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The creation of delocalized coherent superpositions of quantum systems experiencing different
relativistic effects is an important milestone in future research at the interface of gravity and quantum
mechanics. This milestone could be achieved by generating a superposition of quantum clocks that follow
paths with different gravitational time dilation and investigating the consequences on the interference signal
when they are eventually recombined. Light-pulse atom interferometry with elements employed in optical
atomic clocks is a promising candidate for that purpose, but it suffers from major challenges including its
insensitivity to the gravitational redshift in a uniform field. All of these difficulties can be overcome with
the novel scheme presented here, which is based on initializing the clock when the spatially separate
superposition has already been generated and performing a doubly differential measurement where the
differential phase shift between the two internal states is compared for different initialization times. This
scheme can be exploited to test the universality of the gravitational redshift with delocalized coherent
superpositions of quantum clocks, and it is argued that its experimental implementation should be feasible
with a new generation of 10-meter atomic fountains that will soon become available. Interestingly, the
approach also offers significant advantages for more compact setups based on guided interferometry or
hybrid configurations. Furthermore, in order to provide a solid foundation for the analysis of the various
interferometry schemes and the effects that can be measured with them, a general formalism for a
relativistic description of atom interferometry in curved spacetime is developed. It can describe freely
falling atoms as well as the effects of external forces and guiding potentials, and it can be applied to a very
wide range of situations. As an important ingredient for quantum-clock interferometry, suitable diffraction
mechanisms for atoms in internal-state superpositions are investigated too. Finally, the relation of the
proposed doubly differential measurement scheme to other experimental approaches and to tests of the
universality of free fall is discussed in detail.

DOI: 10.1103/PhysRevX.10.021014 Subject Areas: Atomic and Molecular Physics,
Gravitation, Quantum Physics

I. INTRODUCTION

In this article, a general formalism describing relativistic
effects in atom interferometry for atoms propagating in
curved spacetime is developed. This formalism is then
exploited in Sec. VI to present a novel scheme for quantum-
clock interferometry, which is sensitive to gravitational-
redshift effects and whose experimental implementation
should be within reach of the 10-meter atomic fountains of
Sr and Yb atoms that will soon become available at
Stanford and HITec (Hannover), respectively.
Remarkable advances in atom interferometry have

enabled the creation of macroscopically delocalized

quantum superpositions with atomic wave packets sepa-
rated up to half a meter [1]. Nevertheless, in all cases
realized so far, the differences in the dynamics of the two
wave packets of the superposition can be entirely described
in terms of Newtonian mechanics. While the impressive
precision of atomic clocks based on optical transitions
enables the measurement of the gravitational redshift for
height differences as little as one centimeter, this result is
achieved by comparing two independent clocks. In con-
trast, creating delocalized coherent superpositions of quan-
tum systems experiencing different relativistic effects
remains an important milestone in future research at the
interface of gravity and quantum mechanics.
This result couldbe achievedbygenerating a superposition

of quantum clocks that follow paths with different gravita-
tional time dilation and investigating the consequences on the
interference signal when they are eventually recombined [2].
More specifically, the proper-time differences between the
two interferometer arms imprint which-way information on
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the internal state of the clock which reduces the visibility of
the observed interference [3]. Both optical atomic clocks
[4–8] and light-pulse atom interferometers [9–19] have
demonstrated their ability to carry out high-precision mea-
surements in a wide range of applications. Therefore, a
natural possibility is to perform light-pulse atom interferom-
etry with the same atomic species employed in optical atomic
clocks and prepare them in a superposition of the two internal
states involved in the clock transition. Unfortunately, as
explained in Sec. V C, quantum-clock interferometers based
on this kind of setup suffer from major challenges, including
their insensitivity to gravitational time dilation in uniform
fields and the differential recoil for the two internal states.
Furthermore, even if they were sensitive to the gravitational
redshift, the parameter ranges typically attainable would lead
to rather small changes of visibility (also known as interfer-
ometer contrast), which would be very difficult to measure,
partly because other effects leading to contrast fluctuations
and contrast reduction would mask such small changes.
In this article, I will present a promising scheme for

quantum-clock interferometry that overcomes all these
difficulties and is sensitive to the gravitational redshift in
a uniform field. The key idea is to consider an adjustable
time for clock initialization and perform a doubly differ-
ential measurement comparing the outcomes for different
initialization times (defined with respect to the laboratory
frame). More specifically, one measures the differential
phase shift between the two internal states for a given
initialization time and then performs a second differential
phase-shift measurement for a different initialization time,
leaving everything else unchanged. The difference between
the two measurements is directly related to the different
gravitational time dilation experienced by wave packets at
different heights.
This scheme can be employed to test the universality of the

gravitational redshift (UGR) with spatially delocalized
quantum superpositions as will be shown with the example
of dilaton models, which provide a consistent framework for
parametrizing violations of the equivalence principle.
Moreover, it will be argued that this kind of experiment
should be feasible to implement with the 10-meter atomic
fountains employing Sr or Yb atoms that will soon become
available. Interestingly, besides light-pulse atom interferom-
eters, the scheme can also be used in more compact setups
based on guided interferometry or hybrid configurations.
In order to lay down a solid foundation for the analysis of

the various quantum-clock interferometry schemes and the
relativistic effects that can be measured with them, several
sections and Appendixes will be devoted to the formulation
and derivation of a general formalism for a relativistic
description of atom interferometry in curved spacetime.
A similar result for the propagation phase in the relativistic
case has previously been obtained based on a semiclassical
ansatz and restricted to freely falling particles [20,21].
Here, we provide instead a clean derivation of both the

propagation phase and the full wave-packet evolution,
which is valid not only for freely falling particles but also
in the presence of external forces and guiding potentials.
Furthermore, the formalism will be applied to extensions of
general relativity involving dilaton models and to the
discussion of related experimental approaches as well as
the effect of gravity gradients on the proper-time difference
between the two interferometer arms.
Note that although we mainly focus on examples of

nearly uniform gravitational fields, this formalism is
applicable to general spacetimes and can also be employed,
for example, for a detailed investigation of the effects of
gravitational waves on matter waves. Furthermore, as an
additional by-product, the proposed diffraction mecha-
nisms for atoms in internal-state superpositions can be
exploited in tests of the universality of free fall (UFF) with
superposition states such as those reported in Ref. [18] but
involving optical rather than hyperfine transitions.
The rest of the article is organized as follows. After

introducing the basic aspects of the quantum-clock model
in Sec. II, the key results of the paper are concisely
presented in Sec. III. Next, the general formalism describ-
ing the evolution of atomic wave packets in curved
spacetime is presented in Sec. IV. It can account for freely
falling atoms but also external forces and even guided
propagation. Moreover, it can be integrated into a relativ-
istic description of full atom-interferometer sequences,
which is then employed in Sec. V to discuss important
aspects of quantum-clock interferometry. There, the main
limitations of light-pulse atom interferometers in this
context, including their insensitivity to the gravitational
redshift in a uniform field, are explained and compared to
the case of guided interferometry. The novel scheme based
on a doubly differential measurement comparing different
initialization times and that overcomes these difficulties is
then presented in more detail in Sec. VI. It is argued that its
implementation should be feasible in the 10-meter atomic
fountains employing Sr or Yb atoms that will soon become
available, and we show that it can additionally be used
in guided and hybrid interferometry, where it offers
significant advantages, too. In Sec. VII, dilaton models
are considered as a consistent framework for investigating
violations of the equivalence principle, and we show that
the proposed quantum-clock interferometry scheme can
directly test the UGR. Furthermore, the relation to other
approaches and to violations of the UFF is also discussed in
detail. Finally, we end with our conclusions in Sec. VIII.
The technical details for a number of important issues

are addressed in several Appendixes. The Fermi-Walker
frame and the associated coordinates are presented in
Appendix A. They are exploited in Appendix B to derive
the evolution of atomic wave packets in a general curved
spacetime—first for freely falling atoms and then including
the effects of external forces and guiding potentials.
A relativistic description for the state evolution in an atom
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interferometer is provided in Appendix C, where the effect
of the laser pulses is analyzed and the connection between
the separation phase and the proper-time differences in
different frames for open interferometers is elucidated. The
two-photon pulse for the clock initialization and the
implications for the proposed quantum-clock interferom-
etry scheme are investigated in Appendix D, whereas the
possible diffraction mechanisms for atoms in internal-state
superpositions are considered in Appendix E. The effects of
gravity gradients on the proper-time difference for light-
pulse atom interferometers are analyzed in Appendix F,
where we show that the measurements of tidal-force effects
on delocalized quantum superpositions reported in
Ref. [19] can be alternatively interpreted in terms of such
proper-time differences. Finally, Appendix G outlines how
the formulation based on single-particle relativistic quan-
tum mechanics employed throughout the paper can be
derived from quantum field theory (QFT) in curved
spacetime and establishes under what conditions this
derivation is possible.
Throughout the paper, we use the Einstein summation

convention for repeated indices and the (þ;þ;þ) sign
conventions of Ref. [22], which include a positive signature
for the metric. Greek indices range over space and time,
while Latin indices denote spatial components only.
Moreover, vector and matrix notation with vectors denoted
by boldface characters is often employed for the spatial
components.

II. QUANTUM-CLOCK MODEL

A. Two-level atom

As a model for the quantum clock, we consider atoms
characterized by their center-of-mass (c.m.) motion and
their internal structure, represented by the two electronic
energy levels jgi and jei that will play a relevant role in our
analysis. In the absence of electromagnetic radiation driv-
ing transitions between the two levels, the Hamiltonian
operator Ĥ governing the dynamics of such a two-level
atom consists of two contributions, one for each internal
state:

Ĥ ¼ Ĥ1 ⊗ jgihgj þ Ĥ2 ⊗ jeihej; ð1Þ

where Ĥ1 and Ĥ2 are the Hamiltonian operators for the c.m.
dynamics of an atom in the jgi and jei internal states. They
are associated with the classical actions

Sn½xμðλÞ� ¼ −mnc2
Z

dτ

¼ −mnc
Z

dλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dλ
dxν

dλ

r
; with n¼ 1;2;

ð2Þ

describing the motion of relativistic massive particles in a
spacetime with metric gμν. The parameters m1 ¼ mg and
m2 ¼ mg þ Δm correspond to the rest mass of an atom in
the ground and excited states, respectively, and Δm ¼
ΔE=c2 is directly related to the energy difference ΔE
between the two internal states.
Several remarks are in order. First, as explicitly indicated

in Eq. (2), the classical action is proportional to the proper
time along the worldline xμðλÞ corresponding to the
classical spacetime trajectory. Second, although the action
is reparametrization invariant, i.e., invariant under changes
of the worldline parameter λ, throughout the paper we
typically fix this freedom by choosing the parameter to
coincide with the time coordinate within the coordinate
system under consideration in each case, so the spacetime
trajectory xμðtÞ ¼ (ct;xðtÞ) is entirely determined by its
spatial part xðtÞ. Third, we assume that the lifetime of the
excited state jei is much longer than the total evolution
time, so the spontaneous decay can be neglected through-
out the analysis.
For nonrelativistic c.m. motion in a weak gravitational

field generated by Newtonian sources (with nonrelativistic
motion), the action in Eq. (2) reduces to

Sn½xðtÞ� ¼
Z

dt

�
−mnc2 þ

1

2
mnv2 −mnUðxÞ

�
; ð3Þ

where we often consider an expansion up to quadratic order
of the gravitational potential UðxÞ around a given point x0,

UðxÞ ¼ U0 − g ⋅ ðx − x0Þ −
1

2
ðx − x0ÞTΓðx − x0Þ; ð4Þ

in terms of the gravitational acceleration g at that point and
the gravity gradient tensor Γ. In deriving Eq. (3), a metric of
the form

gμνdxμdxν ¼ −(c2 þ 2UðxÞ)dt2 þ ð1 − 2UðxÞ=c2Þdx2

ð5Þ

has been considered, and terms of higher order in v2=c2 and
UðxÞ have been neglected. In fact, the dependence onUðxÞ
of the spatial components of the metric, which gives rise to
terms of order ðv2=c2ÞðUðxÞ=c2Þ, does not contribute at
this order either. Equations (3) and (4) can be immediately
generalized to time-dependent gravitational fields such as
those sourced by a time-dependent mass distribution: One
simply needs to include a time dependence for the
gravitational potential Uðx; tÞ as well as the expansion
coefficients U0ðtÞ, gðtÞ, and ΓðtÞ. Moreover, one can also
include the effects of nongravitational external forces by
adding an external potential as explained in Sec. IV B. The
relation between the relativistic action for a massive particle
and proper time, as well as its nonrelativistic expansion, has
also been employed in Refs. [3,23].
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Note that whereas Eq. (3) is restricted to the special case
of nonrelativistic motion and weak fields, the formalism
that will be presented in Sec. IVand Appendixes A–C holds
for arbitrary relativistic motion in a general curved
spacetime.

