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Motivated by experimental studies that have found signatures of a quantum spin liquid phase in
organic crystals whose structure is well described by the two-dimensional triangular lattice, we study the
Hubbard model on this lattice at half filling using the infinite-system density matrix renormalization
group (iDMRG) method. On infinite cylinders with finite circumference, we identify an intermediate phase
between observed metallic behavior at low interaction strength and Mott insulating spin-ordered behavior
at strong interactions. Chiral ordering from spontaneous breaking of time-reversal symmetry, a fractionally
quantized spin Hall response, and characteristic level statistics in the entanglement spectrum in the
intermediate phase provide strong evidence for the existence of a chiral spin liquid in the full two-
dimensional limit of the model.
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I. INTRODUCTION

Quantum spin liquids [1–3] have been the subject of
considerable interest since the concept was first introduced
in 1973 by Anderson, who suggested that geometrical
frustration on the triangular lattice could lead to a resonat-
ing valence bond ground state of the antiferromagnetic
Heisenberg model [4]. Although it is now known that the
Heisenberg model on the triangular lattice in fact exhibits a
three-sublattice 120° order in the ground state [5,6],
antiferromagnetic models on the triangular lattice remain
some of the most promising systems to realize a phase in
which spins remain disordered even down to zero temper-
ature. The triangular lattice has seemed particularly prom-
ising since the work of Shimizu et al., who found that the
organic crystal κ-ðBEDT-TTFÞ2Cu2ðCNÞ3, which is well
described by independent 2D layers with nearly isotropic
triangular lattice structure, shows no sign of spin ordering
even down to tens of mK, indicative of a possible spin
liquid ground state [7]. Subsequent studies of this crystal
have found that the heat capacity is T-linear at low
temperature [8], suggesting the presence of low-lying

gapless excitations, but also that the thermal conductivity
has no such T-linear contribution [9], indicating to the
contrary that there is a gap in the energy spectrum. Another
triangular lattice material, EtMe3Sb½PdðdmitÞ2�2, was until
recently believed to show T-linear behavior in both the heat
capacity and thermal conductivity [10–13], but new experi-
ments show that it too may exhibit gapped thermal trans-
port [14–16]. The true nature of the spin liquid phases in
these and other triangular lattice materials [17–19] such as
YbMgGaO4 [20,21] remains unclear.
Substantial theoretical effort has gone into answering

this question, primarily in studying the antiferromagnetic
Heisenberg model with additional terms, such as second-
neighbor interactions and ring exchanges, that frustrate the
expected three-sublattice order [22–34]. The Heisenberg
model and its extensions are derived from a perturbative
expansion of a model of itinerant electrons, the Hubbard
model [35]; by studying the Hubbard model directly, we
can capture additional effects that may be important in
actual materials, at the cost of increased computational
effort—compared with spin-1=2 models, the size of the
local Hilbert space is doubled, so the system sizes that can
be accessed by full-Hilbert-space numerical methods are
only about half as large.
Although there is now a wide variety of theoretical

evidence pointing to the existence of a nonmagnetic
insulating phase of the triangular lattice Hubbard model
[22,36–47], there is still little agreement on the precise
nature of the phase. Some candidates, suggested by results

*aszasz@perimeterinstitute.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 10, 021042 (2020)

2160-3308=20=10(2)=021042(16) 021042-1 Published by the American Physical Society

https://orcid.org/0000-0002-1127-2111
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.10.021042&domain=pdf&date_stamp=2020-05-22
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevX.10.021042
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


on both the Hubbard and extended Heisenberg models,
include a Uð1Þ spin liquid with a spinon Fermi sea
[22,23,25,27,41,45], a nodal spin liquid [26,43], a gapped
chiral spin liquid [28,48–51], and a Z2 spin liquid [28,29].
In this work, we confirm the existence of a nonmagnetic
insulating phase of the Hubbard model on the triangular
lattice at half filling, provide strong evidence that it is a
gapped chiral spin liquid, and comment on possible
experimental signatures.
We study the triangular lattice Hubbard model on infinite

cylinders with finite circumference using the density
matrix renormalization group (DMRG) technique [52–55],
a variational method to find the ground state of a
Hamiltonian within the matrix product state (MPS) ansatz.
This method has previously been applied to an extended
Hubbard model on a triangular lattice two-leg ladder,
providing evidence for a Uð1Þ spin liquid phase with a
spinon Fermi surface [45]. For systems larger than the two-
leg ladder, to our knowledge there exists only one prior paper
[47] that uses DMRG to study the triangular lattice Hubbard
model. The authors of that study use the finite-system
DMRG to confirm the existence of a nonmagnetic insulating
phase. In our infinite-system DMRG study, we investigate
the nature of the phase by studying the entanglement
spectrum and the response to adiabatic spin-flux insertion
through the cylinder as accomplished by twisting boundary
conditions; we also study the MPS transfer matrix spectra,
allowing us to rule out the possibility thatwe observe aDirac
spin liquid.We study themodel on avariety of cylinderswith
different circumferences and boundary conditions. With
some cylinder geometries we find a chiral spin liquid phase
regardless of how we twist the boundary conditions, while
for the others the chiral phase exists for a range of twisted
boundary conditions, in particular for those boundary
conditions for which the ground state is closest to obeying
the symmetries of the full two-dimensional lattice. While
caution is required when extrapolating from cylinders to the
2D limit, taken together, the results for the various cylinders
point to the existence of the chiral spin liquid phase in the full
two-dimensional lattice as well.
The organization of the paper is as follows: In Sec. II, we

introduce the model we study and the mixed-space repre-
sentation used in the simulations. In Sec. III, we demon-
strate the existence of metallic, nonmagnetic insulating, and
magnetically ordered phases of the model and, furthermore,
show that the intermediate phase breaks time-reversal
symmetry. We present detailed results for five different
cylinder geometries. Readers wishing to see even more
complete data are encouraged to read the Supplemental
Material [56]; those interested primarily in the identifica-
tion of the chiral spin liquid phase can proceed to Sec. IV, in
which we show that the intermediate phase is, in fact, a
chiral spin liquid. Finally, in Sec. V, we discuss the results,
placing them in the context of recent experiments and other
theoretical studies.

II. THE MODEL

The model we study is the standard Hubbard
Hamiltonian,

H ¼ −t
X
hijiσ

c†iσcjσ þ H:c:þU
X
i

ni↑ni↓; ð1Þ

where ciσ (c†iσ) is the fermion annihilation (creation)
operator for spin σ on site i and n ¼ c†c is the number
operator; h·i indicates nearest-neighbor pairs on the tri-
angular lattice (Fig. 1). We work at half filling with net zero
spin, so that

P
ihni↑i ¼

P
ihni↓i ¼ N=2, where N is the

total number of sites. This model has a single tunable
parameter, U=t. In the limit U ¼ 0, the model is exactly
solvable and at half filling forms a metal with a nearly
circular Fermi surface; in the limit U → ∞, double occu-
pancy is disallowed, so to lowest order in perturbation
theory in t=U, the model reduces to the nearest-neighbor
antiferromagnetic Heisenberg model [35], whose ground
state exhibits a three-sublattice spin order [5,6]. Between
these two limits of U ¼ 0 and U → ∞, there must be at
least one phase transition, from the metallic to the Mott-
insulating phase; it is in the vicinity of this metal-insulator
transition that a spin liquid phase is likely to be found.
To study this model using the DMRG method, we wrap

the two-dimensional triangular lattice onto an infinitely
long cylinder of finite circumference. We primarily use the
so-called YC boundary conditions [56,57], for which the
triangles are oriented such that one of the sides runs along

