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The quench dynamics of a system involving two competing orders is investigated using a Ginzburg-
Landau theory with relaxational dynamics. We consider the scenario where a pump rapidly heats the system
to a high temperature, after which the system cools down to its equilibrium temperature. We study the
evolution of the order parameter amplitude and fluctuations in the resulting time-dependent free-energy
landscape. Exponentially growing thermal fluctuations dominate the dynamics. The system typically
evolves into the phase associated with the faster-relaxing order parameter, even if it is not the global free-
energy minimum. This theory offers a natural explanation for the widespread experimental observation that
metastable states may be induced by laser-induced collapse of a dominant equilibrium order parameter.
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I. INTRODUCTION

Dynamical phase transitions [1–3], in which systems are
tuned through a phase transition by time variation of system
parameters, are a fundamental topic of long-standing
interest in many areas of science. For example, it is believed
that cosmological expansion tuned the Universe through
the electroweak symmetry breaking transition [4].
Supercooled liquids are a widely studied terrestrial exam-
ple. Spinodal decomposition [5–8] and Kibble-Zurek (KZ)
[9–12] theories have addressed important aspects of
dynamical phase transition physics for systems character-
ized by an order parameter which is tuned through a first- or
second-order transition, respectively.
Systems with multiple competing or intertwined orders

are of great current interest in condensed matter physics
[13,14]. Examples include high Tc cuprates and transition
metal dicalcogenides in which superconductivity (SC) and
spin and/or charge density wave (CDW) order compete and
coexist as well as “colossal”magnetoresistance manganites
where ferromagnetic metal and charge ordered antiferro-
magnetic insulating states compete at low temperatures
[15,16]. Recent developments in “ultrafast” experimental
technique [17–27] have made it possible to dynamically
suppress one or more order parameters and study the

subsequent evolution, raising the possibility of “steering”
the order parameters into a desired metastable state.
The purpose of this paper is to provide theoretical insight

into dynamical phase transitions in systems with multiple
order parameters and in particular to draw attention to the
crucial importance of the relative magnitudes of order
parameter relaxation rates. We consider systems in which
the relevant degrees of freedom are space-time-dependent
order parameter fields ψ iðr; tÞ defined from a fundamental
theory by integrating out microscopic degrees of freedom
such as electrons. For notational simplicity we here deal
with a system with two real order parameters. Adding more
real order parameters or making the order parameters
complex does not alter our conclusions.
We consider two broad classes of behavior described by

the equilibrium free-energy landscapes sketched in Fig. 1(a),
strictly competing orders, where the free energy has two
local minima, such that in eachminimum only one of the two
order parameters is nonzero, and Fig. 6, intertwined order
parameters, where at the global minimum both order param-
eters are nonzero, but a metastable minimum exists in which
only one of the order parameters is nonzero. When such
systems are exposed to an experimentally relevant pump
pulse they may be driven to a point in phase space near the
origin (o) as indicated by the solid line trajectory in Fig. 1(a).
We show that after the pump is turned off, the time evolution
is dominated by the exponential amplification of very long
wavelength fluctuations of the order parameters, and that
even a modest difference in relaxation rates will drive the
system to the minimum related to the faster evolving order,
even if it is not the global free-energy minimum. The
probability of trapping into this metastable state is close to
unity. The probability of going back to the equilibrium order
scales as p2 ∼ ζδ, where ζ ≪ 1 is the same Ginzburg
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parameter that controls thevalidity of staticmean-field theory
and δ is a positive number defined latter.Nucleation dynamics
operating on much longer timescales will lead eventually to
relaxation to the global minimum [1,28], but this physics is
not explicitly considered here.
Transient dynamics in systems with a single order

parameter have been extensively discussed; the literature
is too large to review here, but we note that a recent study
of a quench to the superconducting state has derived
from microscopics the model A dynamics used here
[29]. Transient dynamics in systems with competing orders
has been previously discussed in terms of deterministic
dynamics of spatially uniform order parameters [30–32].
Our paper goes beyond the previous work by studying the
formation and growth of spatial fluctuations and focusing
on the difference in order parameter time constants.
Section II describes the physical picture and defines the

formalism. Section III has the general solution to the
dynamical problem. Section IV discusses the fast cooling
limit which illustrates the essential physics. Section V
analyzes the effect of slower cooling rate. Section VI
discusses systems with intertwined orders. Section VII
contains detailed comparison to recent experiments.
Section VIII is a summary and conclusion, containing a
discussion of the assumptions made and consequences of
relaxing them. Appendixes A–K give detailed derivations
of some of the formulas in the main text.

II. PHYSICAL PICTURE AND FORMALISM

We consider a system in which the important degrees of
freedom are space-time-dependent order parameter fields

ψ iðr; tÞ obtained from a fundamental theory by integrating
out quasiparticles. We assume that the order parameter
fields evolve according to dissipative [relaxational time-
dependent-Ginzburg-Landau (TDGL) or “model A”]
dynamics [1,29,33,34] defined by a free-energy functional
F which is time dependent because of the applied pump
field:

1

γi
∂tψ iðr; tÞ ¼ −

1

Ec

δFðtÞ
δψ iðr; tÞ

þ ηiðr; tÞ: ð1Þ

Here γi are the corresponding relaxation rates, Ec is the
condensation energy density, and η is a noise field deter-
mined by the microscopic degrees of freedom that were
integrated out to obtain the order parameter theory. The free-
energy functionals are assumed to be of the general form

F½ψ1;ψ2� ¼ Ec

Z
dDrðf1 þ f2 þ fcÞ;

fi ¼ −αiψ2
i þ ðξi0∇ψ iÞ2 þ ψ4

i ; ð2Þ
as sketched in Fig. 1(a). Here the ξi0 are the bare coherence
lengths, D is the spatial dimension, and

fc ¼ cψ2
1ψ

2
2 ð3Þ

describes the interaction between the two order parameters in
the competing order case.
In our convention, ψ i, αi, c, and fi are dimensionless,

intensive, and defined such that the quartic term in the free
energy has coefficient 1 and the αi are of the order of unity
at zero temperature. For cooperation (c < 0) or weak
competition (0 < c < 2), F has a single minimum. For
c > 2, F has two locally stable minima if α1 and α2 > 0
and ð2=cÞ < ðα1=α2Þ < ðc=2Þ (see Appendix A). We study
the c > 2 (multiple minima) case in this paper. Following
usual practice, we assume that all parameters are temper-
ature independent except the αi ¼ κiðTci − TÞ=Tci, which
are positive at low temperatures, negative at high temper-
atures, vary smoothly with temperature, and vanish at the
respective critical temperatures T ¼ Tci (we assume linear
temperature dependence for simplicity). The nonequili-
brium enters the formalism as a time dependence of the αi,
determined by the time dependence of the effective temper-
ature TðtÞ of the microscopic degrees of freedom that were
integrated out. We focus on the case α2 > α1, but γ2α2 <
γ1α1, sominimum II is the equilibrium free-energyminimum
but the dynamics associated with minimum I is faster.
The condensation energy density Ec, in combination

with ξi0, sets the relevant microscopic scales. An important
dimensionless measure of the thermal fluctuations is

GiðTÞ ¼
T

Ecξ
D
0i
: ð4Þ

The Ginzburg parameter defined in the conventional theory
of critical phenomena is GðTcÞαðD−4Þ=2 with mean-field

FIG. 1. (a) Equilibriumfree-energy landscape for twocompeting
order parameters ψ1 and ψ2. The energy is represented both as a
height andwith color,with lower energy appearing bluer. The point
labeled II is the global free-energy minimum and the point I is the
locally stable minimum. The surface labeled “Pump” is a free-
energy landscape with only one minimum, at the origin, corre-
sponding to a high-temperature state established by a pump pulse.
Thepumpdestroysorder II as shownby theblacksolid trajectory. In
the subsequent cooling process, exponential growth of thermal
fluctuations leads the system into order I, as shown by the dashed
trajectory. (b) The real-space illustration of order parameter
evolution in the fast cooling limit. Gray means order II and blue
(red)meanspositive (negative)order I.Largedomainsare formedat
time tcwith only a small volume fraction being the original order II.
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theory applying when the parameter is much less than
unity. For example, in the weak-coupling case of conven-
tional superconductors, G ∼ ðgap=Fermi energyÞD−1. The
treatment that follows is formally valid in the G ≪ 1 limit.
The stochastic Eq. (1) may be recast as a Fokker-Planck

equation for a probability functional ρ½fψkg� that gives the
distribution of fluctuations around the mean-field value
(see, e.g., Refs. [1,35,36] and Appendix B). In the
linearized approximation used below the probability func-
tional is a direct product, ρ½ψ � ¼Qk ρkðψkÞ, where

ρk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πDkðtÞ
p e−ψ

2
k=2DkðtÞ ð5Þ

is a Gaussian distribution for each Fourier mode ψk of the
field with time-dependent variance DkðtÞ ¼ hψkðtÞψ−kðtÞi
which we calculate below.
We are primarily interested in understanding experi-

ments in which a system is highly excited by a pump pulse
and the subsequent evolution is probed. We assume that the
pump does not couple directly to the order parameters;
rather, it excites microscopic degrees of freedom (e.g.,
electron quasiparticles or phonons) which thermalize very
quickly (relative to the order parameter timescales) to a
quasiequilibrium state described by an effective temper-
ature TðtÞ [37]. The effective temperature is maintained by
the pump at a high value TH for some time. After the pump
is turned off, TðtÞ evolves over a timescale tm to the true
thermal equilibrium temperature TL determined by the
bath. In most experiments, the bath is the lattice and tm is
just the electron-phonon thermalization timescale which is
typically of the order of picoseconds. This assumption is in
essence the two-temperature model of Rothwarf and Taylor
[38] in which one set of degrees of freedom (e.g., electrons
or a particular set of phonon modes) is excited to a high
temperature and then relaxes back to the equilibrium
temperature set by the rest of the system.
Within these assumptions, the instantaneous value of

TðtÞ determines the parameters αi of the free energy and the
noise. We take the noise correlators,

hηiðr; tÞηiðr0; t0Þi ¼
2TðtÞ
γiEc

δðr − r0; t − t0Þ; ð6Þ

to be local in space and time and consistent with the
fluctuation-dissipation theorem. Here the Boltzmann con-
stant kB is set to unity and the average is over a probability
distribution of the noise field. For the slow dynamics we
consider here, the relevant frequency or momentum scale is
well below those of the microscopic degrees of freedom
that are integrated out, justifying the locality assumption
of Eq. (6).
Representative time histories of αðtÞ are shown in Fig. 2.

There are three time regimes: (a) pump on, covering the
time interval −tpump < t < 0 in which the temperature
T ¼ TH and correspondingly the quadratic coefficient
α ¼ αH < 0; (b) relaxation, time 0 < t < tm, during which

T evolves from TH through Tc to TL while α evolves from
αH < 0 through α ¼ 0 to αL > 0; and (c) evolution, time
t > tm, T ¼ TL, and α ¼ αL. It is convenient also to
introduce the time t0 ¼ ½ðTH − TcÞ=ðTH − TLÞ�tm, at
which T ¼ Tc and αðtÞ ¼ 0 (the t0 times for order
parameters ψ1 and ψ2 are labeled as t1 and t2 in Fig. 2).
The physical picture is that for t ∈ ð−tpump; t0Þ, the free-

energy landscape has its only minimum at ψ ¼ 0 [point O
in Fig. 1(a)]. Thus the high temperature produced by the
pump suppresses the mean-field order parameter to nearly
zero and the fluctuations remain bounded. After time t0,
point O becomes unstable, the long wavelength fluctua-
tions start to grow exponentially with time, and the
correlation length grows as ξ ∼ ξ0

ffiffiffiffiffiffiffi
8γt

p
. This process leads

to the creation of large domains where most domains are in
phase I as shown in Fig. 1(b).

