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A Kitaev quantum spin liquid is a prime example of novel quantum magnetism of spin-orbit entangled
pseudospin-1=2 moments in a honeycomb lattice. Most candidate materials such as Na2IrO3 have many
competing exchange interactions beyond the minimal Kitaev-Heisenberg model whose small variations in
the strength of the interactions produce huge differences in low-energy dynamics. Our incomplete
knowledge of dynamic spin correlations hampers identification of a minimal model and quantification of
the proximity to the Kitaev quantum spin-liquid phase. Here, we report momentum- and energy-resolved
magnetic excitation spectra in a honeycomb lattice Na2IrO3 measured using a resonant inelastic x-ray
scattering spectrometer capable of 12 meV resolution. Measured spectra at a low temperature show that the
dynamic response lacks resolution-limited coherent spin waves in most parts of the Brillouin zone but has a
discernible dispersion and spectral weight distribution within the energy window of 60 meV. A systematic
investigation using the exact diagonalization method and direct comparison of high-resolution exper-
imental spectra and theoretical simulations allow us to confine a parameter regime in which the extended
Kitaev-Heisenberg model reasonably reproduces the main feature of the observed magnetic excitations.
Hidden Kitaev quantum spin-liquid and Heisenberg phases found in the complex parameter space are used
as references to propose the picture of renormalized magnons as explaining the incoherent nature of
magnetic excitations. Magnetic excitation spectra are taken at elevated temperatures to follow the
temperature evolution of the resonant inelastic x-ray scattering dynamic response in the paramagnetic
state. Whereas the low-energy excitation progressively diminishes as the zigzag order disappears, the
broad high-energy excitation maintains its spectral weight up to a much higher temperature of 160 K. We
suggest that the dominant nearest-neighbor interactions keep short-range correlations up to quite high
temperatures with a specific short-range dynamics which has a possible connection to a proximate spin-
liquid phase.

DOI: 10.1103/PhysRevX.10.021034 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

A Kitaev quantum spin liquid (KQSL) is a topological
phase of matter resulting from an exactly solvable
Hamiltonian of nearest-neighbor bond-directional inter-
actions between half-integer spins in a honeycomb lattice
[1,2]. Their long-range quantum entanglement and topo-
logically protected fractional excitations are of particular
interest for potential quantum computing platforms [3].
It has been pointed out that the bond-directional Kitaev
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interactions arise naturally in a honeycomb magnet with
strong spin-orbit coupling, which triggered a wave of
searching for a material realization of the KQSL [4].
The Kitaev-Heisenberg model and related spin models
indicate extended stability of the spin-liquid phase away
from the pure Kitaev limit [5–10], which widens the scope
of candidate materials.
Na2IrO3 is one of the first and most extensively studied

candidate materials despite having a conventional sym-
metry-breaking magnetic order as in other honeycomb
magnets [11–14]. A zigzag antiferromagnetic (AFM) order
was found by resonant x-ray magnetic scattering and
inelastic neutron scattering [12–14]. It has been shown
that the inclusion of small Heisenberg terms, omnipresent
in all materials, can explain the zigzag order [13,14].
Subsequently, many other models were proposed which
may be more realistic but are of increased complexity
[6–10]. Resonant magnetic x-ray scattering measurements
provide important constraints on the minimal model and the
sign of the Kitaev term [15]. It was found that the ordered
magnetic moment direction approximately bisects the angle
between the cubic x and y axes and that two other
dynamically fluctuating zigzag orders related to the static
one by the approximate C3 symmetry of the lattice have
their corresponding moment directions [15]. These results
imply a dominant ferromagnetic Kitaev term (K) with a
non-negligible off-diagonal exchange (Γ), which is sup-
ported by quantum chemistry [16] and other ab initio
calculations [17,18]. The off-diagonal exchange which is
symmetry allowed can be sizable when direct exchange is
effective [7]. At a classical level, a spin-liquid phase is
theoretically found in models with a large off-diagonal
exchange [19]. The infinite density matrix renormalization
group study on the K-Γ model found strong numerical
evidence for the existence of a quantum spin liquid for
ferrolike Kitaev interactions [20].
The materials search for the KQSL led to the discovery

of many other honeycomb materials [21–26]. For example,
Cu2IrO3 and hydrogen-intercalated H3LiIr2O6 are found to
bear no sign of a magnetic order down to the lowest
temperatures [24,25]. The 4d compound α-RuCl3 is found
to be a Jeff ¼ 1=2 Mott insulator despite having a much
smaller magnitude of spin-orbit coupling and has received
much attention recently [26]. Dynamic spin correlations of
α-RuCl3 have been extensively studied by inelastic neutron
scattering (INS) [27–30]. The dynamical structure factor
through INS reveals a highly unusual intensity distribution
over a large energy interval around the zone center [29,30].
Although incoherent excitations originating from strong
magnetic anharmonicity can naturally occur in a highly
anisotropic frustrated magnet [31,32], several theoretical
works support that the broad feature is a dynamic response
of Majorana fermions—a salient nonlocal feature of the
Kitaev quantum spin-liquid phase [33–37].

Phenomenologically, Na2IrO3 and α-RuCl3 share several
common features: an unusual broad continuum in their
Raman scattering spectra [38,39]; magnetic entropy recov-
ered or released in two widely separated temperature scales
in heat capacity measurements [30,40]; and high-field
evolution of the zigzag-ordered phase to a nonmagnetic
phase in magnetic torque measurements [41,42]. However,
measurement of the dynamical structure factor providing
the most direct information thus far remains elusive for
Na2IrO3, because resonant inelastic x-ray scattering (RIXS)
suffers from insufficient energy resolution and INS is
difficult for Ir compounds due to their high neutron absorp-
tion. The INS measurement on polycrystalline Na2IrO3

samples at a low temperature observes spin-wave excitations
with a sinusoidal-like low-momentum dispersion, which can
be best understood by including substantial further-neighbor
exchanges that stabilize the zigzag magnetic order [14].
Previous RIXS measurement on single-crystal Na2IrO3

observed only a broad low-energy excitation interpreted as
containing signals of magnetic and phonon origins [43],
which limits a detailed comparison with theoretical calcu-
lations. A more recent RIXS measurement rules out the
phonon interpretation of the low-energy excitation by show-
ing different peak energies of isostructural Na2IrO3 and
Li2IrO3 and suggests a magnetic origin of the broad
excitation [44], which is phenomenologically similar to
the unusual broad scattering in α-RuCl3 [29,30]. Both
RIXS works can observe only the broad excitation and
do not provide detailed information on the magnetic
ground state.
Here, we report magnetic excitation spectra in a honey-

comb lattice Na2IrO3 measured by the state-of-the-art
RIXS spectrometer providing an unprecedented energy
resolution of 12 meV. The measurements are carried out
along all high-symmetry paths including the second
Brillouin zone (BZ) center. The 25 meV resolution spectra
at T ¼ 7 K reveal a discernible dispersion and spectral
distribution within the energy window of 60 meV. The
12 meV resolution allows us to characterize the spectral
width of the excitation peak and better define the low-
energy excitation feature [45,46]. The zone center spectrum
lacks a resolution-limited peak typical of a coherent
collective excitation and has a broad feature only at high
energy. The incoherent feature persists over the whole BZ.
As approaching the zone boundary, a spectral weight shifts
toward lower energy. Remarkably, a sharp collective
excitation peak whose width is comparable to the spec-
trometer resolution is resolved at the K point of the
honeycomb BZ. An exact diagonalization method on
finite-size clusters is used to find the relevant parameter
regime of the extended Kitaev-Heisenberg model which
captures the main features of the measured magnetic
excitation spectra at a low temperature in terms of spectral
dispersion and intensity. Hidden KQSL and Heisenberg
phases found in the complex parameter space of the model
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provide useful references for the nature of the magnetic
excitations appearing in the measured spectra. We present
the temperature evolution of the RIXS dynamic response
up to 280 K, which reveals an anomalous behavior of the
broad high-energy excitation.
The paper is organized as follows: Section II presents

experimental RIXS spectra at low temperatures. Section III
describes the simulations of the low-temperature RIXS data
based on the extended Kitaev-Heisenberg model and
discusses the nature of the observed magnetic excitations.
The zigzag phase of the model is systematically explored,
and several kinds of differing pseudospin dynamics are
observed. Comparing directly the experiment and theoreti-
cal RIXS spectra, this observation is used to identify the
parameter regime consistent with the experimental data. A
picture of renormalized magnons is proposed to explain the
main spectral features in this regime. Section IV presents

experimental RIXS spectra at high temperatures and dis-
cusses the anomalous higher-energy spectral intensities in
the context of Kitaev systems at a finite temperature.
Section V concludes the paper and presents a perspective
on a RIXS probe for higher-order correlations that detects
the full continuum of the Majorana fermions of the KQSL.
The Appendixes provide details of our experimental setup,
the description of the numerical computations, and a
discussion of the hidden-symmetry points of the extended
Kitaev-Heisenberg model that are utilized in Sec. III.