(f ) (g)(c) (e)(d)

(a) (b)

FIG. 1. (a) Triangular lattice on a cylinder of circumference 4
with YC boundary conditions (YC4 cylinder); the dashed lines
are identified together and run along the length of the cylinder.
(b) XC4 cylinder. (c)–(g) Horizontal lines show allowed momenta
in the Brillouin zone for the YC3, XC4, YC4, YC5, and YC6
cylinders, in order of increasing circumference. The shaded circle
shows the Fermi surface for noninteracting electrons (U ¼ 0).
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the circumference of the cylinder. The YC4 lattice is shown
in Fig. 1(a) as an example, with the dashed gray lines
identified together with periodic boundaries to form a
cylinder. We also consider XC boundary conditions, for
which one triangle side runs along the length of the
cylinder. We show the XC4 lattice in Fig. 1(b); an XCn
cylinder, which exists only for even n, has a physical
circumference of n

ffiffiffi
3

p
=2 lattice constants.

Denoting translation by one lattice constant around the
cylinder by Ty, the YCn cylinder has a discrete translation
symmetry Tn

y ¼ 1; we explicitly conserve the momentum
quantum numbers associated with this symmetry by rewrit-
ing the Hamiltonian in a mixed real- and momentum-space
basis with single-particle operators cx;ky;σ , which both gives
substantial improvements in computational efficiency and
allows us to separately find the ground state in different
momentum sectors [58,59]. Similarly, for the XCn cylin-
ders we define the translation operator TXC

y that translates
between two-site unit cells around the circumference, with
ðTXC

y Þn=2 ¼ 1; we can again exploit momentum conserva-
tion but with only half as many quantum numbers.
In this paper, we particularly focus on the YC4 and YC6

cylinders, and we also present and discuss data for the YC3,
XC4, and YC5 cylinders. For the various cylinders, the
finite circumferences and periodic boundary conditions
restrict the accessible momenta in the Brillouin zone as
shown in Figs. 1(c)–1(g).

III. PHASE DIAGRAM

Our goal is to show that the Hubbard model on the full
two-dimensional triangular lattice has a chiral spin liquid
phase; we begin by establishing the phase diagram more
generally, showing the existence of the expected metallic,
nonmagnetic insulating (NMI), and magnetic phases, and
we furthermore show that the NMI phase breaks time-
reversal symmetry.
Of course, we have access in our simulations not to the

full two-dimensional model but rather to a collection of
finite circumference cylinders. To overcome this impedi-
ment, we employ three methods: (i) each phase that exists
in the two-dimensional model should leave characteristic
signatures when restricted to a finite circumference cylin-
der, and we can look for these signatures; (ii) for each
cylinder, we can twist the boundary conditions to scan the
allowed momentum cuts [Figs. 1(c)–1(g)] through the full
two-dimensional Brillouin zone; and (iii) we can compare
the results for the various cylinders and look for trends and
commonalities. The third is self-explanatory; before pre-
senting the data, we elaborate on (i) and (ii).
We first discuss how the various possible phases of the

two-dimensional model should manifest on the infinite
cylinders we study. A metallic state will be gapless, as
indicated by a nonzero value for the central charge c of the
one-dimensional conformal field theory corresponding to

the restriction of the two-dimensional model to the one-
dimensional allowed momentum cuts; in particular, if the
Fermi surface intersectsNF of the allowed momentum lines
in the Brillouin zone [see Figs. 1(c)–1(g)], the central
charge will be c ¼ 2NF [56,60]. We expect the 120°
magnetically ordered phase to be fully gapped (c ¼ 0)
and symmetric on even circumference cylinders due to the
integer-spin Haldane gap [61] induced by the reduced
dimension but gapless on odd circumference cylinders; the
2D spin order should qualitatively manifest as large peaks
in the spin structure factor at the K� points which diverge
linearly with cylinder circumference. If the intermediate
phase is a Uð1Þ spin liquid with a spinon Fermi surface,
there will be a charge gap but no spin gap, leading to
cylinder central charge c ¼ 2NF − 1 and 2kF-singularities
in the structure factors [23,45,62,63]. Finally, a gapped
spin liquid will have c ¼ 0 and feature several “topologi-
cally degenerate” low-lying states whose energy splitting
decreases exponentially with circumference [64], along
with other topological signatures we will return to in detail.
The chiral spin liquid in particular will spontaneously break
time-reversal and parity symmetry while retaining all
others; time-reversal symmetry breaking is indicated by
a nonzero scalar chiral order parameter hSi · ðSj × SkÞi,
where i, j, and k label the vertices of a triangle in the lattice
[65]. In the simulations, all these properties must be
assessed as a function of the DMRG accuracy as captured
by the bond dimension χ of the MPS ansatz.
We next discuss how, for a given cylinder geometry,

twisting of boundary conditions grants access to the full
two-dimensional Brillouin zone. In particular, instead of
using periodic boundaries cx;y¼0;σ ¼ cx;y¼L;σ, we set
cx;y¼0;σ ¼ eiθσ=2cx;y¼L;σ , followed by the gauge transfor-
mation cx;y;σ ↦ eiθσy=ð2LÞcx;y;σ , where σ in the exponent is
þ1 for spin up and −1 for spin down. Physically, this is
equivalent to inserting a flux through the cylinder of θ=2 for
spin-up electrons and −θ=2 for spin down, which corre-
sponds to flux θ for the spin degrees of freedom. Note that,
because the flux insertion is opposite for spin up and spin
down, this transformation does not break time-reversal
symmetry.
When the original Hamiltonian with periodic boundaries

is written in the mixed-space picture, some coefficients will
depend on the momentum k around the cylinder; the only
effect of the flux insertion is to transform those coefficients,
with k¼ð2π=LÞn↦ð2π=LÞðnþθσ=2Þ. This transformation
can beviewed as shifting themomentumcuts in theBrillouin
zone, upward for spin up and downward for spin down, as
illustrated in Fig. 2. Thus, by scanning θ from0 to 4π, we can
access the full two-dimensional Brillouin zone, giving
substantial additional evidence for the two-dimensional
model despite using only a single cylinder geometry.
The only physical effect of this flux insertion is from the

twisted boundary conditions, and in the two-dimensional
limit where the cylinder circumference becomes infinitely
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large, the effect on local properties like order parameters
and short-range correlation functions must go to zero. Thus
the variation in these quantities with flux insertion serves as
an indication of the degree of “two-dimensionality” of
the cylinders we study and therefore of the reliability
of our results in predicting the behavior of the full two-
dimensional model.
Note that the flux insertion can be performed adiabati-

cally by first computing the ground state with periodic
boundary conditions and then increasing θ in small incre-
ments, at each step using the converged ground state from
the previous step as the initial state for the new simulation.
Notably, this procedure allows for detection of spin
pumping from a quantized spin Hall effect, which is a
hallmark of the chiral spin liquid phase.
We now present results for the various cylinder geom-

etries we have studied.