III. DYNAMICS

In this section we present a general solution of Eq. (1)
with time-dependent α and noise correlators as described
above. The initial condition is

ψðrÞinit ¼ ψ̄ þ
X
k

eik·rδψk ≡ ψ̄ þ V
Z

dDk
ð2πÞD eik·rδψk;

ð7Þ

FIG. 2. Upper panel: Time evolution of quadratic free-energy
coefficients αiðtÞ (solid lines) and mean square values of order
parameters (dashed lines). Different colors denote different
orders. The pump maintains the system at a high temperature
TH (negative α ¼ αiH) for the time −tpump < t < 0, after which
the temperature relaxes to the equilibrium one TL (positive
α ¼ αiL) over a time tm. Shown is the linear cooling profile used
to derive exact formulas in the slow cooling case. The mean-field
order parameter is suppressed during the high-temperature stage.
Order parameter fluctuation hψ iðrÞ2i starts to grow exponentially
after ti, as shown by the dashed curves. The red dot denotes the
point of crossover to nonlinear dynamics [hψ2

1i ∼ α1ðtÞ] at time tc.
Lower panel: The local order parameter probability distributions
ρðψ1;ψ2Þ corresponding to the time intervals vertically above.
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where ψ̄ is the initial order parameter, δψk represents
thermal fluctuations about the initial ordered state, and V is
the system volume. For simplicity of notation, here and
henceforth we suppress the index i labeling the different
order parameters wherever possible. In the initial state,
fluctuations are assumed small: ψ̄2 ≫ hδψðr ¼ 0Þ2i≡P

k hδψkδψ−ki ∼ G. The pump acts to decrease ψ̄2 and
increase the fluctuations. If ψ̄2 remains large compared to
the mean square fluctuation amplitude, the state of the
system is determined by a straightforward deterministic
dynamics. This case is discussed briefly below, but our
main interest is in situations in which the pump drives the
initial order parameter to a value smaller than the root mean
square fluctuation amplitude and the physics is determined
by the evolution of the fluctuations.
Because Eq. (1) is first order in time it has no “memory,”

so the evolution over one time regime fixes initial con-
ditions for the next one. We first consider the evolution over
the decaying order parameter regime t < t0; the resulting
state of the system at t0 is then the initial condition for the
subsequent evolution.
In the pump-on regime the system is hot (temperature

T ¼ TH), so the free energy is dominated by a large
quadratic term which justifies the use of linearized dynam-
ics even when the order parameter is not small. This means
that in the pump-on regime we may study

1

γ
∂tψk ¼ 2αkðtÞψk þ ηk; ð8Þ

where

αkðtÞ ¼ αðtÞ − ξ20k
2 < 0: ð9Þ

We assume that the dynamics in the pump-on regime drives
the order parameter to a small enough value that we may
continue to use the linearized approximation throughout the
t < t0 regime and for some time into the growing fluctua-
tions (t > t0) regime. Conditions for the validity of this
approximation will be presented below. The solution of
Eq. (8) may be written as

ψkðtÞ ¼ ψ init
k eSkðt;−tpumpÞ þ γ

Z
t

−tpump

dt0ηkðt0ÞeSkðt;t0Þ; ð10Þ

where the first term gives the propagation forward in time
of the initial order parameter ψ init

k ¼ ψ̄δk;0 þ δψk with
mean-field part ψ̄ and small fluctuations δψ . The second
term represents the propagation forward of fluctuations
created by the noise after −tpump. The accumulated phase
S is defined as

Skðta; tbÞ ¼ 2γ

Z
ta

tb

dtαkðtÞ; ð11Þ

and S0ðta; tbÞ has the interpretation as the signed area
enclosed by the solid lines and the time axis in Fig. 2. With
Eq. (6), the square of Eq. (10) yields the fluctuation
amplitude,

DkðtÞ ¼ Dinit
k e2Skðt;−tpumpÞ þ 2γ

EcV

Z
t

−tpump

dt0Tðt0Þe2Skðt;t0Þ;

ð12Þ

defined in Eq. (5) where Dinit
k is the initial fluctuation

amplitude.
In the linear cooling profile approximation the initial

mean-field order parameter amplitude evolves as

ψ̄ðt0Þ ¼ e−jαH jγt0e−2jαH jγtpump ψ̄ ; ð13Þ

where the factor e−2jαH jγtpump gives the exponential suppres-
sion during the pump-on stage and the e−jαH jγt0 factor gives
the additional suppression during t ∈ ð0; t0Þ. We assume
that jαHjγð2tpump þ t0Þ is large enough that the mean-field
order parameter is reduced to a very small value at t ¼ t0,
less than the mean square fluctuations. As shown in detail
in Sec. V, this assumption plus a small Ginzburg parameter
implies that at time t0 the system is well prepared in a
disordered state with negligible mean-field order parameter
and small fluctuations.
We now consider the evolution of the distribution at

times after t0, where the system has cooled below the
transition temperature [αðtÞ > 0], so long wavelength
modes with k <

ffiffiffi
α

p
ξ−10 grow exponentially with time.

As long as the fluctuation does not become too large,
the linearized equation may be used for the dynamics, so

DkðtÞ ¼ e2S0ðt;t0Þ−4k2ξ20γðt−t0Þ

×

�
Dkðt0Þ þ

2γ

EcV

Z
t

t0

dt0e−2Skðt0;t0ÞTðt0Þ
�
; ð14Þ

where as before the first term represents the propagation
forward in time of the fluctuations existing at t0 while the
second term represents the additional contributions gen-
erated by the noise thereafter. A detailed analysis given in
the Appendix C shows that the second term in Eq. (14) is of
the same order as the first in the situations of interest here.
The key observation is that long wavelength modes with

4ξ20k
2γðt − t0Þ < 2S0ðt; t0Þ are exponentially amplified

and we are interested in long times γðt − t0Þ ≫ 1 for which
the growth is substantial (e2S0ðt;t0Þ ∼G−1). The exponential
growth continues until the local mean square fluctuation
amplitude of one of the order parameters becomes large
enough that the nonlinearity becomes important to
the dynamics, i.e., until t reaches the crossover time tc
defined by

hψ iðr ¼ 0Þ2it¼tc ∼ αi=2 ð15Þ
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where the average is over the probability functional ρ. To
compute hψ ið0Þ2i we observe that at long times the
important momentum dependence is controlled by the
e−4k

2ξ2
0
γðt−t0Þ factor. Defining the time-dependent correlation

length by

ξ2ðtÞ ¼ ξ20(8γðt − t0Þ þ 1=a); ð16Þ

we perform the momentum integral to obtain (up to an
unimportant overall factor) the correlation function in real
space:

hψð0ÞψðrÞit ¼ V
Z

dDk
ð2πÞD DkðtÞeik·r

¼ G=a

(16πγðt − t0Þ)D=2 e
2S0ðt;t0Þe−r2=2ξðtÞ2 : ð17Þ

The details of the pump and initial cooling enter Eqs. (16)
and (17) via the a, which varies from ∼αL in the fast
cooling limit to αKZ in the slow cooling case (to be
discussed in Sec. V). This variation leads to corrections
that are subleading relative to the terms we consider and we
will not explicitly notate this dependence henceforth.
Equation (17) is the first key result. The exponential

factors show that the fluctuations grow exponentially in
time, and the spatial correlation is governed by the
universal correlation length growth law ξ ∼ ξ0

ffiffiffiffiffiffiffi
8γt

p
which

does not depend on the equilibrium value of α or temper-
ature-time profile.

IV. FAST COOLING LIMIT

In this section we consider the fast cooling limit tm → 0,
which illustrates the essential physics with minimal com-
plexity. In the fast cooling limit the phase for the expo-
nential amplification term in Eq. (17) is simply

2S0ðt; t0Þ ¼ 4αLγt ð18Þ

and Eq. (15) for the crossover time tc is

4αLγtc ¼ ln
1

ζ
þD

2
lnð4αLγtcÞ; ð19Þ

where we have set a in Eq. (17) to αL without altering the
leading behavior, and have defined

ζ ¼ 2ð4πÞ−D=2αD=2−2
L G; ð20Þ

which is in effect the usual Ginzburg parameter of the
theory of critical phenomena. We see that tc is logarithmi-
cally large if ζ is small, i.e., if mean-field theory works well
for equilibrium. At time tc of the fast order I, the fluctuation
of the slow order II is smaller by the ratio

hψ2
2i

hψ2
1i

¼ α1L
α2L

�
γ1
γ2

�
D=2 G2

G1

�
1

ζ1

�
ln

1

ζ1

�
D=2
�
α2Lγ2=α1Lγ1−1

;

ð21Þ

which is much less than unity if γ2α2L < γ1α1L and ζ ≪ 1.
At this stage of the evolution the two order parameters are
independent and the joint distribution of local amplitudes at
a position r is the product of Gaussians:

ρ(ψ1ðrÞ;ψ2ðrÞ) ¼
exp½− ψ2

1

2hψ2
1
i −

ψ2
2

2hψ2
2
i�

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ2

1ihψ2
2i

p : ð22Þ

For γ2αL2 < γ1αL1 the mean square values are very differ-
ent, leading to the highly anisotropic joint distribution
function shown in Figs. 3(a) and 3(c). The probability
distribution describing the space dependence of the fluc-
tuations is derived in Appendix H and is plotted in
Figs. 3(b) and 3(d) for order I. We see that the fluctuations
of order parameter I are highly correlated over scales out to
ξðtÞ ≫ ξ0 (the fluctuations of the slower order parameter II
are correlated over slightly shorter distances).
Thus the physical picture at t ¼ tc is of order parameter

domains of typical size ξðtcÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=ζÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=αLÞ

p
ξ0 ≫ ξ0

within which the order parameters are nearly uniform and
normally distributed and with the typical value of ψ1 much
larger than ψ2, as illustrated in Fig. 1(b). Moreover, the
typical value of local ψ is now much larger than the new

FIG. 3. Panels (a),(c) are the density plots of the Gaussian
probability distribution ρ(ψ1ðrÞ;ψ2ðrÞ) computed at time t ¼
2.0 ps for G1 ¼ G2 ¼ 10−5 (a) and t ¼ 1.0 ps for G1 ¼ G2 ¼
10−2 (c) in the fast cooling limit tm ¼ 0. Regions of higher
value of ρ appear redder. Panels (b),(d) show the two-point
probability ρ(ψ1ð0Þ;ψ1ðξ0Þ) distributions for the same two cases.
The common parameters used are ðα1L; α2LÞ ¼ ð1.0; 1.1Þ,
ðγ1; γ2Þ ¼ ð2; 1Þ ps−1, ξ0i ¼ ξ0, and D ¼ 3.
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fluctuation scale induced by the noise, so that in the
subsequent evolution the mean-field dynamics dominates
over the effect of the noise. Therefore, to study the
subsequent evolution it suffices to consider the evolution
within a domain, which is described by the uniform,
deterministic TDGL equations, written here for the com-
peting orders case:

γ−11 ∂tψ1 ¼ 2α1ψ1 − 4ψ3
1 − 2cψ2

2ψ1;

γ−12 ∂tψ2 ¼ 2α2ψ2 − 4ψ3
2 − 2cψ2

1ψ2; ð23Þ

with initial conditions chosen from the joint probability
distribution ρ(ψ1ð0Þ;ψ2ð0Þ). The issues associated with
matching the solutions at the domain walls are a coarsening
problem discussed briefly below.
The flow defined by Eq. (23) has a simple phase space

structure with stable fixed points defined by the minima of
F, as shown in Fig. 4. Each initial condition defines a
trajectory that flows into one of the minima. For the
physically relevant case α1L, α2L > 0 with ð2=cÞ <
ðα1L=α2LÞ < ðc=2Þ there are four fixed points, with basins
of attraction separated by a four-branched separatrix curve.
We may estimate the position of the separatrix by matching
the small ψ regime, where the exponential growth requires

ψ1 ¼ λψ1=Δ
2 ð24Þ

to the requirement that the separatrix goes through the
saddle point ðψ2

1;ψ
2
2Þ¼ðcα2L−2α1L;cα1L−2α2LÞ=ðc2−4Þ.