B. Clock initialization and read-out

Atomic clocks are typically operated in such a way that
the phases accumulated by the two internal states differ by a
term proportional to the proper time τ and the energy
difference ΔE. This is indeed the case for freely falling
atoms launched in an atomic fountain or for atoms trapped
in an optical lattice with a magic wavelength, as further
discussed in the next section.
The transitions between the two internal states are driven

by coherent electromagnetic radiation that resonantly
couples both states. In particular, when starting with atoms
in the ground state, the clock is initialized by applying a
pulse with suitably chosen amplitude and duration, a
so-called π=2 pulse, that creates an equal amplitude super-
position of the two states:

jgi → 1ffiffiffi
2

p ðjgi − ieiφ1e−iωt1 jeiÞ; ð6Þ

where t1 characterizes the time when the pulse is applied in
terms of the time coordinate t for the reference frame
naturally associated with the pulse generation, φ1 is the
pulse phase, and ω is the angular frequency of the pulse in
that frame [24]. After evolving for some proper time
Δτ ¼ ðτ − τ1Þ, the state becomes

jΦðτÞi ¼ e−imgc2Δτ=ℏffiffiffi
2

p ðjgi − ieiφ1e−iωt1e−iΔEΔτ=ℏjeiÞ: ð7Þ

Finally, the clock is typically read out by applying, at
some time t2, a second π=2 pulse that recombines the two
internal states and leads to a quantum state with the
following amplitudes:

jhgjΦðτ2Þij ¼
1ffiffiffi
2

p j1 − e−iδφeiωΔte−iΔEΔτ=ℏj;

jhejΦðτ2Þij ¼
1ffiffiffi
2

p j1þ e−iδφeiωΔte−iΔEΔτ=ℏj; ð8Þ

with δφ ¼ φ2 − φ1, Δt ¼ t2 − t1, and Δτ ¼ τ2 − τ1. The
resulting interference leads to oscillations in the number of
atoms in the ground and excited states as a function of the
pulse frequency ω, which is the basis of the Ramsey
spectroscopymethod. It can be used to tie the pulse frequency
ω to the energy differenceΔE between the two atomic levels,
and this link is, in turn, employed to stabilize the clock’s local
oscillator to which the pulse frequency is referenced.
Whenever Δτ ¼ Δt, for example, for atoms trapped in an

optical lattice and at rest in the reference frame where the
interrogating laser pulses aregenerated, the angular frequency
ω can be directly linked to the energy ΔE of the atomic
transition divided by ℏ. In general, however, the number of
atoms in each state after the read-out pulse oscillates as a
function of (ω − ðΔE=ℏÞðΔτ=ΔtÞ), i.e.,

Pjgi ¼ 1 − Pjei ¼ P(ω − ðΔE=ℏÞðΔτ=ΔtÞ); ð9Þ

so that ω is linked to ΔE=ℏ times the redshift factor
Δτ=Δt.
Note that in contrast to the usual operation of atomic

clocks based on Ramsey spectroscopy, in Secs. V–VII, we
consider the state evolution as a function of proper time
without applying the final read-out pulse. Instead, we are
interested in the decrease of the quantum overlap between
clock states evolving along two interferometer branches
with different proper times.

III. KEY RESULTS

This section summarizes the key results of the paper.
More details and further results can be found in the
remaining sections and appendices.
Interferometry experiments where quantum clocks expe-

rience different gravitational time dilation along the two
interferometer arms offer an excellent opportunity for
exploring a regime where both quantum mechanics and
certain aspects of general relativity simultaneously play an
essential role. As a matter of fact, the best optical atomic
clocks to date are sensitive to gravitational redshifts
corresponding to height differences in Earth’s gravitational
field as small as 1 cm, and light-pulse atom interferometers
have demonstrated the generation and subsequent recom-
bination of quantum superpositions of atomic wave packets
separated by up to half a meter. Therefore, light-pulse
interferometers with atomic species employed in optical
atomic clocks, such as Sr or Yb, seem to be a natural
candidate for observing those effects. However, there are
serious difficulties that prevent the straightforward imple-
mentation of this idea.
In order to explain what the main challenges are and how

to overcome them, it is particularly useful to first consider
the main result of the relativistic description of atom
interferometry in curved spacetime presented in Sec. IV
andAppendixesB andC.As shown there, the propagation of
atomic wave packets in curved spacetime can be conven-
iently described in terms of their central spacetime trajecto-
ries and the evolution of centered wave packets in
the comoving frame associated with those trajectories.
Moreover, the phase accumulated by the wave packets as
they propagate is proportional to the atom’s restmass and the
proper time along the central trajectory, which in turn
satisfies the classical equations of motion and includes
the momentum kicks from the laser pulses [25]. Thanks
to this description, we are able to illustrate many important
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aspects of the paper with simple spacetime diagrams
displaying the central trajectories of the atomic wave
packets.
In particular, making use of these results, it is possible to

understand, in simple terms, one of the main challenges
alluded to above, which is the insensitivity to gravitational
redshift of standard light-pulse atom interferometers (and
with no internal-state changes) in a uniform gravitational
field. Indeed, by considering a freely falling frame, where
any gravitational effects are absent and the central space-
time trajectories between laser pulses reduce to straight
lines, it is clear that the proper time along each arm, which
is a frame-invariant quantity, does not depend on the
gravitational acceleration g. (Note that the momentum
transfer from the laser pulses can be regarded as being
approximately equal in the freely falling and laboratory
frames and that any effects due to the finite speed of light
are suppressed by additional powers of 1=c as explained in
Sec. V C.)
A second important difficulty for practical implementa-

tion is that the effect to be measured in previous proposals is
too small for feasible parameter ranges. More specifically, it
has been pointed out that proper-time differences between
the two interferometer arms give rise to which-way infor-
mation for the quantum clock that causes a decrease of
visibility for the interference signal [3]. However, as shown
in Sec. V C, for interferometer times of the order of a second
and vertical arm separations of tens of centimeters, the
differences in gravitational time dilation would lead, for an
internal-state energy differenceΔE ¼ 1 eV, to a decrease of
visibility (also known as interferometer contrast) well below
the 1% level. While atom interferometers can be sensitive to
small phase shifts (even in the milliradian range), they
cannot reliably measure such a small change of visibility
because it will be easily masked by a number of spurious
effects that can lead to a larger contrast reduction.
Yet another difficulty is the differential recoil experi-

enced by the two internal states due to their slightly
different masses. The difference between recoil velocities,
which is proportional to Δm=m, is rather small, but the
corresponding changes of the central trajectories lead to
modifications of the proper time comparable to those
caused by the gravitational redshift.
All these challenges can be overcome with the doubly

differential measurement scheme proposed in Sec. VI and
whose key aspects are discussed next.

(i) Differential phase shift.—By performing a state-
selective measurement at the exit ports of the
interferometer, it is possible to extract, in a single
shot, the phase shifts δϕð1Þ and δϕð2Þ for the two
internal states. One can then consider the differential
phase shift δϕð2Þ − δϕð1Þ, which has decisive advan-
tages compared to a visibility measurement as
explained in Sec. V B. First, the decrease of visibil-
ity is directly related to the differential phase shift,

but it is quadratically suppressed for small values of
δϕð2Þ − δϕð1Þ; thus, a differential phase shift of
1 mrad corresponds to a visibility reduction of less
than one part in 106. Second, atom interferometers
are more sensitive to phase-shift changes, which
are not masked by spurious contrast-reduction ef-
fects, and this is especially the case for differential
measurements, where many noise sources (such as
vibration noise) and systematic effects are highly
suppressed through common-mode rejection.

(ii) Initialization pulse.—As we will see, a key aspect in
order to overcome the insensitivity to gravitational
redshift of light-pulse interferometers is to initialize
the quantum clock once the spatially separated
superposition has already been generated. This
can be accomplished with an initialization pulse
involving a pair of equal-frequency counterpropa-
gating laser beams that drive a two-photon transition
between the two clock states. Two closely related
features of this process, which can be understood as
the absorption of two counterpropagating photons
with half the frequency of the clock transition [26],
are particularly important for us. First, there is no net
momentum transfer. And second, the effective phase
associated with the two-photon process is spatially
independent in the laboratory frame, so in this frame
(but not in the freely falling one), the spacetime
hypersurfaces of constant phase correspond to
simultaneity hypersurfaces and the clock is simulta-
neously initialized on the two interferometer arms.
In this way, the argument about the insensitivity to
gravitational time dilation that necessarily followed
in the freely falling frame is circumvented due to the
relativity of simultaneity for spatially separated
events, as shown in detail in Sec. VI B.

(iii) Adjustable initialization time.—By repeating the
interferometry measurement with different initial-
ization times but leaving everything else unchanged,
one can get a direct measurement of the gravitational
redshift from a comparison of the differential phase
shifts obtained for two initialization times ti and t0i.
Indeed, the difference between the two corresponds
to the additional time spent in the excited state for
the earlier initialization time (dashed worldline
segments in Fig. 1) and is given by

Δmc2ðΔτb − ΔτaÞ=ℏ ¼ ΔmgΔzðt0i − tiÞ=ℏ; ð10Þ

where Δτa and Δτb are the proper times along the
central trajectories of the two arms (a and b)
between the two initialization times, and on the
right-hand side we have substituted the result for the
proper-time difference associated with a vertical
separation Δz in a uniform gravitational field.
Interestingly, this doubly differential measurement
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benefits from further immunity to unwanted effects
acting differently on both internal states after the
second initialization time provided that they are
stable from shot to shot.

A natural implementation of the doubly differential
measurement scheme in light-pulse atom interferometry
based on a reversed Ramsey-Bordé interferometer [27] is
shown in Fig. 1 and further discussed in Sec. VI A. The
interferometer involves two pairs of laser pulses acting as
Bragg diffraction gratings: The first pair generates a
superposition of two atomic wave packets moving with
the same velocity and a vertical separation Δz, which are
then recombined by the second pair.
For the clock transitions employed in optical atomic

clocks, an arm separation Δz ¼ 1 cm, and a range of
initialization times Δti ¼ 1 s, one gets doubly differential
phase shifts of the order of 3 mrad. This result means that
for shot-noise-limited sensitivity and atom clouds with
N ∼ 105 atoms, it would be resolvable with very few shots
or, alternatively, after integrating down for hundreds of
shots in the case of lower sensitivities or atom numbers.
Such parameter ranges should be within reach of the new
10-meter atomic fountains operating with Sr and Yb atoms
that will soon become operational at Stanford and HITec
(Hannover). A more detailed feasibility analysis of the
experimental implementation is provided in Sec. VI D. In
particular, such an implementation will require laser pulses
capable of efficiently diffracting atoms in internal-state
superpositions, and two possible mechanisms for that are
considered in Appendix E.
The proposed scheme will therefore enable tests of UGR

with macroscopically delocalized quantum superpositions.
In order to show this rigorously, dilaton models are
considered in Sec. VII as a consistent framework for
parametrizing violations of the equivalence principle,
and it is shown that quantum-clock interferometry will
place bounds on the same parameter combination as the

comparison of two independent clocks. The relation to
other experimental approaches is also discussed there.

IV. FREE OR GUIDED PROPAGATION AND
GRAVITATIONAL REDSHIFT

The evolution of an atomic wave packet can be con-
veniently described in terms of its central trajectory, which
satisfies the classical equation of motion, and a centered
wave packet accounting for its expansion dynamics. This
result has previously been established for nonrelativistic
atoms [28–31]. Its generalization to the relativistic case for
matter waves propagating in a general curved spacetime is
derived in Appendix B, and the main results are presented
in the next subsections.

A. Free propagation of the quantum clock

As explained in Appendix B 1, the state evolution for an
atom freely falling in a gravitational field can be naturally
described in terms of the Fermi normal coordinates
associated with the spacetime geodesic XμðλÞ followed
by the central position of the atomic wave packet, which is
at rest in that frame. The time coordinate τc in this
comoving frame coincides with the proper time along
the central trajectory, whose Fermi coordinates are simply
XμðτcÞ ¼ ðcτc; 0Þ. In turn, the phase accumulated by the
wave packet, which is given by the action in Eq. (2)
evaluated along the central trajectory, reduces to

Sn½XμðλÞ� ¼ −mnc2
Z

dτc: ð11Þ

Moreover, in this frame, the evolution of the centered wave

packet jψ ðnÞ
c ðτcÞi for each internal state is governed by the

Schrödinger equation with the Hamiltonian operator

FIG. 1. Central trajectories for a reversed Ramsey-Bordé interferometer in a uniform gravitational field. A doubly differential
measurement comparing the outcomes for different initialization times (ti and t0i) is directly related to the proper-time difference between
the two dashed worldline segments and is sensitive to gravitational time-dilation effects.
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ĤðnÞ
c ¼ 1

2mn
p̂2 −

mn

2
x̂TΓðτcÞx̂; ð12Þ

where the gravity gradient tensor ΓðτcÞ is directly related to
the certain components of the spacetime curvature in Fermi
coordinates evaluated on the central trajectory: ΓijðτcÞ ¼
−c2R0i0jðτc; 0Þ. These results are obtained after two appro-
ximations discussed in Appendix B 1, which are valid for a
sufficiently small wave-packet size Δx compared to the
characteristic curvature radius [32] and for centered wave
packets with nonrelativistic momentum components.
While these coordinates are particularly convenient

when calculating the evolution of the centered wave packet,
other suitable coordinate systems can be employed to find
the explicit result for the central trajectory XμðλÞ as a
solution of the classical equation of motion associated with
the action in Eq. (2). One can then calculate the proper time
and the propagation phase along the trajectory by evalu-
ating Eq. (2) for that solution.
Fermi coordinates have previously been used for

studying the expansion of a freely falling BEC in a
Schwarzschild spacetime [33] as well as the effect of
gravitational waves in an atom interferometer [34].

B. Propagation in the presence of external forces

In a realistic situation, however, there are small but
nonvanishing external forces acting on a freely falling atom
(e.g., due to spurious magnetic field gradients), and the
central position of the atomic wave packets no longer
follows a spacetime geodesic but an accelerated trajectory
XμðλÞ. Fortunately, the formalism presented above for the
freely falling case can be generalized to this situation, as
shown in Appendix B 2, by considering the Fermi-Walker
coordinates associated with the accelerated trajectory.
In terms of these coordinates, detailed in Appendix A,
the central trajectory is given by XμðτcÞ ¼ ðcτc; 0Þ, and the
time coordinate τc coincides with the proper time along the
trajectory, with four-velocity Uμ ¼ dXμ=dτ ¼ ðc; 0Þ and
nonvanishing acceleration Uν∇νUμ ¼ (0; aðτcÞ).
For simplicity, we model the external forces acting on the

atom by adding to the right-hand side of Eq. (2) the proper-
time integral, with a minus sign, of a potential VnðxμÞ. The
classical action that corresponds to the phase accumulated
by the wave packets then becomes

Sn½XμðλÞ� ¼ −mnc2
Z

dτc −
Z

dτcVnðτc; 0Þ; ð13Þ

and Vnðτc;xÞ is the potential characterizing the external
forces evaluated in the Fermi-Walker frame, where the
wave packet is at rest. The gradient of this potential is
directly related to the acceleration of the central trajectory
as follows:

aðτcÞ ¼ −
ð∇VnÞðτc; 0Þ

mn þ Vnðτc; 0Þ=c2
: ð14Þ

On the other hand, the second derivatives of the potential
contribute to the expansion dynamics of the wave packet.
Indeed, for locally harmonic potentials (which can be well
approximated by a quadratic function within the size of the
wave packet), the dynamics of the centered wave packets

jψ ðnÞ
c ðτcÞi in the Fermi-Walker frame is governed by a

Schrödinger equation with the Hamiltonian operator

ĤðnÞ
c ¼ 1

2mn
p̂2 þ 1

2
x̂T(VðnÞðτcÞ −mnΓðτcÞ)x̂; ð15Þ

where VðnÞ
ij ðτcÞ ¼ ∂i∂jVnðτc;xÞjx¼0.

