
 

Exact Generalized Kohn-Sham Theory for Hybrid Functionals

Rachel Garrick,1 Amir Natan ,2 Tim Gould ,3,* and Leeor Kronik 1,†

1Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
2Department of Physical Electronics, Tel Aviv University, Tel Aviv 69978, Israel

3Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia

(Received 3 July 2019; revised manuscript received 5 March 2020; accepted 7 April 2020; published 20 May 2020)

Hybrid functionals have proven to be of immense practical value in density-functional-theory
calculations. While they are often thought to be a heuristic construct, it has been established that this
is in fact not the case. Here, we present a rigorous and formally exact analysis of generalized Kohn-Sham
(GKS) density-functional theory of hybrid functionals, in which exact remainder exchange-correlation
potentials combine with a fraction of Fock exchange to produce the correct ground-state density. First, we
extend formal GKS theory by proving a generalized adiabatic connection theorem. We then use this
extension to derive two different definitions for a rigorous distinction between multiplicative exchange and
correlation components—one new and one previously postulated. We examine their density-scaling
behavior and discuss their similarities and differences. We then present a new algorithm for obtaining exact
GKS potentials by inversion of accurate reference electron densities and employ this algorithm to obtain
exact potentials for simple atoms and ions. We establish that an equivalent description of the many-electron
problem is indeed obtained with any arbitrary global fraction of Fock exchange, and we rationalize the
Fock-fraction dependence of the computed remainder exchange-correlation potentials in terms of the new
formal theory. Finally, we use the exact theoretical framework and numerical results to shed light on the
exchange-correlation potential used in approximate hybrid functional calculations and to assess the
consequences of different choices of fractional exchange.
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I. INTRODUCTION

Density-functional theory (DFT) [1] is an approach to
the many-electron problem, in which the fundamental
variable is the electron density, rather than the many-body
wave function. DFT has become the method of choice for
first-principles electronic structure calculations theory of
almost every conceivable property of an exceptionally wide
range of molecules and materials [2–8]. DFT is in principle
exact, but almost always approximate in practice, as the
general mapping between the wave function and density is
unknown. Early practical applications of DFT were all
based on the Kohn-Sham (KS) formalism [9], which maps
the original interacting-electron problem to a noninteract-
ing one, in the sense that the fictitious system retains the
same ground-state density as the real one. In this approach,

the quantum properties of the original system are reflected
in the Kohn-Sham system by means of a multiplicative
potential known as the exchange-correlation (xc) potential
Vxc, which is a functional of the density.
Early approximations to Vxc, notably the local density

approximations (LDAs) [9] and the generalized-gradient
approximation (GGA) [10], provided approximate func-
tionals that were explicitly density dependent. In the early
1990s, Becke [11,12] showed that so-called “hybrid”
functionals, in which LDA or GGA exchange is mixed
with the nonmultiplicative Fock exchange operator, offered
further and significant improvements in accuracy. Such
hybrid functionals, and many variants thereof, have since
proven to be indispensable for a great number of molecular
systems (see, e.g., Refs. [13–16]). More recently, they have
been gaining increasing popularity in condensed phase
calculations too (see, e.g., Refs. [17–20]).
Originally, the introduction of nonmultiplicative Fock

exchange was thought to be a further, uncontrolled
approximation to KS theory. Within a few years, however,
it was shown that it can also be viewed rigorously [21] in
terms of a generalized Kohn-Sham (GKS) theory [22]. In
this theory, one maps the original interacting system into a
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partially interacting system that is represented by a single
Slater determinant, again such that the ground-state density
is retained. GKS theory then provides a conceptual advan-
tage over KS theory (which itself emerges as a special case
of GKS theory) in that it allows more freedom in functional
construction. This is because while there is only one exact
KS map to the noninteracting system, there are infinitely
many partially interacting systems to which an exact GKS
map may be formed.
Just like KS theory, GKS theory is also exact in principle

but approximate in practice. In fact, seeking new approxi-
mate density functionals that offer better accuracy and/or a
reduction in computational cost is an ongoing effort [23].
In KS theory, such development has been greatly advanced
by studies of exact definitions and relations, e.g., the
adiabatic connection theorem [24] and the precise distinc-
tion between exchange and correlation [10]. Furthermore,
for KS theory there is a long and distinguished history of
aiding such an exact analysis by examining the properties
of exact potentials, obtained through the inversion of
accurate reference densities, for practical systems [25–
36]. To the best of our knowledge, neither analytical nor
numerical analysis of this kind has been performed for
GKS theory. The purpose of this article is to fill that gap.
The article is arranged as follows. In Sec. II, we present a

brief reminder of the GKS formalism, followed by proof
of a generalized adiabatic connection theorem for exact
hybrid functionals. We use the generalization to derive
rigorously two different definitions of multiplicative
exchange and correlation components—one new, one
previously postulated—and examine their differences and
similarities, also in terms of density scaling. In Sec. III, we
present a new algorithm for obtaining exact GKS potentials
by inversion of accurate reference electron densities
and employ this algorithm to obtain exact potentials for
simple atoms and ions. We then use the results to
demonstrate and assess analytical theory. In Sec. IV, we
use the exact theoretical framework together with numeri-
cal results to shed light on the exchange-correlation
potential used in approximate hybrid functional calcula-
tions and to assess the consequences of different choices of
fractional exchange.

II. EXACTGENERALIZEDKOHN-SHAMTHEORY

A. A brief overview of GKS theory

The KS equation [9], which as explained in the
Introduction maps the fully interacting problem to a non-
interacting one, is given by�

−
1

2
∇2 þ VKSð½n�; rÞ

�
ϕiðrÞ ¼ εiϕiðrÞ; ð1Þ

where εi and ϕiðrÞ are Kohn-Sham eigenvalues and
orbitals, respectively, and VKSð½n�; rÞ is a multiplicative

potential which is a functional of the electron density
nðrÞ at each point in space r. VKSð½n�; rÞ is typically
expressed as the sum of the external ionic potential term
VextðrÞ, the classical electron-electron repulsion (Hartree)
term VHð½n�; rÞ ¼

R
nðr0Þ=jr − r0jdr0, and the “exchange-

correlation” term Vxcð½n�; rÞ, which accounts for all many-
body quantum effects beyond classical repulsion via a
(typically unknown) functional of the density:

VKSð½n�; rÞ ¼ VextðrÞ þ VHð½n�; rÞ þ Vxcð½n�; rÞ: ð2Þ

In GKS theory [22] mapping to a partially interacting
model system that can still be represented by a single Slater
determinant is achieved in practice by defining an energy
functional of the Slater determinant S½Φ�, or equivalently of
the orbitals that comprise it S½fϕjg�, and an associated
energy density functional FS½n� obtained from the Slater
determinant that minimizes S½·� while yielding a density
nðrÞ, i.e.,

FS½n�≡ min
fϕjg→nðrÞ

S½fϕjg�: ð3Þ

The minimizing orbitals fϕjg play a role similar to that of
KS orbitals.
According to the Hohenberg-Kohn theorem [1], the total

energy Etot can be expressed as a sum of the potential
energy owing to the external potential and an energy
contribution that is a universal functional of the density
FHK½n� (defined in the next section in terms of many-
electron quantities), such that

Etot ¼ min
n

�Z
VextðrÞnðrÞdrþ FHK½n�

�
: ð4Þ

We can then therefore define a “remainder energy” func-
tional RS½n� by the difference between FHK½n� and FS½n�,
which naturally depends on the initial choice of S½·�. The
total energy is then trivially given by

Etot ¼ min
n

�Z
VextðrÞnðrÞdrþ FS½n� þ RS½n�

�
: ð5Þ

Equation (5) can be thought of as an orbital-dependent
expression for the total energy [14]. If one chooses to treat
the orbitals as implicit density functionals and then take a
variational derivative with respect to the density, one
obtains a multiplicative KS potential. However, this
approach requires the solution of a nontrivial integro-
differential equation known for historical reasons as the
optimized effective potential (OEP) [14,37–39]. If one
instead minimizes the energy with respect to the underlying
orbitals, subject to the constraint that they integrate to the
density nðrÞ, one directly obtains the generalized KS
equation
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(ÔS½fϕjg� þ VextðrÞ þ VRðrÞ)ϕiðrÞ ¼ εiϕiðrÞ; ð6Þ

where

VRðrÞ≡ δRS½n�
δnðrÞ ð7Þ

is a multiplicative “remainder potential,” and ÔS½fϕjg� is a
generally nonmultiplicative operator obtained from taking
functional derivatives with respect to the orbitals S½fϕjg�.
This operator obviously depends on the choice of S½·�,
but does not depend on VextðrÞ or VRðrÞ. Importantly, the
GKS equation (6) is as rigorous as the KS equation (1) in
retaining the original interacting-electron ground-state
density.
As explained in the Introduction, one important aspect

of GKS theory is that it provides a rigorous framework
for the concept of the hybrid functional, which uses the
nonmultiplicative Fock operator. This framework is
achieved by choosing [21,40,41]

S½Φα� ¼ hΦαjT̂ þ αŴjΦαi; ð8Þ

where T̂ ¼ − 1
2

P
i∇2

i is the many-electron kinetic energy
operator, Ŵ ¼ P

i<jð1=jri − rjjÞ is the many-electron
Coulomb operator, 0 ≤ α ≤ 1 is the fraction of Coulomb
repulsion used in the choice of S½Φα�, and Φα is the Slater
determinant that minimizes FS

α½n�, given by

FS
α½n�≡ min

fϕjg→nðrÞ
hΦαjT̂ þ αŴjΦαi; ð9Þ

which is FS½n� of Eq. (3) obtained by choosing S½Φα� as in
Eq. (8). Using this choice in Eq. (6) leads to

ÔS½fϕjg� ¼ −
1

2
∇2 þ αV̂F þ αVHð½n�; rÞ; ð10Þ

and therefore,�
−
1

2
∇2þVextðrÞþαV̂F þαVHð½n�;rÞþVRð½n�;rÞ

�
ϕiðrÞ

¼ εiϕiðrÞ; ð11Þ

where V̂F is the Fock operator defined by

V̂FϕkðrÞ ¼ −
X
j

Z
dr0

ϕjðrÞϕ�
jðr0Þϕkðr0Þ

jr − r0j : ð12Þ

We emphasize that Eq. (11) is exact for any choice of α. We
note that the original KS equation [Eq. (1)] is obtained as a
special case of Eq. (11) when choosing α ¼ 0. Another
special case of note is obtained for α ¼ 1, for which ÔS

becomes the sum of the kinetic energy operator and the full

Hartree-Fock operator. The exact remainder potential in
this case transforms the Hartree-Fock approximation into
an exact construct, sometimes referred to as the Hartree-
Fock-Kohn-Sham equation [2].
Finally, we note the connection between exact GKS

theory and approximate hybrid functionals. For a general
0 < α < 1, if one subsequently chooses to approximate
Vα
RðrÞ as

Vα
Rð½n�; rÞ ¼ ð1 − αÞVHð½n�; rÞ þ ð1 − αÞVx;SLð½n�; rÞ

þ Vc;SLð½n�; rÞ; ð13Þ

i.e., to introduce semilocal approximations (denoted by the
“SL” subscript) for the exchange [Vx;SLðrÞ] and correlation
[Vc;SLðrÞ] potentials, then Eq. (11) becomes the standard
equation for an approximate global hybrid functional given
by [12,14,42]

�
−
1

2
∇2 þ VextðrÞ þ VHð½n�; rÞ þ αV̂F

þ ð1 − αÞVx;SLð½n�; rÞ þ Vc;SLð½n�; rÞ
�
ϕiðrÞ ¼ εiϕiðrÞ:

ð14Þ

B. The GKS adiabatic connection theorem

An adiabatic connection formula [14,24] continuously
connects properties of a fully interacting quantum system to
properties of a reference system, with the aim of making
formal analysis and/or approximations easier. In fact, the
original introduction of fractional Fock exchange as an
ingredient in an approximate exchange-correlation energy
expression, i.e., what we now call approximate hybrid
functional theory, was motivated by adiabatic connection
considerations within KS theory [11,43].
In regular KS theory, an adiabatic connection is achieved

by defining the many-body operator Ĥλ≡ T̂þ V̂ext;λþλŴ,
where 0 ≤ λ ≤ 1 is a parameter and V̂ext;λ is a λ-dependent
external potential operator. V̂ext;λ is adjusted such that
the ground-state many-electron wave function jΨλi corre-
sponding to Ĥλ integrates to the original many-electron
density n for all λ.
In particular, when λ ¼ 1 all interactions are included.