Here Δ ¼ γ2α2L=γ1α1L < 1 and the coefficient is fixed by
the matching condition.
By finding the relative weights of the probability dis-

tribution in the different basins of attraction we can estimate
the relative volume fractions of the different order param-
eter domains. The volume fraction p2 of order II domains is
just the probability of ðψ1;ψ2Þ lying in the basin of
attraction of minimum II in Fig. 4, which at time t ¼ tc
can be estimated as

p2 ≈ 4

Z
∞

0

dψ2ρðψ1 ¼ 0;ψ2Þλψ1=Δ
2

¼ 1

π
21=2Δþ1=2Γ

�
1

2

�
1þ 1

Δ

��
λhψ2

1ið1=Δ−1Þ=2
�hψ2

2i
hψ2

1i
�

1=2Δ

¼ ϑ

�
ln

1

ζ1

�
−ðD=2Þδ

ζδ1; ð25Þ

where δ ¼ ð1=Δ − 1Þ=2 > 0 and ϑ ∼ 1 can be found in
Appendix I. Thus the proportion of ψ2 domains is sup-
pressed by a power law of the Ginzburg parameter ζ ≪ 1
and is negligibly small even if the timescales are just
slightly different. Equation (25) is the second key result of
this paper.
Lifetime of the metastable state.—Each domain then

evolves to the appropriate minimum; the evolution takes a
time of the order of ð1=αLγÞ lnð1=ζÞ, after which the
physical picture is of a set of domains, most of which
have ψ1 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

α1L=2
p

and ψ2 ≈ 0 (i.e., are in phase I) while
a small volume fraction of the sample are phase II domains,
where ψ2 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

α2L=2
p

and ψ1 ≈ 0, as illustrated in Fig. 1
(b). However, long-range order is not established. The
subsequent evolution is determined by spontaneous nucle-
ation of phase II regions in the dominant phase I domains,
and by growth of the existing ψ2 domains. The timescale
for ultimate equilibration thus depends both on nucleation
rates and on domain wall dynamics, both of which are
beyond the scope of this paper. We do, however, provide a
likely lower limit on the equilibration time by considering
the free growth of ψ2 domains, assuming no domain wall
pinning and nucleation, which is an exponentially slow
process. The speed of domain wall motion is at the order of
v ∼ γξ0 as long as the free-energy difference δf between
the two minima is order 1. Assuming the phase II domains
are evenly distributed among the phase I domains, we can
estimate the equilibration time as

tlife ∼
�
1

p2

�
1=D

ξðtcÞ=v ∼
1

γ

�
ln
1

ζ

�ð1=2Þð1þδÞ�1
ζ

�
δ=D

: ð26Þ

If the order parameters are complex, corresponding to
U(1) symmetry breaking, as in the case of superconduc-
tivity being order I and charge density wave being order II,

FIG. 4. Basins of attraction of the two orders on the contour plot
of the free-energy landscape. Lower energy appears bluer. The
arrows show the direction of order parameter dynamics. Black
solid line separates the basins. The parameters used are
ðα1L; α2LÞ ¼ ð1.0; 1.1Þ, ðγ1; γ2Þ ¼ ð2; 1Þ ps−1, and c ¼ 6. Black
dotted line illustrates the magnitudes of ψ i fluctuations at time
t ¼ 2.0 ps for G1 ¼ G2 ¼ 10−4 and spatial dimension D ¼ 3.
Most of the probability lies in the basin of order I, meaning most
volume of the system will be trapped into I afterward.
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one just needs to double the degrees of freedom for each
order before nonlinear dynamics is onset. As a result,
Eq. (25) gives the offset of trapping probability as

p2 ∼
�
ln
1

ζ

�
−Dδ

ζ2δ ð27Þ

and Eq. (26) is modified to

tlife ∼
1

γ

�
ln
1

ζ

�
1=2þδ

�
1

ζ

�
2δ=D

: ð28Þ

After tc, the different SC regions are characterized by
different order parameter phases which can continuously
synchronize to leave behind topological vortices. The
number density of the vortices scales as n ∼ 1=ξðtcÞ2 ∼
½ξ20ð2=αLÞ lnð1=ζÞ�−1, different from the Kibble-Zurek scal-
ing [10] since the latter applies to the slow cooling limit.

V. FINITE COOLING RATE

We now ask how the physics is modified as the cooling
time tm is increased from zero. The essential picture derived
in the previous section of long length scale domains of one
or the other order parameter still applies, but because the
time t0 of transition from exponential decay to exponential
growth is earlier for order II than that for order I, the ψ2

fluctuations will have a longer period of growth than the ψ1

fluctuations. The longer period of growth will compensate
for the faster dynamics of ψ1, meaning that the condition on
the difference in relaxation rates required for the system to
evolve to minimum I becomes more stringent. A second
issue is that the crossover to nonlinear dynamics may occur
at a time t < tm before the relaxation of the α to its
equilibrium value is complete, meaning that the free-energy
landscape at the point of crossing to nonlinearity differs
from the equilibrium one. For these reasons the behavior
for given tm depends on the ratio of relaxation rates γ2=γ1 in
a somewhat complicated manner. The various regimes are
shown in Fig. 5.

A. State at t0
We first characterize the state at t ¼ t0. If the mean-field

order parameter is reduced to a small value, then the
thermal fluctuations existing at time t ¼ −tpump [the first
term in Eq. (12)] will be reduced to a completely negligible
level so the order parameter at t ¼ t0 and subsequent times
is determined entirely by the random noise. We distinguish
fast cooling (jαHjγt0 ≤ 1) and slow cooling (jαHjγt0 ≥ 1)
regimes according to whether the cooling to t0 after the
pump is turned off has a significant effect on the order
parameter. The linearized dynamics means that the corre-
sponding distribution function is the product of Gaussians
given in Eq. (5). Averaging the solution for ψkðt0Þ over the
noise using Eq. (6) shows that the fluctuation distribution
half-width defined in Eq. (5) is

Dkðt0Þ ¼
2γ

EcV

Z
t0

−tpump

dt0e2Skðt0;t0ÞTðt0Þ: ð29Þ

The integral in Eq. (29) may easily be evaluated numeri-
cally, and in the linear quench approximation may be
expressed exactly in terms of error functions (see
Appendix D). Here we present results in important limits
which explicate the basic physics. In the fast cooling limit
the portion of the integral from t ¼ 0 → t0 makes a
negligible contribution and we find

Dkðt0Þ ≈
TH

2EcV
1

jαHj þ ξ20k
2
; ð30Þ

indicating that in the fast cooling limit the fluctuations at
t ¼ t0 are those of the hot thermal state created by the
pump, with distance jαHj from criticality and correlation
length ξH ¼ ξ0=

ffiffiffiffiffiffiffiffiffijαHj
p

. In the slow cooling regime only
times near t0 are important, and we find

Dkðt0Þ ≈
Tc

EcV
1

αKZ

Z
∞

0

dv exp ½−v2 − 2ξ2KZk
2v�

¼
� ffiffi

π
p
2αKZ

Tc
EcV

k ≪ 1=ξKZ

1=ð2ξ20k2Þ k ≫ 1=ξKZ;
ð31Þ

where the effective distance from criticality αKZ and
corresponding correlation length ξKZ are given by

αKZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαHj=ð2γt0Þ

p
; ξKZ ¼ ξ0=

ffiffiffiffiffiffiffiffi
αKZ

p
; ð32Þ

which depend on the square root of the cooling rate,
consistent with Kibble-Zurek scaling [9,10] and the
mean-field exponents of the problem at hand.

FIG. 5. A schematic “phase” diagram delineating the behavior
on the cooling time tm versus Δ ¼ γ2α2L=ðγ1α1LÞ plane. The
horizontal axis can be viewed as γ2, while all other parameters are
fixed. In the blue region, trapping into phase I happens because
hψ2

2i=hψ2
1i < 1 at tc. The region tm > tms is unexplored in this

paper and discussed in Sec. V B. The green (gray) ellipses are our
tentative guess of where the cuprates (rare-earth) tritellurides lie
on this diagram.
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The correlation function in real space is given by

hψð0ÞψðrÞit ¼ V
Z

kc dDk
ð2πÞD DkðtÞeik·r; ð33Þ

where the upper cutoff kc, which we expect to be of the
order of a few times ξ−10 , is required to make the integral
finite as r → 0. The momentum integral is dominated by
large momenta for which Dk ∼ ðkξ0Þ−2, so the local
fluctuation amplitude is

hψ2ð0Þit0 ¼
( GD¼2

8π lnð1þ k2cξ2Þ ðD ¼ 2Þ
GD¼3kcξ0

2π2
ð1 − 1

kcξ
tan−1kcξÞ ðD ¼ 3Þ; ð34Þ

where G [Eq. (4)] is to be evaluated at temperature T ¼ TH,
Tc in the fast and slow quench limits, respectively, and ξ
takes the value appropriate for the relevant limit.
To summarize, if the initial pump and subsequent cool-

ing are strong enough to drive the initial mean-field order
parameter to a level smaller than the local root mean square
fluctuation, then at time t ¼ t0 the order parameter fluc-
tuations in both the rapid and slow quench cases are
described by a Gaussian (mean-field-like) probability
characterized by a temperature (TH or Tc), a distance from
criticality (jαHj or αKZ), and the associated correlation
length ξ2H;KZ ¼ ξ20=αH;KZ. The local mean square local
fluctuation order parameters are of the order of G, justify-
ing Eq. (17) even in the slow cooling case. Using Eqs. (13)
and (34) we see the criterion for suppression of the mean-
field order parameter is roughly jαHjγð2tpump þ t0Þ ≫
lnð1=GÞ. The linearized analysis used here requires that
hψ2ðr ¼ 0Þi ≪ α. A renormalization-group-improved
treatment will break down when GαðtÞðD−4Þ=2 ∼ 1 (the
Ginzburg criterion), which sets an upper limit on the
cooling time tm ∼ ζ−1=ð1−D=4Þ=γ ≡ tmc in the slow quench
regime.
It is important to remember that the Tc (and thus t0) of

the two different order parameters are different as are the
bare correlation lengths and relaxation constants, so espe-
cially in the slow cooling limit the probability distribution
functions of the two order parameters will differ, especially
at long wavelengths, although Eq. (34) shows that the local
fluctuation amplitudes, which are determined by short
wavelength fluctuations, are not too different for the two
order parameters.