As done in the previous subsection, the two approx-
imations based on the small wave-packet size compared to
the curvature radius and the nonrelativistic momenta of the
centered wave packet have been used when deriving
Eq. (15). Moreover, in this case, an additional approxima-
tion discussed in Appendix B 2 and relying on the con-
dition ja · Δxj=c2 ≪ 1 has also been employed.

C. Guided propagation

The approach introduced in the previous subsection in
order to account for external forces can describe the effect
not only of small spurious forces but also of the much
stronger ones employed for guiding the propagation of the
atomic wave packets. As a simple illustration, we analyze
the example of a static trapped configuration in an
approximately uniform gravitational field.
Let us consider a harmonic trapping potential

VnðxÞ ¼ VðnÞ
0 þ 1

2
ðx − x0ÞTVðnÞðx − x0Þ

¼ VðnÞ
0 þ 1

2
mnðx − x0ÞTΩ2

nðx − x0Þ; ð16Þ

where we have introduced, for later convenience, the
frequency matrix Ωn defined by mnΩ2

n ¼ VðnÞ; we assume
that we are in a regime where the classical action is well
approximated by the nonrelativistic expression in Eq. (3),
from which one can obtain the central trajectory and
calculate the propagation phase. For a static central trajec-
tory, the kinetic term does not contribute, and the combi-
nation of gravitational and external potentials becomes

mnUðxÞ þ VnðxÞ ¼ mnðU0 − g · ΔxnÞ þ VðnÞ
0 þ ΔVðnÞ

0

þ 1

2
mnðx − x̄0ÞTΩ2

nðx − x̄0Þ; ð17Þ

where x̄0 ¼ x0 þ Δxn, with Δxn ¼ Ω−2
n g and ΔVðnÞ

0 ¼
ðmn=2ÞΔxT

nΩ2
nΔxn ¼ mng · Δxn=2.
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Thus, we see that the effect of the uniform gravitational
field is to shift the equilibrium position by Δxn from the
minimum of the external potential at x ¼ x0. The shift will
be equal for both internal states (i.e., Δx1 ¼ Δx2 ≡ Δx) if
one adjusts VðnÞ for the two states so that Ω1 ¼ Ω2. Such a
choice also guarantees that the c.m. energy for the two
states is the same (ℏΩ1=2 ¼ ℏΩ2=2) if the trapped wave
packets find themselves in the ground state. This fact
implies that the difference between the phases accumulated
by the two internal states with centered wave packets in the
ground state of the trapping potential is independent of this
external potential, and it is given by

ðS2 − S1Þ=ℏ ¼ Δmc2Δτ=ℏ; ð18Þ

provided that Vð1Þ
0 ¼ Vð2Þ

0 . The result follows after neglect-

ing the contribution fromΔVð2Þ
0 − ΔVð1Þ

0 , which amounts to
Δmg · Δx and could be resolved by the most precise
optical atomic clocks to date only for Δx≳ 1 cm, whereas
the spatial shifts typically induced are much smaller than
that.
This simple example closely resembles the situation for

atomic clocks based on optical transitions of neutral atoms
trapped in an optical lattice generated by counterpropagating
beams with a “magic” wavelength [7]. For instance, for
sufficiently deep blue-detuned 3D lattices, the periodic
optical potential can be approximated near every minimum

by Eq. (16) with VðnÞ
0 ¼ 0. Strictly speaking, one would

actually need to tune the laser wavelength slightly away
from the magic wavelength, for which Vð1Þ ¼ Vð2Þ. Indeed,
in order to haveΩ1 ¼ Ω2, a relative difference between Vð1Þ

and Vð2Þ of order Δm=m is necessary. In principle, this
difference would be implicitly taken into account in the
experimental implementation when the laser wavelength of
the optical lattice is calibrated by requiring that the transition
frequency between the two clock states, jgi and jei, becomes
independent of the intensity of the lattice beams,
i.e., independent of the amplitude of the optical potential
[7]. However, current setups, with frequencies Ω1 and Ω2

ranging from tens to hundreds of kHz and Δm=m ∼ 10−11,
are not sensitive to this effect yet because relative differences
between Ω1 and Ω2 of order Δm=m imply changes of the
order of 10−6 Hz or less in the frequency of the clock
transition,which is below the best precisions achieved so far.
Therefore, at this level, it is also possible to use red-detuned
1D lattices at a magic wavelength, with Vð1Þ ¼ Vð2Þ and

Vð1Þ
0 ¼ Vð2Þ

0 < 0.
For simplicity, we have employed Eq. (3), valid for weak

gravitational fields and nonrelativistic c.m. motion. How-
ever, the previous considerations can be straightforwardly
generalized to the fully relativistic case by working in the
Fermi-Walker frame introduced in the previous subsection
and making use of Eqs. (13)–(15); see Appendix B 3 for

further details. In doing so, one takes into account that a
static central position in a time-independent gravitational
field corresponds to an accelerated spacetime trajectory
with a ¼ −g. Notice also that the gravity gradient con-
tributes to the dynamics of the centered wave packets,
governed by the Hamiltonian in Eq. (15). This effect is
usually rather small, but it can be easily included by
subtracting the gravity-gradient tensor Γ from the fre-
quency matrices Ω2

1 and Ω2
2.

D. Example: Gravitational redshift
in atomic-fountain clocks

As a simple application illustrating a number of aspects
introduced in the previous subsections, we consider a pair
of clocks based on atomic wave packets following two
different trajectories in a uniform gravitational field, as
shown in Fig. 2. One corresponds to free fall along the
vertical direction and the other to atomic wave packets held
at a static position by a trapping potential. Moreover, we
assume that the trapping potential fulfills the conditions
discussed in Sec. IV C and that Eq. (18) holds. Therefore, if
the two-level atoms are initialized when the two trajectories
first coincide and read out when they coincide again, the
difference between the two clocks will correspond to the
proper-time difference between the two trajectories. (Here,
we assume that the recoil from the initialization and read-
out pulses can be neglected, either because it is small or
because the atoms are tightly confined.)
The proper times along the two spacetime trajectories

can be calculated by means of the fully relativistic
expression in Eq. (2), but for weak fields and nonrelativistic
velocities, Eq. (3) is a good approximation. The phase shift
between the two clock states for the trapped atoms is then
given by

ϕ2 − ϕ1 ¼ −ðΔmc2=ℏÞð1þ U0=c2ÞΔt; ð19Þ

FIG. 2. Spacetime trajectories in a uniform gravitational field
for a two-level atom trapped at constant height (a) and for a freely
falling one (b). They correspond to the central trajectories of the
atomic wave packets.
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where U0 ¼ Uðx̄0Þ is the value of the gravitational poten-
tial at the central position of the trapped wave packets. On
the other hand, evaluating Eq. (3) for the freely falling
trajectory (parallel to g) in a uniform gravitational field
yields

Sn ¼ −mnc2ð1þ U0=c2ÞΔt −
1

24
mng2Δt3; ð20Þ

where g ¼ jgj and Δt is the time interval between the first
and second intersections of the freely falling spacetime
trajectory with the static one at x ¼ x̄0. The Δt3 phase
contribution for uniform force fields, as well as possible
ways of measuring it with atom interferometry, has been
investigated in Ref. [35], and its connection with the
relativistic time dilation for a freely falling particle has
been pointed out in Ref. [36]. From Eq. (20), one can
immediately obtain the following phase difference between
the internal states, which determines the outcome of the
atomic clock’s read-out:

ϕ2−ϕ1¼−
�
Δmc2

ℏ

��
ð1þU0=c2ÞΔtþ

1

24

g2

c2
Δt3

�
: ð21Þ

The term proportional to g2Δt3, which can be interpreted
as the proper-time difference between the two trajectories
in Fig. 2, can be measured by comparing the read-outs of
the static and freely falling clocks, determined, respec-
tively, by Eqs. (19) and (21). As explained in Sec. II B, in
practice, one actually determines the transition frequency
in a Ramsey spectroscopy measurement, and the resulting
frequencies for the two clocks are proportional to
the corresponding redshift factor Δτ=Δt in each case,
which differ by ðg2=c2ÞΔt2=24. For Δt ¼ 1 s, this differ-
ence amounts to a relative frequency difference
Δν=ν ∼ 5 × 10−17. While this precision is feasible for static
clocks based on optical transitions of cold atoms trapped in
magic-wavelength optical lattices, it is about an order of
magnitude more demanding than the highest precision
achievable to date with atomic clocks based on microwave
transitions of cold atoms freely falling in atomic fountains.
Improvements in the latter would therefore be necessary in
order to see this effect when comparing the two [37].
Alternatively, in larger atomic fountains such as Stanford’s
10-meter tower [38], where times in excess of Δt ¼ 2 s can
be reached, the resulting frequency difference would
increase by an order of magnitude and become comparable
to the current sensitivity of microwave-based clocks.
As a matter of fact, there are much larger special and

general relativistic time-dilation effects to which atomic
clocks are sensitive, but they would affect the two clocks
being compared here in the same way. They are associated
with different Earth rotation velocities for different latitudes
(corresponding to differences of the order of 102 m=s) and

with laboratory height differences of the order of 102

or 103 m.
The example analyzed in this subsection involves inde-

pendent atoms (in a superposition of internal states)
propagating along the two trajectories and is equivalent
to comparing classical clocks following those trajectories.
In contrast, we next consider a quantum superposition for
each single atom of wave packets following two spatially
separated paths.

V. QUANTUM-CLOCK INTERFEROMETRY

A. Proper time and quantum-clock interferometry

Let us consider an atom interferometer with the central
trajectories of the atomic wave packets propagating
along the different interferometer branches schematically
depicted in Fig. 3. If we assume, for simplicity, that the
evolution of the centered wave packets along the two
interferometer arms (a and b) is approximately the same,
the state at the first exit port (I) is given by

jψ Ii ¼
1

2
ðeiϕa jψai þ eiϕb jψbiÞ ≈

1

2
ð1þ eiδϕÞeiϕa jψai;

ð22Þ

where the phase shift δϕ ¼ ϕb − ϕa is the difference
between the phases accumulated along the two branches
by the interfering wave packets. These phases include the
propagation phase described in Sec. IV for both free and
guided propagation, corresponding to Eqs. (11) and (13), as
well as the laser phases associated with any laser pulses
employed to diffract the atomic wave packets. Further
details can be found in Appendix C, where the description
of a full atom interferometer including relativistic effects is
provided.
From Eq. (22), the following probability for each atom to

be detected in exit port I is immediately obtained:

FIG. 3. Central trajectories for the interfering wave packets of a
quantum clock at exit port I. Nontrivial effects arise when the
proper times along the two interferometer branches (a and b)
differ. Analogous results hold for exit port II.
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hψ Ijψ Ii ¼
1

2
ð1þ cos δϕÞ; ð23Þ

which exhibits oscillations as a function of δϕ due to the
interference of the wave packets propagating along the two
interferometer arms. Thus, the phase shift δϕ can be
experimentally obtained by measuring the oscillations of
the fraction of atoms detected in each exit port. The
expression for the second exit port (II) is completely
analogous to Eq. (23) but with a minus sign before the
cosine function.
These results also hold for the two-level atom introduced

in Sec. II if one starts with an initial state jψ0i ⊗ jgi, which
is a tensor product of the state jψ0i for the c.m. and the
internal state jgi. However, the situation changes if one
initializes the clock as described in Sec. II B,

jψ0i ⊗ jgi → jψ0i ⊗
1ffiffiffi
2

p ðjgi − ieiφ0 jeiÞ; ð24Þ

before the c.m. state is split into a coherent superposition of
wave packets following different central trajectories that are
eventually recombined. Provided that the external poten-
tials for the two internal states fulfill the conditions
discussed in Sec. IV C, so that their effect on the evolution
of the two internal states is the same, the state at the exit
port is given by

jΨIi ¼
1

2
ðeiϕa jψai ⊗ jΦai þ eiϕb jψbi ⊗ jΦbiÞ; ð25Þ

with

jΦai ¼
1ffiffiffi
2

p ðjgi − ie−iΔEΔτa=ℏeiφ0 jeiÞ;

jΦbi ¼
1ffiffiffi
2

p ðjgi − ie−iΔEΔτb=ℏeiφ0 jeiÞ; ð26Þ

where Δτa and Δτb are the proper-time intervals for the
central trajectory of each interferometer branch. In deriving
Eq. (25), it has been implicitly assumed that the central
trajectories are the same for the two internal states. This
assumption can be relaxed when analyzing separately the
evolution of the two internal states as explained in the next
subsection. In fact, the coincidence of the central trajecto-
ries for the two internal states and the implications
otherwise will be discussed in Secs. V C 2 and VI C for
light-pulse interferometers, as well as Secs. V D and VI E
for guided interferometry.
From Eqs. (25) and (27), and if we assume that jψai ≈

jψbi as done above, the probability for each atom to be
detected in exit port I becomes

hΨIjΨIi ¼
1

2
ð1þ C cos δϕ0Þ; ð27Þ

with

C ¼ jhΦbjΦaij ¼ cos

�
ΔE
2ℏ

ðΔτb − ΔτaÞ
�
: ð28Þ

Hence, proper-time differences between the two interfer-
ometer branches imply a decrease of the quantum overlap
between the clock states in the different branches and lead
to a reduced visibility of the interference signal. As pointed
out in Ref. [3], this visibility reduction can be understood as
a consequence of the entanglement between the quantum
state of the atom’s c.m. motion and the clock state, which
carries which-way information.
Note that hΦajΦbi ¼ C exp½−iΔEðΔτb − ΔτaÞ=2ℏ� is a

complex number, and one needs to take into account that its
phase also contributes to the phase shift δϕ0, which
determines the detection probability for port I and is
given by

δϕ0 ¼ δϕ −
ΔE
2ℏ

ðΔτb − ΔτaÞ: ð29Þ

Employing Eq. (11) or (13) for the computation of the
propagation phases that contribute to δϕ, one gets

δϕ0 ¼−
ðm1þm2Þc2

2ℏ
ðΔτb−ΔτaÞþδϕpotþδϕlaser; ð30Þ

where δϕlaser and δϕpot contain, respectively, the laser phases
and the contributions of the external potential to the propa-
gation phases. This result is valid for closed atom interfer-
ometers,whereas for open ones, the extra term δϕsep discussed
in Appendix C 3 needs to be included. Remember also that it
has been assumed that δϕlaser and δϕpot are the same for both
internal states, an assumption thatwill be relaxed and critically
analyzed in the forthcoming subsections.