V̂ext;1 is simply the external potential of the true many
electron, Ĥ1 is the true many-electron Hamiltonian, and
jΨ1i is the original many-electron wave function jΨi.
Similarly, V̂ext;0 and Ĥ0 are the many-electron external
potential operator and Hamiltonian corresponding to the
Kohn-Sham potential, and jΨ0i is the Kohn-Sham deter-
minant jΦSi. The advantage, then, is that mapping from jΨi
to jΦSi is no longer “abrupt” but rather can be obtained

EXACT GENERALIZED KOHN-SHAM THEORY FOR HYBRID … PHYS. REV. X 10, 021040 (2020)

021040-3



adiabatically by slowly “turning off” the electron-electron
repulsion while retaining the overall density.
The many-electron and KS limits can be further con-

nected by defining a λ-dependent universal functional,

Fλ½n� ¼ hΨλjT̂ þ λŴjΨλi: ð15Þ

For λ ¼ 1, Fλ½n� becomes the universal Hohenberg-Kohn
functional for the fully interacting system, namely,

F1½n�≡ FHK½n� ¼ min
Ψ→nðrÞ

hΨjT̂ þ ŴjΨi: ð16Þ

For λ ¼ 0, Fλ½n� becomes the noninteracting kinetic energy
function Ts½n� of Kohn-Sham theory, i.e.,

F0½n�≡ Ts½n� ¼ hΦSjT̂jΦSi: ð17Þ

Formulating an adiabatic connection theorem within the
GKS framework is more challenging and less direct. This is
because GKS theory involves an ansatz for the partially
interacting system [Eq. (8)], which does not lend itself to
continuous switching from off to on, as done for the
interaction in Eq. (15). We must therefore define an
appropriate adiabatic connection density functional Fλ

α½n�
that can accommodate the ansatz. This functional must
satisfy several criteria: (i) It must reduce to the GKS result
FS
α½n� [Eq. (9)] when λ ¼ 0, for all α ∈ ½0; 1�; (ii) it must

reduce to the fully interacting result FHK½n� [Eq. (16)] when
λ ¼ 1, for all α ∈ ½0; 1�; (iii) it must reduce to the adiabatic
connection of KS theory when α ¼ 0, for all λ ∈ ½0; 1�. As
we explain in detail in the next subsection, in order to be
useful for defining the exchange and correlation compo-
nents, we also ask that it (iv) allow the attainment of the
Hartree-exchange energy from its right derivative with
respect to λ at λ ¼ 0 [35], for all α ∈ ½0; 1�. This means
that the expression should involve only Slater determinants
at λ ¼ 0þ.
In keeping with the spirit of Eq. (15) as closely as

possible, we seek an expression that involves only terms
that are explicitly linear in λ, which we refer to henceforth
as a linear adiabatic connection (LAC). This expression is

Fλ
α½n� ¼ ð1 − λÞðFS

α½n� − FS
0½n�Þ þ Fλ½n�

≡ ð1 − λÞðhΦαjT̂ þ αŴjΦαi − hΦSjT̂jΦSiÞ
þ hΨλjT̂ þ λŴjΨλi: ð18Þ

On recognizing that FS
α¼0½n�≡ FS

0½n�≡ Fλ¼0½n�≡ Ts½n�
and jΨλ¼0i≡ jΦSi, it is straightforward to verify that
F0
α ¼ FS

α and F1
α ¼ F1, so that Eq. (18) satisfies conditions

(i) and (ii). Furthermore, Eq. (18) reduces to the Kohn-
Sham adiabatic connection equation (15) for α ¼ 0 and any
λ, because jΦα¼0i≡ jΦSi, thereby fulfilling condition (iii).
Finally, condition (iv) is also trivially obeyed.

Importantly, the LAC of Eq. (18) is a simple adiabatic
connection, but it is not the only one possible. Another
example of an adiabatic connection, which is shown
below to be of importance, is that of a quadratic adiabatic
connection (QAC) of GKS theory defined by

F̄λ
α ¼Fλ

α

−λð1−λÞ½hΦSjT̂þαŴjΦSi− hΦαjT̂þαŴjΦαi�: ð19Þ

The quadratic term vanishes for λ ¼ 0, λ ¼ 1, or α ¼ 0, so
that conditions (i)–(iii), respectively, are still obeyed.
Furthermore, the quadratic term is phrased entirely in
terms of Slater determinants, so that condition (iv) is also
still obeyed.
Both definitions are equally exact. A possible advantage

of the LAC definition over the QAC one is that the linearity
in the coupling parameter λ makes it more easily amenable
to Görling-Levy perturbation theory analysis [44,45] and to
future generalization, e.g., to GKS maps beyond global
hybrid functionals and/or to degenerate ground states and
other ensemble DFT scenarios [35,46–50].

C. Exact remainder Hartree-exchange
and correlation components

In KS theory, dividing energies and potentials into
Hartree (H), exchange (x), and correlation (c) components
has historically been an important aid in interpreting and
approximating density functionals. In the absence of
degeneracies, which is the case throughout this article,
such a division is straightforward [10]. In GKS theory it is
more complicated.
The Hartree energy is an explicit and known functional of

the density. The Hartree-exchange (Hx) energy of KS DFT is

EHx½n� ¼ hΦSjŴjΦSi; ð20Þ

thereby defining its x component as the usual exchange-
energy expression of Hartree-Fock theory but evaluated using
the KS orbitals. The correlation energy is then given by
FHK½n� − Ts½n� − EHx½n�. In hybrid functional GKS theory,
the Hartree energy is defined just as in KS theory, but breaking
down the remainder potential rigorously into Hx and c
components is no longer obvious, because some of the Hx
is necessarily incorporated into the nonmultiplicative oper-
ator ÔS.
Görling and Levy (GL) [21] suggested that this quandary

can be overcome by using an ansatz that defines the
remainder Hx energy in terms of the KS Hx energy, namely,

ĒR;Hx½n� ¼ ð1 − αÞEHx½n�; ð21Þ

where here and throughout the bars indicate quantities
relevant to the GL definition. Using Eqs. (4), (5), (9), and
(21), the remainder correlation energy is then given by
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ĒR;c½n� ¼ FHK½n� − FS
α½n� − ð1 − αÞEHx½n�: ð22Þ

The above definitions of remainder x and c are intuitive
and add up to the correct remainder xc energy by
construction. Nevertheless, with a view toward both present
analysis and future generalization, it is important to
examine whether the partition between the remainder
exchange and correlation can be derived generally and
without an ansatz. Our starting point for such an analysis is
cases where it is already known that the conventional
definition of the Hx energy of Eq. (20) breaks down,
notably where jΦSi is degenerate, so that use of Eq. (20) no
longer produces a unique value—the “nonuniqueness
disaster” of Ref. [35]. Standard application of theory then
leads to spurious “ghost interactions” [51] in open shells
[52] and dissociation [35]. In such cases, the right deriva-
tive with respect to λ of the adiabatically connected
universal functional Fλ provides a more rigorous way to
define EHx that is consistent with conventional theories
[35]. We therefore adopt this broader definition in our
analysis and apply it to exact GKS theory by defining the
remainder Hartree-exchange energy of a GKS system as