II. MAGNETIC EXCITATION SPECTRA
AT A LOW TEMPERATURE

A. RIXS scatterings over the entire Brillouin zone

Figure 1(d) shows a RIXS intensity map recorded at T ¼
7 K along the Γ-M-Γ0-X-K-Γ-Y-K0-Γ0 path of the in-plane

FIG. 1. Magnetic excitation spectra in Na2IrO3 along high-symmetry Brillouin zone directions taken at T ¼ 7 K. (a) Scattering
geometry. Yellow arrows indicate incident and scattered x rays, which define the scattering plane (gray). Brown arrows indicate x-ray
polarizations. Green arrows indicate the cubic axes ðx; y; zÞ with respect to the octahedra (all of them point above the paper plane).
(b) One of the collinear zigzag patterns and the corresponding direction of the ordered moments. The left-facing arrows have an out-of-
plane component pointing above the paper plane; i.e., the corresponding moment direction lies approximately between the x and y axes.
(c) Two-dimensional reciprocal space diagram showing the measured path along the symmetry directions. The inner hexagon (blue
dashed line) indicates the first Brillouin zone of the honeycomb lattice. (d) RIXS intensity map of magnetic excitations in Na2IrO3 as
functions of the wave vector and energy loss. (e) The intensity profiles integrated over [60, 105] (open squares) and [105, 135] meV
(filled triangles) show that the high-energy spectral intensities are broadly peaked at the Γ point, extending up to 105 meV. (f) The
intensity profile integrated over ½−30; 60� meV (filled squares) shows a distinctive distribution of the spectral weight along the
K-Γ-Y-K0-Γ0 path. Passing through the K point, the excitation intensity rapidly increases and then decreases, which is followed by a
near-constant intensity along the Γ-Y-K0 path. Large intensities at the Γ and Γ0 wave vectors correspond to elastic scatterings. The zero-
energy loss intensity at theM point is the diffuse magnetic Bragg peak. In the used scattering geometry, the magnetic Bragg peak at the Y
point is suppressed.
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momentum transfer as shown in Fig. 1(c). These RIXS
spectra are obtained from a standard setup with conven-
tional 25 meV resolution using a Si(844) diced spherical
analyzer [47,48]. The out-of-plane momentum transfer is
varied to keep the scattering angle close to 90° to minimize
elastic scatterings. Singular intensities at zero energy loss at
Γ (Γ0) andM originate from a specular elastic scattering and
a static zigzag magnetic order [11–14], respectively.
Polarization factors in the current scattering geometry
depicted in Fig. 1(a) lead to a vanishing magnetic Bragg
peak at the Y point and a weak scattering intensity at the K0
point relative to the K point [15].
The main dispersing feature is observed in the first BZ

along the K-Γ-Y-K0 path below approximately 60 meV. An
intense low-energy excitation around 10 meV is clearly
seen near the K point. The spectral intensity moves to
higher energy along the K-Γ path, reaching its highest
energy at the Γ point, and disperses toward lower energy
along the Γ-Y-K0 path.
For each wave vector, the intensity is integrated over an

energy window of interest to obtain the distribution of the
spectral weight in the BZ. Figure 1(e) shows the intensity
profiles on the high-energy loss and the energy gain sides.
The intensity over the far energy loss region ([105, 135]meV,
filled triangles) shows a nearly constant value which is
comparable to that of the far energy gain region
(½−70;−30� meV, open circles). The intensity profile inte-
grated over [60, 105]meV (open squares) in Fig. 1(f) shows a
distribution, peaked broadly around the BZ center Γ. These
indicate that the spectral intensity of the observed excitation
extends roughly to 105 meV.
Figure 1(f) shows the intensity distribution of the main

feature (½−30; 60� meV, filled squares) which reveals a
distinctive distribution of the spectral weight as a function
of the wave vector. Weak intensities are seen along the Γ0-X
line (outside the first Brillouin zone). Passing through theK
point, the excitation intensity rapidly increases and then
decreases, which is followed by a nearly constant intensity
along the Γ-Y-K0 path. The intensity is weakened as it
approaches the Γ0 point.

B. High-energy resolution RIXS spectra

Recently, a higher energy resolution has been achieved
for the Ir L3 RIXS by using the quartz(309) crystal [45,46].
In this work, the high-resolution quartz analyzer is used to
better examine spectral widths of magnetic excitations at
the Γ, near M, Y, and K wave vectors, where prominent
low-energy spectral weights below 20 meV are seen from
the 25 meV RIXS spectra in Fig. 1(d). The measured
energy resolution function of the quartz analyzer is plotted
at the bottom in Fig. 2(a), which can be described with the
pseudo-Voigt function with a 12 meV full width at half
maximum (FWHM).
Strong elastic scatterings atQ ¼ ð0 0 6.75Þ (Γ) and (0.45

0.45 6.5) (near M) are due to a specular scattering and a

quasielastic scattering due to the diffuse magnetic peak,
respectively. At both wave vectors, resolution-limited peaks
characteristic of coherent spin waves are not found, but
broad incoherent scatterings are seen at high energies. At
the Γ, the broad incoherent scattering has a clear peak
structure at around 40 meV. AtQ ¼ ð0 1 6.5Þ (Y), a glimpse
of a low-energy peak is detected, and a broad peak is
centered around 50 meV. On the other hand, a narrow width
peak below 20 meV is clearly revealed at the Q ¼
ð0.67 0 6.6Þ (K) point, which is also followed by a broad
feature.
Figure 2(b) shows the Γ point spectrum with a fit in

which the elastic peak is fitted to the pseudo-Voigt
resolution function and the broad incoherent peak is fitted
by a damped harmonic oscillator (DHO) function con-
voluted by the pseudo-Voigt resolution function. Note that
the high-resolution data have rather a large ratio of back-
ground to signal and poor statistics. The background level
is determined in a way that the energy gain data below
−30 meV are distributed around the zero, and such a
background is subtracted from the raw data. The DHO
function is expressed as AnðTÞγf1=½ðE − E0Þ2 þ γ2�−
1=½ðEþ E0Þ2 þ γ2�g, where A is the amplitude, nðTÞ is
the Bose factor, E0 is the peak energy, and γ is the peak
width. The fitted curves are overlaid with the Γ point data in
Fig. 2(b). A damped peak of ðE0; γÞ ¼ ð36; 22Þ meV is used
to describe the broad incoherent peak. Figure 2(c) shows the
K point spectrum, where the background level estimated for
theΓ spectrum is assumed. The low-energy peak is described
by a narrow width peak of ðE0; γÞ ¼ ð3; 7Þ meV. The broad
feature is fit by the ðE0; γÞ ¼ ð38; 20Þ meV DHO.
Figure 2(d) shows the temperature dependence of the

high-resolution RIXS spectrum at the K point. Na2IrO3 is a
Mott-like correlated insulator with a 340 meV energy gap
[49]. Within the Mott gap of 340 meV, the lattice and spin
degrees of freedom could be associated with the appearance
of excitations. The temperature dependence data in Fig. 2(d),
for example, provide a means to distinguish excitations of
distinct origins. If the lattice degree of freedom is involved,
the Bose population factor leads to an increasing intensity
with an increasing temperature. On the other hand, at a
temperature above a characteristic spin exchange energy, the
contribution of the spin degree of freedom vanishes.
The low-energy peak in Fig. 2(d) clearly decreases at

T ¼ 70 K and becomes featureless at T ¼ 150 K. The
long-range zigzag order disappears above 15 K, but the
diffuse magnetic scattering study finds that the short-range
zigzag correlations survive at least up to 70 K [15]. Thus,
this temperature dependence data establish that the low-
energy peak is a magnon peak of the zigzag magnetic order.
On the other hand, the broad feature intensity barely
changes between 7 and 150 K. This observation is in
contrast to the previous RIXS study [43], which finds a
temperature-dependent broad scattering and interprets it as
a resonant phonon contribution. However, a more recent
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RIXS [44] reports that the broad scattering intensity hardly
changes between 5 and 90 K and persists up to 300 K,
which is consistent with the current observation. This
recent RIXS work rules out the phonon interpretation of
the low-energy excitation and claims the magnetic origin of
the broad scattering intensity by showing different peak
energies of isostructural Na2IrO3 and Li2IrO3 and the same
resonance behavior of all low-energy signals [44]. Here, we
assign the broad feature as having a magnetic origin and
discuss in more detail in the next two sections.