B. Time-dilation effects and differential
phase-shift measurements

By separately analyzing the evolution and interference of
the wave packets for each internal state (and making use of
the formalism laid out in Appendix C for the description of
a full atom interferometer), it is possible to have an exact
treatment that can go beyond the assumptions made when
deriving Eq. (25). Furthermore, this method provides an
alternative interpretation of the loss of contrast found in the
previous subsection that can be exploited to devise schemes
capable of measuring this effect with a much higher
sensitivity.
We illustrate this alternative interpretation by rederiving,

under the same assumptions, the results obtained in the
previous subsection. Analogously to Eq. (22), if one takes
jψ0i ⊗ jgi as the initial state, the state in the first exit port is
given by
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jΨð1Þ
I i ¼ 1

2
ð1þ eiδϕ

ð1Þ Þeiϕð1Þ
a jψ ð1Þ

a i ⊗ jgi: ð31Þ

Similarly, for the initial state jψ0i ⊗ jei, one has

jΨð2Þ
I i ¼ 1

2
ð1þ eiδϕ

ð2Þ Þeiϕð2Þ
a jψ ð2Þ

a i ⊗ jei; ð32Þ

with

δϕð2Þ ¼ δϕð1Þ − ðΔE=ℏÞðΔτb − ΔτaÞ: ð33Þ

Therefore, if one initializes the clock state according to
Eq. (24), the state in exit port I becomes, by linearity,

jΨIi ¼
1ffiffiffi
2

p ðjΨð1Þ
I i − ieiφ0 jΨð2Þ

I iÞ; ð34Þ

and the probability for each atom to be detected in this port
independently of the internal state is

hΨIjΨIi ¼
1

2
ðhΨð1Þ

I jΨð1Þ
I i þ hΨð2Þ

I jΨð2Þ
I iÞ

¼ 1

4
ð2þ cos δϕð1Þ þ cos δϕð2ÞÞ

¼ 1

2
þ 1

2
cos

�
δϕð2Þ − δϕð1Þ

2

�
cos

�
δϕð1Þ þ δϕð2Þ

2

�
:

ð35Þ

When combined with Eq. (33), it is clear that we recover
the results of Eqs. (27)–(29) after taking into account that
δϕ corresponds to δϕð1Þ.
Interestingly, Eq. (35) shows that the loss of contrast in

quantum-clock interferometry caused by unequal proper
times can be naturally interpreted as the result of a
dephasing in the interference signal for the two internal
states, whose oscillations as a function of the proper-time
difference are proportional to the atom’s rest mass. The
mass difference between the two internal states then gives
rise to a beatinglike behavior as a function of the proper-
time difference.
More importantly, this result immediately suggests a

method for measuring the effect with much higher sensi-
tivity. The key point is to use a state-selective detection that
can discriminate between the two internal states and
determine the number of atoms in each state (rather than
the total atom number) that reach port I and those that reach
port II. These measurements can then be used to infer both
δϕð1Þ and δϕð2Þ. In principle, the phase-shift difference
ðδϕð2Þ − δϕð1ÞÞ contains the same information as the con-
trast reduction, which is entirely determined by the first
cosine factor on the right-hand side of Eq. (35). In practice,
however, differential phase-shift measurements of this kind
can be performed with much higher precision (potentially
reaching a few mrad per shot) because a number of

systematic effects and the main noise sources equally
affect both phase shifts and are highly suppressed in the
differential measurement (including any effects that take
place before the initialization pulse). This common-mode
rejection is particularly effective when both internal states
are simultaneously addressed by the same laser pulses.
Instead, the corresponding decrease of contrast would be
much smaller because it depends quadratically on the
phase-shift difference, as follows from perturbatively
expanding the cosine for small arguments (e.g., a phase-
shift difference of 1 mrad implies a contrast reduction of
10−6). Furthermore, it is much harder to measure a small
decrease of contrast because other effects leading to
contrast fluctuations and contrast reduction would mask
such small changes. On the other hand, the much higher
sensitivity of the differential phase-shift measurement will
be exploited in Sec. VI to propose feasible experiments
involving parameter ranges that can be achieved in existing
facilities or new facilities that will soon become available.
Incidentally, the same result for the detection probability

in port I, as given by Eq. (35), holds if one considers the
incoherent mixture

ρ̂ ¼ jψ0ihψ0j ⊗
1

2
ðjgihgj þ jeihejÞ; ð36Þ

rather than the coherent superposition in Eq. (24) as the
initial state.

C. Light-pulse interferometers

1. Insensitivity to gravitational time dilation

Unfortunately, standard light-pulse atom interferometers
cannot directly measure the effect of gravitational time
dilation in a uniform gravitational field. This is because
when described in the laboratory frame, the different
gravitational time dilation experienced by the atoms along
the two interferometer branches due to height differences is
exactly compensated by the differences in the special-
relativistic time dilation along the two branches due to
velocity changes caused by the gravitational field. As a
result, the proper-time difference ðΔτb − ΔτaÞ is indepen-
dent of the gravitational acceleration g.
This point can be checked by explicit calculation in the

laboratory frame, but it can be seen much more easily by
considering a freely falling frame and taking into account
that the proper times Δτa and Δτb are invariant geometric
quantities independent of the particular coordinate system
employed. Indeed, in a freely falling frame, the central
spacetime trajectories between laser pulses are straight
lines, as shown in the example depicted in Fig. 4.
Therefore, the proper-time difference, which is entirely
determined in that frame by the momentum transfer ℏkeff
from each laser pulse and the time between pulses, is
clearly independent of g. In contrast, the expression for
each laser phase involves additional terms that depend
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explicitly on g and arise due to the change of reference
frame, namely, from the laboratory frame to the freely
falling one. When working in the freely falling frame, these
terms are entirely responsible for the dependence on g of
the total phase shift δϕ for a light-pulse atom interferometer
in a uniform gravitational field. Interestingly, similar
conclusions apply to possible dephasing effects for a
nontrivial population of internal states [39] in interferom-
etry experiments with macromolecules [40,41].
Strictly speaking, one should take into account that the

change from the laboratory frame to the freely falling frame
will introduce small changes in the pulse timing that
depend on g, but these will be suppressed by 1=c. More
specifically, it will typically lead to changes of the pulse
timing in the freely falling frame of the order of
δT ∼ ðgT=cÞT, which imply extra contributions to the
phase shift of the order of

δϕtiming ∼mv2recδT=ℏ ¼ ðvrec=cÞmgΔzT=ℏ; ð37Þ
where vrec ¼ ℏkeff=m is the recoil velocity induced by the
momentum transfer from the laser pulse and Δz ¼ vrecT is
the characteristic spatial separation between the interfer-
ometer arms. Hence, such contributions are suppressed by a
factor ðvrec=cÞ ∼ 10−10 compared to those in which we are
interested.
Finally, it should be noted that the above conclusions

concerning the insensitivity of light-pulse atom interfer-
ometers to gravitational time dilation apply to closed
interferometers, i.e., those where the central trajectories
of the two interfering wave packets at each exit port
coincide. The case of open interferometers will be dis-
cussed in Sec. VI B. Nevertheless, it is worth pointing out
here that the small changes in the timing of the laser pulses
mentioned in the previous paragraph, if not corrected for,
will lead to a relative displacement δz ∼ vrecδT between the
interfering wave packets. This relative displacement
implies a contribution to the interferometer’s phase shift

that depends on the initial central velocity v0 [31,42] and is
given by mv0δz=ℏ ∼ ðv0=cÞmgΔzT=ℏ, which is again
largely suppressed for typical values of v0.

2. Differential recoil

Attempts to implement quantum-clock interferometry
using light-pulse atom interferometers suffer from a serious
difficulty due to the different recoil experienced by the
internal states. If one starts with atomic wave packets with
vanishing mean velocity, a momentum transfer of ℏkeff
upon diffraction by a laser pulse leads to the following
recoil velocities, which depend on the internal state:

vð1Þrec ¼ ℏkeff
m1

≡ vrec; vð2Þrec ¼ ℏkeff
m2

≈ vrec

�
1 −

Δm
m1

�
;

ð38Þ

where we have taken into account that the recoil velocities
are nonrelativistic and in the last equality we have
neglected terms of higher order in Δm=m1. These recoil
velocities give rise to different paths for atoms in different
internal states, so one can no longer speak of a well-defined
central trajectory for the quantum clock.
Although the differences are rather small, they can be

relevant. Indeed, the small changes of proper time associated
with such path differences imply phase-shift changes of the
same order as the quantum-clock effects discussed in Sec. V
and in which we are interested. This point can be clearly
illustrated with the example of a Ramsey-Bordé interfer-
ometer [27] in the absence of gravity (or in a freely falling
frame), whose central trajectories are depicted in Fig. 5.
Such an interferometer is sensitive to special-relativistic
time dilation effects [43]: The differences in the central
velocities on the two branches give rise to a nonvanishing
proper-time difference ðΔτb − ΔτaÞ ¼ 2Tð1=γðvrecÞ − 1Þ≈
−Tðvrec=cÞ2. Employing Eq. (3), one gets the following
result for the phase shift associatedwith the internal state jgi:

FIG. 4. Central trajectories for a Ramsey-Bordé [27] interfer-
ometer in a uniform gravitational field as seen in the freely falling
frame. In this frame, the spacetime trajectories are straight lines,
and the propagation phases are manifestly independent of the
gravitational acceleration g. Laser pulses are depicted by grey
dashed lines.

FIG. 5. The mass difference Δm leads to a differential recoil for
the two internal states. As a consequence, the central trajectories
of the diffracted wave packets (orange lines) differ slightly for the
ground state (continuous line) and the excited one (dashed line).
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δϕð1Þ ¼ ð2TÞm1v2rec=2ℏþ δϕð1Þ
laser: ð39Þ

When calculating the phase shift for the internal state jei, on
the other hand, one needs to evaluate the action along a
slightly different trajectory implied by the recoil difference
(dashed line in Fig. 5):

δϕð2Þ ¼ ð2TÞðm1 þ ΔmÞðvð2ÞrecÞ2=2ℏþ δϕð2Þ
laser

≈ ð2TÞðm1 þ ΔmÞv2rec=2ℏ − ð2TÞΔmv2rec=ℏ

þ δϕð2Þ
laser: ð40Þ

Therefore, the differential phase shift

δϕð2Þ − δϕð1Þ ≈ ð2T=2ℏÞΔmv2recð1 − 2Þ þ δϕð2Þ
laser − δϕð1Þ

laser

¼ −ðΔE=ℏÞðΔτb − ΔτaÞð1 − 2Þ
þ δϕð2Þ

laser − δϕð1Þ
laser ð41Þ

involves an additional contribution (second term inside the
big parentheses) of the same order as the result obtained in
Sec. Vand given by Eq. (29), which corresponds to the first
term inside the parentheses.
It should be noted that in the previous example, the laser-

phase contribution δϕð2Þ
laser − δϕð1Þ

laser would vanish if the
trajectories for the two internal states were identical.
However, because of the recoil difference, one has instead

δϕð2Þ
laser − δϕð1Þ

laser ¼ −2keffðvð2Þrec − vð1ÞrecÞT=ℏ ≈ 2Δmv2recT=ℏ.
Interestingly, this contribution exactly cancels the extra
contribution found in Eq. (41), a fact that can be easily
understood by considering momentum eigenstates rather
than wave packets in position representation. The measure-
ment of special relativistic effects in quantum-clock inter-
ferometry has been proposed in Refs. [44,45], but these
proposals are still far from being realized experimentally.
The shortcomings associated with the differential recoil

are circumvented by the scheme for measuring the gravi-
tational redshift that will be presented in Sec. VI. Other
alternatives addressing these difficulties are the use of
(partially) reflecting potentials for the beam-splitting and
deflection processes [46] or the use of guided interferom-
etry. Implementing the former is problematic due to wave-
packet distortions as well as the difficulty of achieving
sufficiently long interferometer times, and it will not be
considered here. Guided interferometry, on the other hand,
is briefly discussed next.

D. Guided interferometers

The main goal of this subsection is to show that guided
interferometers can, in principle, be sensitive to the
gravitational redshift in a uniform gravitational field.
However, the implementation details will be discussed
only briefly, and a more thorough investigation is left
for future work.