Eα
R;Hx½n� ¼

d
dλ

Fλ
α½n�jλ¼0þ : ð23Þ

Using the above definition with the LAC of Eq. (18)
yields

Eα
R;Hx½n�¼

d
dλ

fFλ½n�þð1−λÞðFS
α½n�−FS

0½n�Þgjλ¼0þ ; ð24Þ

which yields

Eα
R;Hx½n� ¼ hΦSjT̂ þ ŴjΦSi − hΦαjT̂ þ αŴjΦαi; ð25Þ

with the exchange part then given by Eα
x½n� ¼ Eα

R;Hx½n�−
Eα
H½n�. Specifically, using Eqs. (9), (17), and (20), we can

write

Eα
R;Hx½n� ¼ Ts½n� þ EHx½n� − FS

α½n�: ð26Þ

The remainder correlation energy is then defined as

Ec½n� ¼ FHK½n� − FS
α½n� − Eα

R;Hx½n�: ð27Þ

Using Eq. (25) in Eq. (27) lets us obtain

Ec½n� ¼ FHK½n� − hΦSjT̂ þ ŴjΦSi ¼ Eα¼0
R;c : ð28Þ

The above LAC expressions for the remainder Hartree
exchange and correlation, namely, Eqs. (26) and (28),
respectively, provide a partitioning of the Hx and c energies
that is different from that of the GL expressions for the
same quantities given by Eqs. (21) and (22). Straight-
forward algebra shows that

ER;Hx þ ER;c ¼ ĒR;Hx þ ĒR;c ≡ EHxc − FS
α; ð29Þ

as required, but

ER;Hx½n�≡ ĒR;Hx½n� þ ΔFS
α½n�; ð30Þ

ER;c½n�≡ ĒR;c½n� − ΔFS
α½n�; ð31Þ

where

ΔFS
α½n� ¼ Ts½n� þ αEHx½n� − FS

α½n� > 0 ð32Þ

for all α > 0. Some further and equally straightforward
algebra shows that if the remainder Hx definition of
Eq. (23) is used on the QAC of Eq. (19), rather than on
the LAC of Eq. (18), then the quantities of GL theory are
obtained. One could argue that this result is somewhat
contrived, because it is precisely the quantity ΔFS

α½n�,
which distinguishes between the LAC and GL definitions,
that we choose to add as the multiplicative factor of the
λ-quadratic term in the QAC expression of Eq. (19).
Nevertheless, the result does show that GL quantities
can also be reconciled with the general relation of
Eq. (23) between the Hartree-exchange remainder energy
and the adiabatic connection, if one is willing to sacrifice
the linearity of the latter.
Physically, the difference between the LAC and GL

expressions is that in the former definition the exchange
energy changes with α and the correlation is α independent,
whereas in the latter definition the opposite is true. Clearly,
this difference must be inherited by the corresponding
potentials VR;Hx ¼ δER;Hx=δn and VR;c ¼ δER;c=δn, which
are the focus of this manuscript. The difference between the
two definitions is most easily rationalized by considering
the limiting case of α ¼ 1, i.e., Hartree-Fock with exact
correlation. From the point of view of GL theory, exact
exchange is by definition already expressed fully in the
Fock operator, and therefore, the remainder potential must
be entirely due to correlation. However, from the point of
view of LAC theory, there is in fact a remainder exchange
component given by Eq. (25), which is nonzero even for
α ¼ 1. The physical origin of the remainder exchange is the
difference between the KS and GKS Slater determinants
jΦSi≡ jΦ0i and jΦαi, i.e., the fact that even when the
energy expression is the same in KS and GKS theory, the
underlying orbitals are not, owing to the use of a multi-
plicative or a nonmultiplicative potential, respectively.

D. Behavior under uniform coordinate
scaling of densities

An important property of exact density functionals is
their behavior under a uniform coordinate scaling of the
density, i.e., upon varying γ in nγðrÞ≡ γ3nðγrÞ. Such
scaling arguments have been enforced as part of the
construction of important nonempirical density-functional
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approximations, notably, the Perdew-Burke-Ernzerhof
(PBE) [53] GGA functional and the strongly constrained
and appropriately normed (SCAN) [54] meta-GGA func-
tional. It is therefore of immediate interest to examine the
exact scaling behavior from the perspective of exact hybrid
GKS theory.
Under uniform coordinate scaling, the following three

exact relations in KS theory have been established for the
kinetic, Hx, and correlation terms, respectively [10,55,56],

Ts½nγ� ¼ γ2Ts½n�; ð33Þ

EHx½nγ� ¼ γEHx½n�; ð34Þ

Ec½nγ� ¼ γ2E1=γ
c ½n�: ð35Þ

The first two relationships involve direct scaling of the
functional. The last relationship involves the definition

Eλ
c½n�≡ Fλ½n� − EHx½n� − Ts½n�;

¼
Z

λ

0

dλfhΨλjŴjΨλi − hΨ0jŴjΨ0ig½n�; ð36Þ

namely, the correlation energy at interaction strength λ
(note, Ec ≡ E1

c). Here, Ψλ½n� is the wave function at scaled
Coulomb interaction Ŵ → λŴ, defined as

Ψλ½n� ¼ argmin
Ψ→n

hΨjT̂ þ λŴjΨi: ð37Þ

The direct scaling relationships forTs andEHx follow from
the scaling of T̂ and Ŵ, because ∇2

r → γ2∇2
γr and

ð1=jrjÞ → γð1=jγrjÞ. To derive Eq. (35), consider that under
coordinate scaling Ψλ½nγ� → Ψλ=γ½n� because of the relative
scalingof T̂ andŴ inEq. (37).TheuseofEq. (36) then leads to

Ec½nγ� ¼ γ2
Z

1=γ

0

dλfhΨλjŴjΨλi − hΨ0jŴjΨ0ig½n�;