III. MODEL DESCRIPTION OF
THE LOW-T RIXS SPECTRA

A. Spin Hamiltonian

To perform a quantitative model analysis of the magnetic
excitations as observed by RIXS, we adopt the extended
Kitaev-Heisenberg model for Jeff ¼ 1=2 pseudospins
[7,16,50]. Compared to the originally proposed Kitaev-
Heisenberg model for Na2IrO3 [4] comprising a dominant
Kitaev interaction supplemented by a smaller Heisenberg
interaction, the model is extended by two kinds of

off-diagonal exchange interactions. The nearest-neighbor
Hamiltonian for the pseudospins S then takes the form

HðzÞ
ij ¼ KSziS

z
j þ JSi · Sj þ ΓðSxi Syj þ Syi S

x
jÞ

þ Γ0ðSxi Szj þ SziS
x
j þ Syi S

z
j þ SziS

y
jÞ ð1Þ

shown here for a z bond [vertical bond in Fig. 1(b); the
bond direction is perpendicular to the z axis]. In the case of
the other bond directions, a cyclic permutation of the
pseudospin components is applied. Various ab initio esti-
mates of the interaction parameters (e.g., Refs. [8,16,17])
generally suggest a dominant ferromagnetic (FM) Kitaev
interaction (K < 0) and a positive off-diagonal Γ inter-
action. This parameter setup, combined with suitable values
of the smaller interaction parameters J and Γ0, favors the
zigzag magnetic order with the magnetic moments pointing
approximately in between the x and y axes (assuming the
zigzag order with FM x and y bonds) which corresponds to
the experimental situation [15]. In addition, motivated by
sizable further-neighbor interactions found by the ab initio
estimates (see, e.g., Ref. [17]), we also include isotropic

FIG. 2. High-resolution RIXS spectra recorded at T ¼ 7 K. (a) The measured energy resolution function of the quartz analyzer is
plotted at the bottom. At Q ¼ ð0 0 6.75Þ (Γ), an elastic scattering is followed by a broad excitation without any indication of a narrow
excitation. At Q ¼ ð0.45 0.45 6.5Þ (near M), a soft low-energy excitation is unresolved with 12 meV energy resolution, and a
quasielastic scattering is followed by a broad shoulder excitation. At Q ¼ ð0 1 6.5Þ (Y), a low-energy excitation is seen with a broad
high-energy feature. At Q ¼ ð0.67 0 6.6Þ (K), a narrow excitation is discovered at a low energy. (b),(c) The measured RIXS spectra at
the Γ and K wave vectors, respectively, are fit by the pseudo-Voigt function (elastic scattering) and damped harmonic oscillator (DHO)
function convoluted by the 12 meV resolution function. (d) Temperature dependence of the RIXS excitation spectrum at the K point.
The low-energy peak shows a clear decrease at T ¼ 70 K and becomes featureless at T ¼ 150 K, indicating that it is an excitation peak
of the zigzag magnetic order.
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Heisenberg interactions among second and third nearest
neighbors and arrive at the full model Hamiltonian

H ¼
X

hiji∈NN
HðγÞ

ij þ
X

hiji∈2ndNN
J2Si · Sj þ

X
hiji∈3rdNN

J3Si · Sj;

ð2Þ

where γ labels the nearest-neighbor (NN) bond direction.
Following the prevailing expectations, in our analysis we
assume that the main interactions are K, Γ, and J, while Γ0,
J2, and J3 are significantly smaller in magnitude.

B. Simulations of the low-temperature RIXS data

We simulate the RIXS spectra by calculating the
dynamical pseudospin structure factor and combining its
components according to the recipes given in Refs. [51,52].
Namely, we utilize the effective RXS operator expressed
within the Kramers doublet manifold via

R ∝ iðε × ε0Þ · ðfabSab þ f⊥S⊥Þ: ð3Þ

Here, ε and ε0 are the polarization vectors of the incident
and scattered x rays, respectively, and Sab and S⊥ denote
the component of the pseudospin lying within the honey-
comb plane (crystallographic ab) and being perpendicular
to it, respectively. For the L3 edge resonant process, the
factors connecting the pseudospin and the RXS operators
read as fab ¼ 1

2
þ ð5=6 ffiffiffi

2
p Þ sin 2ϑ − 1

6
cos 2ϑ and f⊥ ¼

1þ 2
3
cos 2ϑ − ð1=3 ffiffiffi

2
p Þ sin 2ϑ with the angle tan 2ϑ ¼

2
ffiffiffi
2

p
=ð1þ 2Δ=λÞ being determined by the ratio of the

trigonal field Δ and the spin-orbit coupling constant λ
[51,52]. The values of ϑ for Na2IrO3 can be estimated from
the splitting ΔBC ≈ 0.1 eV of the Jeff ¼ 3=2 quartet [53],
leading to slightly anisotropic fab ≈ 0.91 and f⊥ ≈ 1.15.
The RIXS intensity is then calculated as the dynamical

correlation function of the R operator: Iðq;ωÞ ∝ χ00Rðq;ωÞ
with χRðq;ωÞ ¼ ih½RqðtÞ;R−qð0Þ�iω. This quantity can be
conveniently expressed via the pseudospin susceptibility
tensor χαβðq;ωÞ ¼ ih½SαqðtÞ; Sβ−qð0Þ�iω calculated either by
exact diagonalization (ED) on small clusters (see
Appendix B for details) or within the linear spin-
wave (LSW) approximation. For the geometry shown in
Fig. 1(b), the RIXS intensity is roughly proportional to
1
2
ðχ00xx þ χ00yyÞ þ χ00zz (neglecting the small off-diagonal con-

tribution and summing up the π − π0 and π − σ0 scattering
channels to account for the unpolarized detection).

C. Identification of relevant parameter regime

To narrow down the parameter regime consistent with
the experimental data, we perform a systematic scan
through the parameter space of the model, inspecting the
type of the magnetic order and the excitation spectra
obtained by ED. As the six parameters present in the

model make this scan a challenging task, we use fixed small
values of the subsidiary interactions (Γ0 and J2;3) and vary
only the main ones (J, K, and Γ). This limitation is not
severe, since the overall dispersion and intensity distribu-
tion in the calculated RIXS spectra is determined by the
dominant interactions, while the smaller ones affect only
finer details of the spin dynamics not resolved in the
experiment. Despite that, the Γ0 and J2;3 interactions still
play important roles in stabilizing the zigzag phase and
extending it to the regime where the dominant interactions
can reproduce the RIXS data.
The phase diagram focusing on the zigzag phase is

presented in Fig. 3. To construct it, we assume small Γ0 < 0
associated with the trigonal compression [50] that is fixed
at Γ0 ¼ −0.1A with A being the overall energy scale of the
dominant interactions defined as A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ K2 þ Γ2

p
.

Similarly, the further-neighbor interactions J2 and J3 are
fixed at J2 ¼ 0.05A and J3 ¼ 0.1A, respectively, putting
thus more emphasis on the third-neighbor interaction as
suggested by ab initio estimates [17]. The main interactions
are parametrized using two angles θ, ϕ as ðJ; K;ΓÞ ¼
ðA sin θ cosϕ; A sin θ sinϕ; A cos θÞ with the ranges θ ∈
½0; π=2� and ϕ ∈ ½0; 2π� covering the entire JKΓ parameter
space with Γ > 0. The resulting phase diagram in Fig. 3
shows two zigzag regions connected by a narrow “neck”
which substantially differ in the direction of the ordered
moments. Let us consider for concreteness one of the
degenerate zigzag patterns with zigzag chains running
along the x and y bonds shown in Fig. 1(b). The ordered
moments in the upper zigzag phase are then found close to
the z axis, while the lower zigzag phase is characterized by
the moment direction pointing roughly in between the x
and y axes. These observations can be understood using
simple energy-based arguments when comparing Fig. 1(b)
and Eq. (1). The zigzag order of the upper phase found for
K > 0 and J < 0 fully satisfies the AFM K interaction on
the z bonds, where it picks up the dominant z component of
the ordered moments as seen in Eq. (1). The energy gain
from the remaining x and y bonds is due to FM J
interaction. In the bottom zigzag phase covering mainly
the K < 0 and Γ > 0 case, the FM Kitaev interaction
profits from the FM bonds within the chains by using the x
and y components of the pseudospins separately. The
positive Γ interaction brings energy gain on the AFM
interchain z bonds by utilizing the simultaneous presence
of the x and y components. This phase is also significantly
supported by the negative Γ0 interaction (see Ref. [54] for a
more detailed discussion). The longer-range AFM inter-
actions J2 and particularly J3 further stabilize the zigzag
state—now independently on the moment direction due to
their isotropic character—and expand significantly the
zigzag phases in the parameter space.
The experimentally determined direction of the ordered

moments as given by Ref. [15] is consistent with the bottom
zigzag region. Using the precise ordered moment direction
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as a very sensitive probe of the anisotropic exchange
interactions, a further refinement of the relevant parameter
regime is possible. Namely, we can utilize the angle of the
ordered moments to the honeycomb plane which is
estimated in a subsequent analysis of the experimental
data in Ref. [15] to be around 38°–40° [51]. The theoretical
values of this angle obtained by ED through the zigzag
phase are indicated in Fig. 3. Considering solely the
experimental moment direction, the matching parameter
sets form a strip near the A2 and B1–B4 points in Fig. 3.
Let us now focus on the phase diagram in Fig. 3 from the