B. Trapping condition

Now we analyze the effect of finite cooling rate on the
condition for trapping into phase I. To simply the formulas,
in the main text we focus on the exponential growth and
neglect power-law prefactors, thus approximating hψ2it ∼
Ge2Sðt;t0Þ. Our main focus will be on establishing how small
γ2 must be relative to γ1 for the system to evolve with high
probability into the metastable minimum I. We will find

that dependence of the critical ratio Δ ¼ ðγ2αL2=γ1αL1Þ is a
scaling function of the variable tm=tmu, where tmu is the
cooling time at which the onset of nonlinearity tc coincides
with the equilibration time tm.
To begin the analysis we note that for tm > 0 and t > tm,

the accumulated phase becomes (after eliminating t0 in
favor of αL)

2S0ðt; t0Þ ¼ 4αLγ

�
t −

tm
2

2jαHj þ αL
jαHj þ αL

�
; ð35Þ

and Eq. (19) for the crossover time becomes

tc ¼
tm
2

2jαHj þ αL
jαHj þ αL

þ 1

4γαL
ln
1

ζ
; ð36Þ

while Eq. (21) becomes

hψ2
2i

hψ2
1i

¼ e2α2Lγ2tm½ðjα1H jα2L−jα2H jα1LÞ=ðjα2H jþα2LÞðjα1H jþα1LÞ�

×

�
1

ζ1

�
α2Lγ2=α1Lγ1−1

: ð37Þ

The factor ð1=ζ1Þα2Lγ2=α1Lγ1−1 is Eq. (21) with only the
leading term in tc retained, and the exponential factor
expresses the additional growth of ψ2 due α2 crossing zero
earlier than α1. When

tm ¼ jα1Hj þ α1L
2γ1α

2
1L

ln
1

ζ1
¼ 1

2γ1α1L

TH − TL

Tc1 − TL
ln

1

ζ1
≡ tmu;

ð38Þ

we have tc ¼ tm; i.e., the onset of nonlinearity occurs at
t ¼ tm. Thus the onset of nonlinearity occurs before
equilibration only for cooling rates very slow relative to
the basic order parameter timescales by a factor of the order
of the log of the Ginzburg parameter. Using

jα1Hjα2L − jα2Hjα1L
ðjα2Hj þ α2LÞðjα1Hj þ α1LÞ

¼ Tc2 − Tc1

TH − TL
; ð39Þ

we see that hψ2
2i=hψ2

1i < 1 provided that Δ ¼
α2Lγ2=ðα1Lγ1Þ is less than a critical value defined by

1

1þ Tc2−Tc1
Tc1−TL

tm
tmu

≡ f1

�
tm
tmu

�
; ð40Þ

as shown in Fig. 5. In the tm → 0 limit Eq. (40) reverts to
the previous result α2γ2 < α1γ1 (up to logarithmic correc-
tions), but as tm increases, the constraint on γ2 becomes
more stringent, and when tm ¼ tmu, Eq. (40) becomes
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Δ ¼ Tc1 − TL

Tc2 − TL
≡ r < 1: ð41Þ

For tm > tmu, ψ1 reaches nonlinearity before tm, which is
the regime considered by Kibble-Zurek theory [10]. Note
that relaxational dynamics predicts a logarithmic correction
to Kibble-Zurek scaling, as described in Appendix F. In this
time regime the accumulated phase may be written as

2S0ðt; t0Þ ¼ 2γ
αL

tm − t0
ðt − t0Þ2; ð42Þ

and after some algebra Eq. (15) for phase I can be written as

tc ¼ t1 þ ðtm − t1Þ
ffiffiffiffiffiffiffi
tmu

tm

r
; ð43Þ

which is obviously before tm if tm > tmu. The condition
Sðtc; t2Þ < Sðtc; t1Þ becomes

Δ <
tmu

tm

r

½1 − rð1 −
ffiffiffiffiffi
tmu
tm

q
Þ�2

≡ f2

�
tm
tmu

�
; ð44Þ

which reduces to our previous Eq. (41) when tm ¼ tmu and
drops as 1=tm for large tm, so that as the equilibration time
becomes extremely long, the system would evolve to the
equilibrium minimum unless the relxation rate γ2 becomes
exceptionally small.
Even if Eq. (44) is satisfied, the system will only evolve

to the metastable minimum if αi are such that the meta-
stable minimum exists at the time order I crosses to
nonlinearity, i.e., if α2ðtcÞ < ðc=2Þα1ðtcÞ, which yields

tm < tmu
ðTc1 − TLÞ2
ðTc2 − Tc1Þ2

�
c
2

κ1Tc2

κ2Tc1
− 1

�
2 ≡ tms: ð45Þ

If tm > tms, as denoted by “?” in Fig. 5, the following
would happen in the cooling process: at tc, the time for ψ1

crossing over to nonlinear dynamics, the free-energy land-
scape has not recovered enough such that order I is not yet a
local minimum. Thus trapping into the order I state will not
necessarily happen even if hψ2

2i ≪ hψ2
1i at this time.We see

that typically tms cannot be too much larger than tmu, unless
either Tc2 − Tc1 is very small or κ1 ≫ κ2 or c ≫ 2. The
various timescales are presented in Table I.
Below the upper critical dimension D ¼ 4, our “time-

dependent fluctuation around mean-field” approach fails if
at the predicted crossover time tc, the system is still inside
the critical regime GαðtÞðD−4Þ=2 ∼ 1 (the Ginzburg cri-
terion) where even renormalization-group-improved treat-
ment breaks down. This imposes an ultimate upper limit,

tmc ≡ 1

γ1
ζ−1=ð1−D=4Þ; ð46Þ

for the cooling time; see Appendix F. This much larger
timescale is deep inside the “?” region and is also labeled
in Fig. 5.

VI. INTERTWINED ORDER

To study the intertwined case we modify Eq. (2) to shift
one of the minima away from one of the axes. One simple
choice is to add a term to fc, so

fc → cψ2
1ψ

2
2 þ d1ψ4

1ψ
2
2; ð47Þ

and with, now, 0 < c < 2 and d1 > 0. We assume
Tc2 > Tc1, but that the difference in Tc is not too large,
and d1 is not too small. In this case (see Appendix A for
details), as temperature is lowered the system first enters a
phase with only ψ2 ≠ 0, and then at a lower temperature the
phase with ψ1 ≠ 0, ψ2 ¼ 0 becomes locally stable although
not the global minimum. At a still lower temperature the
global minimum is gradually shifted to Iþ II where a
nonzero ψ1 component appears. If we identify ψ2 with
density wave order and ψ1 with superconductivity, this
scenario may describe stripe ordered cuprates (e.g.,
La2−xBaxCuO4 around x ¼ 1=8), the so-called pair density
wave state [14]. The free-energy analysis of the ψ2=ψ1

minimum has previously been discussed [14]; we have
generalized the free energy so that it also includes a
metastable phase with purely superconducting order and
will argue that this generalization is needed to describe
recent ultrafast experiments [23].
The considerations outlined in the previous sections

carry over directly to the intertwined order case, as shown
by the red line in Fig. 6. However, an additional interesting
effect may occur if we relax the assumption that the pump
heats up the bath appropriate to both order parameters. If
the two orders couple to different microscopic degrees of
freedom, then one may consider the case when only the
free-energy landscape for one order is changed. In par-
ticular, in the case of coupled superconducting and charge
orders, one may imagine that the charge order couples to
phonons much more strongly than do the electrons, so
driving the phonons would affect the CDW much more
strongly than the superconductivity. If the system starts in a

TABLE I. Physical meaning of various timescales and Δ.

Symbol Physical meaning

−tpump When pump pulse arrives
t0 When the temperature crosses Tc
t1, t2 t0 for order I, II
tm Cooling (electron-phonon thermalization) timescale
tc The time that fluctuation becomes comparable to 1
tmu The cooling timescale that makes tc ¼ tm [Eq. (38)]
tms See discussion around Eq. (45)
tmc The cooling timescale where mean-field theory fails
Δ The critical ratio γ2αL2=ðγ1αL1Þ
δ ð1=Δ − 1Þ=2
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minimum with both order parameters nonzero (as is the case
for intertwined orders) and only α2 is driven to negative,
leaving α1 positive, the transient free-energy landscape will
have only one minimum (I) and the mean-field dynamics
will drive the system into it, as shown by the blue trajectory
in Fig. 6. In this process, small fluctuations of the order
parameter can be neglected and one can apply deterministic
TDGL dynamics to the mean-field order parameters. This
mechanism does not require faster relaxation for ψ1; all that
is needed is that ψ2 remains suppressed for long enough that
the system evolves to the I minimum. This timescale is set by
the time required for the order parameter to cross the basin
boundary, ts ∼ ð1=αγÞ lnðψ2m=ψ2bÞ, where ψ2m is the value
of ψ2 at the original point Iþ II and ψ2b is its value at the
intersection between the blue trajectory and the basin
boundary. For shorter pump durations or for pumps that
reduce α1 too much, the system would relax back to the
global minimum, as illustrated schematically by the green
trajectory in Fig. 6.

VII. EXPERIMENTS

Competing orders have been reported in many materials,
and an increasing number of ultrafast experiments are
appearing, including studies of competing charge density
waves in tritellurides [25,39], ferromagnetic domain for-
mation in charge ordered manganites [16], and charge and
magnetic order in rare-earth nickelates. Much attention has
focused on reports of transient superconductivity appearing
in materials that have low-temperature nonsuperconducting

density wave states but may reasonably be expected to have
competing superconducting states [18–24,26]. The appear-
ance of long-lived superconductinglike metastable states
has been seen in cuprates [18–24] through optical pump
probe by several independent groups and in FeSe through
time-resolved ARPES (angle-resolved photoemission spec-
troscopy) [26]. This widely observed and still mysterious
phenomenon has heretofore been theoretically addressed
via explorations of models in which the nonequilibrium
drive changes the microscopic Hamiltonian, creating new
physics not existing in equilibrium [40–44] and via TDGL
analyses [30–32] with deterministic uniform dynamics. We
argue that in many cases the physical picture developed
here is more relevant.