≡ γ2E1=γ
c ½n�: ð38Þ

One γ prefactor in Eq. (38) arises from theCoulombpotential.
Thesecondγ prefactorand1=γ limit intheintegrandofEq.(38)
arise from the variable change (λ=γ → λ), which accommo-
dates Ψλ½nγ� → Ψλ=γ½n�.
For the above GKS theory, the only additional scaling

that needs to be investigated is that of ΔFS
α½n� given in

Eq. (32), which appears as an additional ingredient in either
the exchange (LAC theory) or the correlation (GL theory)
component. By applying the same arguments used to derive
Eq. (35) to the constrained minimization over the Slater
determinants used to derive ΔFS

α, we obtain

ΔFS
α½n� ¼ −

Z
α

0

dλfhΦλjŴjΦλi − hΦ0jŴjΦ0ig½n�; ð39Þ

where Φλ½n� ¼ argminΦ→nhΦjT̂ þ λŴjΦi involves a
restricted minimization over the Slater determinants.
Then, because the Slater determinants are unique, we
can use the same arguments behind Eq. (38) to show that

ΔFS
α½nγ� ¼ −γ2

Z
α=γ

0

dλfhΦλjŴjΦλi − hΦ0jŴjΦ0ig½n�

≡ γ2ΔFS
α=γ½n�: ð40Þ

Clearly, the scaling behavior of ΔFS
α is similar to that of KS

correlation (though not identical, except for α ¼ 1) and
different from that of KS exchange. From the LAC point
of view, this scaling is simply another aspect of the
difference between GKS exchange and KS exchange.
From a GL theory point of view, this scaling is simply
because ΔFS

α is already part of the correlation.

III. NUMERICAL INVESTIGATION OF EXACT
REMAINDER POTENTIALS

A. An inversion algorithm

We nowwish to examine some of the theoretical concepts
of the preceding section in numerical practice. As we
mention in the Introduction, exact KS theory is often
examined by studying the behavior of exact KS potentials
obtained from the inversion of the KS equation based on
an accurate reference density. This inversion has been
achieved using many different approaches [25]. Several
iterative algorithms are based on the linear response of the
potential to the difference between the density at a given
iteration and the reference density [26,27]. Other algorithms
include in the potential a Coulomb term that enforces the
correct asymptotic decay of the density [28–30]. Yet other
approaches employ orbital-by-orbital corrections to the
potential, in the spirit of orbital shifts introduced in the
Krieger-Li-Iafrate [57] approximation to OEP [31]. More
recently, Peirs et al. included correction terms that combine
the local linear response and the enforcement of the
asymptotic decay [32]. Even more recently, it has been
suggested that these seemingly different methods can be
derived from one general algorithm [33]. Inversion has also
been used to find an effective local potential from Hartree-
Fock densities and compare it to the KS potential obtained
from exact-exchange OEP calculations [34].
To the best of our knowledge, an inversion algorithm that

accounts for a nonmultiplicative operator has not been
implemented, and exact GKS remainder potentials have
been neither obtained nor investigated. As a first step, we
therefore devise an inversion algorithm shown schemati-
cally in Fig. 1 that can work within a GKS formalism.
Because of the orbital nature of the GKS problem, it

makes sense to adopt an orbital-based solution for inver-
sion. Our goal is to approach the given reference density
nðrÞ (to within a specified numerical precision) by iterating
on a density nϕðrÞ ¼

P
i jϕiðrÞj2 determined from GKS
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orbitals. To that end, we rewrite the exact hybrid functional
equation (11) as�

−
1

2
∇2 þ αV̂F þ VðrÞ

�
ϕiðrÞ ¼ εiϕiðrÞ; ð41Þ

where VðrÞ is the full multiplicative potential acting on the
GKS orbitals ϕiðrÞ. Upon an initial guess for VðrÞ, any of
the obtained GKS orbitals can be used to calculate a current
potential VϕðrÞ via

VϕðrÞ ¼ εi þ
∇2ϕiðrÞ
ϕiðrÞ

− α
V̂FϕiðrÞ
ϕiðrÞ

: ð42Þ

As nϕ → n, it follows from uniqueness (and assumed
smoothness) that Vϕ → V. However, when iterations are
not yet converged, nϕ ≠ n and therefore Vϕ ≠ V. Our
approach thus seeks to renormalize the current orbitals
ϕiðrÞ at each iteration, so as to provide “pseudo-orbitals”
ψ iðrÞ, which are guaranteed to give the correct density nðrÞ.
That is, we define

ψ iðrÞ≡ ϕiðrÞ
ffiffiffiffiffiffiffiffiffiffiffi
nðrÞ
nϕðrÞ

s
; ð43Þ

such that
P

i jψ iðrÞj2 ¼ nðrÞ by definition. This trans-
formation comes at a cost, however, as the pseudo-orbitals
are not orthogonal, nor are they solutions of Eq. (41). Two
adjustments to Eq. (42) are therefore needed in order to
iterate to the correct potential: (1) the energy εi must be
reevaluated based on ψ iðrÞ; (2) as the pseudo-orbitals are
neither orthogonal nor obtained from the same multipli-
cative potential, their corresponding effective potentials
ViðrÞ ¼ ε0i þ ½∇2ψ iðrÞ − αV̂Fψ iðrÞ�=ψ iðrÞ will generally
differ and therefore must be averaged in some way.
The first issue can be dealt with by applying perturbation

theory to the kinetic energy to give ε0i ≈ εi þ
R
drjψ iðrÞj2

f½∇2ϕiðrÞ�=ϕiðrÞ − ½∇2ψ iðrÞ�=ψ iðrÞg. Formally, one

should do the same for the nonlocal Fock operator, but
in practice, we do not find this to be necessary. The second
issue can be dealt with by taking a weighted average of the
potentials, i.e., by setting VϕðrÞ ≈

P
i jψ iðrÞj2=nðrÞViðrÞ≡P

i jϕiðrÞj2=nϕðrÞViðrÞ, where ViðrÞ is the effective poten-
tial for pseudo-orbital ψ iðrÞ.
Combining everything, we can thus construct a new

potential by using

VϕðrÞ

¼
X
i

jϕiðrÞj2
nϕðrÞ (εi −

Z
jψ iðrÞj2

�∇2ψ iðrÞ
2ψ iðrÞ

−
∇2ϕiðrÞ
2ϕiðrÞ

�
dr

þ∇2ψ iðrÞ
2ψ iðrÞ

− α
V̂Fψ iðrÞ
ψ iðrÞ ); ð44Þ

where εi are the current orbital energies, and V̂F is the Fock
operator based on the current orbitals. In practice, we
typically mix the potential obtained from Eq. (44) with that
of the previous step to aid in convergence. Finally, based on
Eq. (11) we subtract VextðrÞ and αVHðrÞ to obtain the exact
remainder potential VRðrÞ.