As a simple description of the waveguide for the atomic
wave packets, we consider the potential analyzed in
Sec. IV C and given by Eq. (16) but with a time-dependent
position x0ðtÞ of the minimum. If we assume, for simplic-
ity, that the guiding potential is steep enough (i.e., that the
relevant eigenvalues of the matrix Ω2 are large enough), the
wave packet’s central trajectory can be approximated by
x0ðtÞ when evaluating the propagation phase through
Eq. (13). Provided that the conditions discussed in
Sec. IV C and relating the potentials for the two internal
states are fulfilled, the difference between the phases
accumulated by the internal states is then given by
Eq. (18), with the proper-time interval Δτ evaluated along
the spacetime trajectory defined by x0ðtÞ. In particular,
given a guided interferometer in a uniform gravitational
field with the trajectories x0ðtÞ for the two branches
depicted in Fig. 6, we have the following contribution
from the static segments to the differential phase shift:

δϕð2Þ
static − δϕð1Þ

static ¼ ΔmgΔzT=ℏ; ð42Þ
where Δz is the spatial separation between the two
branches along the direction of g. This contribution to
the differential phase shift can be extracted from the full
differential phase-shift measurement by comparing the
outcome of experiments with different values of T but
leaving everything else unchanged (as long as the con-
tributions from the beam-splitting and recombination parts
remain the same despite the changes in T).
The actual central trajectories will differ slightly

from x0ðtÞ, and when calculating the proper time along
them, this difference will lead to deviations from the result
in Eq. (42). Moreover, differences between the central
trajectories for the two internal states, even small ones, can

FIG. 6. Central trajectories in the laboratory frame for a guided
interferometer where the wave packets are held at different
constant heights for some time T. The effect of the gravitational
redshift on the differential phase shift can be identified by
comparing the outcome with another interferometer, where the
holding time T is extended, while leaving everything else
unchanged (dashed lines).
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be particularly critical because they can completely mask
the contribution in Eq. (42). The amplitude of the oscil-
lations around x0 in the static segments can be reduced,
besides using steep guiding potentials, by employing
optimal control techniques [47,48] to select a detailed time
dependence of x0ðtÞ during the beam-splitting part that
minimizes the amplitude of those oscillations. Furthermore,
the scheme that will be presented in Sec. VI E can be very
helpful to avoid differences between the central trajectories
of the two internal states in the static segments as well as
guaranteeing that the contributions from the recombination
part are the same when comparing the outcomes for
different values of the intermediate time T.
In order to investigate the oscillations around x0ðtÞ, it is

convenient towork in the accelerated framewhere the position
of the minimum of the potential is at rest at all times, as done
in Appendix B 3. Within a fully relativistic treatment, this
frame corresponds to the Fermi-Walker frame associated with
the spacetime trajectory Xμ

0ðtÞ ¼ (ct;x0ðtÞ), where it
becomes Xμ

0ðτcÞ ¼ ðcτc; 0Þ. For nonrelativistic motion in a
uniform gravitational field, its acceleration in Fermi-Walker
coordinates reduces to aðtÞ ¼ −gþ ẍ0ðtÞ. As shown in
Appendix B 3, this case leads to a potential of the same form
as the right-hand side of Eq. (17) but with the replacement
g → g − ẍ0ðtÞ, which implies a time-dependent shiftΔxnðtÞ
of the equilibrium position in this frame. In addition to
analyzing and minimizing the amplitude of the oscillations
around x0 in the static segments, this Fermi-Walker frame is
well suited to studying the corrections to thepropagationphase
that arise from the deviations of the central trajectory away
from x0ðtÞ. Indeed, calculating the nonrelativistic classical
action in this frame for these deviations directly provides the
corrections that would ensue if one were to calculate the
propagation phase by evaluatingEq. (B5) for the actual central
trajectory rather than Xμ

0ðtÞ.
Guided atom interferometers have been implemented

using waveguides based on magnetic fields [49,50], rf-
dressed potentials [51,52], optical potentials [53–55]
(including “painted” potentials [56]), and accelerated optical
lattices [57–62]. Among these methods, optical potentials
and accelerated optical lattices seem particularly promising
for quantum-clock interferometry because one can achieve
potentials for both internal states, which are identical to a
very high degree by employing a magic wavelength [55].
It should be stressed that some of the interferometry

schemes referred to in the previous paragraph involve a
combination of guiding potentials and laser pulses. The
experiments of Refs. [51,56] are examples of purely guided
interferometry, to which the considerations in this subsec-
tion would directly apply. In contrast, these will not
necessarily hold for hybrid interferometers. For instance,
the atom interferometers of Refs. [63–65], briefly discussed
in Sec. VI E below and based on a combination of several
laser pulses and an optical lattice, are actually insensitive to
the gravitational redshift.

In any case, although guided atom interferometers have
great potential as compact sensors with long interroga-
tion times, they are still at an earlier development stage
compared to light-pulse atom interferometers, which have
already proven their maturity for high-precision experi-
ments. Motivated by this, in the next section, we introduce
a scheme for quantum-clock interferometry that, while
being based on light-pulse interferometry, is sensitive to the
gravitational redshift in a uniform field.

VI. GRAVITATIONAL-REDSHIFT
MEASUREMENT WITH LIGHT-PULSE

ATOM INTERFEROMETRY

A. Light-pulse quantum-clock interferometry
scheme sensitive to the gravitational redshift

The scheme is based on a reversed Ramsey-Bordé
interferometer, summarized in Fig. 1, where a pair of π=2
pulses separated by a time T 0 are applied to prepare a
superposition of two atomic wave packets propagating
along the vertical direction with the same velocity but
separated by a distance Δz. After letting the wave packets
propagate freely for a longer time T, they are finally
recombined by applying a second pair of π=2 pulses
separated by a time T 0. The key novel idea is to initialize
the quantum clock at some adjustable time after the first pair
of π=2 pulses bymeans of a suitable pulse involving a pair of
counterpropagating laser beams with angular frequency
ω0 ¼ ΔE=2ℏ, which is further described in Appendix D.
By appropriately choosing the duration and intensity of this
pulse, one can create an equal-amplitude superposition of
internal states, as given by Eq. (24), while leaving the c.m.
motion essentially unchanged thanks to the cancellation of
the momentum transfer from both laser beams—see, how-
ever, the discussion in Sec. VI C for some subtle details.
By using a state-selective detection, one can separately

determine the fraction of atoms in each exit port for each
internal state and extract the corresponding phase shifts
δϕð1Þ and δϕð2Þ, from which the differential phase shift
δϕð2Þ − δϕð1Þ can be obtained. These measurements need to
be repeated for different initialization times but leaving
everything else unchanged. The difference between the
differential phase-shift measurements for different initial-
ization times ti and t0i contains very valuable information.
Indeed, it is directly related to the proper-time difference
between the two interferometer arms for the time interval
between the two initialization times:

(δϕð2Þðt0iÞ − δϕð1Þðt0iÞ) − (δϕð2ÞðtiÞ − δϕð1ÞðtiÞ)

¼ ΔE
2ℏ

ðΔτb − ΔτaÞ ¼ ΔmgΔzðt0i − tiÞ=ℏ; ð43Þ

where the arguments of the phase shifts correspond here to
the initialization times ti and t0i (as time coordinates in the
laboratory reference frame) and where the approximation
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for nonrelativistic velocities and weak gravitational fields
leading to Eq. (3) was used in the last equality. The proper
times Δτa and Δτb correspond to the dashed segments of
the central trajectories depicted in Fig. 1.
In principle, one could try to compare the interference

contrast C for state-independent detection obtained at differ-
ent times in order to measure the loss of contrast described in
Sec. VA. (The vibration noise of the retroreflection mirror
naturally provides a uniform, random, phase-shift distribu-
tion for repeated shots, so the contrast can be determined
through a suitable statistical analysis of the distribution of
outcomes [66].) However, the alternative method based on
the doubly differential measurement presented above and
encoded in Eq. (43) clearly has many advantages. First, as
already pointed out in Sec. V B, important systematic effects
and noise sources are highly suppressed in differential phase-
shift measurements through common-mode rejection, and
much higher sensitivities than in a direct contrast measure-
ment can be achieved. Second, subtracting the differential
phase shifts for different initialization times while leaving
everything else unchanged provides further immunity over
the whole duration of the interferometer to unwanted effects
that are independent of the internal state as well as to any
unwanted effects (even state-dependent ones) that take place
before the earliest or after the latest of the two initialization
times and are hence common to both differential phase-shift
measurements. Finally, as shown by Eq. (43), the gravita-
tional time dilation can be directly read out from the
measurement. This fact can be exploited to test the univer-
sality of the gravitational redshift in this context as explained
in Sec. VII.

B. Description in the freely falling frame

It is instructive to reanalyze, in a freely falling frame, the
quantum-clock interferometry scheme just proposed, espe-
cially given that the insensitivity of standard light-pulse
atom interferometers to gravitational time dilation argued in
Sec. V C could be most clearly seen in such frames.

Figure 7 displays the central trajectories of the interfer-
ometer in a freely falling frame, more specifically, in the
frame where the trajectories are at rest after the first pair of
Bragg pulses. The key point is that while the constant-
phase hypersurfaces for the initialization pulse correspond
to constant-time hypersurfaces in the laboratory frame, they
are no longer hypersurfaces of simultaneity in the freely
falling frame: They appear as tilted straight lines in the
1þ 1 spacetime diagram of Fig. 7. As a result, their
intersection points with the two central trajectories exhibit
the following time difference in the freely falling frame:

δτc ¼ −vðtÞΔz=c2 ¼ gðt − tapÞΔz=c2; ð44Þ

where vðtÞ ¼ −gðt − tapÞ is the relative velocity between
the freely falling frame and the laboratory frame, and
we have again considered, for simplicity, the regime of
weak gravitational fields and nonrelativistic velocities;
thus, terms suppressed by higher powers of 1=c2

have been neglected. The time at which the apex of the
central trajectories is reached has been denoted by tap.
Alternatively, one can obtain the time difference in Eq. (44)
from the fact that the effective phase factor for the two-
photon transition driven by the initialization pulse, which is
spatially independent in the laboratory frame, becomes

exp ð−iω̄cðτc − τðiÞc Þ þ ik̄0 · ðx0 − x0
iÞ) in the comoving

frame, as explained in Appendix D.
From Eq. (44), it is clear that the proper time elapsed

along the two interferometer arms between initialization
pulses at laboratory times ti and t0i differs by

δτcðt0iÞ − δτcðtiÞ ¼ (vðtiÞ − vðt0iÞ)Δz=c2 ¼ gðt0i − tiÞΔz=c2;
ð45Þ

from which the differential-phase-shift difference immedi-
ately follows:

FIG. 7. In the freely falling frame, the proper-time difference between the dashed segments in the doubly differential measurement is a
consequence of the lack of simultaneity for the spatial hypersurfaces associated with the initialization pulses.
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(δϕð2Þðt0iÞ − δϕð1Þðt0iÞ) − (δϕð2ÞðtiÞ − δϕð1ÞðtiÞ)

¼ ΔE
2ℏ

ðΔτb − ΔτaÞ ¼ ΔmgΔzðt0i − tiÞ=ℏ; ð46Þ

where we have simply taken into account that ðΔτb −
ΔτaÞ ¼ δτcðt0iÞ − δτcðtiÞ and made use of Eq. (45). This
result for the differential-phase-shift difference agrees with
the result obtained in the laboratory frame, given by
Eq. (43).

1. Open interferometers

After this rederivation in the freely falling frame, we are
in a good position to generalize the argument of Sec. V C to
open interferometers. In the laboratory frame, different
detection times at the exit port of an open interferometer, as
depicted in Fig. 8, lead to changes of the proper-time
difference between the interferometer branches analogous
to those in Eq. (45). One could therefore be tempted to
conclude that it implies a differential phase shift that
depends on g and is sensitive to the gravitational redshift
in a uniform gravitational field. However, this is not the
case because, as explained in Appendix C 3, the relative
displacement between the interfering wave packets gives
rise to an additional phase-shift contribution δϕsep that
exactly cancels those changes in the proper-time difference.
In fact, the total phase shift corresponds to the proper-time
difference calculated in the freely falling frame where the
central trajectories for the exit port under consideration (or
at least the midtrajectory) are at rest, and it is independent
of g. This result generalizes, to open interferometers, the
conclusion of Sec. V C about the insensitivity to the
gravitational redshift of light-pulse interferometers in a

uniform field. Moreover, the cancellation of any depend-
ence of the total phase shift δϕ0 on the detection time after
the last beam splitter is important for consistency because,
for an interferometer such as that of Fig. 8, the fraction of
atoms detected at each exit port, which is entirely deter-
mined by δϕ0 through Eqs. (C2) and (C3), should be
independent of the exact detection time.
In contrast, by applying the initialization pulse at some

adjustable time between the two pairs of Bragg pulses in a
Ramsey-Bordé interferometer, the doubly differential
scheme above leads to an effectively open interferometer,
as far as the phase accumulation of the excited state is
concerned, while avoiding a relative displacement between
the interfering wave packets and the associated separation
phase δϕsep. Of course, one could, in principle, perform an
analogous doubly differential measurement with the open
interferometer of Fig. 8 by considering different initializa-
tion times after the last Bragg pulse, but it is far less
convenient. As explained in Appendix C 3, one could then
read out the phase shift δϕ0 from the exact location of the
interference fringes in the density profile at the exit port.
However, in order to enhance the weak signal in Eqs. (43)
and (46), one needs a sufficiently large spatial separation
Δz, but this leads to a very small fringe spacing, which is
inversely proportional to Δz, and is further limited by an
eventual lack of overlap between the envelopes of the two
interfering wave packets. To a certain extent, these diffi-
culties can be alleviated by letting the two wave packets
expand for a sufficiently long time, but one is then left with
a rather dilute density profile leading to a low signal-to-
noise ratio that prevents resolving the fringes with high
spatial accuracy. It is therefore much better to employ
closed interferometers, such as the Ramsey-Bordé geom-
etry, which do not suffer from these problems.

