sion resembles the first-passage probability of a single
absorbing lattice site in a periodic domain as the physics
of the system is similar. By creating a symmetric initial
location relative to the boundaries, the physics of the
box and that of the periodic domain coincide. If one
considers an initial walker location placed precisely in
the middle of a domain of size N þ 1 with N odd,
Eq. (C5) is identical to the first-passage probability in a
periodic domain of size N when the separation between

the initial location and the absorbing site in Eq. (C4) is
ðN − 1Þ=2.

APPENDIX D: AVERAGE NUMBER OF
DISTINCT SITES VISITED

1. Reflecting boundaries

After some laborious algebra, the inversion of the
generating function M̃ðrÞ

n0 ðzÞ gives the explicit time-
dependent expression

MðrÞ
n0 ðtÞ ¼ N −

1

2n0 − 1

Xn0−1
m¼1

ð−1Þmþ1 sin ð2m−1
2n0−1

NπÞcot2ð2m−1
2n0−1

π
2
Þ

cos
h
f2ðN−n0Þþ1gð2m−1Þ

2n0−1
π
2

i �
1 − qþ q cos

�
2m − 1

2n0 − 1
π

��
t

−
1

2ðN − n0Þ þ 1

XN−n0

m¼1

ð−1Þmþ1 sin ð 2m−1
2ðN−n0Þþ1

NπÞcot2ð 2m−1
2ðN−n0Þþ1

π
2
Þ

cos
h
f2n0−1gð2m−1Þ
2ðN−n0Þþ1

π
2

i �
1 − qþ q cos

�
2m − 1

2ðN − n0Þ þ 1
π

��
t
; ðD1Þ

which implicitly assumes that when n0 ¼ 1 the first summation is absent, and the same occurs for the second summation

when n0 ¼ N. By verifying that indeed MðrÞ
n0 ð0Þ ¼ 1, one derives an intricate trigonometric identity
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Xx
m¼1

ð−1Þmþ1 sin ð2m−1
2xþ1

NπÞcot2ð2m−1
2xþ1

π
2
Þ

cos ½f2ðN−xÞ−1gð2m−1Þ
2xþ1

π
2
�

¼ ð2xþ 1Þx; ðD2Þ

where x represents an integer that is smaller than or equal
to N.

2. Periodic boundaries

As expected, the translational invariance gives a time
dependence for the mean number of distinct visited sites
independent of the initial position, namely,

MðpÞðtÞ ¼ N −
1

N

XN−1

k¼1

½1 − ð−1Þk�½1þ cosðπkN Þ�
1 − cosðπkN Þ

×

�
1 − qþ q cos

�
πk
N

��
t
: ðD3Þ

After rewriting ð−1Þk ¼ cosðπk=NÞ, the identity (E2)
below allows one to verify that MðpÞðt ¼ 0Þ ¼ 1.

APPENDIX E: FINITE-SERIES IDENTITIES
WITH CHEBYSHEV POLYNOMIALS

I derive a set of three finite-series identities that are
necessary to construct the propagator in dimensions larger
than 1. Each identity relates to the four boundary conditions
and is valid for integersm and for any complex value σ. For
the reflecting and absorbing case, I use the relation, valid
for jmj ≤ 2N,

XN−1

k¼1

cosðπmk
N Þ

σ − cosðπkN Þ
¼ N

T jN−jmjjðσÞ
ðσ2 − 1ÞUN−1ðσÞ

þ 1

2

�
1

1 − σ
þ ð−1Þmþ1

1þ σ

�
; ðE1Þ

with T nðσÞ and UnðσÞ Chebyshev polynomials, respec-
tively, of the first and second kinds, of order n. In the limit
σ → 1, using the fact that T nð1Þ ¼ 1, Unð1Þ ¼ nþ 1,
T 0

nð1Þ ¼ n2, U 0
nð1Þ ¼ nðn2 þ 3nþ 2Þ=3, one has

XN−1

k¼1

cosðπmk
N Þ

1 − cosðπkN Þ
¼ 1

3

�
N2 þ 1

2

�
þ jmj

�jmj
2

− N

�

þ ð−1Þmþ1 − 1

4
: ðE2Þ

For the periodic case, I employ

XN−1

k¼1

cosð2πmk
N Þ

σ − cosð2πkN Þ ¼
1

1 − σ
þ N

T N−jmjðσÞ þ T jmjðσÞ
ðσ2 − 1ÞUN−1ðσÞ

; ðE3Þ

which is valid for jmj ≤ N and has the limit

XN−1

k¼1

cosð2πmk
N Þ

1 − cosð2πkN Þ ¼
1

6
ðN2 − 1Þ þ jmjðjmj − NÞ: ðE4Þ

For the mixed case, I have derived the identity

XN−1

k¼1

cos ð2k−1
2N−1mπÞ

σ − cos ð2k−1
2N−1 πÞ

¼ 1

2

ð−1Þmþ1

1þ σ

þ
�
N −

1

2

�
T 2N−1−jmjðσÞ − T jmjðσÞ

ðσ2 − 1ÞU2N−2ðσÞ
; ðE5Þ

with jmj ≤ 2N − 1. Once again using the properties of the
Chebyshev polynomials with their argument evaluated at 1,
that is, when σ → 1, an additional relation similar to the
limiting cases in Eqs. (E2) and (E4) can be derived.
Equations (E1), (E3), and (E5) are generalizations