B. Exact remainder potentials

The algorithm described above can in principle be
implemented in any code, albeit with varying levels of
expected success owing to different numerical issues. In
order to be confident in the accuracy of the inversion, we
wish to remove additional numerical approximations that
are almost always used in DFT, i.e., the use of a basis set
and/or pseudopotentials. To this end, we implement the
algorithm described above in DARSEC [58], an all-electron
fully numerical (i.e., basis-set-free) code. DARSEC uses
prolate spheroidal coordinates [59] to calculate atomic and
diatomic systems. It has been specifically designed to be
useful in endeavors of functional development [60] and has
already been used successfully in cases where use of
pseudopotentials or basis sets was a specific cause of

exact ext

FIG. 1. A schematic representation of the generalized Kohn-Sham inversion algorithm used in this work. See text for details.
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concern [61,62]. For performing hybrid functional calcu-
lations, we implement the Fock operator in DARSEC using
the self-consistent scheme described in Ref. [63]. We note
that efficient projection approximations for the Fock
exchange operator are given Refs. [63–66], but for the
small systems studied here, use of the full (unprojected)
Fock operator is found to be sufficient.
Using these tools, we calculate the exact GKS remain-

der potentials corresponding to various fractions of exact
exchange for four systems: Liþ, Li−, Be, and F−. These
systems are chosen due to their simplicity, spherical
symmetry, and the availability of high-quality reference
data. Here we use reference densities obtained by fitting
quantum Monte Carlo calculations using known exact
constraints [67]. First, we note that in the limit α ¼ 0, in
which an exact KS map is retrieved, the obtained VðrÞ
agree well with exact KS inversion results reported
previously for the same systems using the same reference
densities [67] (see Fig. S1 in the Supplemental Material
[68]). We also note that as a second test, we successfully
replicate the exact-exchange potential obtained in
Ref. [33] from an inversion of Hartree-Fock orbitals for
the Ar atom.

With the accuracy of our method established, we now
turn to analyzing the results. We find that in all four systems
the remainder potential VRðrÞ changes significantly with α.
However, a large component of VRðrÞ is clearly given by
the complementary fraction of the Hartree potential which
is not included in ÔS, namely, ð1 − αÞVHðrÞ [cf. Eq. (13)].
The Hartree potential is necessarily identical for all choices
of α because it is an explicit functional of the exact density,
and therefore, its inclusion scaled by (1 − α) obscures the
observation of trends with α. For this reason, we subtract
this Hartree component from the remainder potential and
define the result as the remainder exchange-correlation
potential,

Vα
xcðrÞ≡ Vα

RðrÞ − ð1 − αÞVHðrÞ: ð45Þ

Trends in Vα
xcðrÞ as a function of α for all four systems are

shown in Fig. 2. In the figure, spurious noise arising from
convergence difficulties at the empty focus of the DARSEC

prolate spheroidal grid is removed for clarity. For com-
pleteness, the unedited figure is given as Fig. S2 in the
Supplemental Material [68].

FIG. 2. Exact remainder exchange-correlation potentials Vα
xc, found by inversion for GKS maps with various fractions α of Fock

exchange for (a) Liþ (b) Li−, (c) Be, and (d) F−.
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Figure 2 demonstrates the logic behind obtaining differ-
ent yet equally exact GKS maps. For every choice of α,
the nonmultiplicative operator changes, but the remainder
exchange-correlation potential adjusts itself to ensure that
the same ground-state density is obtained. This observation
confirms that in exact GKS theory there is no a priori
reason to prefer one value of α over another.

C. Partition between exchange
and correlation potentials

We now turn to the partitioning of the remainder
potential into exchange and correlation potentials. In
particular, it is important to examine whether the term
ΔFS

α½n� of Eq. (32) is meaningful in practice, regardless of
whether it is viewed as contributing to exchange (LAC
theory) or to correlation (GL theory). This is because
although in general, jΦSi≡ jΦ0i and jΦαi need not be the
same (as they are only constrained to yield the same overall
density), in practice they can often be close, which is indeed
the case for the orbitals found by our inversion process (see
Fig. S3 in the Supplemental Material [68] for an example).
If we assume that the difference is small enough to neglect

ΔFS
α½n�, then from the perspective of LAC theory, this

assumption means that we neglect the remainder exchange
component for α ¼ 1, i.e., approximate the α-independent
VR;c by Vα¼1

R;xc, which is known from inversion with α ¼ 1.
Similarly, from the GL perspective this assumption would
mean that we neglect the α dependence of V̄α

R;c and use V̄
α¼1
R;c

throughout instead. Ineithercase,wecanthenapproximate the
remainder exchange potential for GKS maps with α < 1 as

Vα
R;x ≈ Vα

R;xc − Vα¼1
R;xc: ð46Þ

Anticipating,basedonEq.(21), thatamajorcontributionto the
remainder exchange potential is its scaling by 1 − α, i.e., the
fraction complementary to the one weighing the Fock
exchange in ÔS, we then define a scaled remainder exchange
potential:

ṽαR;x ≡
Vα
R;x

1 − α
¼ Vα

R;xc − Vα¼1
R;xc

1 − α
: ð47Þ

We apply Eq. (47) to calculate ṽαR;x from the remainder
potentials given in Fig. 2. The results are shown in Fig. 3.
Clearly, ṽαR;x is found to be essentially independent of α;
i.e., the multiplicative exchange component of a given map
simply scales with 1 − α, which means that ΔFS

α½n� is of
negligible consequence, to within our numerical accuracy.
This nearly linear scaling relationship holds even in Li−,
where one could have expected that the weakly bound
outermost electron would be more sensitive to small
changes in the potential.
While the above examples obviously do not prove that

ΔFS
α½n� would always be negligible, the fact that it often is

can still be rationalized. To that end, we return to the
analytical form of Eα

R;Hx. For α ¼ 0, we obtain the usual KS
solution. Perturbing the α > 0 GKS wave functions around
α ¼ 0 yields

jΦαi ≈ jΦ0i þ αjΔΦ0i þOðα2Þ: ð48Þ

Using Eq. (48) in Eq. (25), we obtain

Eα
R;Hx½n� ¼ hΦ0jT̂ þ ŴjΦ0i − hΦ0jT̂ þ αŴjΦ0i

− 2αℜhΦ0jðT̂ þ αŴÞjΔΦ0i þOðα2Þ; ð49Þ

¼ ð1 − αÞhΦ0jŴjΦ0i
− 2αℜhΦ0jðT̂ þ αŴÞjΔΦ0i þOðα2Þ: ð50Þ

We can further show that the second term above, involving
jΔΦ0i, is proportional to α2. This involves recognizing that
jΦ0i≡ jΦSi minimizes T̂, so that hΦ0jT̂jΔΦ0i ¼ 0 for
any perturbation. Therefore, −2αℜhΦ0jðT̂ þ αŴÞjΔΦ0i ¼
−2α2ℜhΦ0jŴjΔΦ0i, and we obtain