A. YC4

Out of the five different cylinders we consider, our
most extensive data are for YC4, which strikes a balance
between two-dimensionality (favoring larger cylinders)
and ability to converge the DMRG simulations (favoring
smaller ones).
On the YC4 cylinder with periodic boundaries we find

three phases, corresponding to the expected metallic, non-
magnetic insulating (NMI), and spin-ordered phases of the
full two-dimensional model; the phase diagram is summa-
rized in Fig. 3, along with our results for several physical
quantities: the correlation length, spin structure factor, and
scalar chiral order parameter.
The transition from the NMI phase to the spin-ordered

phase atU=t ≈ 10.6 is indicated by a peak in the correlation
length, the appearance of large peaks near the K� points of
the Brillouin zone in the spin structure factor, and the
vanishing of the chiral order parameter. The spin structure
factor in particular allows us to identify the high-U side
of this transition as the one-dimensional descendant of
the two-dimensional magnetically ordered phase, and the
intermediate-U side as nonmagnetic.
Because the metal is gapless, the metal to NMI transi-

tion (U=t ≈ 8) is less clear from the direct physical

measurements shown in Fig. 3, though it is visible from
the chiral order parameter: although a nonzero value of the
order parameter indicates time-reversal symmetry breaking
in both the metallic and NMI phases for finite bond
dimension, an extrapolation in the DMRG truncation error
[66] shows that the symmetry is actually unbroken in the
low-U phase [56]. To make this transition clearer, and to
show that it corresponds specifically to the opening of a
charge gap, we consider two additional quantities that we
measure indirectly from the wave function via more
involved calculations: the small-k curvature of the density-
density structure factor and the fermion quasiparticle
weight; these are shown in Fig. 4.
The density-density structure factor NðkÞ shows the

presence or absence of a charge gap: if the system is
gapless, for small momentum NðkÞ ∝ jkj, while if it is
gapped, NðkÞ ∝ k2 [67,68]. Indeed, we find that at low U

FIG. 2. The effect of flux insertion on the mixed-space model is
to shift the allowed momentum cuts through the Brillouin zone.
They shift upward for spin-up electrons and downward for spin-
down electrons, thus preserving time-reversal symmetry. Note
that for θ ¼ 4πn for any integer n, the cuts are again in their
original positions.

(a)

(b) (c)

(d) (e)

FIG. 3. Results for the YC4 cylinder. Results are shown for a
range of MPS bond dimensions χ as indicated in the lower left
legend. (a) A nonmagnetic insulating (NMI) phase appears
between a gapless metallic phase at low U=t and a magnetic
phase at high U=t. (b) Correlation length in the “charge neutral
sector,” in other words for excitations carrying no charge, spin, or
momentum. The vertical line atU=t ¼ 10.6 is provided as a guide
to the eye. (c) Correlation lengths at the largest bond dimension in
various charge sectors. The sector ðQ; S; KÞ corresponds to
correlations hO1O2i, where O1 creates and O2 annihilates an
excitation carrying charge Q, spin S, and momentum quantum
number K. (d) Spin structure factor: the curve shows the
maximum value of the spin structure factor in the Brillouin
zone. The inset shows the spin structure factor in the high-U
phase, with peaks at the closest allowed momenta to the K�
points, where they would be expected for 120° magnetic ordering.
Note that spin expectation values are reported here and through-
out the paper with ℏ=2 ¼ 1. (e) Chiral order parameter
hSi · ðSj × SkÞi, where i, j, and k label the three vertices of a
triangle in the lattice, with an additional line showing extrapo-
lation in the DMRG truncation error [66]; see Supplemental
Material [56] for details on the extrapolation.
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the structure factor is visibly linear near k ¼ 0, shown in
Fig. 4(a) (left inset), while at high U it is clearly quadratic
(right inset). To observe the metal-insulator transition, we
measure the curvature of the structure factor at k ¼ 0 and
then extrapolate in the bond dimension. The extrapolated
data reveal a transition from linear to quadratic atU=t ≈ 8.5,
consistent with the extrapolated chiral order parameter.
In Fig. 4(b), we show an estimate of the fermion

quasiparticle weight, measured via the change in electron
occupation at the Fermi surface. This calculation requires
accounting for three different effects: (i) high resolution in
momentum-space occupation requires very long-range
correlation function calculations in real space; (ii) because
a cylinder is a one-dimensional system, in a metallic phase

it will behave as a Luttinger liquid and not actually have a
discontinuity at the Fermi surface, though there is still a
singularity; and (iii) finite bond dimension removes the
singularity at the Fermi surface. The latter is easily dealt
with by extrapolation; in the Supplemental Material [56]
we show that the singularity reappears in the infinite bond
dimension limit. The first effect is accounted for by
measuring the change in occupation across a finite interval
in k symmetric around the Fermi surface. As long as the
interval is sufficiently wide, the corresponding wavelength
is short enough to not be affected by the finite range of the
computed real-space correlations. The behavior above this
cutoff in Δk can then be extrapolated to Δk ¼ 0. This
procedure is illustrated for U=t ¼ 6 in Figs. 4(c) and 4(d)
and for other values of U=t in the Supplemental
Material [56].
The second effect cannot be accounted for rigorously

using just the YC4 cylinder, since there is no well-defined
quasiparticle weight in a quasi-one-dimensional system; in
particular, all Δk≲ 2π=L ¼ π=2 will be affected by the
one-dimensionality of the cylinder, and this range includes
approximately all Δk around the Fermi surface out to the
edge of the Brillouin zone. However, as can be seen in
Fig. 4(d), the change in occupation does not show a
qualitative change between Δk ¼ π=2 and the cutoff Δk≳
0.5 used in our extrapolation, so the procedure described
above and shown in Figs. 4(c) and 4(d) should still give an
approximately correct estimate of the quasiparticle weight.
The resulting estimate of the quasiparticle weight

appears to vanish around U=t ¼ 9, though there is some
dependence on the precise form of extrapolation used.
Since in computing the estimate we use only larger Δk
values, where there is a larger occupation gap, the actual
quasiparticle weight should vanish at a slightly lower value
of U=t, again being consistent with the chiral order
parameter and structure factor curvature.
Further information about the three phases and the

transitions between them comes from studying the entan-
glement in the system, and in particular from finite entan-
glement scaling [69–71]. If we cut the infinite cylinder into
two semi-infinite halves, we can calculate the entanglement
entropy S between them from the eigenvalues λ2i of the
reduced density matrix of either side of the cut:

S≡ −
X
i

λ2i logðλ2i Þ: ð2Þ

In the true ground state this is an infinite sum; however,
when running DMRG simulations the MPS bond dimen-
sion χ upper bounds the number of nonzero λi in Eq. (2)
and thereby bounds S ≤ logðχÞ. In a gapless state, the true S
is infinite, as is the correlation length ξ, but finite
entanglement scaling predicts that the two quantities will
scale with χ such that [72]

S ≈ ðc=6Þ logðξÞ; ð3Þ

(a) (b)

(c) (d)