of known trigonometric identities (see, e.g., Ref. [157]).
They can be obtained as a partial fraction expansion or,
more generally, by identifying the residues and perfor-
ming a complex contour integration that gives fðσÞ ¼P

i ResffðsÞ=ðσ − sÞ; sig, where si are the poles of fðsÞ
[158]. Taking fðsÞ as the right-hand sides of Eqs. (E1),
(E3), and (E5), one can compute the residue contribution as
fðsÞ has poles of order one that can be located analytically
due to the factorized form of UnðσÞ. Note that the blowups
on the right-hand sides of Eqs. (E1), (E3), and (E5) at
σ ¼ �1 are only apparent as they result from removable
singularities.
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d'Informatique de Paris Nord, 2017.

[61] The 1D solution was apparently already known by Abra-
ham de Moivre and Pierre-Simon Laplace, as reported in
Ref. [54], and by Jan Cornelis Kluyvert, as reported in
Refs. [9,62].

[62] B Carazza, The History of the Random-Walk Problem:
Considerations on the Interdisciplinarity in Modern Phys-
ics, Riv. Nuovo Cimento 7, 419 (1977).

[63] S. Karlin and J. McGregor, Random Walks, Illinois J.
Math. 3, 66 (1959).

[64] W. Schoutens, Stochastic Processes and Orthogonal
Polynomials (Springer, New York, 2012).

[65] F. A. Grünbaum, Random Walks and Orthogonal Poly-
nomials: Some Challenges, in Probability, Geometry and
Integrable Systems, edited by M. Pinsky and B. Birnir
(Cambridge University Press, Cambridge, England, 2007),
pages 241–260.

[66] E.W. Montroll, Random Walks in Multidimensional
Spaces, Especially on Periodic Lattices, SIAM J. Appl.
Math. 4, 241 (1956).

[67] Z. Kalay, Effects of Confinement on the Statistics of
Encounter Times: Exact Analytical Results for Random
Walks in a Partitioned Lattice, J. Phys. A 45, 215001
(2012).

[68] D. A. Levin andY. Peres,Markov Chains andMixing Times,
2nd ed. (AmericanMathematical Society, Providence, 2017).

[69] M. N. Barber and B.W. Ninham, Random and Restricted
Walks: Theory and Applications (Gordon & Breach,
New York, 1970).

[70] M. Sahimi, B. D. Hughes, L. E. Scriven, and H. T. Davis,
On Pólya Random Walks, Lattice Green Functions, and
the Bond Percolation Threshold, J. Phys. A 16, L67
(1983).

[71] K. Lakatos-Lindenberg, R. P. Hemenger, and R. M.
Pearlstein, Solutions of Master Equations and Related
Random Walks on Quenched Linear Chains, J. Chem.
Phys. 56, 4852 (1972).

[72] J. Abate, G. L. Choudhury, and W. Whitt, An Introduction
to Numerical Transform Inversion and Its Application to
Probability Models, in Computational Probability, edited
by W. K. Grassman (Kluwer, Boston, 1999), pp. 257–323.

[73] J.-H. Yoon and H. Kim, Exact Fundamental Functions of
the Random Walk in One-Dimensional Confined System,
Bull. Korean Chem. Soc. 38, 364 (2017).

[74] W.-C. Yueh and S. S. Cheng, Explicit Eigenvalues and
Inverses of Tridiagonal Toeplitz Matrices with Four
Perturbed Corners, ANZIAM J. 49, 361 (2008).

[75] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.10.021045 for further
details on the derivations.

[76] S. A. Rice, Diffusion-Limited Reactions (Elsevier,
Amsterdam, 1985), Vol. 25.

[77] T. Antal and S. Redner, Escape of a Uniform RandomWalk
from an Interval, J. Stat. Phys. 123, 1129 (2006).

[78] T. Odagaki and M. Lax, ac Hopping Conductivity
of a One-Dimensional Bond-Percolation Model, Phys.
Rev. Lett. 45, 847 (1980).

[79] R. M. Mazo, On the Green’s Function for a One-
Dimensional Random Walk, Cell Biophysics 11, 19
(1987).

[80] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in
Solids, 2nd ed. (Clarendon Press, Oxford, 1959).