C. Implications of the residual recoil

The initialization pulse based on two counterpropagating
laser beams with equal frequencies in the laboratory frame
drives the transition between the two internal states with no
momentum transfer to the c.m.motion.However, because the
excitation from ground to excited state increases the total
inertial mass of the atom by Δm, an atom with velocity v
along the vertical direction when the pulse is applied will
experience a velocity change Δv ¼ −ðΔm=mÞv due to
momentum conservation (terms of higher order in Δm=m
and v=c have been neglected since both are very small for
typical values ofΔm and v in this context). Alternatively, one
can easily reach the same conclusion by considering the
freely falling frame where the wave packets are at rest rather
than the laboratory frame. Indeed, in such a frame, the angular
frequencies of the two counterpropagating beams differ by
Δω ¼ −ð2v=cÞω0 ¼ −vΔmc=ℏ due to the Doppler shift
with opposite signs for the two beams (to lowest order in
v=c). Therefore, the two-photon transition gives rise to a
nonvanishing momentum transfer ℏΔω=c ¼ −vΔm, as

FIG. 8. Central trajectories for an open interferometer in the
laboratory frame. The proper-time difference between the ex-
tended wordlines as the detection time is delayed (dashed lines)
increases due to the gravitational time dilation, but this is exactly
compensated by the growth of the separation phase as explained
in Appendix C 3.
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explained in Appendix D, and the wave packets acquire a
nonvanishing central velocity Δv ¼ −ðΔm=mÞv.
The residual recoil discussed in the previous paragraph

implies a velocity change Δv ¼ −ðΔm=mÞv for the central
trajectory of the excited state after the initialization pulse.
However, since this affects, in the same way, both inter-
ferometer branches, it leaves the contribution to δϕð2Þ from
the propagation phases accumulated between the first and
second pairs of Bragg pulses unchanged because the central
velocities continue to be equal on the two branches at any
instant of time during that period; thus, the contributions to
the phase shift from the kinetic term in Eq. (3) still cancel
out. Similarly, the separation between the slightly modified
central trajectories for the two branches continues to be Δz,
and the net contribution to δϕð2Þ from the gravitational
potential in the laboratory frame remains unchanged.
Equivalent conclusions are reached when analyzing the
situation in the freely falling frame.
Furthermore, one can also show that the small change of

the central trajectories for the excited state does not alter the
net phase-shift contribution from the second pair of Bragg
pulses and the free evolution between them. This point is
simpler to analyze in the freely falling frame, which is
shown in Fig. 9. In this frame the central trajectories zaðtÞ
and zbðtÞ are modified as follows due to the residual recoil
from the initialization pulse:

z̃aðtÞ ¼ zaðtÞ þ δz3 þ Δvðt − t3Þ;
z̃bðtÞ ¼ zbðtÞ þ δz3 þ Δvðt − t3Þ: ð47Þ

In this frame, the expression for the phase-shift contribution
associated with the second pair of Bragg pulses and the
evolution between them, which comprises the laser phases
and the kinetic terms, is given by

δϕð2Þ
2nd pair ¼ −keff z̃bðt3Þ þ keff z̃aðt4Þ

−
m2

2ℏ
(ðvð2Þrec þ ΔvÞ2 − Δv2)ðt4 − t3Þ; ð48Þ

where t3 and t4 are the times of the first and second pulses
of this pair (third and fourth Bragg pulses of the full
interferometer sequence). Substituting the modified trajec-
tories into Eq. (48), we find that any dependence on δz3 and
Δv cancels out.
Therefore, we can altogether conclude that the residual

recoil of the initialization pulse has no impact on the total
phase shift for the excited state nor on the interpretation of
the doubly differential measurement as directly reflecting
the gravitational redshift between the two interferometer
branches.

D. Feasibility discussion

A suitable system for implementing the proposed
scheme is the clock transition in neutral atoms typically
employed in optical atomic clocks, where the excited state
is particularly long-lived andΔE is of the order of a few eV.
As a specific example, we consider 87Sr or 88Sr atoms with a
clock transition of wavelength λph ¼ 698 nm correspond-
ing to Δm=m ¼ 2 × 10−11. For a branch separation Δz ¼
1 cm and initialization times differing by t0i − ti ¼ 1 s, the
result of the doubly differential measurement amounts to

(δϕð2Þðt0iÞ − δϕð1Þðt0iÞ) − (δϕð2ÞðtiÞ − δϕð1ÞðtiÞ)
¼ ΔmgΔzðt0i − tiÞ=ℏ ≈ 3 mrad: ð49Þ

With atomic clouds of N ≈ 106 atoms, the sensitivity
needed for resolving this signal can be achieved in a single
shot, assuming a phase resolution close to the shot-noise
limit N−1=2. But even with a much lower phase resolution
of 0.1 rad per shot, the required sensitivity could be reached
after averaging 103 measurements. Measurements of this
kind should be possible with a new generation of 10-m
atomic fountains capable of performing interferometry
with Sr and Yb atoms that will soon become available
at Stanford and at Hannover’s HITec [67], respectively.

FIG. 9. Central trajectories in the freely falling frame showing how the residual recoil from the initialization pulse leads to slightly
modified trajectories for the excited state. Nevertheless, the phase shift, as well as the interpretation of the doubly differential
measurement in terms of proper-time differences, remains unaffected.
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In fact, total interferometer times of up to 2 s and arm
separations of tens of centimeters (up to half a meter [1,19])
have already been demonstrated in Stanford’s first 10-m
tower, which operates with Rb atoms [38]. On the other
hand, alternative configurations with Δz ¼ 1 mm and t0i −
ti ¼ 1 s could be implemented in more compact setups
with baselines of less than 2 m, where the required
sensitivity would be reached for a phase resolution of
10 mrad per shot after averaging 103 measurements.
Suitable mechanisms for diffraction of atoms in internal-

state superpositions, which should act in the same way on
both internal states, need to be employed for the second
pair of diffraction pulses. Two possibilities are discussed
in some detail in Appendix E. The first one is Bragg
diffraction at a magic wavelength. This choice guarantees
that the Rabi frequency is the same for both internal states,
but the required laser power is rather high because these
magic wavelengths are far detuned from any transition. The
second alternative is based on a sequence of simultaneous
pairs of single-photon transitions between the clock states.
Interestingly, the lasers required in this case will be readily
available in facilities operating with single-photon atom
interferometry such as Stanford’s second 10-m tower. This
mechanism is, however, restricted to fermionic isotopes, for
which the single-photon transition between the clock states
is weakly allowed due to hyperfine mixing [7,8]. (The
transition also becomes weakly allowed for bosonic iso-
topes when an external magnetic field is applied [68,69],
but this does not seem to be a desirable option for precision
measurements and long baselines.)
On the other hand, for the first pair of diffraction pulses,

which are applied before the initialization pulse, one can
make use of efficient diffraction mechanisms acting on the
ground state such as Bragg diffraction based on the
intercombination transition [70]. Moreover, instead of
single pulses, it is of course possible to apply a multipulse
sequence (possibly combined with the use of higher-order
Bragg diffraction), which leads to larger momentum trans-
fers; thus, the targeted arm separationΔz can be achieved in
shorter times. Obviously, when different diffraction proc-
esses leading to different effective momentum transfers are
employed for the two pairs of diffraction pulses, the time T 0
between the two pulses in each pair can no longer be
the same. Instead, one needs to adjust the timing between
the first pair of pulses accordingly in order to close the
interferometer.
As usual, the frequency difference for the Bragg pulses

needs to be chirped linearly in time to keep them on
resonance as they fall in Earth’s gravitational field [71], and
similarly for the individual photon frequencies if single-
photon transitions are employed for the second pair of
diffraction pulses. In contrast, for the initialization pulse, the
frequencies of the two counterpropagating beams should
always remain equal (irrespective of the initialization time),

so the constant effective phase corresponds to simultaneity
hypersurfaces in the laboratory frame. Moreover, for the
two-photon initialization pulse, the Doppler effect cancels
out at linear order in v=c, as explained in Appendix D, and
smaller effects due to the Doppler effect at quadratic order
as well as the gravitational redshift of the photons can be
compensated with a suitable frequency shift, which is
identical for both beams but depends on the initialization
time as specified in Appendix D 2.
The unwanted effects caused by rotations in atom

interferometry, which become particularly relevant for long
interferometer times, can be successfully compensated by
using a tip-tilt mirror for retroreflection of the diffraction
pulses [30,72]. (For the initialization pulse, however, the
two counterpropagating beams should be aligned.)
Similarly, the undesirable effects of gravity gradients can
be overcome with the method proposed in Ref. [42] and
experimentally demonstrated in Refs. [73,74], for example,
through a suitable frequency change for the second pulse of
the first pair of Bragg pulses. (It is worth pointing out that
the phase-shift sensitivity to the initial position and velocity
of the atomic wave packet caused by rotations and gravity
gradients cancels out, to a large degree, in the differential
phase-shift measurement for the two internal states.)
The scheme proposed in Sec. VI A offers, in addition, the

possibility of performing a number of nontrivial checks that
can help one to identify and calibrate spurious systematic
effects. For example, changing the initialization time ti
while keeping the difference t0i − ti fixed should leave the
outcome of the doubly differential measurement unaf-
fected. Similarly, the outcome should also remain unaltered
if the effective momentum transfer of the four diffraction
pulses is reversed or even if it is only reversed for one of the
two pairs. (In the latter case, it becomes a standard Ramsey-
Bordé interferometer rather than the reversed configuration,
but despite leading to a change of the proper-time differ-
ence between the two interferometer arms, the doubly
differential measurement still remains unaffected.) Finally,
one can alternatively focus on the conjugate Ramsey-Bordé
interferometer, [75] which should give equivalent results,
by adjusting accordingly the frequencies of the second pair
of diffraction pulses [76] and instead reading out its two
exit ports, which are spatially well separated from those of
the other interferometer.

E. Extension to guided interferometry

The doubly differential measurement technique pre-
sented in Sec. VI A can also be applied to other schemes
in quantum-clock interferometry. For example, it can be
used in a guided interferometer sensitive to the gravitational
redshift such as that described in Sec. V D. The essential
aspects are sketched in Fig. 10 and are analogous to those
of Sec. VI A, but with the atomic wave packets held at
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constant height rather than freely falling. The outcome of
the doubly differential measurement is again given by
Eq. (43), provided that the guiding potentials for the two
internal states fulfill the conditions discussed in Sec. IV C.
Remarkably, by employing this technique, one circum-

vents the difficulty of implementing a beam-splitting
process that leads to identical trajectories for the two
internal states. Moreover, it is possible to consider inter-
ferometers with fixed total time between beam splitting and
recombination, hence avoiding any differences in the
phase-shift contribution from the recombination process
when applied after different evolution times. Furthermore,
the technique provides immunity to many unwanted noise
sources and systematic effects, remaining susceptible
only to those acting differently on the two internal states
between ti and t0i. Incidentally, for a sufficiently steep

guiding potential, one could even contemplate the pos-
sibility of using single-photon initialization pulses.
In addition, the method can be particularly useful for

hybrid atom-interferometry schemes combining light pulses
and guiding potentials [77] such as those employed in
Refs. [63–65] for gravimetry measurements. As shown in
Fig. 11, these schemes correspond to a modification of the
reversed Ramsey-Brodé interferometer in which the atomic
wave packets are held at constant height for times between
the two pairs of Bragg pulses by means of an optical lattice
where they undergo Bloch oscillations. It should be empha-
sized that in these hybrid interferometers, only the laser
phases from the Bragg pulses give rise to a phase-shift
contribution that depends on the value of the gravitational
acceleration g. In contrast, the phase-shift contribution from
the propagation phases, including the Bloch oscillations, is
independent of g. These kinds of atom interferometers are
therefore not sensitive to the gravitational time dilation in a
uniform field. Nevertheless, the situation is different when
they are employed for quantum-clock interferometry, and
doubly differential measurements comparing the outcomes
for different initialization times are performed. The result is
then given by Eq. (43) and reflects the different gravitational
redshift experienced by the quantum clocks in the two
interferometer branches.
Guided interferometers offer an alternative to large

atomic fountains and can also reach high sensitivities,
provided that sufficiently long interferometer times can be
achieved. Holding times of 1 s have already been demon-
strated with hybrid schemes employing optical lattices [64]
and have recently been extended to tens of seconds [65].
Since wave-front distortions of the laser beams are one of
the major limitations, performing atom interferometry
inside an optical cavity [78] is particularly advantageous
[65]. In these kinds of interferometers, it is also crucial
that the intensity of the optical lattice is the same for both

FIG. 10. Central trajectories for a guided interferometer in the
laboratory frame. Performing a doubly differential measurement
for different initialization times has a number of practical
advantages and directly reveals the differences of gravitational
time dilation between the two branches.

FIG. 11. Central trajectories in the laboratory frame for a hybrid interferometer involving a reversed Ramsey-Bordé sequence
combined with an optical lattice applied between the two pairs of pulses, which holds the atomic wave packets at constant height and
where they undergo Bloch oscillations (BO). Doubly differential measurements are sensitive to the gravitational redshift in this case. too.
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branches, but this requirement can be relaxed in quantum-
clock interferometry if a magic-wavelength lattice is
employed.

VII. TESTING THE UFF AND UGR

Einstein’s equivalence principle, which is a cornerstone
of general relativity (and metric theories of gravity, in
general), can be regarded as the combination of three
different aspects [79,80]: (i) local Lorentz invariance (LLI),
(ii) UFF, and (iii) local position invariance (LPI), also
referred to as UGR. In order to illustrate how UGR can be
tested with the quantum-clock interferometry scheme
presented in Sec. VI and its relation to tests of UFF, we
consider the example of dilaton models as a particular
framework where violations of the equivalence principle
can be consistently parametrized [81,82].