FIG. 4. Measurements pertaining to the metal-insulator tran-
sition for the YC4 cylinder. (a) Inverse curvature of the density-
density structure factor at k ¼ 0, a proxy for the charge gap, with
vertical lines at U=t ¼ 8.5 and 10.6 indicating the estimated
locations of phase transitions. The insets show that the structure
factor is linear around k ¼ 0 for small U=t and quadratic at large
U=t, indicating gapless and gapped phases, respectively; curva-
ture is measured using a small interval around k ¼ 0, the
nonshaded region in the insets. (b) Approximate fermionic
quasiparticle weight, measured by discontinuity in occupation
at the Fermi surface. The vertical line is at U=t ¼ 8.5. As
described in the text, this is an indirect calculation rather than
a direct measurement; the calculation is illustrated in the next two
panels for one value of U=t, with further examples available in
the Supplemental Material [56]. (c) Occupation of spin-up
electrons as a function of kx, with ky ¼ 0, for U=t ¼ 6, both
for the full Brillouin zone (inset) and for the edge of the Fermi
surface, identified as the point with the steepest slope. The gap in
occupation Δhni can be measured as a function of the size Δkx of
an interval symmetric around the Fermi surface. The result is
shown in the next panel. (d) Change in occupationΔhni across an
interval Δkx around the Fermi surface. Small Δk results are
not reliable because of Luttinger liquid effects from the one-
dimensionality of the cylinder and because occupations are
calculated by a finite range of real-space correlations.We therefore
eliminate the points in the shaded region and fit the remainder with
a cubic polynomial, then extrapolate to Δkx ¼ 0 as shown by the
dashed lines. These extrapolated results are the data shown in (b).
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which can be used to estimate the central charge c of the
conformal field theory corresponding to the gapless met-
allic phase. We show the central charge computed using
Eq. (3) in Fig. 5(a).
In a gapped state, S is finite [73,74], so the DMRG

estimate of S should converge as χ is increased; however, ξ
will also converge, and the two quantities may converge at
different rates so that the relative scaling between them
becomes less reliable. In such a case, the central charge can
be more accurately computed by direct scaling of entan-
glement with bond dimension [69–71]:

S ≈
�
1þ

ffiffiffiffiffiffiffiffiffiffi
12=c

p �
−1

logðχÞ: ð4Þ
We show the central charge computed using Eq. (4) in
Fig. 5(b).
Until U=t ≈ 8, the central charge is constant with respect

to U=t and is near to the value c ¼ 6 that we would expect
for a metallic state [56,60]. For U=t≳ 9, it is clear from
Fig. 5(b) that c ¼ 0, indicating that the phases are gapped.
For intermediate values of 8≲ U=t ≲ 9, the central charge
is still far from converged with bond dimension, but it is
plausible that it will extrapolate to zero; see Supplemental
Material for details [56]. Note that the apparently unsys-
tematic behavior in Fig. 5(a) near the previously identified
transition at U=t ≈ 10.6 is due to a slight shift in the
location of the peak in the correlation length as bond
dimension is increased.
We can identify the locations of both phase transitions

with more precision by studying the entanglement

spectrum, which is the list of values f− logðλiÞg, for the
same fλig appearing in Eq. (2); the full low-lying entan-
glement spectrum is shown as a function of U=t in the
Supplemental Material [56]. In particular, by pairing the
levels and then finding the average separation between
the levels in each pair, we observe that the entire spectrum
acquires an exact twofold degeneracy for U=t≳ 8.4; this is
shown in Fig. 5(c). Although at finite bond dimension there
remains for any U=t a finite separation between the levels
in each pair, for U=t < 8.2 the separation does not visibly
depend on the bond dimension, whereas for U=t ≥ 8.6, the
separation goes to 0 with increasing bond dimension; the
exact location of the transition is not clear from our data but
appears to be in the range of 8.2≲ U=t≲ 8.6, which is
consistent with the location of the metal-insulator transition
as found above. We can similarly group the entanglement
spectrum into sets of four levels and consider the average
separation of the highest and lowest levels in each group,
revealing the onset of fourfold degeneracy atU=t ≈ 10.6, at
the spin-ordering transition. This fourfold degeneracy
corresponds to the different projective representations of
the symmetry group carried by the entanglement spec-
trum [75].
Taken together, the data in Figs. 3–5 demonstrate that the

YC4 cylinder with periodic boundary conditions exhibits
three distinct phases, corresponding to metallic, time-
reversal symmetry-breaking nonmagnetic insulating, and
magnetically ordered phases in two dimensions. The nature
of the transitions is a more challenging question. The metal-
insulator transition appears to be continuous. No quantity
we measure, including correlation length, spin order, chiral
order, estimate of the quasiparticle weight, and the entan-
glement spectrum, shows any kind of discontinuity; even in
a weakly first-order transition, wewould expect to see some
such signature in our data. However, despite the very large
bond dimensions we use, we are unable to pinpoint the
location of the transition, so further properties of the metal-
insulator transition such as critical exponents are not
feasible to calculate. The magnetic ordering transition
shows much more abrupt changes in various quantities,
especially the chiral order parameter, though none are
clearly discontinuous. There may be a very small disconti-
nuity in the entanglement spectrum (Fig. S23 in the Supple-
mental Material [56]), which could indicate a weakly
first-order transition, but much higher bond dimension
would be required to make a definitive statement. To
summarize, the metal-insulator transition appears to be
continuous, while the spin-ordering transition is either
continuous or very weakly first order.
We now turn to the results of flux insertion. We perform

the flux insertion adiabatically, twisting the boundary
conditions in intervals of θ ¼ π=12. Because of the much
larger parameter space spanned by both U=t and θ, we
restrict our computations to a single bond dimension,
χ ¼ 4000. Based on the data shown in Fig. 3, we believe

(a) (b)

(c) (d)

FIG. 5. Entanglement results for the YC4 cylinder. (a) Central
charge of the effective one-dimensional state as calculated by the
scaling of entanglement with correlation length, Eq. (3); this is
the most accurate method for gapless systems. (b) Central charge
as calculated by the scaling of entanglement with bond dimen-
sion, Eq. (4); this is the most accurate method for gapped systems.
(c) Average separation between pairs of levels from the entan-
glement spectrum; the shaded region isU=t ¼ 8.2–8.6, where the
spectrum approaches exact twofold degeneracy with increasing
bond dimension. (d) Average separation among groups of four
levels from the spectrum; the vertical line at U=t ¼ 10.6 marks
the onset of fourfold degeneracy.
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this bond dimension is sufficient to capture the qualitative
behavior of the system; furthermore, we increase the bond
dimension to 8000 for several values of U=t and confirm
that there is no qualitative change.
In Fig. 6, we show several quantities computed as a

function of both U=t and θ, namely the chiral order
parameter, the maximum value of the hSzSzi structure
factor on the allowed momentum cuts, and the inverse of
the correlation length for operators carrying quantum
numbers ðQ; SzÞ ¼ ð0; 0Þ as computed from the MPS
transfer matrix spectrum. In the infinite bond-dimension
limit, the latter quantity is a proxy for the gap to excitations
with Sz ¼ 0 [56,76]; we present data for only a single bond
dimension, but nevertheless a comparison of this inverse
correlation length across parameter space can indicate
which phases are likely to have a spin-singlet gap. All
three quantities would be independent of θ in the limit of a
very wide cylinder; here we see substantial variation, but at
each θ the qualitative behavior as U=t is varied remains
essentially the same.
Most notably, the chiral order parameter is nonzero in a

region of roughly constant width; furthermore, if for each θ
we find the maximum value of the chiral order parameter
versus U=t, these maxima vary with θ by only about 1=3 of
the maximum at θ ¼ 0. The comparison between the three
figures also reveals behavior for all θ that is in good
agreement with what we found with periodic boundary
conditions. In particular, the degree of short-range magnetic
ordering rapidly increases at the right edge of the chiral
phase, and furthermore the chiral phase appears to be
strongly gapped, consistent with the analysis of central
charge.