A. Cuprates

As an example, we consider the relevant parameters for
the cuprate La1.675Eu0.2Sr0.125CuO4 (LESCO1=8), the first
material found to exhibit such transient phenomenon. At
10 K, where this compound is not superconducting due to
competition of charge order, Fausti et al. [18] pumped the
system with a strong infrared pulse. A metastable state
appeared within picoseconds and lived for at least nano-
seconds. Most strikingly, it exhibits superconductinglike
terahertz optical response.
In discussing the application of our theory, the first issue is

timescales. The timescales associated with gap recovery in
cuprate superconductors are typically of the order of τSC ∼
1 ps [45]; similar timescales are reported in studies of
transient enhancement of the photoresponse in LESCO1=8
[18] and Y-Bi2212 [46]. Time-resolved x-ray and electron
diffraction experiments reported CDW relaxation timescales
in the wide range from 4 to 1000 ps in transition metal
dichalcogenides [47,48] where the CDWorder is coupled to
the lattice. Timescales of only a few picosceonds were
reported for the charge order in cuprates [49], but the
timescale for the stripe order that strongly competes with
the superconductivity is not known, and may be long
because the stripe order couples strongly to the lattice
[18]. Assigning SC to order I and CDW to order II, we
assume that τSC=τCDW ¼ 1=3 for LESCO1=8 and Δ ¼
γ2α2L=γ1α1L ≈ 1=3 since the αiL ∼ 1 for both CDWand SC.
The next issue is the Ginzburg parameter G. The

coherence lengths are of the order of a few nanometers
and Gaussian fluctuations are observed for temperatures
within 10% of Tc, so G is unlikely to be as small as it is in
conventional materials. If there were no competition to
CDW, the superconducting Tc of LESCO1=8 is about
40 K, indicating a zero temperature superconducting gap
∼14 meV, which is perhaps a factor of ∼100 less than the
Fermi energy. We suggest that ζ ∼G ∼ 10−2 (lower panel of
Fig. 3) may be appropriate since the material is effectively
two dimensional.
The experiment of Fausti et al. [18] could then be

interpreted as destruction of both orders followed by

FIG. 6. Contour plot of the free-energy landscape for inter-
twined orders. Lower energy appears bluer. The parameters used
are ðα1; α2Þ ¼ ð2.0; 2.05Þ, ðγ1; γ2Þ ¼ ð2; 1Þ ps−1, c ¼ 1, and
d1 ¼ 4. The lines are different trajectories the system undergoes
in the pump-cooling process. Red dashed line means the process
is led by exponentially growing fluctuations. Thin black line is
the boundary of the basin of attraction of minimum I. Inset: Free-
energy landscape plotted in 3D.
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growth of fluctuations described in Sec. IV. The pump
along the a axis had a fluence of 1 mJ=cm2, the penetration
depth was about 200 nm, and almost all the photon energy
was absorbed since the reflectivity at that frequency is
nearly zero. Together with the electronic specific heat of
Cel=T ≈ 3 mJk−2 mol−1 [50] and the lattice constant of
a ¼ 3.8 Å, c ¼ 13.2 Å [51], we estimate that the electronic
system was transiently heated up to TH ¼ 2000 K, much
larger than the critical temperatures of both CDW (80 K)
and SC. Thus it is reasonable to assume all orders are
destroyed by the pump. The cooling timescale [18,45]
should not be significantly larger than τSC; thus the
equations in the fast cooling limit should give reasonable
estimations. Application of Eq. (27) in 2D yields p2≈
5 × 10−6 as the volume fraction of CDW domains in
the transient state, meaning most volume is transformed
to the SC state. Equation (28) predicts the lifetime of the
metastable state to be about 1 ns. These estimations
qualitatively explain the phenomenon seen in LESCO1=8,
but note that they depend sensitively on the values ofG and
Δ; see Fig. 7 and Eqs. (27) and (28).
The cuprate La1.885Ba0.115CuO4 has a density wave

transition at Tco ¼ 53 K followed by a second transition
at Tc ¼ 13 K to a state with both density wave order and
weak superconductivity. Cremin et al. [23] recently
reported that upon moderate near-infrared (1.55 eV) pump
pulse (fluence of 0.1 mJ=cm2) along the c axis, the weak
superconducting state may be converted to a long-lived
strong superconductinglike state within picoseconds. The
key observation is that this state can be created only if the
static system is in the weakly superconducting state below
Tc of bulk superconductivity. If the static temperature is
even slightly above Tc, the strong superconductinglike
metastable state is not created. We interpret the result as
suggesting that the equilibrium state is an intertwined state
with both superconducting and charge order, and the pump
couples more strongly to the charge order while it is not
strong enough to kill both orders. The transient phenome-
non is due to the second mechanism described in Sec. VI.

The transition time is ts ∼ ð1=αγÞ lnðψ2m=ψ2bÞ ∼ ps if one
uses γ ∼ 1 ps−1. As the static temperature gets close to Tc,
the transition time diverges logarithmically since ψ2b
approaches zero, explaining the key observation.

B. Transition metal tritellurides

Competing phases occur in nonsuperconducting con-
texts. In equilibrium, LaTe3 and CeTe3 exhibit long-
ranged CDW order (denoted as cCDW). However, when
these systems are driven out of equilibrium by a suffi-
ciently strong near-infrared pump, a different CDW order
(denoted as aCDW), distinguished from the equilibrium
one by the wave vector, appears [39,52]. This was
interpreted as aCDW states living in topological vortices
created in the dominant cCDW state by the Kibble-Zurek
mechanism. However, in the experiments by Kogar et al.
[39], a stronger aCDW signal was observed for a stronger
pump while the Kibble-Zurek mechanism says the num-
ber of vortices depends only on the cooling time constant
through Tc, a system parameter that does not quite
depend on pump fluence. Our framework in Sec. IV is
an alternative explanation. Assume that the pump
destroys the mean-field order parameter of the cCDW
but not to zero; its recovery would suppress the growth of
fluctuations of aCDW. Therefore, a stronger pump would
suppress cCDW to a smaller value which gives more
space for aCDW fluctuations to grow. A quantitative
application of our theory requires more information on
the relaxation rates. Since both orders are CDWs in this
case, their timescales should be comparable and we place
LaTe3=CeTe3 close to Δ ¼ 1 in Fig. 5.

C. Manganites

Zhang and co-workers have reported that in charge
ordered insulating films made of La2=3Ca1=3MnO3

[16,53], exposure to pump radiation can create domains
of ferromagnetic metallic order, which grow in size with
successive pump pulses and at low temperature, do not
revert to the ground state on measurable timescales.
Analysis of these experiments requires extension of our
theory to the case of first-order free-energy landscapes.

VIII. DISCUSSION

We presented a dynamical phase transition theory of a
pumped system with competing orders, based on a Landau
theory of nonconserved order parameters with relaxational
dynamics coupled to a quasithermal bath. We focused on
the case where an applied (“pump”) field changes the free-
energy landscape, thereby driving any mean-field order
parameters to vanishingly small values and studied in detail
the growth of fluctuations after the pump is removed. We
presented a general treatment valid for cooling rates that are
fast or slow compared to the basic order parameter time-
scales, presented a scaling theory valid in the slow cooling

FIG. 7. The volume fraction p1 (red curve) of SC domains and
the lifetime tlife (black curve) of the metastable state as a function
of Δ ¼ γ2α2L=γ1α1L predicted by Eqs. (27) and (28). The
Ginzburg parameter is ζ ¼ 10−2.
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limit, and connected our results to the Kibble-Zurek theory
of systems quenched through a critical point.
We computed the probability distribution of order param-

eter fluctuations and identified the exponential growth of
long wavelength fluctuations characterized by a universal
correlation length growth ξ ∼

ffiffiffiffiffiffiffi
8γt

p
, leading to a large

domain structure. We showed that in physically reasonable
cases, a modestly larger relaxation rate of the subdominant
order can lead the system to a metastable state of domains,
most of which are in this subdominant phase. We derived
scaling functions for thevolumefractionofdifferentdomains
and the lifetime of the metastable state. Because of the
universality of the Landau theory, it applies to solid-state
systems with competing orders [18–26,39,46–49], cold
atoms [54], and even the early Universe [4].
The fluctuation theory developed here naturally explains

the key features of the observations of metastable states
[18,26]: (a) the long lifetime (>200 ps) of the super-
conductinglike state and (b) the finite frequency conduc-
tivity peaks [19,55] may be explained by the transiently
created domain structure [Fig. 1(b)] which allows coupling
of far-field radiation to plasmonic modes. A further proof of
consistency is that similar transient phenomenon are
observed for both infrared and optical pumping, suggesting
that the main effect of the pump is incoherent, related to
heating of the microscopic degrees of freedom.
Next we discuss the assumptions underlying our

approach. (a) We assume the existence of a well-defined,
time-dependent temperature TðtÞ for the high-energy elec-
tronic degrees of freedom throughout the full time evolution.
Indeed, quasiparticle thermalization time (∼10 fs) is usually
much shorter than the dynamics of the collective order
parameter (0.1–1 ps). See, e.g., Ref. [37]. Therefore, for the
slow dynamics of the order parameter we consider, it is
legitimate to assume a well-defined temperature for high-
energy degrees of freedom which acts as the bath for the
order parameters. (b) Our theory relies on a small Ginzburg
parameter G, which is the same parameter that controls the
validity of mean-field theory. Thus our theory applies
wherever mean field does, e.g., for SC and CDW where
gap=Fermi energy ≪ 1. Although the application of mean-
field arguments to strongly correlated systems such as
cuprates may be questionable, our estimation using G ∼
10−2 still renders a trapping probability close to unity. (c) We
worked in the context of Ginzburg-Landau theory with
relaxational dynamics which holds close to Tc [29] or for
superconductors rendered gapless by magnetic impurities
[33]. However, relaxational dynamics is not essential to our
conclusions. If a second-order time derivative is added to
Eq. (1), it does not change the picture of exponential growth
of the long wavelength thermal fluctuations, as long as there
is substantial damping to take away the energy. Extension of
our approach to the underdamped (Hamiltonian dynamics)
case is of interest. (d) For the trapping into the metastable
order I, we need it to relax faster than the equilibrium order
II. This probably happens for competing SC and CDW

orders since the latter often couples to the lattice which is
heavy. Since the trapping probability crosses to unity
exponentially as Δ crosses one, order I just needs to be
moderately faster than order II, as shown by Fig. 7, where the
crossing is quick already for a relatively large G. (e) We
assumed the white noise in Eq. (6) to characterize thermal
fluctuations. The underlying assumption is that there is a
length scale separation between the long length scale physics
of the order parameter dynamics and the presumably short
length scale physics of the microscopic degrees of freedom
that are integrated out to obtain the order parameter theory. If
the microscopic degrees of freedom have a length scale
comparable to order parameter length scales, then the partial
differential equations we analyze should be replaced by
integro-differential equations. Analysis of this situation is
beyond the scope of our paper, but we believe that it would
not change our main conclusions.
Our work defines directions for future research. On the

theoretical side, detailed application of our theory to specific
materials, extension to the case of conserved order param-
eters, to strongly interacting field theories (G ∼ 1), and to the
case of interfaces between domains with different orders [56]
are all of interest. Similar conclusions are expected for
quenching through a quantum critical point at zero temper-
ature. Instead of thermal fluctuations, quantum fluctuations
will be exponentially amplified. Also, generalization of our
formalism to the case where the pump couples coherently to
the order parameters, as would happen for terahertz pumps,
is of interest. On the experimental side, the growing
fluctuations and the induced domain structure [Fig. 1(b)]
or the topological vortices can be ideally probed by time-
space resolved techniques, e.g., ultrafast terahertz near-field
microscopy or ultrafast scanning tunneling microscopy.
Moreover, the growing SC fluctuation and thus superfluid
density indicates increasing Drude weight in the nonequili-
brium optical conductivity, leading to novel effects on the
collective modes [57] and terahertz reflectivity.
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APPENDIX A: EQUILIBRIUM FREE ENERGY
AND PHASE DIAGRAM

1. Competing orders

The phase diagram is shown in Fig. 8. We write Eq. (2)
for the spatially uniform case using Eq. (3) and writing
ψ2
1 ¼ R2 cos2 θ, ψ2 ¼ R2 sin2 θ. We obtain
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f ¼ −
α1 þ α2

2
R2 −

α1 − α2
2

R2 cos 2θ þ R4
1þ c

2

2

þ R4
1 − c

2

2
cos2 2θ: ðA1Þ

Minimizing with respect to cos 2θ gives

cos 2θ ¼ α1 − α2
2R2ð2 − cÞ ; ðA2Þ

so

f ¼ −
α1 þ α2

2
R2 −

ðα1 − α2Þ2
8ð1 − c

2
Þ þ R4

1þ c
2

2
; ðA3Þ

and minimizing over R gives

R2 ¼ α1 þ α2
2þ c

; ðA4Þ

so

f ¼ −
ðα1 þ α2Þ2
4ð2þ cÞ −

ðα1 − α2Þ2
8ð1 − c

2
Þ ðA5Þ

and

cos 2θ ¼ α1 − α2
2ðα1 þ α2Þ

2þ c
2 − c

: ðA6Þ

The alternative solution is to set one of the ψ ¼ 0, obtaining

f ¼ −
α2i
2
: ðA7Þ

Thus we see that if c > 2, then the mixed solution costs
energy and lower energy solutions are 2θ ¼ 0 and π.
Expanding around the θ ¼ 0 solution, we obtain

fðθÞ − fðθ ¼ 0Þ ¼ α21 − α1α2
4

θ2 −
α21
8

�
1 −

c
2

�
2θ2 þOθ4

ðA8Þ

or

fðθÞ − fðθ ¼ 0Þ ¼ α21
4

�
c
2
−
α1
α2

�
θ2 þOθ4; ðA9Þ

so we see that the minimum at ψ2 ¼ 0 is only stable if
ðc=2Þ > ðα1=α2Þ; expanding around the other minimum
changes the sign of the θ2 term and interchanges α2 and α1,
justifying the inequalities presented in the main text.