A. Dilaton models

In addition to the spacetime metric, the key ingredient of
these models is a massless scalar field, the dilaton field, that
couples nonuniversally [83] to the fields of the Standard
Model. This massless field mediates a long-range inter-
action (sometimes referred to as the “fifth force”) that adds
to the gravitational interaction and leads to violations of the
equivalence principle.
At low energies, the coupling of the Standard Model

fields to the dilaton implies that the mass of composite
particles such as an atom depends on the dilaton field φðxÞ,
so the action governing its c.m. dynamics needs to be
modified from Eq. (2) to

Sn½xμðλÞ� ¼ −
Z

dτ c2mn(φðxμÞ): ð50Þ

Since the value of a scalar field at a spacetime point does
not define any preferred direction or rest frame, dilaton
models do not give rise to violations of LLI. However, they
do lead to violations of UFF and UGR because, through the
dilaton, the mass becomes a function of spacetime, and its
detailed dependence on φðxÞ is species dependent [81,82].
To see this point more explicitly, let us consider the regime
of nonrelativistic velocities and weak gravitational fields
that led to Eq. (3). Including the corrections that arise from
a weak coupling to the dilaton field, it becomes

Sn½xðtÞ�¼
Z

dt

�
−mnc2(1þ β̄nφðxÞ)

þ1

2
mnv2−mnUðxÞ

�

¼
Z

dt

�
−mnc2þ

1

2
mnv2−mnð1þ β̄nβ̄SÞUðxÞ

�
;

ð51Þ

where β̄n ¼ ð1=mnÞð∂mn=∂φÞjφ¼0 and β̄S is defined analo-
gously for the mass distribution acting as the source of the
gravitational field. Moreover, in the second equality, we
have taken into account that the dilaton field sourced by this
mass distribution is given by φðxÞ ¼ β̄SUðxÞ [81]. When
considering different test masses in the gravitational field of
a given source, the dependence on β̄S is common to all of
them and can be absorbed in the definition of a species-
dependent parameter βn ≡ β̄nβ̄S, which directly character-
izes the violation of UFF. Indeed, the Eötvös parameter
quantifying the differences in the gravitational acceleration
experienced by two different bodies A and B is then given
by ηAB ≡ 2ðaA − aBÞ=ðaA þ aBÞ ≈ ðβA − βBÞ.
Similarly, the implications on the gravitational redshift of

an atomic clock can also be inferred from Eq. (51). If we
consider an atom trapped in an optical lattice fulfilling the
conditions discussed in Sec. IV C, the difference between
the phases accumulated by the states jgi and jei is
modified, due to the dilaton coupling, from ΔEΔτ=ℏ to

½Δmc2 þ (m2c2ð1þ β2Þ −m1c2ð1þ β1Þ)UðxÞ�Δt=ℏ
¼ ½Δmc2 þ (Δmc2 þm1c2ðβ2 − β1Þ)UðxÞ�Δt=ℏ
¼ ðΔEΔt=ℏÞð1þ ð1þ αe−gÞUðxÞ=c2Þ; ð52Þ

where x is the central position of the atomic wave packet
(which coincides for both internal states), the higher-order
term proportional to Δmβ2 has been neglected in the first
equality, and we have introduced the parameter αe−g
specified below and characterizing the deviation from
UGR for an atomic clock based on the transition between
the states jgi and jei. Thus, the times Δτ̄a and Δτ̄b
measured by two such static clocks located at different
positions (note that they no longer correspond to the
general-relativistic proper time directly calculated from
the spacetime metric) are related as follows:

Δτ̄b
Δτ̄a

¼ 1þ ð1þ αe−gÞUðxbÞ=c2
1þ ð1þ αe−gÞUðxaÞ=c2

≈ 1þ ð1þ αe−gÞ(UðxbÞ −UðxaÞ)=c2: ð53Þ

From Eq. (52), it is clear that the parameter αe−g introduced
there is given by

αe−g ¼
m1

Δm
ðβ2 − β1Þ; ð54Þ

which reveals a close connection between violations of
UGR and UFF that will be further discussed in the next two
subsections.
Althoughwehave focused, for simplicity, on the regime of

nonrelativistic velocities and weak fields, a fully relativistic
treatment that goes beyond the weak-field approximation is
also possible. First, one needs to solve theEinstein equations,
together with the equation of motion for the dilaton field
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(which constitutes, in general, a coupled system of nonlinear
partial differential equations), to find the dilaton configura-
tion and spacetime metric generated by the matter sources
[84,85]. One can then proceed as in Sec. IV B by treating the
coupling of the test particle (the atoms, in our case) to the
given dilaton field as an external potential. This couplingwill
lead to a modification of the central trajectories as well as a
slight change, typically rather small, in the evolution of the
centeredwave packets obtained in theFermi-Walker frameof
the central trajectories.

B. Testing UGR with quantum-clock interferometry

Within the framework of the dilaton models considered
in the previous subsection, the outcome of the quantum-
clock interferometry scheme of Sec. VI can be easily
derived by employing Eq. (51) instead of Eq. (3) when
computing the propagation phases. In particular, if we
focus on uniform gravitational fields, as done in Sec. VI,
one simply needs to repeat the analysis with the following
state-dependent replacement of the gravitational acceler-
ation: g → ð1þ βnÞg. Thus, we obtain the following result
for the doubly differential measurement:

(δϕð2Þðt0iÞ − δϕð1Þðt0iÞ) − (δϕð2ÞðtiÞ − δϕð1ÞðtiÞ)
¼ (m2ð1þ β2Þ −m1ð1þ β1Þ)gΔzðt0i − tiÞ=ℏ
¼ (Δmþm1ðβ2 − β1Þ)gΔzðt0i − tiÞ=ℏ
¼ Δmð1þ αe−gÞgΔzðt0i − tiÞ=ℏ; ð55Þ

where the higher-order term proportional to Δmβ2 has been
neglected in the second equality and the parameter αe−g
specified by Eq. (54) has been introduced in the last
equality.
It should be noted that whenever β2 ≠ β1, the central

trajectories for the wave packets of the two internal states
will be slightly different: They will fall with slightly
different accelerations. Nevertheless, this difference does
not affect the result because, for each internal state, the
upper and lower trajectories between the two pairs of Bragg
pulses have the same velocity at each instant of time (in the
laboratory frame) and have constant spatial separation Δz.
Furthermore, the fact that the velocities are slightly differ-
ent for the two internal states when the first Bragg pulse of
the second pair is applied does not lead to any change
either. As already shown in Sec. VI C, the phase-shift
contribution from the second pair of pulses, plus the free
evolution between them, is insensitive to a small change of
the incoming velocity as long as it is the same for the upper
and lower trajectories.
The result of Eq. (55) can still be interpreted in terms of

the difference of timesΔτ̄b andΔτ̄ameasured by the clock in
the upper and lower branches between the laboratory times ti
and t0i, in terms of which the right-hand side of Eq. (55) can

be simply written asΔEðΔτ̄b − Δτ̄aÞ=ℏ. The deviation from
UGR in the relation between Δτ̄b and Δτ̄a agrees with that
found for independent static clocks in Eq. (53) once we
take into account that, for a uniform gravitational field,
UðxbÞ −UðxaÞ ¼ −g · ðxb − xaÞ ¼ gΔz.
Equations (53) and (54) establish a clear connection

between UGR tests sensitive to αe−g and UFF tests
measuring ðβ2 − β1Þ. In this context, the latter can be
performed through a differential measurement of Mach-
Zehnder interferometers for the two internal states, whereas
the UGR tests can be based on either quantum-clock
interferometry or the comparison of independent clocks
(allowing much higher precision thanks to the far larger
height differences possible in this case). The connection
between both kinds of tests illustrates Schiff’s conjecture
that violations of Einstein’s equivalence principle neces-
sarily imply violations of UFF [86,87], i.e., that violations
of LLI or UGR can only take place if UFF is also violated.
In fact, the relation in Eq. (54) has previously been derived
on general grounds using an energy-conservation argument
[88]; see also Ref. [89] for a related derivation.

C. Relation to other approaches

It has been argued in Sec. V C that light-pulse atom
interferometers are insensitive to gravitational time dilation
in a uniform gravitational field, which is not the case when
inhomogeneities of the gravitational field play a significant
role. Indeed, there are a couple of interferometry experi-
ments, either proposed or recently realized, where the
proper-time difference between the two branches involves
time-dilation effects due to inhomogeneous gravitational
fields.
In the first experiment, proposed in Ref. [90], the central

positions of the atomic wave packets in each one of the two
branches remain in a different extremum of the gravita-
tional potential for a sufficiently long time T before they are
eventually recombined. This gives rise to a proper-time
difference Δτ ≈ TðU2 − U1Þ=c2, where U1 and U2 are the
values of the potential at these two extrema (in fact, two
saddle points). Because the central position of the wave
packets at the extrema experiences no gravitational
acceleration, such an experiment has been regarded as
a gravitational analog of the scalar Aharonov-Bohm
effect [91].
The second setting corresponds to the experiments

reported in Ref. [19], where the effect of tidal forces on a
quantum superposition of spatially separated wave packets
wasmeasured for the first time. As explained in Appendix F,
by considering the freely falling framewhere the initial wave
packet is at rest, one can show fairly straightforwardly that
the phase-shift contribution ðℏk2=2mÞΓT3 measured in
Ref. [19] is directly related to the proper-time difference
between the two interferometer arms.
However, it is important to keep in mind that the potential

differences for the local gravitational field created by the
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source masses considered in the first proposal or those
associated with Earth’s gravity gradient are much smaller
(by a factor of 10−7 or less) than the potential differences
implied by the approximately uniform gravitational field on
Earth’s surface.The effect is therefore already ratherweak for
regular atom interferometry and not suitable for a quantum-
clock interferometry experiment, which would be further
suppressed by the tiny factor Δm=m. Nevertheless, it is still
interesting to discuss how such atom interferometers are
related to tests of UFF and UGR, which we do next.
A few years ago, it was claimed [92] that gravimetry

measurements with light-pulse atom interferometers in a
Mach-Zehnder configuration provided, through a suitable
reinterpretation, the most precise UGR tests to date.
However, it was soon pointed out [93,94] that the proper
time along the two interferometer arms is the same
irrespective of the existence of a uniform gravitational
field (this can again be easily seen in a freely falling frame).
In fact, the total phase shift is entirely given by the
contribution from the laser phases and is sensitive to the
acceleration experienced by the central trajectories of
the atomic wave packets with respect to the wave fronts
of the laser pulses. When considering deviations from
general relativity—for example, within the framework of
the dilaton models briefly reviewed in Sec. VII A—these
kinds of interferometers are directly sensitive to the βn
parameter introduced in the paragraph after Eq. (51) and
characterizing the deviations from UFF. More specifically,
performing a simultaneous measurement for two different
species A and B corresponds to a test of UFF where the
difference ðβA − βBÞ can be determined, the same combi-
nation that can be determined from tests of UFF with
macroscopic masses such as comparison of freely falling
test masses [95,96] or torsion-balance experiments [97].
In contrast to a Mach-Zehnder interferometer in a

uniform gravitational field, the two examples discussed
in the first three paragraphs of this subsection exhibit a
nonvanishing proper-time difference due to gravitational
time-dilation effects. Nevertheless, they are sensitive to the
same parameter βn as UFF tests rather than to a parameter
characterizing UGR tests with clocks, such as the parameter
αe−g in Eqs. (53) and (54).
Finally, it should be stressed that the dilaton models

considered in this section do not lead to “purely quantum”
violations of the equivalence principle in the sense of
Ref. [98]. Analyzing the implications of these kinds of
violations requires instead a separate treatment that will not
be pursued here. Furthermore, it is not clear that the
phenomenological treatment of Ref. [98] can be naturally
generalized beyond the regime of nonrelativistic velocities
and weak gravitational fields. In fact, one expects that such
violations will be highly suppressed in low-energy effective
field theories accounting for possible extensions beyond the
Standard Model of particle physics plus general relativity, a
point to which we plan to return in future work.

It is also worth mentioning that UFF tests with nontrivial
quantum states have been proposed and even realized. They
involve either atoms in a superposition of different internal
states [18] or entangled states of two different isotopes [99].

VIII. CONCLUSIONS

In this article, a general formalism for a relativistic
description of atom interferometers in curved spacetime has
been derived, and it has been applied to a detailed
investigation of a novel scheme for quantum-clock inter-
ferometry sensitive to gravitational time-dilation effects in
uniform fields. It has been shown that this scheme can be
exploited to test the UGR with delocalized coherent
superpositions of quantum clocks and argued that its
experimental implementation should be feasible with a
new generation of 10-meter atomic fountains that will soon
become available at Stanford and HITec (Hannover) [67].
Interestingly, the results obtained here also provide a

suitable framework for discussing the interpretation of the
experiments reported in Ref. [100] (see also Ref. [101] for
similar results with multiple internal states) and presented
as an analog of the contrast reduction caused by gravita-
tional time dilation in atom interferometry. There, the
uniform gravitational field was mimicked by a magnetic
field gradient, two different spin states corresponded to the
two internal states, and their different couplings to the
magnetic field were the analog of different gravitational
masses. A decrease (and eventual revival) of the visibility
was indeed observed as one considered increasingly later
detection times. However, these experiments are not a good
analogy for gravitational effects because the inertial mass is
essentially the same for both spin states, and the different
couplings lead to different accelerations, which would
correspond to drastic violations of UFF. Rather than being
a minor imperfection of the analogy, this point is actually
decisive, as can be clearly seen from the results of Sec. VI B
and Appendix C 3. Indeed, the Ramsey interferometer
employed in Ref. [100] is equivalent to the interferometer
depicted in Fig. 8, and for the gravitational case, the
separation phase would exactly cancel the difference of
propagation phases for the two dashed segments; thus, the
phase shift remains independent of the detection time, and
no visibility decrease due to gravitational time-dilation
effects in a uniform field would be observable with this
setup [102]. Therefore, although they are an example of
which-way information stored in the internal state and
leading to loss of visibility, the experiments of Ref. [100]
are not a valid analogy for gravitational time-dilation
effects.
The absence of any other proposals so far for a viable

experimental realization (at least in the near future)
sensitive to gravitational time-dilation effects in quan-
tum-clock interferometry or even of appropriate analogous
experiments, as pointed out in the previous paragraph,
makes the scheme presented here particularly valuable.
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It is worth pointing out that besides being crucial for the
proposed scheme, another interesting aspect of the clock-
initialization pulses based on two-photon transitions [26]
discussed in Appendix D is that they can be used with
bosonic isotopes, too. This aspect is in contrast with the
single-photon transitions between the two clock states,
which are weakly allowed for fermionic isotopes but
entirely forbidden in the bosonic case unless a strong
external magnetic field is applied. An advantage of being
able to work with the bosonic isotopes is that they can be
cooled down more easily (even reaching Bose-Einstein
condensation), and sufficiently narrow momentum distri-
butions can be reached, which are essential for long
interferometer times and high diffraction efficiencies. On
the other hand, of the two diffraction mechanisms for
internal-state superpositions analyzed in Appendix E,
Bragg diffraction at a magic wavelength can be employed
with both kinds of isotopes but requires a rather large
amount of laser power. In that respect, the second method,
based on simultaneous pairs of single-photon transitions,
constitutes an interesting alternative with appealing proper-
ties, which can be additionally exploited to perform tests of
UFF with atoms in internal-state superpositions. However,
this method requires employing fermionic isotopes, which
should be cooled down through sympathetic cooling, or
using bosonic atoms and applying strong magnetic fields
during the diffraction pulses, which seems a less viable
option for this kind of experiment. In any case, since many
future proposals for atom interferometry [104–106], includ-
ing a second 10-m atomic fountain at Stanford that will
operate with Sr atoms, are based on single-photon tran-
sitions between clock states, substantial progress is
expected on this matter in the coming years.
Finally, it should be emphasized that although we have

mainly focused on its application to quantum-clock inter-
ferometry experiments in nearly uniform gravitational
fields, the relativistic description of atom interferometry
in curved spacetime developed in this paper can be
employed in a very wide range of situations for general
spacetimes. (This may require taking into account the
effects on the propagation of the laser pulses due to the
spacetime curvature.) Furthermore, it is not restricted to
freely falling particles and can naturally take into account
the effect of external forces or even guiding potentials. In
particular, it can be very useful when studying the effects
of gravitational waves on matter-wave propagation and
matter-wave interferometry, not only for atoms but also for
high-mass particles [107].
Moreover, although this relativistic description can be

regarded as single-particle relativistic quantum mechanics,
as discussed in Appendix G, it can be straightforwardly
generalized to account for many-body effects. This gener-
alization can be accomplished by considering nonrelativistic
many-body theory, either in first or second quantization,
for the centered wave packets in the Fermi-Walker frame.