B. YC6

We next present data for the YC6 cylinder, which is the
largest, and thus presumably the least impacted by finite-
size effects, of those we study; this cylinder has the
potential drawback that the MPS bond dimension required
to achieve a given level of precision scales exponentially

with L, so the simulations are less converged than for
smaller cylinders, but we find that the qualitative behavior
of the system is nevertheless clear.
The YC6 cylinder is notable not just because it is the

widest of those we study but also because, as we show now,
it has topologically degenerate ground states in two differ-
ent momentum sectors. Because we employ a mixed real-
and momentum-space basis, we can initialize the DMRG
with states in different sectors of momentum around the
cylinder per unit length [77], k, and thus separately find the
ground state in each sector. On the YC4 cylinder the ground
state always lies in the k ¼ 0 sector, but for the YC6
cylinder we observe low-lying states in two different
momentum sectors, k ¼ 0 and k ¼ π. The relative energy
difference between the ground states in the two sectors is
shown in Fig. 7(a). There are three apparent regimes of
behavior: at low U, the k ¼ 0 sector is clearly the ground
state; at intermediate U, the two sectors become close in
energy, and the difference decreases with increasing bond
dimension; at high U, the k ¼ π sector becomes the ground
state, though again the relative difference in energy
decreases with increasing bond dimension.
The low-U phase is expected to be metallic, with central

charge c ¼ 10 [56,60]. Finite entanglement scaling indeed
suggests that the phase is gapless [56], though an accurate
measurement of the central charge would require a bond
dimension currently inaccessible to us, on the order of
50 000. (Extremely high entanglement in the low-U region
leads to very large DMRG truncation error, on the order of
10−4, even with χ ∼ 10000.) The high-U phase should be

(a) (b) (c)

FIG. 6. YC4 cylinder with flux insertion θ, for χ ¼ 4000.
(a) Absolute value of chiral order parameter. The chiral phase
exists for all twisted boundary conditions, but the phase boun-
daries shift with θ. (b) Maximum of hSzSzi structure factor on
allowed momentum cuts in the Brillouin zone. (c) Inverse
correlation length for excitations with Sz ¼ 0, which serves as
a proxy for the spin-singlet gap.

(a) (b)

(c) (d)

FIG. 7. Results for the YC6 cylinder. (a) Relative energy
(percent difference) between ground states in the symmetry
sectors with k ¼ π and k ¼ 0 around each ring. (b) Maximum
value of the spin structure factor for the two momentum sectors.
The insets show (lower right) the high-U spin structure factor for
the k ¼ π sector, with peaks at the K� points as expected for 120°
magnetic ordering, and (upper left) the corresponding real-space
hS · Si correlations to a chosen point (center on the top). (c) Chiral
order parameter for the k ¼ 0 ground state. (d) Chiral order
parameter for the k ¼ π ground state.
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the one-dimensional descendant of the two-dimensional
120° Néel ordered phase, and indeed, at approximately the
same value of U=t where the k ¼ π sector becomes the
ground state, there is a rapid increase in the peak height of
the spin structure factor in the k ¼ π sector, as shown in
Fig. 7(b). In this phase, we observe the expected peaks in
the structure factor at the corners of the Brillouin zone
(lower right inset) and short-range spin ordering in the real-
space spin-spin correlations (upper left inset).
The intermediate phase, for U=t ≈ 8 to U=t ≈ 10, is the

region where the relative energy difference between the two
momentum sectors is small and approximately constant;
the spin structure factors are also approximately equal. We
identify the transition to the right by the onset of the
aforementioned spin ordering. To the left, the transition can
be observed by the k ¼ 0 sector becoming the sole ground
state and from the transition in that sector to a metallic phase;
aswe show in theSupplementalMaterial [56], the latter canbe
seen qualitatively from the entanglement spectrum and finite
entanglement scaling—the low-U phase appears gapless,
while the intermediate phase is likely gapped.
As with the YC4 cylinder, spontaneous breaking of time-

reversal symmetry leads to a nonzero value of the chiral
order parameter in the metallic and intermediate phases, as
shown for the two momentum sectors in Figs. 7(c) and 7(d),
though in the metal we would expect the symmetry to be
restored at larger bond dimensions. In the k ¼ π sector,
which is the true ground state for high U, the chiral order
parameter rapidly vanishes at the spin-ordering transition.
In the k ¼ 0 sector, the chirality does not seem to drop
abruptly to zero; however, as can be seen in Fig. 7(c),
the chirality does rapidly decrease with increasing bond
dimension for U ≳ 10.
We can again acquire more information about the full

two-dimensional model by performing adiabatic flux
insertion to scan the allowed momentum cuts through
the full Brillouin zone; we perform the flux insertion using
the k ¼ π ground state as the initial state with θ ¼ 0, and
we perform all computations with χ ¼ 8000. Although the
bond dimension is twice that used for YC4 flux insertion,
the results are much less converged. Nevertheless, some
features can be captured at least qualitatively, as shown in
Fig. 8. In particular, there is a chiral phase for all θ, which
has weak local magnetic order and a sizable spin-singlet
gap (indicated by the inverse correlation length). The chiral
region extending to higher U around θ ¼ 2π is likely an
artifact of the finite bond dimension: all local properties at
2π flux are essentially identical to those of the k ¼ 0
ground state with periodic boundaries, and as noted above,
the chiral order parameter is far from converged at χ ¼
8000 above U ≳ 10.

C. YC5

The YC4 and YC6 phase diagrams discussed above are
qualitatively similar; both show a chiral intermediate phase

in the vicinity of U=t ¼ 10, which is present regardless of
the twisting of the boundary conditions. The same is not
true for the YC5 cylinder—with periodic boundary con-
ditions, θ ¼ 0, there is no spontaneous time-reversal
symmetry breaking for any U. However, when we perform
flux insertion, we find that the chiral intermediate phase
does still exist, for π ≲ θ ≲ 3π and 8≲ U=t≲ 10. This is
shown in Fig. 9.
To understand these data, it is important to note that,

unlike for YC4 and YC6, we use a two-ring unit cell; for an
odd-circumference cylinder, we must use an even number
of rings in order to initialize the DMRG simulation with a
product state that is half-filled both for spin up and spin
down. The two-ring unit cell allows the ground state to
break translation symmetry along the cylinder, which

(a) (b) (c)

FIG. 8. YC6 cylinder with flux insertion θ, for χ ¼ 8000.
(a) Absolute value of the chiral order parameter. (b) Maximum of
hSzSzi structure factor on allowed momentum cuts in the
Brillouin zone. (c) Inverse correlation length for excitations with
Sz ¼ 0.