2. Intertwined orders

We write Eq. (2) for the spatially uniform case using
Eqs. (3) and (47), now in their original form:

f ¼ −α1ψ2
1 − α2ψ

2
2 þ ψ4

1 þ ψ4
2 þ cψ2

1ψ
2
2 þ d1ψ4

1ψ
2
2:

ðA10Þ

We suppose 0< c < 2 and d1 > 0, assume Tc2 > T > Tc1,
and consider the physics as T is decreased below Tc2.
Initially we have a solution with ψ2

2 ¼ ðα2=2Þ and ψ1 ¼ 0.
As the temperature is decreased, α1 − cα2=2 may become
positive; if this occurs, a ψ1 component is added to the
solution with ψ2 ≠ 0. This instability takes place at a
temperature lower than Tc1 if c > 0 and at a temperature
higher than Tc1 if c < 0. We interpret this mixed state as
having intertwined order, since both order parameters are
nonzero. As T is decreased below Tc1, a second extremum
(saddle point) appears at ψ2

1 ¼ ðα1=2Þ, ψ2 ¼ 0. After α1
becomes large enough such that ðcjα1j=Þ2þ dðα21=4Þ > α2,
this saddle point becomes stable to variations in ψ2 and thus
a local minimum.

FIG. 8. Equilibrium phase diagrams on the α1 versus α2 plane. Black roman numeral indicates the corresponding phase is a global
minimum. Red roman numeral indicates local minimum. Iþ II means a minimum with both orders nonzero. The competing orders case
corresponds to c > 2 and d1 ¼ 0. The intertwined orders case corresponds to 0 < c < 2 and d1 > 0. The systems are assumed to be at
the blue dots in equilibrium.
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APPENDIX B: FOKKER-PLANCK EQUATION
AND ITS APPROXIMATIONS

If one defines the probability functional ρ½ψ �, the
stochastic TDGL equation (1) is equivalent to the
Fokker-Plank equation [1] for the probability functional
ρ½ψðr; tÞ�:

∂tρ ¼ 1

Ec

X
i

Z
dDrγi∂ψ i

ðρ∂ψ i
F þ T∂ψ i

ρÞ; ðB1Þ

where ∂ψ i
should be understood as functional derivative:

∂ψ i
≡ ½∂=∂ψ iðr; tÞ�. The averages hψ2i taken throughout

the paper are over the probability functional ρ½ψðr; tÞ�. The
order parameter can be written as a uniform field plus small
fluctuations:

ψ iðr; tÞ¼ ψ̄ iðtÞþδψ iðr; tÞ¼ ψ̄ iðtÞþ
X
k≠0

ψ iðkÞeikr: ðB2Þ

Our mean-field plus fluctuation theory can be viewed as an
expansion in terms of the Ginzburg parameter G, or
equivalently, the small noise term ηðr; tÞ. The uniform
background is the zeroth-order term in the random noise
ηðr; tÞ. The TDGL equation thus leads to the coupled
equations of the uniform background and the fluctuations,

1

γi
∂tψ̄ iðtÞ¼

�
−

δF
δψ iðr; tÞ

þηiðr; tÞ
�

0

¼−∂ ψ̄ i
Fþηi0ðtÞþOðη2Þ;

1

γi
∂tψ iðk;tÞ¼

�
−

δF
δψ iðr; tÞ

þηiðr; tÞ
�

k

¼ 2αikψ iðkÞ
− ½4ψ3

i þ2cψ iψ
2
j þOðψ5Þ�kþηikðtÞ; ðB3Þ

where ðÞk mean the Fourier component with momentum k,
ηikðtÞ means the k momentum component of the noise, and
j ≠ i represents the other order different from order i.
Multiplying the second equation by ψ−kðtÞ and taking the
average over the probability functional ρ, one obtains the
equation of motion for the second moment:

1

γi
∂thψ iðkÞψ ið−kÞi ¼ 4αikhψ iðkÞψ ið−kÞi

− 2hψ i;−k½4ψ3
i þ 2cψ iψ

2
j

þOðψ5Þ�ki þ 2hψ ið−kÞηikðtÞi:
ðB4Þ

If one keeps only Oðη2Þ terms, the equation for the second
moment hψ iðkÞψ jð−kÞi simplifies to

∂thψ iðkÞψ jð−kÞi ¼ −ð∂ ψ̄μ
∂ ψ̄ ν

F

þ 2ξ2μνk2Þ½γiνhψμðkÞψ jð−kÞi
þ γjνhψμðkÞψ ið−kÞi� þ 2Tvγij;

ðB5Þ

where

ξμν ¼
�
ξ10 0

0 ξ20

�
; γμν ¼

�
γ1 0

0 γ2

�
; ðB6Þ

and repeated indices should be summed over. Note that
Tv ¼ T=ðEcVÞ is the temperature normalized to the con-
densation energy of the whole volume. Therefore, the
fluctuation just evolves in a time-dependent quadratic
potential determined by the curvature of the local free-
energy landscape taken at ψ̄ðtÞ. In principle, one could
make a “mean-field” approximation by assuming the
probability function ρ is always a Gaussian function and
easily take into account the fluctuation correction to
Eq. (B5). But this is out of the scope of this paper.
The linearized Fokker-Plank equation close to point O

reads

∂tρ ¼ ∂ψðkÞ½−2γαkðtÞψðkÞρþ γTvðtÞ∂ψðkÞρ�: ðB7Þ

where α and Tv are time dependent and αkðtÞ ¼
αðtÞ − ξ20k

2. This is a diffusion equation for the probability
ρðψkÞ in the quadratic potential −αkψðkÞ2 with diffusion
constant γTv. The exact solution to Eq. (B7) is the Gaussian
function Eq. (5) with the variance satisfying (here and
below we denote ψðkÞ as ψk for simplicity)

∂thψ2
ki ¼ 4γαkðtÞhψ2

ki þ 2TvðtÞγ: ðB8Þ

The solution to Eq. (B8) is

hψ2
kit ¼ hψ2

kit0e2Skðt;t
0Þ þ 2γ

Z
t

t0
dt00Tvðt00Þe2Skðt;t00Þ; ðB9Þ

which could be obtained by squaring

ψkðtÞ ¼
Z

t

0

dt0Gkðt; t0Þηkðt0Þ þ ψkð0ÞeSkðtÞ; ðB10Þ

where Gkðt; t0Þ ¼ Θðt − t0ÞeSkðt;t0Þ is the Green’s function
for Eq. (8) of the main text and Skðt; t0Þ ¼ 2γ

R
t
t0 dxαkðxÞ is

the accumulated exponent.

APPENDIX C: DYNAMICS

We evaluate Eq. (29) of the main text, which together
with the initial condition term is
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DkðtÞ≡< ψkðtÞψ−kðtÞ > ¼ Dkð−tpumpÞe2Skðt;−tpumpÞ

þ 2γ

Z
t

−tpump

dt0e2Skðt;t0ÞTðt0Þ; ðC1Þ

where the accumulated exponent is

Skðt; t0Þ ¼ 2γ

Z
t

t0
dt00½αðt00Þ − ξ20k

2� ðC2Þ

and T should be understood as the dimensionless quantity
T=ðEcVÞ here and in the following. The integral in Eq. (12)
describes the contributions to the varianceDkðtÞ from noise
fluctuations that are created at time t0 and then propagated
forward by the equation of motion. The pump and cooling
profile determines the time dependence of Dk and the
needed expressions may be straightforwardly evaluated for
any pump and cooling profile. Within the linear cooling
profile approximation of Fig. 2, Sk and T are combinations
of quadratic, linear, and constant functions of time, and
analytic results can be written down in terms of error
functions, Gaussians, and exponentials. We present here
further analytical work based on the linear cooling profile
that brings insight.
At times t < t0, Sk < 0 for all k, so fluctuations created

at a time t < t0 decay as time increases to t0. At times
t > t0, long wavelength fluctuations [k2ξ20 < αðtÞ] increase
exponentially with time. Thus t0 is a convenient reference
point and we are interested in times t greater than t0.
Separating the integral into times greater and less than t0
and noting that Sðt; t0Þ ¼ Sðt; t0Þ þ Sðt0; t0Þ and that
Sðt; t0Þ ¼ −Sðt0; tÞ, we have

DkðtÞ ¼ e2Skðt;t0Þ½Dð1Þ
k þDð2Þ

k ðtÞ�; ðC3Þ

with

Dð1Þ
k ¼ Dkð−tpumpÞe2Skðt0;−tpumpÞ

þ 2γ

Z
t0

−tpump

dt0e2Skðt0;t0ÞTðt0Þ ðC4Þ

and

Dð2Þ
k ðtÞ ¼ 2γ

Z
t

t0

dt0e−2Skðt0;t0ÞTðt0Þ: ðC5Þ

The first term [Dð1Þ] describes the contribution to the
variance of fluctuations created before t0 and propagated
forward to t, and the second term [Dð2Þ], which we have
rearranged for later convenience, describes the additional
contributions of fluctuations occurring after t0. We are
interested in the case in which the fluctuations at t ¼ t0 are
very small, and wewish to focus on long times such that the
growing modes have increased to an amplitude of the order
of unity. In this circumstance a general asymptotic analysis

is possible, but for ease of writing we will focus on the
linear cooling profile for which

TðtÞ ¼

8>>>>><
>>>>>:

TH ð−tpump < t < 0Þ
THð1 − t

t0
Þ þ TC

t
t0

ð0 < t < t0Þ
TC

tm−t
tm−t0

þ TL
t−t0
tm−t0

ðt0 < t < tmÞ
TL ðt > tmÞ

ðC6Þ

and

αðtÞ ¼

8>>>>><
>>>>>:

αH ð−tpump < t < 0Þ
αHð1 − t

t0
Þ ð0 < t < t0Þ

αL
t−t0
tm−t0

ðt0 < t < tmÞ
αL ðt > tmÞ:

ðC7Þ

We begin with Dð1Þ, which we rewrite as

Dð1Þ
k ¼ DH þDKZ; ðC8Þ

where DH describes the propagation forward in time of the
fluctuations existing before the pump was turned on and
created by the pump. Using the linear cooling profile
formulas and the definition of S,

DH ¼ e−2γt0ðjαH jþ2ξ2
0
k2Þ
�
THð1 − e−4γtpumpðjαH jþξ2

0
k2ÞÞ

2ðjαHj þ ξ20k
2Þ

þ TLe−4γtpumpðjαH jþξ2
0
k2Þ

2ð2αL þ ξ20k
2Þ

�
: ðC9Þ

The requirement that the mean-field order parameter be
completely suppressed means that e−2jαH jð2tpumpþt0Þ ≪
G=αL, so