Eα
R;Hx ¼ ð1 − αÞhΦ0jŴjΦ0i þOðα2Þ: ð51Þ

The above result can also be interpreted as a GKS view-
point of the proof given byKümmel and Perdew [69], which
showed thatKS andGKSmaps are identical to first order.Up
to order α2, then, the only α dependence of the exact Hartree-
exchange energy is that it scales directly with 1 − α. Any
missing contributions that are linear in α, if at all, must come
from our approximation that VR;c ≈ Vα¼1

R;xc. Clearly, this
approximation is excellent in the cases studied here.
Finally, we note that as we are unaware of attempts to

explicitly approximate ΔFS
α½n� or to set bounds on its

magnitude. The most popular global hybrid approxima-
tions, notably B3LYP [70] and PBE0 [43,71,72], tacitly set
it to zero. More heavily parametrized global hybrid func-
tionals may implicitly incorporate some of it, albeit not in
an intentional manner.

IV. COMPARISON OF EXACT AND
APPROXIMATE HYBRID FUNCTIONALS

Throughout the previous sections, we emphasize that
exact GKS maps based on any choice of α map the exact
density equally well. At the same time, we know that
practical application using approximate hybrid functionals
can be very sensitive to the choice of α. For example, the
generally recommended values of α for the popular B3LYP
[70] and PBE0 [43,71,72] hybrid functionals are 20%
and 25%, respectively. Furthermore, cases involving more
significant delocalization and/or self-interaction errors,
or larger static correlation contributions, may call for
larger [73–75] or smaller [76,77] values of α, respectively.
The purpose of this section is to examine whether the GKS
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remainder potential plays a role in this optimal choice, and
to gain insight into scenarios and properties where the
transition from the KS to the GKS picture may result in
qualitative differences.

A. Remainder exchange-correlation potentials

We choose to focus our comparisons on the PBE0 hybrid
functional, which is based on nonempirical semilocal
exchange and correlation components. In Fig. 4, we
compare the exact, inversion-based Vα

R;xc with the corre-
sponding approximate Vα

R;xc from a self-consistent PBE0-
based calculation with the same value of α (which we
denote as PBE0α). We use Be as an example, with similar
trends observed for all other systems; see Figs. S4–S6 of
the Supplemental Material [68].
We focus first on the case of α ¼ 1 [Fig. 4(e)].

Neglecting the small difference between the correlation
in the Hartree-Fock sense and in GKS sense, as in the
previous section, we can compare the remainder exchange-
correlation potential in this case directly to the PBE0
correlation potential. Clearly, the two are very different
and in fact disagree even in the sign of the potential. This is

to be expected. It is well known that semilocal correlation is
fundamentally incompatible with exact exchange, because
the exact-exchange hole is delocalized, whereas the semi-
local hole is localized, resulting in an overall nonphysical
delocalized exchange-correlation hole [14,78]. The present
results demonstrate just how severe this incompatibility is.
For the opposite extreme fraction of Fock exchange

α ¼ 0, PBE0α reduces to the PBE functional. It has been
noted previously [79,80] that PBE often provides for
reasonably accurate results even when PBE correlation is
opposite in sign. This is confirmed in Fig. 4(a), where the
PBE exchange-correlation potential is a much better
approximation of the exact one than the PBE exchange or
correlation potentials individually. Clearly, some differences
between the PBE and exact potential remain, notably a small
spurious peak, as well as quantitative differences.
The above analysis therefore suggests that some finite

fraction of α may be best in balancing error cancellation
between semilocal exchange and semilocal correlation
while enjoying some of the benefits of exact exchange,
e.g., reduction of self-interaction errors. Figures 4(b)–4(d)
suggest that this improved balance is likely the case, but
the differences in the remainder exchange-correlation

FIG. 3. Scaled remainder exchange potentials ṽαR;x approximated using Eq. (47), found to coincide for various fractions α of Fock
exchange for (a) Liþ, (b) Li−, (c) Be, and (d) F−.
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potentials for various choices of α, in the absence of energy
considerations, do not establish an optimal value of α
unequivocally. In particular, the results shown in the figure
do establish that the use of the default value of α ¼ 0.25 is
superior to the use of α ¼ 0, i.e., PBE, but they do not
identify this fraction as optimal in mimicking the exact
potential. Rather, it emerges as one useful value out of a
fairly broad range of possible Fock exchange fractions.
To understand this behavior, we note that the overall

difference between the self-consistent PBE0α and the exact
potential is given by

ΔV totðrÞ¼VPBE0α ½nPBE0αðrÞ�ðrÞ−Vexact½nexactðrÞ�ðrÞ: ð52Þ

Kim et al. suggested that this difference can be decomposed
into a functional-driven (FD) and a density-driven (DD)
component, ΔV totðrÞ ¼ ΔVDDðrÞ þ ΔVFDðrÞ [81], where
the FD difference is given by

ΔVFDðrÞ¼VPBE0α ½nexactðrÞ�ðrÞ−Vexact½nexactðrÞ�ðrÞ; ð53Þ

while the DD difference is

ΔVDDðrÞ ¼ VPBE0α ½nPBE0αðrÞ�ðrÞ − VPBE0α ½nexactðrÞ�ðrÞ;
ð54Þ

where nexactðrÞ is the exact density and nPBE0αðrÞ is
the self-consistent PBE0α density. The results of this

decomposition, for the calculations presented in Fig. 4,
are given in Fig. S7 of the Supplemental Material [68].
We find that for all systems studied in this work, the dif-
ferences are overwhelmingly dominated by the functional-
driven component. Therefore, in the systems studied the
choice of an optimal fraction is strongly driven by
exchange-correlation energy, rather than potential.