[81] P. M. Morse and H. Feshbach, Methods of Theoretical
Physics, Part I (McGraw-Hill, New York, 1953).

[82] A. D. Polyanin, Handbook of Linear Partial Differential
Equations for Engineers and Scientists (CRC Press, Boca
Raton, 2002).

[83] V. M. Kenkre, The Master Equation Approach: Coher-
ence, Energy Transfer, Annihilation, and Relaxation,
in Exciton Dynamics in Molecular Crystals and Aggre-
gates, edited by G. Hoehler (Springer, New York, 1982),
pp. 1–109.

[84] V. M. Kenkre, L. Giuggioli, and Z. Kalay, Molecular
Motion in Cell Membranes: Analytic Study of Fence-
Hindered Random Walks, Phys. Rev. E 77, 051907
(2008).

[85] V. M. Kenkre and P. E. Parris, Exciton Trapping and
Sensitized Luminescence: A Generalized Theory for All
Trap Concentrations, Phys. Rev. B 27, 3221 (1983).

[86] V. M. Kenkre, P. E. Parris, and S. M. Phatak, Motion and
Capture of Quasiparticles in Solids in the Presence of
Cooperative Trap Interactions, Physica A 128, 571
(1984).

[87] P. E. Parris, S. M. Phatak, and V. M. Kenkre, Motion and
Capture in the Presence of Cooperative Trap Interactions
II: Exact Calculations for Perfect Absorbers in One
Dimension, J. Stat. Phys. 35, 749 (1984).

[88] T. G. Mattos, C. Mejía-Monasterio, R. Metzler, and G.
Oshanin, First Passages in Bounded Domains: When Is the

LUCA GIUGGIOLI PHYS. REV. X 10, 021045 (2020)

021045-18

https://doi.org/10.1088/1751-8121/aa71c1
https://doi.org/10.1103/PhysRevLett.112.240601
https://doi.org/10.1103/PhysRevLett.112.240601
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1017/apr.2019.17
https://doi.org/10.1007/BF02747280
https://doi.org/10.1215/ijm/1255454999
https://doi.org/10.1215/ijm/1255454999
https://doi.org/10.1137/0104014
https://doi.org/10.1137/0104014
https://doi.org/10.1088/1751-8113/45/21/215001
https://doi.org/10.1088/1751-8113/45/21/215001
https://doi.org/10.1088/0305-4470/16/2/004
https://doi.org/10.1088/0305-4470/16/2/004
https://doi.org/10.1063/1.1676961
https://doi.org/10.1063/1.1676961
https://doi.org/10.1002/bkcs.11093
https://doi.org/10.1017/S1446181108000102
http://link.aps.org/supplemental/10.1103/PhysRevX.10.021045
http://link.aps.org/supplemental/10.1103/PhysRevX.10.021045
http://link.aps.org/supplemental/10.1103/PhysRevX.10.021045
http://link.aps.org/supplemental/10.1103/PhysRevX.10.021045
http://link.aps.org/supplemental/10.1103/PhysRevX.10.021045
http://link.aps.org/supplemental/10.1103/PhysRevX.10.021045
http://link.aps.org/supplemental/10.1103/PhysRevX.10.021045
https://doi.org/10.1007/s10955-006-9139-2
https://doi.org/10.1103/PhysRevLett.45.847
https://doi.org/10.1103/PhysRevLett.45.847
https://doi.org/10.1007/BF02797109
https://doi.org/10.1007/BF02797109
https://doi.org/10.1103/PhysRevE.77.051907
https://doi.org/10.1103/PhysRevE.77.051907
https://doi.org/10.1103/PhysRevB.27.3221
https://doi.org/10.1016/0378-4371(84)90196-1
https://doi.org/10.1016/0378-4371(84)90196-1
https://doi.org/10.1007/BF01010831


Mean First Passage Time Meaningful?, Phys. Rev. E 86,
031143 (2012).

[89] A. Godec and R. Metzler, Universal Proximity Effect in
Target Search Kinetics in the Few-Encounter Limit, Phys.
Rev. X 6, 041037 (2016).

[90] V. M. Kenkre and D. Schmid, Comments on the Exciton
Annihilation Constant and the Energy Transfer Rate in
Naphthalene and Anthracene, Chem. Phys. Lett. 94, 603
(1983).

[91] V. M. Kenkre, P. E. Parris, and D. Schmid, Investigation of
the Appropriateness of Sensitized Luminescence to Deter-
mine Exciton Motion Parameters in Pure Molecular
Crystals, Phys. Rev. B 32, 4946 (1985).

[92] D. S. Grebenkov, R. Metzler, and G. Oshanin, Strong
Defocusing of Molecular Reaction Times Results from an
Interplay of Geometry and Reaction Control, Commun.
Chem. 1, 96 (2018).