DH ≈
TH

2ðjαHj þ ξ20k
2Þ e

−2γt0ðjαH jþ2ξ2
0
k2Þ; ðC10Þ

which represents the hot thermal fluctuations created by the
pump propagated to t ¼ t0.
We now turn to DKZ which represents the fluctuations

created as the system cools from t ¼ 0 to t ¼ t0 after the
pump is turned off:

DKZ ¼ 2γ

Z
t0

0

dt0e2Skðt0;t0ÞTðt0Þ ðC11Þ

¼ 2γt0

Z
1

0

due−2γt0jαH ju2−4γt0k2ξ20u½THuþ Tcð1 − uÞ�;
ðC12Þ

where in the second equalitywe have definedu¼ðt0− tÞ=t0.
In the rapid cooling limit jαHjγt0 ≪ 1,DKZ isOðγt0Þ and is
much smaller thanDH. In the slow cooling limit the integral
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is dominatedbysmallu, andwemayextend theupper limit to
infinity and rescale u ¼ v=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jαHjγt0
p Þ obtaining

DKZ ¼ Tc

αKZ

Z
∞

0

dve−v
2−2k2ξ2KZv; ðC13Þ

where we have defined the important length scales and
timescales:

αKZ ¼
ffiffiffiffiffiffiffiffiffi
jαHj
2γt0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαHj þ αL

2γtm

s
; ξ2KZ ¼ ξ20=αKZ;

tKZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tm
2γðjαHj þ αLÞ

r
:

ðC14Þ

We see that for k2ξ2KZ ≪ 1, DKZ ≈ ðTc=2αKZÞ
ffiffiffi
π

p
, and for

k2ξ2KZ ≫ 1,DKZ ∼ ðTc=2k2ξ20Þ. This is the expected behav-
ior of a critical theory with mean-field exponents and an
effective distance from criticality determined by the cooling
rate, consistent with the general analysis of Kibble and
Zurek [4,9,10].
We now present a qualitative evaluation of Dð2ÞðtÞ. We

have Skðt; t0Þ ¼ S0ðt; t0Þ − 2ξ20k
2ðt − t0Þ, with

S0ðt; t0Þ ¼ αL
ðt − t0Þ2
tm − t0

Θðtm − tÞ

þ 2αL

�
t −

tm þ t0
2

�
Θðt − tmÞ: ðC15Þ

We are interested in growing modes, for which ½S0ðt; t0Þ=
ðt − t0Þ� > k2ξ20; roughly these are those for which
αL > k2ξ20. In the slow cooling case, αLγðtm − t0Þ ¼
ðα2L=jαHj þ αLÞγtm > 1. In the fast cooling limit, we
may set tm − t0 ¼ 0 and write

Dð2Þ
k ðtÞ ¼ 2γTL

Z
t

t0

dt0e−4γðt0−t0ÞðαL−ξ20k2Þ

¼ TL

2ðαL − ξ20k
2Þ ð1 − e−4γðt−t0ÞðαL−ξ

2
0
k2ÞÞ ≈ TL

2γαL
:

ðC16Þ

Here we have neglected k dependence, which is on a
scale that is not relevant at large enough t. In the ultra-
slow cooling case we have for t < tm and defining
u ¼ ½ðt0 − t0Þ=ðtm − t0Þ�,

Dð2ÞðtÞ ¼ 2γðtm − t0Þ
Z

umax

0

due−2αLγðtm−t0Þu2þ4γðtm−t0Þuk2ξ20

× ½Tcð1 − uÞ þ TLu�; ðC17Þ

with umax ¼ ½ðt − t0Þ=ðtm − t0Þ�. The argument of the
exponential is maximized at u ¼ u⋆ ¼ ðξ20k2=αLÞ (for
growing modes umax > 2ξ20k

2=αL, so u⋆ is within integra-
tion range). Defining u ¼ u⋆ þ (v=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðtm − t0Þ

p
) and

noting that tm − t0 ¼ tm½ðαLÞ=ðjαHj þ αLÞ� we have (after
integrating over v using saddle point approximation)

Dð2Þ
k ðtÞ ¼

ffiffiffi
π

p
2

eξ
4
KZk

4 1

αKZ
½Tcð1 − u⋆Þ þ TLu⋆�: ðC18Þ

Note that we have kept only half of the Gaussian integral.
This is valid for the modes ξ20k

2 ≲ ½1=4γðt − t0Þ� ≪
½1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8γðtm − t0Þ=αL
p �, which are the only relevant ones

at long time t − t0. The exponent is also small in this limit,
so to an adequate approximation we have

Dð2ÞðtÞ ¼ ffiffiffi
π

p Tc

2αKZ
; ðC19Þ

which is the same as the k → 0 limit ofDð1Þ
k ≈ DKZ. This is

expected since Dð2Þ
k can be interpreted as the fluctuations

created after t0 and back propagated to t0. This is
symmetric to Dð1Þ

k for k → 0 in the slow cooling limit.

APPENDIX D: EXACT SOLUTION IN
TERMS OF ERROR FUNCTIONS

The Dð1Þ
k ¼ DH þDKZ in Eq. (C3) has the interpretation

of the fluctuation prepared at time t0. The exact form ofDH
is Eq. (C9). In the linear cooling profile approximation used
in this paper, the exact form of DKZ is

FIG. 9. Illustration of the evolution of order parameter fluctuation in (a) the fasting cooling case and (b) the slow cooling case.
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DKZ ¼ Tc

2αKZ

� ffiffiffi
π

p �
1 −

�
TH

Tc
− 1

�
ξ2KZk

2

αH

�
eξ

4
KZk

4

erf½ξ2KZk2; ξ2KZk2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γjαHjt0

p
�

−
�
TH

Tc
− 1

�
tKZ
t0

ðe2Skðt0;0Þ − 1Þ
�
; ðD1Þ

where erf½x1; x2� ¼ ð2= ffiffiffi
π

p Þ R x2x1 e−x2dx is the error function.
For the Dð2Þ

k term, it is simpler to neglect the time dependence of the noise, i.e., take Tc ¼ TL, after which one obtains

Dð2Þ
k ðtÞ ¼

� gkðtm; tÞ t < tm

gkðtm; tmÞ þ TL
2ðαL−ξ20k2Þ

e−2Skðtm;t0Þð1 − e−2Skðt;tmÞÞ t ≥ tm;
ðD2Þ

where we have defined

gkðtm; tÞ ¼
ffiffiffi
π

p TL

2αKZ
eξ

4
KZk

4

erf½−ξ2KZk2;−ξ2KZk2 þ t=tKZ�: ðD3Þ

One can take various limits of Eqs. (D1) and (D2) to get the results in the previous section.

APPENDIX E: FAST COOLING LIMIT: tm = 0

The fast and slow cooling cases are illustrated in Fig. 9. For tm ¼ 0 and neglecting the initial condition at t ¼ tpump,
Eq. (12) reduces to

Dk ¼
1

2

�
TL

αL − ξ20k
2
þ TH

jαHj þ ξ20k
2

�
e4γtðαL−ξ20k2Þ −

1

2

TL

αL − ξ20k
2
: ðE1Þ

Summing up contribution from all the Fourier modes, one obtains the real-space correlation function:

hψð0ÞψðrÞi ¼ Vð2πÞ−D
Z

dDkeikrhψ2
ki: ðE2Þ

At long time 4γαlt ≫ 1, Dk is approximately a Gaussian function in k and the Fourier transform becomes

hψð0ÞψðrÞi ≈
�
GðTLÞ
2αL

þ GðTHÞ
2jαHj

��
1

16πγt

�
D=2

e4αLγte−r
2=½2ξðtÞ2�

¼ αL
2

��
1þ GðTHÞαL

GðTLÞjαHj
�
ð4πÞ−D=2αD=2−2

L GðTLÞ
��

1

4αLγt

�
D=2

e4αLγte−r
2=½2ξðtÞ2�

¼ αl
2
ζ

�
1

4αLγt

�
D=2

e4αLγte−r
2=½2ξðtÞ2�; ðE3Þ

where ξðtÞ ¼ ξ0
ffiffiffiffiffiffiffi
8γt

p
is the universal correlation growth law and

ζ ¼
�
1þ GðTHÞαL

GðTLÞjαHj
�
ð4πÞ−D=2αD=2−2

L GðTLÞ ∼ 2ð4πÞ−D=2αD=2−2
L GðTLÞ ðE4Þ

is the Ginzburg parameter for critical phenomenon at
equilibrium. Thus the fluctuation hψ ið0Þ2i grows exponen-
tially with time and ψ1 grows faster due to a larger α1Lγ1.
Setting hψð0Þ2i ¼ αL=2 gives the crossover time:

4αLγtc ¼ ln
1

ζ
þD

2
lnð4αγtcÞ: ðE5Þ

At this time, keeping the first two terms in the ln expan-
sion of tc, the ratio between the fluctuations in the two
directions is

hψ2
2i

hψ2
1i

≈
α1L
α2L

G2

G1

�
γ1
γ2

�
D=2
�
1

ζ1

�
ln

1

ζ1

�
D=2
�
α2γ2=α1γ1−1

: ðE6Þ
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APPENDIX F: SLOW COOLING CASE IN
COMPETING ORDER SYSTEMS

The slow cooling case is characterized by a large tm.
After t1, ψ1 starts to grow exponentially while ψ2 has been
growing for a time of t1 − t2. Assume both order param-
eters are in the exponential growing stage and nonlinearity
is not yet onset, they obey the equation

hψ ið0Þψ iðrÞit
¼

ffiffiffi
π

p
Gi=αiKZ

½16πγiðt − tiÞ�D=2 e
2γiðαiLþjαiH jÞðt−tiÞ2=tme−r2=2ξiðtÞ2 :

ðF1Þ

The crossover of ψ i to nonlinearity happens at
hψ ið0Þ2it ¼ αiðtÞ, which yields

1 ¼ ζix
−D=4−1=2
i exi ; xi ¼ ln

1

ζmi
þD

4
ln xi; ðF2Þ

where xi ¼ 2γiðαiL þ jαiHjÞðt − tiÞ2=tm and

ζmi ¼ 2−7D=4þ1π1=2−D=2

�
γitm

αiL þ jαiHj
�

−D=4þ1

Gi ¼ 2−3D=4π1=2
�

α2Lγitm
αiL þ jαiHj

�−D=4þ1

ζi ∼ ζi: ðF3Þ

To leading order in the ln expansion we have for order I:

tc − t1 ≈
�

tm
2ðα1L þ jα1HjÞγ1

ln
1

ζm1

�
1=2

: ðF4Þ

At time tc, the correlation length of the fluctua-
tions is ξ ≈ 2

ffiffiffi
2

p f½γtm=2ðα1L þ jα1HjÞ� lnð1=ζÞg1=4ξ0 ∼
½γtm lnð1=ζÞ�1=4ξ0, which predicts a logarithmic correction
to the ξ ∼ t1=4m Kibble-Zurek scaling [10]. Note that the
logarithmic correction could be numerically large for very
small ζ. In 2D, the number density of topological vortices
created is thus n ∼ 1=ξðtcÞ2 ∼ ½γtm lnð1=ζÞ�−1=2ξ−20 . For the
mean-field plus fluctuation theory to be valid, we also
require GαðtÞD=2−2 ≪ 1 at the predicted tc for D < 4; in
other words,

�
tm

2ðα1Lþjα1HjÞγ1
ln

1

ζm1

�
1=2 α1Lþjα1Hj

tm
≫
�
1

G

�
1=ðD=2−2Þ

;

ðF5Þ

which yields

tmγ1 ≪
�
1

G

�
−1=ðD=4−1Þ α1L þ jα1Hj

2
ln

1

ζm1

∼
�
1

ζ

�
1=ð1−D=4Þ

:

ðF6Þ

Trapping into the metastable minimum requires that
hψ2ð0Þ2i ≪ hψ1ð0Þ2i at tm. Simply comparing the expo-
nents yields

tm ≪

h	
1
γ2

1
a2L−a2H



1=2

−
	

1
γ1

1
a1L−a1H



1=2
i
2

2λ2d
ln

1

ζm1

; ðF7Þ

where λd ¼ ðt1 − t2Þ=tm. This imposes the criterion

Δ ≪
1

r

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ2dðα1L þ jα1HjÞ

ln 1
ζm1

γ1tm

s
þ 1

!−2

≈
1

r

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ2dðα1L þ jα1HjÞ

ln 1
ζ1

γ1tm

s
þ 1

!−2

≡ f2ðγ1tmÞ:

ðF8Þ

By assuming ζ ¼ 10−4, γ1 ¼ 2 ps−1, ðα1l; α2lÞ ¼
ð1; 1.1Þ, and ðα1h; α2hÞ ¼ ð−1;−0.9Þ, one obtains tmu ≈
4.6 ps and tms ≈ 460 ps. Since the typical cooling time due
to electron phonon thermalization ranges from 1 to 100 ps,
most ultrafast experiments are in the regime analyzed in
this paper (Fig. 5).