point of view of our RIXS data. We calculate RIXSmaps via
ED for several selected parameter points assuming the same
scattering geometry as in the experiment. Because of the
finite size of the clusters used in ED, their ground states

entering the calculation of the dynamic response comprise all
possible zigzag patterns in an equal-weight superposition.
This mixing actually imitates the experimental conditions,
since below TN the long-range zigzag order in the sample is,
in fact, accompanied by short-range zigzag orders with the
complementary directions of the zigzag chains [15]. The
maps, presented in Fig. 3, can thus be directly compared to
the data in Fig. 1(d) up to the energy scale that is flexible by
tuning A. Within the bottom zigzag phase, which covers a
broad range of parameters, several kinds of spin-excitation
behavior can be observed. The differences concern the wave
vectors away from the M point that universally hosts an
intense low-energymagnon through thewhole zigzag phase.
In the left part of the phase diagram with significant

negative J (representative B4 and C3 points), the overall
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the characteristic energies of the magnetic excitations. The color indicates the angle of the zigzag-ordered moments to the honeycomb
plane. The data are obtained using the exact-diagonalization-based method in Ref. [51]. Small panels around the phase diagram show,
for selected parameter points, the theoretical RIXS intensity maps calculated by exact diagonalization of the extended Kitaev-
Heisenberg model on 24- and 32-site clusters (see Appendix B for details). We assume the scattering geometry depicted in Fig. 1(a) and
present a sum of π − π0 and π − σ0 scattering channels (imitating an unpolarized detection) plotted along the same path through the
Brillouin zone as in Fig. 1. The energies are determined by taking the value A ¼ 29 meV giving the best match between the A2
parameter point and the experimental data. Gaussian broadening with a FWHM of 25 meV is applied to the spectra. Finally, the violet
lines show the pathways in the parameter space connecting the selected points A2 and A3 with the points of hidden symmetry utilized in
Sec. III D 2. They should be understood as projections only, since the hidden Heisenberg point (hH) has Γ0 ≈ −0.4A, whereas the hidden
Kitaev point (hK) has Γ0 ≈ −0.3A, and J2;3 ¼ 0 for both points.
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shape of the intensity cloud hints to the proximity of the
FM phase. There are intense low-energy excitations around
the Γ point whose dispersion goes up toward the AFM
wave vector Γ0—such features are shared with FM mag-
nons. In the bottom part, one can notice a shift to the
magnon breakdown regime reported for α-RuCl3 by
Ref. [32] (representative B3, B2, and B1 points). It is
most apparent near the J ¼ 0 line (B1 and B2 points),
which shows a rather flat dispersion of excitations with a
pronounced high-energy tail. Yet more incoherent scatter-
ing is seen at Kitaev-dominant point A1. The most robust
features of the experimental RIXS spectra in Fig. 1(d) are
the dispersing excitations in the K-Γ-Y-K0 part, reaching
the maximum energy at the Γ point and maximum intensity
at the K point. This feature can be clearly observed in the
theoretical maps on the right corresponding to the param-
eter points with a sizable AFM J > 0 (C1, A3, and A2
points). A hint of this feature is displayed also at the A1 and
C2 points of the highly dominant Γ interaction and FM
J < 0. In the C2 case, the intensity resides at relatively high
energies, being connected to the M-point magnons by a
steep excitation branch.

Taking into account also the experimental constraint on
the ordered moment angle to the honeycomb plane, the
suggested parameter range for Na2IrO3 lies around points
A2 and A3 in Fig. 3, i.e., in the regime with Γ comparable to
or somewhat less than jKj and quite sizable AFM J > 0.
For the A2 point, the moment angle to the honeycomb plane
fits well the experimental value; the A3 point may seem to
match slightly better the experimental RIXS map. In the
following, we thus discuss both these points in parallel to
give a broader picture of the relevant parameter range.
To enable a one-to-one comparison, Figs. 4(b) and 4(c)

present the theoretical RIXS spectra for the A2 and A3
points, respectively, with the resolution matching the
experimental one and with the values of the energy scale
A tuned to fit the position of the main peak at the q ¼ 0
wave vector (Γ point). Figure 4(a) shows the experimental
RIXS intensity map for T ¼ 7 K with the positions of the
intensity maxima for the individual wave vectors indicated
as open circles, where the specular elastic scattering
peaks at Γ and Γ0 are subtracted. The broad maps in
Figs. 4(a)–4(c) show a good overall agreement of the
theoretical maps with the RIXS data in both the dispersion
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corresponding to an unpolarized detection. The spectra are broadened in energy by Gaussians with a FWHM of 25 meV to imitate the
experimental resolution as in (a). (c) The same as in (b) but for the parameter values corresponding to the A3 point in Fig. 3 and the
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and intensity distribution in the Brillouin zone. The latter is
supported by the total spectral weight (energy-integrated
spectra) in Fig. 4(d), which seems to match quite well to the
corresponding experimental data in Fig. 1(f). Here, essen-
tially no difference between A2 and A3 points is observed.
Figure 4(e) compares the high-resolution experimental

RIXS spectra in Fig. 2(a) to the theoretical spectra con-
voluted with the experimental resolution function. The
main incoherent and coherent features of the Γ and K
spectra are well captured by the theoretical spectra. A
discrepancy is that the theoretical spectra show relatively
less spectral weight in high-energy parts. At the M point,
the incoherent high-energy part is reasonably reproduced
by the model. At the Y point, the discrepancy in the
incoherent high-energy intensity seems bigger. Overall, the
theoretical spectra clearly capture the main features of the
spectra at the individual wave vectors including, to some
extent, also the shape of intensity profiles following the
central peaks.
Since the data for the various cluster sizes and shapes

seem to be quite consistent in the energy ranges and profiles
of the modes, we cannot attribute the discrepancy in the
incoherent high-energy parts solely to finite-size effects.
Even though the extended Kitaev-Heisenberg model cap-
tures the essential dynamics of the Jeff ¼ 1=2 pseudospins,
it may lack certain scattering processes that lead to the
enhancement of the high-energy tails. One such mechanism
may be amagnetoelastic coupling that comes into play due to
the large orbital component of the Jeff ¼ 1=2 pseudospins
and may act as an additional decay channel. Pronounced
effects of coupled lattice and pseudospin dynamics are
observed, for example, in phonon line shapes in Raman
spectra of perovskite iridates [55,56]. Reference [43] intro-
duces the phonon contributions as producing a series of
harmonic peaks to describe the incoherent high-energy
scatterings. Few facts, however, suggest that there are no
big direct phonon contributions to the incoherent high-
energy parts. It is known that the resonant phonon contri-
bution becomes visiblewhen the inverse core-hole lifetime is
in the range of a few hundredmeV, and a 1 eVdetuning of the
lifetime leads to a near-zero cross section [57]. At the Ir L3,
the inverse core-hole lifetime is more than 5 eV [58], and this
shorter-lived core hole state is not expected to provide
sufficient time for the lattice to respond. A majority of
optical phononmodes of Na2IrO3 and Li2IrO3 reside around
60 meV [59]. Recent O K-edge RIXS on Li2IrO3 report the
resonant phonon spectra where the fundamental phonon is at
70 meV [60]. The Ir L3-edge RIXS on Li2IrO3 [44], on the
other hand, shows that the low-energy excitation feature is
centered at 20 meV, which is notably lower than 70 meVand
so of a different origin from phonon. Our high-resolution
spectra in Fig. 4(e) do not show maximum intensities at this
energy range but show decreasing intensities, for example, at
Γ, K, andM. As mentioned earlier, Ref. [44] argues against
the phonon interpretation by showing that the energy scale of

the incoherent feature is very different in two isostructural
Na2IrO3 and Li2IrO3. Hence, we assign the incoherent high-
energy scattering as of magnetic origin.
The x-ray and neutron diffraction studies [11,13,14]

show that there are inherent imperfections in crystal
structure such as stacking faults and site disorders, which
result in a structural diffuse scattering and a remaining
short-range order below the ordering temperature [13,15].
Small variations in the structure can alter various exchange
interactions in Na2IrO3. So it is possible that the current
single parameter set should be supplemented with nearby
parameter sets among many in Fig. 3 to explain the
discrepancy in the incoherent high-energy parts and fully
reproduce the whole observed spectra.

D. Nature of the spin excitations

Having the main magnetic intensity in the RIXS spectra
below approximately 60 meV reasonably well captured by
the excitations of the extended Kitaev-Heisenberg model, it
is natural to ask what the character is of those excitations. In
the following, we address this issue by comparing ED
results to the linear spin-wave approximation and by
inspecting the evolution of the spectra when moving in
the parameter space toward points of hidden symmetry. In
the latter case, we use a nearby hidden Heisenberg point
where a magnon picture is valid and a nearby hidden Kitaev
point with the excitations carried by Majorana fermions.