(a) (b)

(c) (d)

FIG. 9. YC5 cylinder with flux insertion θ, for χ ¼ 4000.
(a) Absolute value of the chiral order parameter; at finite bond
dimension, the translation symmetry is broken along the cylinder,
and here we show the larger of the chiral order parameters
between the two distinct rings. The chiral phase exists at
intermediate U when θ is approximately in the range π–3π.
(b) The smaller of the two chiral order parameters. (c) Maximum
of the hSzSzi structure factor in the Brillouin zone. (d) Inverse
correlation length for excitations with Sz ¼ 0.
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indeed occurs; this symmetry breaking is expected even in a
spin liquid phase [78]. Figures 9(a) and 9(b) show the chiral
order parameter on the two rings of the unit cell. As shown
in Fig. 10(b), the degree of symmetry breaking decreases as
the MPS bond dimension used in running DMRG is
increased, though it appears that even at infinite bond
dimension the symmetry will remain broken.
The chiral phase observed for YC5 seems to be the same

as that found in YC4 and YC6 even if it does not extend
through all boundary condition twists θ. This is partially
confirmed by considering the peak height of the hSzSzi
structure factor and the inverse correlation length for
excitations with Sz ¼ 0, shown in Figs. 9(c) and 9(d),
respectively. As with YC4 and YC6, the chiral phase has a
degree of short-range spin ordering which is intermediate
between that of the metal and that of the high-U phase and
also has the largest spin-singlet gap of any region of the
phase diagram. We also show below, in Sec. IV, that this
chiral phase shows the same signatures of the topological
chiral spin liquid as do the YC4 and YC6 phases.
As evidence for the existence of the chiral phase in the full

two-dimensional model, the YC5 results are somewhat
ambiguous. Neither θ ¼ 0, for which there is no chiral phase,
nor θ ¼ 2π, for which the chiral phase exists, is a priori
“better” or more representative of the two-dimensional
model. However, further insight can be gleaned by under-
standing the effect of the twisted boundaries on the spin
degrees of freedom that are the relevant ones for a spin liquid
phase. Indeed, we believe that the θ ¼ 2π boundary con-
ditions turn out to be the more representative ones.
In particular, we can look at the strength of hSzSzi

correlators on bonds between adjacent sites; the results are
shown for four bond dimensions up to χ ¼ 11314 for
U=t ¼ 10 in Figs. 10(c) and 10(d). Evidently, for flux near
θ ¼ 0, there is huge anisotropy, with spin correlations
much stronger on bonds around the cylinder circumference
than for diagonal ones. As the flux increases from zero, the
anisotropy continuously decreases and shows only a
change in slope upon entering the chiral phase; the
anisotropy is smallest precisely where the chiral order
parameter is largest. Assuming that the true intermediate
phase of the two-dimensional model does not break the
model’s C3 rotation symmetry, the θ for which the YC5
cylinder exhibits a chiral phase are precisely those in which
the symmetry of the spin correlations is most two-dimen-
sional. We also test this explanation by explicitly adding
anisotropy to the model to weaken the bonds around the
cylinder circumference; indeed, with the hopping strength
on these bonds reduced by 10%, a chiral phase appears
even at zero flux [56].

D. YC3

The YC3 cylinder is the smallest, and thus presumably
least representative of the two-dimensional model, of all
those we study; we nevertheless include our data for

completeness. With periodic boundaries, θ ¼ 0, we find
much the same behavior as for YC4 and YC6, with an
intermediate chiral phase between a metallic phase and a
short-range magnetically ordered one. As partial evidence,
we show the chiral order parameter versus U=t in
Fig. 11(a). Note that, as with YC5, we use a larger unit
cell (in this case, four rings) and find that for finite bond
dimension the model has only a two-ring translation
symmetry; in the figure, the two symbols for each bond
dimension show the chiral order parameter on the two
distinct rings.
With flux insertion, the behavior is quite different, and,

as we show in Fig. 11(b), the chirality vanishes for
π ≲ θ ≲ 3π, essentially the opposite of the behavior
observed for YC5. In Figs. 11(c) and 11(d), we also show
the peak height of the spin structure factor and the inverse
correlation length for excitations with Sz ¼ 0. The relation-
ship between these quantities and the chirality is quite
different from what we observe for all three cylinder
geometries discussed above, so it is not clear that the
chiral phase observed here corresponds to the one found for
the larger cylinders. Additional data are available in the
Supplemental Material [56].

(a) (b)

(c) (d)

FIG. 10. Flux insertion for YC5 cylinder with U=t ¼ 10, for a
range of bond dimensions. (a) As noted in the text, a two-ring unit
cell allows for translation symmetry breaking. Here we label the
distinct rings of the cylinder in the unit cell and the three bonds in
each ring that may have different hSzSzi correlations. (b) Chiral
order parameter on ring 1 (upper curves) and ring 2 (lower
curves) of the unit cell. It appears that the lower curve is
converged for the largest χ, while the upper one is not, but it
does not appear that the twowill become equal even in the infinite
χ limit. (c) hSzSzi for nearest-neighbor bonds on ring 1 as shown
in (a); the symbol for each data point indicates that it corresponds
to the bond labeled by that symbol in (a). We do not show the
strength of the down-triangle bond because for each χ and θ it is
equal to that of the up-triangle bond to better than one part in 108.
In the 2D model, all three bonds are equivalent; on the YC
cylinder, the vertical bonds are inequivalent to the two diagonal
ones. (d) hSzSzi for ring 2.
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E. XC4

Finally, we place the model on the XC4 cylinder, which
is the second smallest cylinder after YC3 [79]. With
periodic boundaries, we find very weak time-reversal
symmetry breaking for all U=t, which decreases with
increasing bond dimension; the chiral order parameter is
shown in Fig. 12(a). The extrapolation to infinite bond
dimension is not entirely clear, but it is likely that the true
ground state preserves the symmetry.
With flux insertion, we find that a chiral phase

again appears, as shown in Fig. 12(b). We also show
the peak height of the hSzSzi structure factor and the
inverse correlation length for excitations with Sz ¼ 0, in
Figs. 12(c) and 12(d), respectively. As with YC3, the
XC4 cylinder does not show the clear relation between
the three quantities that we found for YC4–6. However,
like with YC5, the chirality appears near where the
nearest-neighbor spin-spin correlations are most iso-
tropic. In the high-U, midflux region [with a large
spin-singlet gap in Fig. 12(d)], the diagonal bonds are
much stronger than the horizontal ones, whereas in the
rest of the phase diagram the opposite is true; the
chirality is strongest precisely on the border between
these two regions. Furthermore, the anisotropy is much
larger in the region with exactly zero chirality than in the
region where the chirality likely extrapolates to zero but
is nonzero at finite bond dimension.

IV. IDENTIFICATION AS A CHIRAL SPIN LIQUID

We have demonstrated, for both the YC4 and YC6
cylinders, the existence of an intermediate phase which is
nonmagnetic and which breaks time-reversal symmetry; we
have also demonstrated that the phase is gapped for YC4
and likely gapped for YC6. We have furthermore observed
this same phase for the YC5 cylinder for a range of twisted
boundary conditions, and we have observed some similar
behavior for the YC3 and XC4 cylinders. We now show
that the chiral phase observed on the YC4-6 cylinders can,
in fact, be identified as a chiral spin liquid (CSL) [48,65].
A CSL is a topological phase with four degenerate

ground states on the infinite cylinder [80]. Each minimally
entangled ground state [81] spontaneously breaks time-
reversal (T) and parity (P) symmetries, as indicated by a
nonzero value of the chiral scalar order parameter; the
two possible chiralities account for a twofold degeneracy
in the ground state manifold, which could be lifted by a P,
T-breaking perturbation such as a magnetic field.
The remaining degeneracy is topological and is robust to

such perturbations; the two topologically degenerate sec-
tors, called the trivial and semion sectors, are distinguished
by the respective absence or presence of a pair of semionic
spinons, fractional excitations that carry spin 1=2 but no
charge, separated to the ends of the cylinder at�∞ [80,82].
In a pure spin system, insertion of 2π flux creates a pair of
spinons and separates them to the ends of the cylinder, thus
exchanging the two ground states and also pumping a net
spin of exactly 1=2 across any cut through the cylinder; this
latter property indicates that the CSL has a spin Chern

(a) (b)

(c) (d)

FIG. 11. Results for the YC3 cylinder. (a) Chiral order
parameter on each of two rings (circle and triangle symbols,
respectively), plotted versus U=t for a range of bond dimensions.
The behavior is qualitatively similar to that of YC4 and YC6.
(b) Chiral order parameter versus U=t and flux insertion θ, for
χ ¼ 4000. Here we show just the smaller of the chiral order
parameters on the two rings, but the qualitative behavior is
essentially identical at this bond dimension. (c) Peak height of the
hSzSzi structure factor in the Brillouin zone. (d) Inverse corre-
lation length for excitations with Sz ¼ 0.