APPENDIX G: Pumping process

The pump brings αiL to αiH < 0 as shown in Fig. 2,
which induces the order parameter dynamics from point II
to O in Fig. 1(a). At mean-field level, this nonlinear
dynamics is described by Eq. (B3) and the uniform
component obeys the exact solution:

ψ̄2
2ðtÞ ¼

−α2H=2
ð1 − α2H=α2LÞe−4α2Hγ2ðtþtpumpÞ − 1

: ðG1Þ

The longtime asymptotic form is ψ̄2
2 ¼ f½−α2H=2�=

½ð1 − α2H=α2LÞ�ge4α2Hγ2ðtþtpumpÞ, which means ψ̄2

approaches zero exponentially but never reaches it during
finite amount of time. At time zero, the pump is removed
and ψ̄2 reaches a small value:

ψ̄2
20 ¼

−α2H=2
ð1 − α2H=α2LÞ

e4α2Hγ2tpump : ðG2Þ

We first consider the fast cooling limit tm ¼ 0. After time
zero, ψ̄2 goes back toward minimum II following the
dynamics

ZHIYUAN SUN and ANDREW J. MILLIS PHYS. REV. X 10, 021028 (2020)

021028-18



ψ̄2
2ðtÞ ¼

α2L=2
ð α2L
2ψ2

20

− 1Þe−4α2Lγ2t þ 1
≈ ψ̄2

20e
4α2Lγ2t;

for 4α2Lγ2t ≪ ln

�
α2L
2ψ̄2

20

�
and ψ̄2

20 ≪ α2L=2:

ðG3Þ

Thus at time tc when ψ1 fluctuation crosses over to
nonlinearity, ψ̄2 has recovered by an exponential factor.
The more accurate picture for the probability distribution is
that of Fig. 3(a) but shifted in the ψ2 direction by the
amount of ψ̄2

2ðtcÞ. For the probability of trapping into phase
I to still be close to one, we require that

ψ̄2=Δ
2 ðtcÞ ≪ hψ2

1itc ; ðG4Þ

which yields

ψ2=Δ
20 ≪

α1L
2

ζ1ð4α1Lγ1tcÞ−D=2 ðG5Þ

and further leads to the criterion

tpump ≫
Δ

4jα2Hjγ2
ln

1

ζ1
≡ td ðG6Þ

for the pump pulse in the leading order. Despite the
logarithmic factor, this timescale can be made small with
a larger jα2Hj; i.e., a stronger pump will prepare the ψ̄20

with a smaller value at time zero.
If the cooling rate is finite, it is simpler to consider the

case tm > tmu such that the crossover happens at tc before
tm. The pumping time is effectively longer than tpump in this
case since the suppression process of ψ2 lasts until t2, when
α2ðtÞ crosses zero. Applying Eq. (G4) to this case yields

tpump ≫
ðα2L þ jα2HjÞtm

2jα2Hj

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2γ1ðα1L þ jα1HjÞtm
ln

1

ζ1

s
þ jα1Hj
α1L þ jα1Hj

!

×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2γ1ðα1L þ jα1HjÞtm
ln

1

ζ1

s
þ jα1Hj
α1L þ jα1Hj

−
2jα2Hj

α2L þ jα2Hj

!
ðG7Þ

to leading order. For sufficiently large jαiHj, the right-hand
side of Eq. (G7) becomes negative and thus the criterion is
satisfied by any tpump > 0. This is because in the cooling
process before t2, the high-temperature stage already
suppresses ψ2 well enough.
In a realistic situation, the pump might not be strong

enough and the proportion of phase I domains created p1

can be calculated as a function of pump fluence or duration.

It should cross over sharply from 0 to 1 at the boundary of
Eq. (G6) or Eq. (G7) depending on which regime the
cooling rate is in.

APPENDIX H: JOINT PROBABILITY FUNCTION

The probability that ψð0Þ ¼ A and ψðrÞ ¼ B is

PðA; BÞ ¼ N
Z

Dψ exp

�
−
X
k

D−1
k ψkψ−k

�
δðψð0Þ − AÞδðψðrÞ − BÞ; ðH1Þ

where

Dk ¼ e4αkγt
1

αk

T
EcV

¼ 2hψ2
kit ðH2Þ

andN is the normalization of the functional integral and δ is a functional delta function. Representing the delta functions by
integrals gives

PðA;BÞ ¼ N
Z

dλ1dλ2

Z
Dψ exp

�
−
X
k

D−1
k ψkψ−k þ iλ1ðψð0Þ − AÞ þ iλ2ðψðrÞ − BÞ

�
ðH3Þ

or, Fourier transforming the real space ψ ,

PðA;BÞ ¼ N
Z

dλ1dλ2

Z
Dψ exp

�
−
X
k

D−1
k ψkψ−k þ iðλ1 þ eik·rλ2Þψk − iλ1A − iλ2B

�
: ðH4Þ
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We can now perform the integral over the ψk and arrive at

PðA;BÞ ¼ N 0
Z

dλ1dλ2 exp

�
−
X
k

Dk

4
½λ21 þ λ22 þ 2 cosðk · rÞλ1λ2� − iλ1A − iλ2B

�
: ðH5Þ

The sum over k results in

PðA; BÞ ¼ N 0
Z

dλ1dλ2 exp ½−ðλ1; λ2ÞM̂ðλ1; λ2ÞT − iðλ1Aþ λ2BÞ�; ðH6Þ

where

M̂ ¼ 1

2

� hψð0Þ2i hψð0ÞψðrÞi
hψð0ÞψðrÞi hψð0Þ2i

�
¼ 1

2

G
2α

�
1

16πγt

�
D=2

e4αγt
�

1 e−r
2=2ξðtÞ2

e−r
2=2ξðtÞ2 1

�

¼ α1
4

�
1 e−r

2=2ξðtcÞ2

e−r
2=2ξðtcÞ2 1

�
ðH7Þ

at t ¼ tc. We finally perform the λ integrals, getting

PðA;BÞ ¼ N 0 πffiffiffiffiffiffiffiffiffiffiffiffiffi
det½M�p exp

�
−
1

4
ðA;BÞM̂−1ðA; BÞT

�

¼ 1

π

1=αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−r

2=ξðtcÞ2
p exp

�
−

1=α

1 − e−r
2=ξðtcÞ2

�
A B

��
1 −e−r2=2ξðtcÞ2

−e−r2=2ξðtcÞ2 1

��
A

B

��
: ðH8Þ

APPENDIX I: COEFFICIENT λ AND ϑ

The coefficients are

λ ¼ ðc2 − 4Þð1=Δ−1Þ=2
�

−2α1 þ cα2
ð−2α2 þ cα1Þ1=Δ

�
1=2

; ðI1Þ

and

ϑ ¼ 2

π
λΓ
�
1

2
ð1þ 1=ΔÞ

�
αð1=Δ−1Þ=21 Δ−D=ð4ΔÞ

�
α1
α2

�ð1=2ΔÞð1−D=2Þ�ξ10
ξ20

�
D=ð2ΔÞ

: ðI2Þ

Note that αi should be interpreted as αiL in the fast cooling limit.

FIG. 10. Nonequilibrium phase diagram for the pumped parameter αiH. If αiH lies in the colored regions, as illustrated by the red dots,
the system can be trapped into the metastable SC sate. Dashed line is the trajectory of αiðtÞ in the cooling process.
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APPENDIX J: NONEQUILIBRIUM PHASE
DIAGRAMS

“Nonequilibrium” phase diagrams Fig. 10 can be drawn
for αiH. The system is originally at the blue dot αiL. If the
pumpbrings theαiH to anyof the colored regions,metastable
trapping into the SC (I) state could happen. However,
different regions have different stories as described in the
main text. For example, it αiH is in region 1 and tpump þ t0=2
is much larger than td ¼ ðΔ=4jα2Hjγ2Þ lnð1=ζ1Þ, the system
can be brought to disordered state by the pump. The
subsequent dynamics of fluctuation will lead the system
into the metastable SC state if the relaxation in the SC
direction is substantially faster.

APPENDIX K: NANOGRANULES

If the system is a nanogranule whose size is smaller than
a coherence length, one can neglect the spatial fluctuation
and treat the order parameter as uniform; i.e., one could
keep the k ¼ 0 mode only. The initial dynamics is an
expansion of the Gaussian probability due to thermal noise,
regardless of the flow direction due to the potential. After
the time 4αγt ∼ 1, the dynamics starts to be dominated by
the flow. At this time, ψ2

i ∼ Tv=αi and is much smaller than
αi if the system volume V is not too small. Thus non-
linearity is not yet onset. After passing the crossover point
ψ2
i ∼ Tv=αi to flow dynamics, the order parameter in each

basin will be finally attracted to the corresponding minima,
as shown in Fig. 4. One immediately observes that if ψ i
distribution is still tiny at the crossover point, most of the ψ
lies inside basin I due to the nearly vertical shape of the
basin boundary close to the origin.
To estimate the probability of trapping into phase I, one

can draw a rectangle centered at O with half-lengths of
Li ¼

ffiffiffiffiffiffiffiffiffi
hψ2

i i
p

. The length of its edge embedded in basin II is

l2 ¼ 4λLγ1α1=ðγ2α2Þ
2 while the total length is l ¼ 4L1 þ 4L2.

Therefore, the probability of trapping into phase I is
roughly

p1 ∼ 1 − l2=l ¼ 1 − κTδ
v; ðK1Þ

where δ ¼ 1
2
½γ1α1=ðγ2α2Þ − 1� > 0 and κ is order 1. Since

Tv is a very small number, this probability is almost unity.
After trapped into it, the lifetime of this metastable state is
exponentially large: T life ∼ ð1=γÞeU=Tv , where U is the
dimensionless energy barrier between the global and
metastable minima. The detailed calculation for the lifetime
is described by the Kramers theory [35,59].
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