1. Comparison to linear spin-wave approximation

Each of Figs. 5(a) and 5(b) presents fine energy-resolved
RIXS spectra obtained by ED and LSW calculation for
the A2 and A3 points, respectively, used also in Figs. 4(b)
and 4(c). In the case of the A3 point with Γ ≈ jKj shown in
Fig. 5(b), the LSWapproximation seems quite successful in
capturing the overall dispersion and intensity of the spin
excitations, the main difference being the high-energy
magnon branches that get significantly renormalized in
terms of both the energy shift and broadening. Figure 5(d)
shows that the distributions of the total spectral weight are in
excellent agreement between ED and LSW. In the case of the
A2 point with Γ ≈ 1

2
jKj shown in Fig. 5(a), the agreement is

spoiled by the fact that LSW places this parameter point
closer to a competing order with the characteristic wave
vector K. The reason is that the minimization of purely
classical energy in the LSW approximation completely
neglects quantum fluctuations supporting the zigzag phase.
As a consequence, LSW brings down the excitations at both
K and K0 and lifts the M-point magnon. There is also an
associated shift of the spectral weight from theM point to the
K and K0 points as shown in Fig. 5(c). This result is in
contrast to the ED calculations, which give similar low-
energy spectra for both A2 and A3 points. However, apart
from these trends related to a phase boundary shift, the LSW
description of theA2 point successfully gives a rough picture
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of the excitation branches. The high-energy branches at the
Γ point are now visibly split. According to the LSW
calculation, the lower branch corresponds to oscillations
of the moment angle to the honeycomb plane and the upper
one to the oscillations in the in-plane direction perpendicular
to the zigzag chains.
Based on the above results, it seems quite likely that the

spin-excitation spectra could be reproduced when going
beyond LSW and include the anharmonic effects, e.g., by
correcting the dispersions via the self-consistent spin-wave
theory and by implementing finite magnon lifetimes due to
magnon decay processes [31]. An attempt to evaluate the
magnon decay in a Kitaev system, utilizing the so-called
imaginary self-consistent Dyson equation approach, was
recently performed by Winter et al. [32] when interpreting
the neutron data on α-RuCl3. Note that in their case the
multimagnon contribution seems stronger (Fig. 6 in
Ref. [32]) due to a different parameter regime within the
zigzag phase.

2. Proximate hidden Kitaev and Heisenberg points

The applicability of the magnon picture can be further
checked by inspecting the evolution of the calculated RIXS
spectra when going through the parameter space toward

suitable reference points. The parameter region identified
as relevant for Na2IrO3 lies close to two of the points of
special symmetry [61], where the nearest-neighbor
extended Kitaev-Heisenberg model can be exactly mapped
to either the Kitaev or Heisenberg model. Since in both the
pure Kitaev and Heisenberg cases the spin excitations are
well known, the special-symmetry points provide conven-
ient references for us. In the following, we keep the
discussion of both special-symmetry points very brief;
further details can be found in Appendix C or the original
Ref. [61].
Working in the representation utilizing the energy scale

A, our point A2 corresponds to

ðJ; K;Γ;Γ0ÞA2 ≈ ð0.4;−0.8; 0.4;−0.1ÞA ð4Þ

complemented by the small J2;3. Similarly, for the A3 point,
we have

ðJ; K;Γ;Γ0ÞA3 ≈ ð0.4;−0.6; 0.7;−0.1ÞA: ð5Þ

The hidden Kitaev point is obtained for the parameter set

ðJ; K;Γ;Γ0ÞhK ≈ ð0.6;−0.5; 0.6;−0.3ÞA; ð6Þ
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FIG. 5. (a) RIXS intensity maps for the parameter point A2 and the same energy scale as in Fig. 4(b). The left and right are obtained by
exact diagonalization and the linear spin-wave approach, respectively. To better resolve the finer features, Gaussian broadening with a
small FWHM of only 2 meV is used in both cases. In the case of LSW, the spectra are averaged by equally employing all three possible
zigzag pattern directions. This procedure leads to a map that could be directly compared to the ED one, since the cluster ground state used
in ED contains all zigzag pattern in an equal-weight superposition. (b) The same for the parameter point A3 and the energy scale as in
Fig. 4(c). (c) Energy-integrated RIXS response (total spectral weight) corresponding to (a). Data for all the clusters are presented,
showing negligible finite-size effects on the spectral weight. The curve obtained by the linear spin-wave approach (right) is shown also
on the left by a dashed line. (d) Total spectral weight for the data in (b).
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where J2 and J3 are zeros as the longer-range interactions
are absent at this special-symmetry point. It may be derived
by taking the canonical Kitaev model and rotating the
interaction axes x, y, and z by 180° around the axis
perpendicular to the honeycomb plane (see Appendix C
for a detailed discussion). This way, we arrive at the
extended Kitaev-Heisenberg model with the above param-
eter set. Since the transformation is exact, all the features
including, e.g., the fermionic excitation spectrum, are
exactly preserved. At the hidden Kitaev point, we thus
find the behavior of the extended Kitaev-Heisenberg model
to be identical to the Kitaev model with interaction
parameter K0 ≈ 1.4A, up to a simple global rotation. At
the second considered hidden-symmetry point with the
parameter set

ðJ; K;Γ;Γ0ÞhH ≈ ð−0.1;−0.6; 0.8;−0.4ÞA; ð7Þ

the extended Kitaev-Heisenberg model exactly maps to the
Heisenberg model with the interaction constant J0 ≈ 0.9A.
In this case, the derivation is more complicated and

includes a four-sublattice transformation connecting zigzag
and Néel order (cf. Refs. [61,62] and Appendix C). The
spin-excitation spectra are then directly linked to those of
the simple Heisenberg antiferromagnet on the honeycomb
lattice, but a momentum shift by q ¼ M and equivalent
wave vectors is involved.
Figure 6 presents the parameter evolution of the RIXS

response, focusing on the Γ-point (q ¼ 0) intensity con-
taining the prominent high-energy feature that is a signature
of the lack of the global rotational symmetry of the model.
The model parameter sets are linearly interpolated between
the A2 and A3 points and the hidden-symmetry points, all
given by Eqs. (4)–(7). Note that the latter parameter points
differ essentially in J only while having roughly the same
Γ=jKj ratio as our A3 point and an enhanced negative value
of Γ0 compared to A2 and A3. An explicit plot of the
parameters used in Fig. 6 can be found in Appendix C,
and the corresponding pathways are indicated in the
overall phase diagram in Fig. 3 in a projected form (note
that Γ 0 and J2;3 change once we depart from the A2 and A3
points).
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The evolution from the hidden Heisenberg point toward
the A2 and A3 points shown in Figs. 6(a) and 6(c),
respectively, starts with a simple response profile contain-
ing a sharp magnon peak and a two-magnon continuum
characteristic for the Heisenberg model. The magnon at the
Γ point calculated for the zigzag phase is, in fact, a copy of
the Néel AFM magnon at the M point shifted by means of
the hidden-symmetry transformation. Therefore, it appears
at a high energy (

ffiffiffi
2

p
J0 in the LSW approximation). Going

away from the hidden Heisenberg point, the high-energy
magnon branches get broadened via magnon scattering
and slowly merge with the two-magnon continuum forming
the broad high-energy features observed at our points.
The gradual onset of the magnon scattering is further
illustrated in Fig. 6(e) by comparing the LSW dispersions
and the two-magnon density of states (DOS): D2ðωÞ ¼P

nq;n0q0 δðω − ωnq − ωn0q0 Þ, where ωnq stands for the
dispersion of the nth magnon branch. Neglecting the
magnon-magnon interaction vertex, this quantity indicates
the strength of the scattering continuum accessible when
keeping the kinematic constraint [31]. It becomes gradually
activated as we depart from the hidden Heisenberg point,
where the two-magnon decay does not occur and the basic
decay channel involves three-magnon processes [31,32].
Continuing further from our points to the hidden Kitaev

point, Figs. 6(b) and 6(d) show that the zigzag order is
maintained almost up to the hidden Kitaev point. This result
is natural, since the hidden KQSL comes with an anti-
ferromagnetic effective Kitaev interaction. As revealed by
the study of the Kitaev-Heisenberg model [62], the AFM
KQSL phase has a limited extent compared to the FM
KQSL phase because of a stronger competition with the
surrounding phases that gain energy due to quantum
fluctuations [64]. The high-energy continuum in the Γ-
point response is present up to the zigzag to KQSL
boundary with moderate changes in its shape that seem
to be correlated with the two-magnon DOS. Upon entering
the KQSL, there is an abrupt change in the character of
the spectrum that later only negligibly evolves when
approaching the exact hidden AFM Kitaev point as shown
in Figs. 6(b) and 6(d). The continuum spreads over a larger
spectral range and becomes composed of sharp peaks
reflecting the excitations being carried by (almost) non-
interacting Majorana fermions with a set of possible
momenta strongly limited by the cluster. Nevertheless,
the overall distribution of the spectral weight can be
successfully compared to the exact result for an infinite
lattice [63].
The above observations suggest that the picture of