(a) (b)

(c) (d)

FIG. 12. Results for the XC4 cylinder. (a) Chiral order
parameter versus U=t for a range of bond dimensions, with
periodic boundary conditions. The order parameter likely extrap-
olates to zero. (b) Chiral order parameter with flux insertion.
(c) Maximum of the hSzSzi structure factor on allowed momen-
tum cuts in the Brillouin zone. (d) Inverse correlation length for
excitations with Sz ¼ 0.
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number of 1=2 and a corresponding quantized spin Hall
conductance [83,84].
In the Hubbard model, insertion of 2π spin flux imposes

antiperiodic boundary conditions on the cylinder, since
e2πiS

z ¼ −1. The Hamiltonian is thus modified by 2π flux
insertion, so that the question of whether the two ground
state sectors are exchanged under flux insertion, as they are
in a spin-model CSL, is ill defined; instead, 2π flux
insertion converts between one sector of the original
Hamiltonian (with periodic boundaries) and the opposite
sector of the Hamiltonian with antiperiodic boundaries,
which should still lead to the same quantized spin pumping
as for a spin model.
Each ground state of a CSL has a chiral edge modewith a

universal low-lying spectrum; when the state is placed on
an infinite cylinder, this edge spectrum appears in the
entanglement spectrum for a cut between rings of the
cylinder [85–87]. The edge modes are described by a chiral
SUð2Þ1 Wess-Zumino-Witten (WZW) conformal field
theory [88]; labeling them by spin and momentum quantum
numbers [56,89,90], for a given spin the number of levels at
successive discrete momenta around the cylinder follows
the counting ð1; 1; 2; 3; 5;…Þ [91]. The spectrum is degen-
erate under sz → −sz, where sz is the spin quantum number
of the entanglement level; the spin quantum numbers are

integers in the trivial sector and half-integers in the semion
sector, leading to twofold degeneracy of the spectrum in the
latter case.
We observe all of these signatures of the CSL phase. On

the YC6 cylinder, we have already identified above two
nearly degenerate low-lying states, in the k ¼ 0 and k ¼ π
momentum sectors; within each sector, by initializing the
DMRG with different product states, we are able to
converge to both chiralities (see Supplemental Material
[56]), thus finding all four degenerate ground states. The
chiral order parameter in each sector, indicative of time-
reversal and parity symmetry breaking, has already been
shown above in Figs. 7(c), 7(d), and 8(a); note that these
figures show the absolute value of the order parameter,
which is independent of the chirality to which the DMRG
spontaneously converges.
The spin- and momentum-resolved entanglement spectra

for the ground states in the two sectors are shown in
Fig. 13(a), where we exclude levels corresponding to
charge fluctuations between rings of the cylinder in order
to highlight the spin degrees of freedom. Both spectra show
the expected WZW level counting in the low-lying states
for those momenta where the low-lying states can be
distinguished from the continuum, and the spin quantum
numbers of the entanglement levels are integer for the

(a) (d)

(e)

(b) (c)

FIG. 13. (a) Momentum- and spin-resolved entanglement spectrum for the YC6 cylinder in the intermediate phase, for the ground state
in the k ¼ 0 (left) and k ¼ π (right) sectors; these correspond to the trivial and semion sectors of a CSL, respectively. Insertion of 2π flux
interchanges the two topological sectors, though as discussed in the text there is a subtlety due to working with a fermion model.
(b) Momentum- and spin-resolved entanglement spectrum for the YC4 cylinder, with periodic boundaries at U=t ¼ 10.2 (left) and with
2π flux inserted at U=t ¼ 11.6 (right), corresponding to the highest chirality in each of the two topological sectors. (c) Entanglement
spectrum for YC5 with 2π flux, U=t ¼ 10, between two-ring unit cells (left) and between the rings in the unit cell (right), again
corresponding to the two topological sectors. (d) Spin pumping as a function of flux insertion in the intermediate phase for YC4
(U=t ¼ 10) and (e) for YC6 (U=t ¼ 9).
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k ¼ 0 ground state and half-integer for k ¼ π, allowing us
to identify the low-lying states in the two momentum
sectors with the trivial and semion topological sectors,
respectively.
Alternatively, 2π flux insertion should convert between

the two topological sectors. We already noted in Sec. III B
above that indeed the local properties like spin-spin
correlations and the chiral order parameter look nearly
identical between the k ¼ π sector with 2π flux and the
k ¼ 0 sector with periodic boundaries, which is consistent
with this picture. (In principle, these should also be equal to
the local properties of the k ¼ π sector with periodic
boundaries, but that may not be true at finite bond
dimension, and equality will be weakly violated even in
the true ground state due to the finite circumference of the
cylinder.) In the Supplemental Material [56], we show the
equivalent of Fig. 13(a) with the k ¼ 0 entanglement
spectrum replaced by the k ¼ π spectrum with 2π flux,
and evidently it is nearly identical.
To see the equivalent of Fig. 13(a) for the YC4 cylinder,

because we find only one ground state sector, with k ¼ 0,
we must use the flux insertion method. In Fig. 13(b), we
show the spin- and momentum-resolved entanglement
spectrum for YC4 in the k ¼ 0 sector, with periodic
boundaries at U=t ¼ 10.2 and with θ ¼ 2π at
U=t ¼ 11.6; as shown in Fig. 6(a), these values of U=t
are each at the peak of the chiral order for their respective
amounts of flux insertion, θ. For the YC5 cylinder, as with
YC4 we find a ground state only in the k ¼ 0 sector,
although with two rings per unit cell, this sector includes
both k ¼ 0 and k ¼ π per ring. In this case, however, we
cannot observe both topological sectors by looking at θ ¼ 0
and 2π, since the chiral phase exists only for π ≲ θ ≲ 3π.
Instead, we make use of the fact that, for any cylinder with
an odd number of spin 1=2 per ring, translation along the
cylinder converts between topological sectors [78], so that
we can just consider a single wave function and examine its
entanglement spectrum both between two-ring unit cells
and between the two rings in the unit cell; the result is
shown in Fig. 13(c).
With flux insertion, we also observe the quantized spin

Hall effect, as shown for the YC4 and YC6 cylinders at
U=t ¼ 10 and 9, respectively, in Figs. 13(d) and 13(e), with
a pumping of exactly spin 1=2 per 2π flux insertion. For
YC6, for which the chiral order is roughly constant at
U=t ¼ 9, the flux insertion proceeds at a constant rate. For
YC4, the shifting boundary of the chiral phase with flux
insertion causes some deviation, but the qualitative behav-
ior is the same.