B. Steps in remainder exchange potentials

Given the conclusions of the preceding subsection, which
do not reveal strong trends with α, one may think that using a
GKS approach over a KS is merely a computational
convenience. However, one issue where the potential itself
plays a clear role is the step structure at electronic shell
closings. Within the KS picture, it has long been known that
this step is related to orbital-dependent terms in the opti-
mized effective potential equation and therefore difficult to
mimic with semilocal functionals [82,83].
To examine the step structure, we return to the Be atom

and consider the difference between the remainder
exchange potential and the appropriately scaled Slater
potential [14] given by

VSlðrÞ ¼
X
k

2ϕkðrÞ
nðrÞ

δEx½fϕg�
δϕkðrÞ

; ð55Þ

using orbitals from α ¼ 1 (varying α leads to differences of
less than 1 mHa; see Fig. S3 in the Supplemental

(a) (b) (c)

(d) (e)

FIG. 4. (a)–(e) Exact (inversion-based) and approximate (PBE0α) remainder exchange-correlation potentials Vα
R;xc obtained for the Be

atom from various choices of the fraction of Fock exchange α. Also shown is the error in the PBE0α potential.
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Material [68], which is indistinguishable from noise in the
remainder potential). We adopt this approach because the
Slater potential is known to serve as a rough approximation
for the KS exchange potential corresponding to

Hartree-Fock theory, and the step structure has been traced
back to terms beyond the Slater potential [14,82,83].
The result is given in Fig. 5. For α ¼ 0, i.e., KS

theory, as expected the step is vital. Furthermore, PBE
calculations can mimic some rough features of the needed
step (and certainly do a better job at that than calculations
based on LDA, in which the “step” is not as sharp and
attains a higher maximum). Still, PBE calculations
struggle to capture essential features of the step, such
as its abruptness and its overall height. As one increases
α, i.e., uses GKS, the step diminishes due to scaling, and
so the error is less significant (compare the PBE0 result to
the exact result with α ¼ 0.25). In the limit of α ¼ 1, the
nonlocal features of the Fock operator make this step
unimportant.
Using increasing values of α require more sophisticated

approximate correlation expressions that limit their use.
However, the above observations are still important,
because a similar step structure in the exchange potential

FIG. 5. Exact (inversion-based) and approximate (PBE0α) step
potentials Vα

R;x − ð1 − αÞVSl obtained for the Be atom from
various choices of the fraction of Fock exchange α.

FIG. 6. Difference of orbital energy from that of the highest occupied orbital, from exact and PBE0α GKS maps, as a function of α.
(a) Li− 1s, (b) Be 1s, (c) F− 1s, (d) F− 2s.
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has long been known to arise between dissociating atoms
[84,85]. We do not pursue the issue numerically here for
lack of suitable exact reference densities. However, we note
that the fact that this step need not be mimicked for α ¼ 1 is
surely a major factor in the success of asymptotically
correct functionals at treating charge-transfer scenarios,
which are very difficult to handle with KS theory (see, e.g.,
Ref. [40] and references therein).
Finally, we note that in the presence of strong correlation

one may also observe abrupt correlation features in the
spin-dependent KS potential [86]. These features are not
captured in the spin-restricted formalism employed
throughout this article, but the elimination or at least
mitigation of the exchange step is already a major step
forward.

C. Orbital energies

An even greater difference between different (exact or
approximate) GKS maps has to do with orbital energies.
Throughout our discussion, we emphasize the density
equivalence of all exact GKS maps. However, the
orbital energies, i.e., the GKS eigenvalues obtained from
different exact maps, may still change without violating this
equivalence.
Strictly speaking, the above formalism does not attach

physical meaning to individual GKS orbitals and orbital
energies, except inasmuch as that they conspire to produce
the correct density. The only exception to this statement is
for the energy of the highest occupied orbital, for which
the ionization potential theorem, originally proven for exact
KS theory [87,88] but also valid for exact GKS theory
[40,89,90], establishes that it is equal and opposite to the
ionization energy. Understanding orbital energy trends is
still interesting because, although they do not correspond
exactly to quasiparticle excitation energies [91], they are
often used as useful approximations thereof [92,93].
Differences between the energy of the highest occupied

orbital and the lower occupied orbital(s) for Be, Li−, and F−

obtained from both the exact and the PBE0α hybrid
functional, as a function of α, are given in Fig. 6.
Interestingly, the orbital energies obtained from both exact
and approximate calculations change significantly and
mostly linearly with α, albeit not necessarily with the same
slope, despite the fact that (as discussed in the previous
section) the orbitals themselves change very little through-
out. This finding shows that even in exact hybrid theory the
α scaling of the exchange components in the GKS
Hamiltonian is clearly manifested in the eigenvalues, in
agreement with past results from approximate hybrid
functionals [93].
Finally, the strong α dependence of the orbital energies

obtained even in exact GKS theory raises an interesting
question for further research: how to choose, from other-
wise equivalent maps, the one best suited for approximating
quasiparticle excitation energies.

V. CONCLUSIONS

In conclusion, we present a rigorous and formally exact
GKS density-functional theory of hybrid functionals. First,
we provide a brief overview of how GKS theory defines an
exact remainder potential that combines with a fraction of
Fock exchange to produce the correct ground-state density.
We then generalize the adiabatic connection theorem to the
case of exact hybrid functional theory and show that this
can be done in different ways. We use this to derive two
different yet equally rigorous distinctions between remain-
der (multiplicative) exchange and correlation components,
one of which has been previously given as an ansatz, which
we compare and contrast.
We examine the formal theory numerically by develop-

ing a novel algorithm for inverting accurate reference
electron densities to obtain exact remainder potentials.
We use this algorithm for selected atoms and ions to
demonstrate how an equivalent description of the many-
electron problem is obtained with an arbitrary fraction of
Fock exchange. We further find that, at least for the systems
studied, the formal component that sets apart the above two
definitions for the partition of exchange and correlation is
negligibly small, and rationalize this behavior using per-
turbation theory arguments.
We then compare the behavior of exact GKS calculations

to those obtained from approximate ones based on the
PBE0α functional. We show that the normally recom-
mended value of α ¼ 0.25 is governed by energetics rather
than by potential. We establish that the choice of α may
play a far greater role when there is a need to approximate
accurately a step structure. Finally, we show that different,
equally exact GKS maps can feature significantly different
eigenvalue spectra and discuss how this may affect the
approximate interpretation of eigenvalues as quasiparticle
excitation energies.
We sincerely hope that the general theory provided in

this article will be used to guide further development efforts
of hybrid density functionals and that the generalized
Kohn-Sham inversion procedures and analysis given here
may be used in the future to understand and overcome
limitations of existing state-of-the-art approximate hybrid
density functionals.
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