renormalized magnons adequately captures the spin exci-
tations within the extended Kitaev-Heisenberg model in the
parameter regime matching the low-temperature RIXS data
below ≲60 meV. This suggestion is supported by the good
overall agreement of LSW dispersions, intensity, and
spectral weight distribution in the Brillouin zone with

the ED results. Moreover, the magnon broadening seems
to correlate well with the two-magnon DOS that gives hints
about the decay rates of the individual magnon branches.
Compared to the recent analysis of spin excitations in
α-RuCl3 [32] that placed α-RuCl3 to the regime of magnon
“breakdown” within the same spin model as used here, we
encounter better-defined magnons with a less extended
background of the multimagnon character.
Despite the relative proximity of the KQSL associated

with the hidden Kitaev point, in particular, for the A3 point,
the model spectra for zero temperature do not clearly bear
the features characteristic for the Kitaev limit, most
importantly, the flat dispersions of the spin excitations that
are seen in the exact results for the Kitaev model [63,65] or
the study of its perturbed variant [66]. An interesting result
in this context is the recent finding by Gohlke et al. [20]
that the K-Γ-only model shows signatures of a spin-liquid
ground state in a wide parameter range. A later study by
Wang, Normand, and Liu [67] using the variational
quantum Monte Carlo method revisits those results and
finds a proximate Kitaev spin liquid with a different
structure than KQSL for negative K and Γ=jKj up to
roughly 0.6. In the parameter area that we identify as
relevant for Na2IrO3, the large K and Γ are complemented
by sizable J and a number of smaller interactions; never-
theless, the spin dynamics within theK-Γ-only model and a
possible connection to our case is a highly relevant
problem.

IV. MAGNETIC EXCITATION SPECTRA
AT A HIGH TEMPERATURE

A. Temperature evolution of
magnetic excitation spectra

A defining feature of quantum spin liquids is an
emergent magnetic excitation carrying fractional quantum
numbers. In the case of KQSL, the fractionalized magnetic
excitations are represented by Majorana fermions [1–3].
When a conventional magnetic order is thermally melted, a
signature of QSL may be found in the spin dynamics over a
wide temperature range. A recent INS study of α-RuCl3
reports a highly unusual temperature-stable signal around
the zone center, which is interpreted as a dynamical
response of the Majorana fermions of the KQSL due to
thermal fluctuations of fluxes [27–30,35,68]. The recent
RIXS work [44] on Na2IrO3 suggests that the dynamical
spin-spin correlation of the broad scattering is restricted to
nearest neighbors and phenomenologically similar to the
unusual broad INS scattering of α-RuCl3. In Fig. 2(d), the
broad scattering at the K point is presented to survive up to
150 K, showing that Na2IrO3 also has a highly unusual
temperature-stable signal. In this section, we present the
temperature evolution of the RIXS spectra over the full
Brillouin zone up to 280 K to show the thermal character-
istics of dynamic spin correlations in a paramagnetic phase
of Na2IrO3.

JUNGHO KIM et al. PHYS. REV. X 10, 021034 (2020)

021034-12



Figure 7(b) shows an intensity color map of RIXS
spectra at T ¼ 70 K. The specular elastic peaks at Γ and
Γ0 are seen as in the T ¼ 7 K map in Fig. 7(a). Because the
short-range zigzag order disappears at this temperature, the
magnetic Bragg peak at the M point is largely suppressed,
exposing an underneath low-energy excitation [15]. The
low-energy excitation at the K, Y, and K0 and the high-
energy excitation at the Γ stay more or less the same at
T ¼ 70 K. On the other hand, it is seen that the spectral
intensity near the Γ point unusually grows up at T ¼ 70 K,
connecting the high-energy excitation at the Γ to the low-
energy excitations at the M, K, Y, and K0 points. This
temperature evolution of the spectral intensity distribution
becomes more pronounced up to T ¼ 160 K as shown in
Figs. 7(c) and 7(d).
Noticeable changes are observed at T ¼ 200 K. The

overall RIXS scattering intensity becomes weakened and
moves toward lower energy, confining its significant weight
within 60meVas shown in Fig. 7(e). The scattering intensity
displays a triangular shape along the K-Γ-Y-K0 path. At
T ¼ 280 K, the RIXS scattering intensity over the whole
Brillouin zone substantially diminishes, resulting in a fea-
tureless spectrum as in a paramagnet as shown in Fig. 7(f).
The weakening RIXS intensity at a high temperature is at
odds with the Ref. [43] RIXS work but consistent with
Ref. [44]. As discussed in Secs. II B and III C, it is not

necessary to invoke the lattice degrees of freedom to describe
our spectra, and the observed excitations are assigned as of
magnetic origin.
In a two-dimensional system, short-ranged spin corre-

lations above the long-range order temperature are visible
as a diffusive scattering at the vicinity of characteristic
points in the Brillouin zone. As the temperature increases
further, the short-range order dies and the corresponding
spectral weight disappears. Seemingly, the temperature
dependencies of the low-energy spectral weights around
theM and K points follow this general tendency. However,
the observed intensity modulations in other areas than the
K and M are unusual. In particular, this temperature-
dependent intensity modulation is seen at a high energy,
whose energy is beyond the thermal energy of room
temperature. Magnetic excitations at intermediate temper-
atures are broad in energy and momentum and remind us of
unusual scatterings over a large energy interval revealed in
α-RuCl3 through the INS [27,29,30].

B. Dynamic spin correlations in a paramagnetic phase

In this section, we discuss the observation that the
spectral intensity in a large region surrounding the Γ point
unusually grows up to 160 K, connecting the high-energy
feature at the Γ point to the low-energy feature at theM, K,
and Y points and becomes a diffusive low-energy scattering

FIG. 7. Temperature evolution of magnetic excitation spectra. (a) T ¼ 7 K. (b) T ¼ 70 K. The magnetic Bragg peak at the M
disappears, indicating disappearing zigzag correlations. Spectral intensities fill in between Γ and all first Brillouin zone symmetric points
(M, K, K0, and Y), connecting the high-energy feature at the Γ to the low-energy features at the M, K, and Y. This trend becomes more
pronounced at (c) T ¼ 120 K and (d) T ¼ 160 K. (e) T ¼ 200 K. Spectral intensities move toward lower energy. (f) T ¼ 280 K. The
RIXS intensity over the whole Brillouin zone substantially diminishes.
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with negligible momentum dependence at 280 K (Fig. 7).
As the ED calculations in Fig. 6 show, the broad feature
below the ordering temperature contains the spontaneous
magnon decay into a two-magnon continuum. Two-
magnon excitations include pairs of very short wavelength
spin waves and can remain at higher temperatures than
single-magnon excitations. However, two-magnon scatter-
ing cannot explain the increasing spectral weights over the
large Brillouin region, because the zigzag correlations
decrease as the temperature increases as evidenced by
decreasing intensities near the K and M points.
In a frustrated spin system above the ordering temper-

ature, the larger interactions can keep short-range correla-
tions up to quite high temperatures comparable to the
energy scale of these interactions. The corresponding
fragments of a few specifically correlated spins have a
specific dynamics determined by the dominant interactions.
In our case, the dynamics at elevated temperatures may be
influenced by the proximity of hidden KQSL in the
parameter space as well as the large scales of K and Γ
that are suggestive of a possible connection to spin-liquid
ground states in the K-Γ model that are currently being
investigated [20,67,69]. Reliable finite-temperature calcu-
lations of the dynamic response are challenging and out of
the scope of the present ED scheme. Fortunately, a number
of results exist for the integrable pure Kitaev model. An
exact solution for spin dynamics at zero temperature is
known [63,65], and detailed finite-temperature behaviors
of the FM and AFM Kitaev systems are available from
studies combining the cluster dynamical mean-field theory
and the continuous-time quantum Monte Carlo method
(CDMFTþ CTQMC) [35,70]. Given the connections men-
tioned above, here we discuss our observations in the
context of Kitaev systems at a finite temperature.
The thermal characteristics of Kitaev systems are under-

stood in terms of fractionalization of spins 1
2
into itinerant

Majorana fermions coupled to Z2 fluxes represented by
localized Majorana fermions [1]. Two characteristic cross-
over temperatures appear [68]. At the lowest temperatures
below TL ≈ 0.012 K related to the Z2 flux gap, an almost
flux-free state is found, with only low-energy itinerant
Majorana fermions being thermally excited. Intermediate
temperatures are characterized by thermally activated Z2

fluxes, but the itinerant Majorana fermions still retain their
coherence. Finally, around TH ≈ 0.375 K, the fluxes and
Majorana fermions recombine into spins, the nearest-
neighbor spin correlations decay, and the system is adia-
batically connected to a conventional spin-1

2
paramagnet.