V. DISCUSSION

By employing the DMRG method to study the triangular
lattice Hubbard model on infinite cylinders in a mixed real-
and momentum-space basis, we observe that the model
exhibits three phases: a metallic phase, a nonmagnetic

insulating phase, and a magnetically ordered phase. While
the nature of the intermediate phase depends on the precise
boundary conditions used, with flux insertion through the
cylinder we find that for each cylinder geometry there
is a region with spontaneous time-reversal symmetry
breaking, as indicated by a nonzero chiral order parameter.
In particular, this chiral intermediate phase exists for all
values of flux insertion for the YC4 and YC6 cylinders and
for a large range of flux for the YC5 cylinder; the YC5
chiral intermediate phase appears precisely for those
amounts of flux insertion for which spin-spin correlations
are most consistent with the symmetries of the two-
dimensional lattice.
Furthermore, we show for the YC4, YC5, and YC6

cylinders that the chiral phase shows the characteristic
entanglement spectrum of a CSL with two topologically
degenerate ground state sectors, and for YC4 and YC6 we
demonstrate a fractionally quantized spin Hall effect. The
phase additionally appears to be gapped. Along with the
nonzero chiral order parameter, this evidence strongly
suggests that the nonmagnetic insulating phase is, in fact,
a chiral spin liquid. Our results provide, to our knowledge,
the first clear demonstration of a chiral spin liquid in a time-
reversal symmetric model of itinerant fermions.
The apparent gapped nature of the spin liquid in our

simulations is consistent with the thermal conductivity
measurements on κ-ðBEDT-TTFÞ2Cu2ðCNÞ3 reported in
Ref. [9]; some recent experiments [14,15] also suggest
gapped thermal conductivity in EtMe3Sb½PdðdmitÞ2�2,
although the implications for a possible spin liquid ground
state are disputed [16]. On the other hand, our conclusions
about the nature of the spin liquid do not agree with those of
past studies of this model using the DMRG method: the
study on the two-leg ladder finds a gapless spin liquid
phase [45], while the DMRG study on a finite XC6 cylinder
finds an intermediate phase that appears gapped but with a
rapidly decaying chiral-chiral correlation function [47].
The two-leg ladder study uses a modified Hamiltonian with
some longer-range interactions, so the disagreement on the
nature of the spin liquid is not surprising. The discrepancy
with the XC6 finite cylinder study is more difficult to
explain. One possibility is that, as with the XC4 and YC5
cylinders in our study, the XC6 cylinder would exhibit a
chiral phase after flux insertion; we are not able to reach
high enough bond dimension to converge the XC6 cylinder,
and thus are unfortunately not able to test this possibility.
It is also useful to briefly consider other candidates for

the intermediate phase. In particular, it is worth investigat-
ing the possibility of the intermediate phase being a Dirac
spin liquid (DSL), both because there has recently been
evidence in support of a DSL in frustrated spin models
[92,93] and because the CSL can be derived by gapping out
the Dirac cones in a DSL, so that one might imagine a DSL
in two dimensions becoming a CSL due to either finite
cylinder circumference or finite bond dimension. The first
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scenario is difficult to rule out, given that the CSL would
still be the true ground state up to some cylinder circum-
ference which could be much larger than what is accessible,
but there is also no particular evidence from our data to
support this scenario. The second scenario we do rule out,
by analyzing the low-lying excitation spectrum using the
MPS transfer matrix spectra; this analysis is described in
detail in the Supplemental Material [56].
If the CSL is indeed the ground state in the full two-

dimensional triangular lattice Hubbard model, in real
materials well described by this model we would expect
regions of both possible chiralities to coexist, with a finite-
temperature phase transition to long-range chiral order at a
temperature of the same order of magnitude as the chiral
domain wall tension, possibly reduced due to entropy from
the gapless edge modes located at the domain walls. We
measure this domain wall tension for the YC4 cylinder by
finding an optimized composite wave function that tran-
sitions from the ground state with one chirality to the
ground state with the other, and we find a domain wall
tension of approximately 0.0065t per lattice constant; using
estimates for t for real materials [7], this evaluates to about
4K × kB [56]. The corresponding phase transition may be
related to the observed feature in the heat capacity, thermal
conductivity, and magnetic relaxation rate at about 6K in
κ-ðBEDT-TTFÞ2Cu2ðCNÞ3 [8,9,94].
At very low temperatures in a single-domain sample, we

would observe no longitudinal thermal transport, in agree-
ment with experimental data [9,14,15], and a quantized
thermal Hall conductance, Kxy ¼ ðπ2kB2TÞ=ð3hÞ; note that
the latter is twice the value of the Majorana-like plateau
recently reported in α-RuCl3 [95,96]. In the presence of
time-reversal symmetry-breaking disorder, there would be
regions of both possible chiralities with gapless edge modes
between them. It would be interesting to further investigate
the resulting behavior of the specific heat and the thermal
conductivity in this scenario.
An applied magnetic field could, in principle, break

the degeneracy between the two chiralities, but this
effect is extremely small at experimentally accessible
field strengths. If the magnetic flux through a triangle
in the lattice is ϕ, perturbation theory in t=U gives a term
½24ðt3=U2Þ sinðϕÞ(S · ðS × SÞ)=ℏ3� in the effective spin
Hamiltonian; using our measured value for the chiral
order parameter and estimated parameters for
κ-ðBEDT-TTFÞ2Cu2ðCNÞ3 [7,97], in a 10 T field the
energy splitting between ground states for the two chir-
alities is about 1 μeV per lattice site, so at 1 K the favored
chirality would be expected to be just 1% more prevalent.
So it would not be surprising for experiments to see no
significant effect for applied magnetic fields up to 10 T [8].
In addition to studying the chiral spin liquid phase, we

also considered the transitions to the neighboring metallic
and spin-ordered phases. For the YC4 cylinder in particu-
lar, for which our data are the most extensive, every

quantity we compute, including correlation length, spin
order, chiral order, and an estimate for the quasiparticle
weight, shows no discontinuity at the metal-insulator
transition, suggesting that it is second order. However,
we are not aware of any field theory description of a direct
metal to chiral spin liquid transition, and furthermore a
recent experiment tuning across the metal-insulator tran-
sition by doping found the transition to be first order [98],
so further study is very much warranted. Some possibi-
lities include a weakly first-order transition in the full two-
dimensional model or the presence of a very small
intermediate phase such as the aforementioned Dirac spin
liquid; alternatively, a theory of this transition may simply
be waiting to be discovered. Future numerical work
focusing specifically on the metal-insulator transition will
hopefully be able to resolve the exact nature of the
transition, including finding the critical exponents if it is
indeed continuous.
More generally, further theoretical work must address

the question of whether the chiral phase we find on the
cylinders we study indeed extrapolates to the full two-
dimensional model. Our results strongly support this
conclusion: on the YC4 and YC6 cylinders, the chiral
phase exists for a large range ofU=t independent of the flux
insertion that scans the allowed momentum cuts through
the full two-dimensional Brillouin zone, and furthermore,
on the YC5 cylinder, the same phase appears when the
twisted boundary conditions lead to spin correlations that
approximately obey the symmetries of the full two-
dimensional lattice. In other words, the chiral spin liquid
is always present in the model as a competing phase, and it
seems to be favored in those situations that best represent
the two-dimensional system. The existence of the chiral
spin liquid in two dimensions could be further confirmed
either by using larger circumferences, which would be
computationally expensive, or by fully 2D methods such as
projected entangled pair states (PEPS) [99,100].
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