[93] E.W. Montroll and R. B. Potts, Effect of Defects on Lattice
Vibrations, Phys. Rev. 100, 525 (1955).

[94] K. Spendier and V. M. Kenkre, Analytic Solutions for Some
Reaction-Diffusion Scenarios, J. Phys. Chem. B 117,
15639 (2013).

[95] D. Hartich and A. Godec, Duality between Relaxation and
First Passage in Reversible Markov Dynamics: Rugged
Energy Landscapes Disentangled, New J. Phys. 20,
112002 (2018).

[96] D. Hartich and A. Godec, Extreme Value Statistics of
Ergodic Markov Processes from First Passage Times in
the Large Deviation Limit, J. Phys. A 52, 244001 (2019).

[97] S. Condamin, O. Bénichou, and M. Moreau, First-Passage
Times for Random Walks in Bounded Domains, Phys. Rev.
Lett. 95, 260601 (2005).

[98] S Condamin and O Bénichou, Exact Expressions of Mean
First-Passage Times and Splitting Probabilities for
Random Walks in Bounded Rectangular Domains,
J. Chem. Phys. 124, 206103 (2006).

[99] S. Condamin, O. Bénichou, and M. Moreau, Random
Walks and Brownian Motion: A Method of Computation
for First-Passage Times and Related Quantities in Con-
fined Geometries, Phys. Rev. E 75, 021111 (2007).

[100] H. Larralde and G. H.Weiss, AGenerating Function for the
Second Moment of the Distinct Number of Sites Visited by
an n-step Lattice RandomWalk, J. Phys. A 28, 5217 (1995).

[101] T. Calandre, O. Bénichou, D. S. Grebenkov, and R.
Voituriez, Splitting Probabilities and Interfacial Territory
Covered by Two-Dimensional and Three-Dimensional
Surface-Mediated Diffusion, Phys. Rev. E 89, 012149
(2014).

[102] T. Weng, Ji. Zhang, M. Small, J. Yang, F. H. Bijarbooneh,
and P. Hui, Multitarget Search on Complex Networks: A
Logarithmic Growth of Global Mean Random Cover Time,
Chaos 27, 093103 (2017).

[103] C. Chevalier, O. Bénichou, B. Meyer, and R. Voituriez,
First-Passage Quantities of Brownian Motion in a
Bounded Domain with Multiple Targets: A Unified
Approach, J. Phys. A 44, 025002 (2011).

[104] I. Majid, D. Ben-Avraham, S. Havlin, and H. E. Stanley,
Exact-Enumeration Approach to Random Walks on
Percolation Clusters in Two Dimensions, Phys. Rev. B
30, 1626 (1984).

[105] S. Baghram, F. Nikakhtar, M. R. R. Tabar, S. Rahvar, R. K.
Sheth, K. Lehnertz, and M. Sahimi, Exact Enumeration
Approach to First-Passage Time Distribution of Non-
Markov Random Walks, Phys. Rev. E 99, 062101 (2019).

[106] N. Masuda, M. A. Porter, and R. Lambiotte, Random
Walks and Diffusion on Networks, Phys. Rep. 716, 1
(2017).

[107] M. H. Ernst, Random Walks with Short Memory, J. Stat.
Phys. 53, 191 (1988).

[108] V. Tejedor, R. Voituriez, and O. Bénichou, Optimizing
Persistent Random Searches, Phys. Rev. Lett. 108, 088103
(2012).

[109] L. Giuggioli, I. Arye, A. H. Robles, and G. A. Kaminka,
From Ants to Birds: A Novel Bio-Inspired Approach to
Online Area Coverage, in Distributed Autonomous
Robotic Systems (Springer, New York, 2018), pp. 31–43.

[110] E. W. Montroll, Stochastic Processes and Chemical
Kinetics, in Energetics in Metallurgical Phenomena
(Gordon and Breach, NewYork, 1967), Vol. 3, pp. 125–187.

[111] V. M. Kenkre, Z. Kalay, and P. E. Parris, Extensions of
Effective-Medium Theory of Transport in Disordered
Systems, Phys. Rev. E 79, 011114 (2009).

[112] V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger,
Generalized Master Equations for Continuous-Time Ran-
dom Walks, J. Stat. Phys. 9, 45 (1973).

[113] V. M. Kenkre, The Generalized Master Equation and Its
Applications, in Statistical Mechanics and Statistical
Methods in Theory and Application, edited by U. Landman
(Plenum, New York, 1977), pp. 441–461.

[114] A. Comtet and S. N. Majumdar, Precise Asymptotics
for a Random Walker’s Maximum, J. Stat. Mech. (2005)
P06013.

[115] C. Banderier and P. Flajolet, Basic Analytic Combinatorics
of Directed Lattice Paths, Theor. Comput. Sci. 281, 37
(2002).

[116] S. N. Majumdar and R. M. Ziff, Universal Record Statis-
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