Much of this physics is discussed in the context of
α-RuCl3. The successive thermal fractionalization finds its
thermodynamic signatures in magnetic specific heat data in
α-RuCl3 where two separated broad peaks exist and a
plateau in between two peaks is pinned at half of the ideal
R ln 2 magnetic entropy [30,35,70]. Raman scattering
observes a polarization-independent broad continuum [33]

successfully interpreted as due to pairs of itinerant
Majorana fermions [34]. Banerjee et al. report a highly
unusual scattering in α-RuCl3 through the INS which is
broad in energy and momentum and remains at a high
temperature, stimulating much research directed at identi-
fying unique dynamic correlations of emergent Majorana
fermions in systems close to KQSL [27,29]. Theoretical
works indicate that the characteristic broad scattering of the
KQSL is preserved in a proximate phase with long-range
ordered spins (proximate KQSL) [37]. The proximate
KQSL picture has been further elaborated experimentally
and theoretically to understand the finite-temperature
behavior [30,35,65,70].
Similarly to α-RuCl3, Na2IrO3 shows properties in the

paramagnetic phase that can be interpreted as arising from
the fractionalization to Majorana fermions. The two sep-
arated broad maxima in magnetic specific heat are also
present in Na2IrO3 with one around 20 K and the other
around 110 K [40]. Half of the ideal R ln 2 entropy is gained
at around 60 K, and the full R ln 2 entropy is recovered at
more than 150 K, whose behavior is in good agreement
with theoretical predictions [68,71]. Signatures of Kitaev-
like correlations are seen in Raman scattering [38]. In this
work, we measure the low-energy RIXS response, which,
adopting the fast-collision approximation, is closely related
to the dynamic structure factor by the INS [52,72]. The
momentum- and energy-resolved magnetic excitation spec-
tra show that magnetic excitations in Na2IrO3 are broad in
energy and momentum at intermediate temperatures,
reminding of the unusual scatterings over a large energy
interval in INS on α-RuCl3 [27,29].
An apparent difference between Na2IrO3 and α-RuCl3 is

in the energy scales. Magnetic excitations in Na2IrO3 are
observed at a much higher energy than those in α-RuCl3
which are confined within the 15 meVenergy window [27–
30,43]. The broad excitation at the Γ point [Fig. 2(b)]
locates at 36meV,while the one in α-RuCl3 can be viewed as
a diffusive quasielastic scattering. The short-ranged corre-
lations of three spin domains carrying their own zigzags
persist at a much higher temperature than in α-RuCl3 [15].
The attempts to quantify the interactions based on the INS
data in α-RuCl3 produce ðJ; KÞ ¼ ð−4.6; 7Þ meV in the
J-K model, ðK;ΓÞ ¼ ð−6.8; 9.5Þ meV in the K-Γ model,
and ðJ;K;ΓÞ¼ð−0.5;−5;2.5ÞmeV in the nearest-neighbor
model Hamiltonian [27,28,32], while our analysis of the
RIXS data in Na2IrO3 gives larger values; for example, the
A2 and A3 points correspond to ðJ; K;ΓÞ ¼ ð12;−24; 11Þ
and ð10;−15; 16Þ meV, respectively. Related to the discus-
sion in terms of the Kitaev model, the hidden KQSL found
near our fit point is driven by the effective Kitaev interaction
of AFM type with the strength of about K0 ≈ 35–40 meV
(see Appendix C), giving, e.g., the crossover temperature
of TH ≈ 140–170K.
In studies of α-RuCl3, the temperature evolution of the

broad scattering features is described by the isotropic
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Kitaev model with an FM Kitaev interaction, K ¼
−16.5 meV [30]. The CDMFTþ CTQMC calculation
on the FM Kitaev system finds that a quasielastic response
at zero energy is large around the Γ point at a low
temperature and becomes diffusively broadened in energy
at a high temperature, ending up in a conventional para-
magnetic phase, which is consistent with the experimental
observations by the INS [30,35,70]. On the other hand, the
CDMFTþ CTQMC calculation on the AFM Kitaev sys-
tem shows that an incoherent flat feature at ω ∼ K0 is seen
around the Γ point at a low temperature, while a quasie-
lastic response is distributed on the Brillouin zone boun-
dary [35,70]. As the temperature increases, the incoherent
feature becomes diffusively broadened in energy and is
connected to the quasielastic response on the Brillouin zone
boundary, losing its flat dispersion. The incoherent broad
feature at ω ∼ K0 merges to a diffusive response at zero
energy when the AFM Kitaev system adiabatically enters
into a conventional paramagnetic phase. These finite-
temperature behaviors of the AFM Kitaev system bear a
similarity to the observed temperature evolution of our
magnetic excitation spectra. The spectral intensity in a large
region surrounding the Γ unusually grows up to 160 K,
connecting the high-energy feature at the Γ to the low-
energy feature at theM, K, and Y points as shown in Fig. 7.
The overall spectral weight moves toward lower energy at
200 K and shows a diffusive response with negligible
momentum dependence at 280 K.

V. CONCLUSION AND OUTLOOK

In this study, magnetic excitation spectra in a honeycomb
lattice Na2IrO3 were obtained for the wide-range reciprocal
space up to the second Brillouin zone using the RIXS
spectrometer. The state-of-the-art 12 meV measurements
could identify the low-energy sharp magnon peak below
the AFM order temperature and verify the broad widths of
magnetic excitations. These sets of data allow a detailed
comparison with theoretical calculations. The dispersion
and spectral intensity distribution in the reciprocal space of
RIXS spectra are well reproduced by the simulation using
the exact diagonalization method on finite-size clusters.
The parameter regime is characterized by large K < 0 and
Γ > 0 complemented by sizable J > 0 with small J2 and
J3, and Γ0 < 0. We examine two of the points of special
symmetry, i.e., AFM Heisenberg and AFM Kitaev, close to
the parameter region of Na2IrO3 and investigate the
evolution of the spin excitations along paths connecting
the special-symmetry points and the parameter points of
Na2IrO3. This inspection suggests that the main magnetic
intensity below the ordering temperature can be reasonably
explained by the picture of renormalized magnons.
Magnetic excitation spectra in Na2IrO3 show unusual

spectral intensity modulations in a large region surrounding
the Γ point at elevated temperatures. Finite-temperature
calculations of the complex spin Hamiltonian are

challenging and not available at the moment. We conjecture
that the dominant nearest-neighbor interactions keep short-
range correlations up to quite high temperatures with a
specific short-range dynamics which has a possible con-
nection to a proximate spin-liquid phase. An interesting
experimental direction is given by a theoretical suggestion
that the full continuum of the Majorana fermions of the
KQSL can be mapped without interference with flux
excitations using the spin-conserving scattering of the
RIXS [72]. The spin-conserving measurements require
two instrumental capabilities which cannot be achieved
using a standard (spherical-analyzer-based) RIXS spec-
trometer: a high-energy resolution and an efficient scattered
x-ray polarization analysis [73,74]. Recently, a new flat
crystal RIXS analyzer system was developed, which
provides a polarization analysis without compromising
the energy resolution and with high efficiency [46]. If
successful, the spin-conserving RIXS measurements will
give a transparent description of the existence of a
proximate KQSL in Na2IrO3.
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APPENDIX A: SAMPLE
AND RIXS MEASUREMENT

Single-domain single crystals of Na2IrO3 are grown by
the self-flux. Powders of Na2CO3 are mixed with 10%–
20% excess IrO2 and are calcined at 700 °C for 24 h. Single
crystals are grown on top of a powder matrix in subsequent
heating at 1050 °C. Platelike crystals with typical dimen-
sions of 5 mm × 5 mm × 0.1 mm are physically extracted.
The sample is mounted in a Displex closed-cycle cryostat.
The RIXS measurements are performed using the RIXS
spectrometer at the 27-ID beam line of the Advanced
Photon Source where the sample, analyzer, and detector are
positioned in the Rowland geometry. The diamond(111)
high-heat-load monochromator reflects x rays from two in-
line undulators into a high-resolution monochromator. The
two-bounce monochromator of single monolithic Si(844)
channel-cut crystal produces an energy bandpass of
14.8 meV. The four-bounce monochromator of two mono-
lithic Si(844) channel-cut crystals results in an energy
bandpass of 8.9 meV. The beam is then focused by a set of
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Kirkpatrick-Baez mirrors, yielding a typical spot size of
10 × 40 μm2 FWHM (v × h) at the sample. A horizontal
scattering geometry is used with the incident photon
polarization in the scattering plane. Mapping of the full
Brillouin zone is carried out within only a few degrees of
90° scattering geometry to minimize the contribution from
the Thompson elastic scattering. For the 25 meV RIXS
measurement, a Si(844) diced spherical analyzer with 1-in
diameter and a position-sensitive silicon microstrip detector
are used with the 14.8 meV incident bandpass. For the
12 meV RIXS measurement, a quartz(309) diced spherical
analyzer with 1-in diameter is used with the 8.9 meV
incident bandpass.

APPENDIX B: EXACT DIAGONALIZATION
ON FINITE CLUSTERS

The theoretical RIXS intensity is obtained by combining
the components of the pseudospin susceptibility tensor
calculated for zero temperature:

χαβðq;ωÞ ¼ i
Z

∞

0

hGSj½SαqðtÞ; Sβ−qð0Þ�jGSieiωtdt; ðB1Þ

where

Sαq ¼
1ffiffiffiffiffiffiffiffiffi
Nsite

p
X
R

SαRe
−iq·R: ðB2Þ

The ground state jGSi and, subsequently, the dynamic
response embodied in χαβðq;ωÞ are evaluated by the
standard Lanczos exact diagonalization method [75] based
on periodic tiling of the honeycomb lattice with small
clusters. Since the intensity profiles contain broad features
corresponding to continua of densely spaced levels, to
achieve convergence, we use a large number of Lanczos
steps in the calculation—500 to get the data in Fig. 4 and
1200 to get the fine-resolved data presented in Fig. 6. A
combination of symmetric hexagonal clusters 24a and 32a
and rectangular clusters 32b1–32b3 shown in Fig. 8 enable
us to access a number of wave vectors along the
Γ-M-Γ0-X-K-Γ-Y-K0-Γ0 path used to plot the maps. The
maps are constructed by nearest-point interpolation with an
additional averaging if the given wave vector is compatible
with several clusters.
To account for the simultaneous presence of the three

zigzag patterns in the sample—one long-range and two
short-range correlated [15]—the response for the three
possibilities with different directions of zigzag chains needs
to be averaged. This average is, in fact, automatically
included in the exact diagonalization calculation, because
the symmetry is not spontaneously broken and the cluster
ground state is a superposition of the zigzag patterns
(equal-weight superposition in the case of 24a and 32a
and approximately equal-weight for 32b). The explicit

averaging is performed in the case of the linear spin-wave
calculation only.
A side note on the selection of the clusters is in order:

Even though there are other 24-site clusters (of elongated or
asymmetric shape) that could bring better q resolution, their
dynamic response contains artifacts, e.g., due to the
creation of very short zigzag chain loops of just a few
bonds when periodic boundary conditions are applied.
When compared to the dataset for 24a, 32a, and 32b,
the corresponding intensity profiles clearly stand out and
are thus not included as unreliable.

APPENDIX C: HIDDEN HEISENBERG
AND KITAEV POINTS

In this Appendix, we briefly elaborate on the points of
hidden symmetry and the links between the excitation spectra
of the extended Kitaev-Heisenberg model and the “hidden”
models. The hidden-symmetry points are revealed by rotat-
ing spin axes, either globally or in a sublattice-dependent
fashion, to convert the extended Kitaev-Heisenberg model

K X

M

’Y

24a

32a

32b1

32b2

32b3

(a)

(b)

32b1
32b3

32b2

24a

32a

FIG. 8. (a) Clusters used in the exact diagonalization calcu-
lations: fully symmetric hexagonal 24- and 32-site clusters and a
rectangular 32-site cluster in three possible orientations with
respect to the honeycomb lattice. (b) Wave vectors compatible
with periodic boundary conditions applied to the individual
clusters. They are shown in one quadrant of the first Brillouin
zone of the honeycomb lattice (dashed black line) and that of the
completed triangular lattice (solid black line). High-symmetry
points and the path along which the measured or simulated data
are presented (gray line) are indicated [cf. Fig. 1(a)].
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with a particular set of parameters to a simpler model [61].
This one-to-one correspondence enables us to transfer the
known features such as the excitation spectra of the simpler
model to the extended Kitaev-Heisenberg one.
We start with the hidden Kitaev point. To reveal its

presence, one has to utilize the self-dual transformation
[61] of the pseudospin Hamiltonian between the original
axes xyz used in Eq. (1) and the new axes x0y0z0 that are
180° rotated around the axis perpendicular to the honey-
comb plane (see the insets in Fig. 9). The two reference
frames for the spins are linked by the relation

0
B@

Sx
0

Sy
0

Sz
0

1
CA ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA
0
B@

Sx

Sy

Sz

1
CA: ðC1Þ

Applying the transformation to the case of Ising-type
interaction in the new coordinate system x0y0z0, we find
the correspondence

Sz
0
i S

z0
j ¼ −

1

3
SziS

z
j þ

4

9
Si · Sj þ

4

9
ðSxi Syj þ Syi S

x
jÞ

−
2

9
ðSxi Szj þ Szi S

x
j þ Syi S

z
j þ SziS

y
jÞ: ðC2Þ

The 180° rotation is compatible with the cyclic permutation
among xyz and x0y0z0 axes so that similar relations can be

found for Sx
0
i S

x0
j and Sy

0
i S

y0
j interactions. Altogether, the

Ising-type interaction distributed on x, y, and z bonds
constitutes the Kitaev model, while the right-hand side of
the relation (C2) (and the two other ones) is just the extended
Kitaev-Heisenberg model with a particular combination of
parameters. Therefore, at the hidden Kitaev point given by
the parameters J ¼ 4

9
K0, K ¼ − 1

3
K0, Γ ¼ 4

9
K0, and

Γ0 ¼ − 2
9
K0, the extended Kitaev-Heisenberg model exactly

maps to a Kitaev model with the interaction constant K0.
Since the transformation is just a global rotation of the spin
axes, all the features of the Kitaev model are exactly
reproduced at the hidden Kitaev point. In particular, the
excitation spectra are identical, and the spin susceptibility is
obtained from that of the Kitaev model by a simple linear
combination of the components.
The hidden Heisenberg point is given by the parameters

J ¼ − 1
9
J0, K ¼ − 2

3
J0, Γ ¼ 8

9
J0, and Γ0 ¼ − 4

9
J0, where J0

is the effective Heisenberg interaction constant. Here, the
connection is less apparent, since, by applying the above
global rotation (C1), we get to the Kitaev-Heisenberg
model only. Its parameters read as K0 ¼ 2J0 and J0 ¼
−J0 (Γ and Γ0 are zero). To establish the relation to the final
Heisenberg model, we have to invoke the four-sublattice
transformation connecting zigzag and Néel order [5,61,76].
It is depicted in Fig. 9(a) and consists of 180° rotations
around one of the cubic axes or identity applied on the
respective sublattices. This transformation preserves the

form of the Kitaev-Heisenberg model but changes the
balance between the Kitaev and Heisenberg term and, for
the above parameters K0 and J0, leads to a pure Heisenberg
model with the exchange parameter J0. Again, all the
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FIG. 9. (a) Four-sublattice transformation used in the text. At the
individual sublattices, the spin axes are rotated by 180° around the
cubic axes x, y, and z or left intact. In the momentum space (right),
the spin components are shifted by the zigzag ordering vectors.
(b) Model parameter values along the lines used in Fig. 6. The
values are expressed using the original xyz-coordinate system for
the spins. The full lines and symbols correspond to Figs. 6(a)
and 6(b), and dashed lines and open symbols to Figs. 6(c) and 6(d).
The figure is organized like Fig. 6 with A2 or A3 parameters being
in the middle and the evolution toward the hidden Heisenberg
(Kitaev) point corresponding to the left (right) direction from the
middle. Only nearest-neighbor interaction parameters JKΓΓ0 are
presented; J2;3 linearly vanish when approaching the points of
hidden symmetry. The marked parameter points correspond to the
spectra shown in Fig. 6. (c) The same lines through the parameter
space but expressed using the x0y0z0-coordinate system rotated by
180° around the axis perpendicular to the honeycombplane. In both
xyz and x0y0z0 frames depicted by the insets, the axes point above
the paper plane.
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features of the Heisenberg model such as the magnon
spectra can be transferred to the hidden Heisenberg point.
However, due to the four-sublattice transformation,
momentum shifts depicted in Fig. 9(a) are involved. The
Fourier components of Sx, Sy, and Sz are shifted by wave
vectors with the directions identical to the corresponding
bond directions of the honeycomb lattice [61]. The intense
AFM Heisenberg magnons residing at the Γ0 points in the
corners of the extended Brillouin zone are then translated to
the zigzag M points.
In the main text, we study the parameter evolution of the

q ¼ 0 spectra when going toward the hidden Heisenberg
and Kitaev points. The corresponding parameter values
are shown in Fig. 9(b) in the xyz reference frame and in
Fig. 9(c) also rotated via Eq. (C1) to the x0y0z0 reference
frame. Note that, in the x0y0z0 frame, the dominant inter-
action at our points A2 and A3 is K > 0, accompanied by
small J < 0 and Γ and Γ0 interactions. The calculated
response is thus similar to the one obtained for the upper
zigzag phase in Fig. 3 that is stabilized in the Kitaev-
Heisenberg model itself.
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