In many cases, this treatment can be further simplified. For
example, it is usually sufficient to describe Bose-Einstein
condensates in terms of a mean-field wave function whose
dynamics is governed by the Gross-Pitaevskii equation,
which reduces to the Schrödinger equation for a single
particle when mean-field interactions can be neglected. On
the other hand, thermal clouds of cold atoms far from
degeneracy can be described in terms of an incoherent
mixture of single-particle wave packets [31].
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APPENDIX A: FERMI-WALKER COORDINATES

Given a timelike curve in spacetime, often referred to as
a worldline, one can always construct a Fermi-Walker
frame associated with it. The essential ingredient is a tetrad
for each point on the worldline consisting of the normalized
tangent vector and a set of three orthonormal spatial vectors
orthogonal to the tangent vector. Specifying these three
vectors at one point immediately determines their counter-
parts on the whole curve through the so-called Fermi-
Walker transport, which requires that the covariant deriva-
tive along the worldline of each one of them is parallel to
the tangent vector [108,109].
The Fermi-Walker coordinates associated with this frame

comprise the proper time τc along the worldline, which
specifies a point on the curve, and three spatial coordinates
fxig that can be regarded as coefficients of the spatial basis
vectors of the tetrad and define an element of the vector
space orthogonal to the curve at that point. The direction
and modulus of this vector determine a geodesic leaving the
worldline point in that direction and the proper distance
along the geodesic. In this way, the coordinates ðτc;xÞ
uniquely specify a spacetime point, at least in a finite
neighborhood of the worldline. In some cases, this can be
extended to the whole spacetime, and they constitute well-
defined global coordinates, but it is not always possible.
Further details about the Fermi-Walker coordinates can be
found in Ref. [109].
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In terms of these coordinates, the worldline becomes
XμðτcÞ ¼ ðcτc; 0Þ, with four-velocity Uμ¼dXμ=dτ¼ðc;0Þ
and nonvanishing acceleration Uν∇νUμ ¼ (0; aðτcÞ),
where ∇ν denotes the covariant derivative associated with
the metric connection. The metric, in turn, is given by the
following line element:

ds2 ¼ gμνdxμdxν ¼ g00c2dτ2c þ 2g0icdτcdxi þ gijdxidxj;

with

g00 ¼ −ð1þ δijaiðτcÞxj=c2Þ2 − R0i0jðτc; 0Þxixj þOðjxj3Þ;
ðA1Þ

g0i ¼ −
2

3
R0jikðτc; 0Þxjxk þOðjxj3Þ; ðA2Þ

gij ¼ δij −
1

3
Rikjlðτc; 0Þxkxl þOðjxj3Þ: ðA3Þ

Thus, at any point of the worldline, the metric coincides
with the Minkowski metric, and all the Christoffel symbols
vanish except for Γi

00 ¼ ai=c2 ¼ Γ0
0i ¼ Γ0

i0. In particular,
close to the worldline, the equation of motion for a freely
falling particle with a nonrelativistic velocity in this frame
(i.e., j _xj ≪ c with _≡ d=dτc), which follows from the
geodesic equation in this limit, takes the simple form
ẍ ¼ −a plus tidal forces that grow linearly with x.
The Fermi-Walker coordinates are especially well suited

when considering a spacetime region close to the worldline.
In order to quantify this approximation, it is convenient to
introduce a curvature radius scale l that can be roughly
defined as 1=l2 ∼max jRμνρσj in terms of the Riemann-
tensor components in an orthonormal basis and characterizes
how strong the spacetime curvature is. For a weak gra-
vitational field corresponding to Eq. (5) and slowly varying
in time (or completely time independent), one has
1=l2 ∼ jR0i0jj ≈ j∂i∂jU=c2j. By considering a spherically
symmetric source mass, this result can be estimated to be
1=l2 ∼ ð2GM=c2rÞð1=r2Þ ¼ ðrS=rÞð1=r2Þ, where rS is the
Schwarzschild radius for that mass. Considering a point near
Earth’s surface, i.e., r ≈ R⊕, and taking into account that
rS ≈ 9 mmfor theEarth,weobtain1=l2 ∼ 10−9 × ð1=R⊕Þ2.
Hence, for a spatial size Δx ¼ 1 mm, the relevant ratio
becomes ðΔx=lÞ ∼ 10−14. The contributions of the curvature
terms in Eqs. (A1)–(A3) are of order ðΔx=lÞ2, whereas the
higher-order corrections neglected there are suppressed by
even higher powers.
More specifically, the higher-order corrections to the

expressions of the metric components in Eqs. (A1)–(A3)
involve positive powers of the Riemann tensor, of its
covariant derivatives, or both. While the size of the
Riemann tensor components is characterized by 1=l2,
every derivative can be regarded to contribute with an

additional factor 1=l0 characterizing the spacetime varia-
tions of the Riemann tensor. In the above estimate for weak
gravitational fields generated by spherically symmetric
sources, this scale corresponds to l0 ∼ r. For Earth’s
gravitational field, l0 ∼ R⊕ is still a rather large length
scale, but for nearby masses, it can be much smaller and the
ratio ðΔx=l0Þ is much less suppressed. In fact, the deriv-
atives of the gravitational potential U are closely related to
the multipole expansion of the gravitational field at any
given point, with higher multipoles dominated by the local
mass distribution. Indeed, for objects with mass densities
similar to Earth’s density, the value of 1=l2 close enough to
the object can be comparable to that from Earth’s gravi-
tational field, whereas higher derivatives are further sup-
pressed by powers of 1=l0 and their main contributions
come from nearby masses.
Next, we briefly discuss two particular cases, corre-

sponding to vanishing acceleration or vanishing curvature,
which are especially relevant.

1. Fermi normal coordinates (free fall)

The particular case of vanishing acceleration cor-
responds to the trajectory of a freely falling particle.
The worldline is then a geodesic, and the Fermi-Walker
transport reduces to the usual parallel transport associated
with the metric connection. Moreover, in this case, the
Fermi-Walker coordinates coincide with the so-called
Fermi normal coordinates, and the metric components,
which can be obtained by taking ai ¼ 0 in Eqs. (A1)–(A3),
agree with the well-known result for Fermi coordi-
nates [22].

2. Rindler spacetime (uniform gravitational field)

The metric of a uniform gravitational field in general
relativity has the following line element:

ds2 ¼ −ð1 − δijgixj=c2Þ2c2dτ2c þ δijdxidxj; ðA4Þ

and it can be interpreted as the outer gravitational field
generated by a homogeneous mass distribution on an
infinite plane. The spacetime outside this mass distribution
is, on both sides, a vacuum solution of Einstein’s equations
with planar symmetry, i.e., invariant under the Eð2Þ
Euclidean group of isometries, which involves two trans-
lations and one rotation.
In fact, it has the same form as Rindler spacetime, a

region of Minkowski spacetime associated with a rigid
congruence of uniformly accelerated observers, and it can
be obtained from the Fermi-Walker metric by considering a
vanishing Riemann tensor in Eqs. (A1)–(A3). Moreover, by
comparison with Eq. (A1), one can conclude that the
acceleration of the static worldline corresponding to
x ¼ 0 is aðτcÞ ¼ −g, which is time independent.
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APPENDIX B: WAVE-PACKET PROPAGATION

In order to study the evolution of an atomicwave packet in
curved spacetime with possibly relativistic motion, it is
convenient to work in a comoving frame where the central
position of the wave packet is at rest, and its evolution
reduces to a nonrelativistic problem as long as the velocity
spread of the wave packet is much smaller than the speed of
light. This idea is naturally implemented by considering the
Fermi-Walker frame associated with the central spacetime
trajectory of the wave packet, where its dynamics is par-
ticularly simple provided that its spatial width Δx is much
smaller than the characteristic curvature length scale l.

1. Free propagation

Many key aspects of the general case are already present
in the case of a freely falling atom, which we consider first.
The central position of the wave packet follows a space-
time geodesic, and the corresponding Fermi-Walker coor-
dinates reduce to Fermi normal coordinates. Substituting
Eqs. (A1)–(A3) with ai ¼ 0 into Eq. (2) and taking into
account that vi ¼ dxi=dτc ≪ c, the classical action in the
Fermi-Walker frame becomes

Sn½xðτcÞ� ≈
Z

dτc

�
−mnc2 þ

mn

2
v2 þmn

2
xTΓðτcÞx

�
;

ðB1Þ

where we have introduced the gravity gradient tensor
ΓijðτcÞ ¼ −c2R0i0jðτc; 0Þ and employed matrix notation.
When deriving Eq. (B1), we have taken into account that
dx0=dτc ¼ c, factored c2 out of the radicand, and expanded
the resulting square root in powers of ðvi=cÞ and of the
Riemann tensor components times xixj. The terms
neglected in Eq. (B1) are suppressed by further powers
of (v=c), ðΔx=lÞ, and ðΔx=l0Þ. In particular, the lowest-
order corrections are of the order of the kinetic term times
ðv=cÞ2 or ðΔx=lÞ2 and of the order of the gravity-gradient
term times (v=c) or ðΔx=l0Þ.
One can easily get a quantitative estimate of how small

these suppression factors are for typical parameters in atom
interferometry. For a velocity spread Δv ¼ 3 mm=s, we
have ðΔv=cÞ ∼ 10−11. Similarly, for a wave-packet size
Δx ¼ 1 mm, and taking into account that for Earth’s
gravitational field l ∼ 1011 m, one gets ðΔx=lÞ ∼ 10−14.
Note, however, that as pointed out in Appendix A, the
contributions of the local mass distribution can lead to
much smaller values of the length scale l0 characterizing
the derivatives of the Riemann tensor, so the factor ðΔx=l0Þ
is much less suppressed. In order to include the corre-
sponding contributions, which are rather small but may
eventually become non-negligible, one needs to consider
the terms proportional to higher derivatives of the Riemann
tensor in Eq. (A1). Doing so essentially amounts to

considering higher multipoles of the gravitational field in
the Fermi-Walker frame and would give rise to additional
terms involving cubic powers of x and higher in the
integrand of Eq. (B1). The effects of such small anharmo-
nicities due to the gravitational field will be reported
elsewhere [110].
The Hamiltonian operator associated with the action in

Eq. (B1) is given by

Ĥn ¼ mnc2 þ ĤðnÞ
c ; ðB2Þ

with

ĤðnÞ
c ¼ 1

2mn
p̂2 −

mn

2
x̂TΓðτcÞx̂: ðB3Þ

When computing the corresponding unitary time-evolution
operator between comoving times τ1 and τ2, the first term
on the right-hand side of Eq. (B2) gives rise to a pure
c-number phase factor that can be written as eiSn=ℏ, with

Sn ¼ −mnc2ðτ2 − τ1Þ ¼ −mnc2
Z

τ2

τ1

dτc: ðB4Þ

Although derived in the Fermi-Walker framewhere thewave
packet is at rest, the proper time between two spacetime
points calculated along the central trajectory XμðλÞ is an
invariant quantity, and Sn can be obtained for an arbitrary
coordinate system through Eq. (2). This phase, which is
entirely determined by the central trajectory, can be naturally
interpreted as thewave packet’s propagation phase, whereas

a Schrödinger equation with the Hamiltonian ĤðnÞ
c governs

the dynamics of the centered wave packet jψ ðnÞ
c ðτcÞi in the

Fermi-Walker frame. This useful decomposition of the
wave-packet evolution in terms of its central trajectory
and a centered wave packet constitutes a relativistic gener-
alization of analogous existing results for the nonrelativistic
case (see, e.g., Refs. [28–31,111]).
As argued above, the corrections to the time evolution of

the centered wave packet due to the terms neglected in
Eq. (B1) will typically be very small, but if necessary, they
can be computed perturbatively. More specifically, this
computation can be done by working in the interaction
picture and perturbatively expanding the time-ordered
exponential of the time integral of the higher-order terms
neglected in the Hamiltonian operator of Eq. (B3). (In
doing so, the appropriate operator ordering should be used
for the higher-order corrections to the Hamiltonian involv-
ing powers of the x̂ and p̂ operators.) These contributions
can be organized systematically in terms of powers of (v=c)
and ðxi=lÞ, but it is usually sufficient to keep the lowest-
order terms in order to show explicitly (and quantitatively)
how small the corrections are.
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2. External forces

The results of the previous subsection can be generalized
to the case where the atoms experience external forces and
the central trajectory of the wave packet no longer
corresponds to a spacetime geodesic. In that case, one
needs to consider the Fermi-Walker frame for this accel-
erated trajectory as well as the associated Fermi-Walker
coordinates, and the metric components are then given by
Eqs. (A1)–(A3) with ai ≠ 0. Furthermore, the external
forces need to be explicitly taken into account, which will
be done by adding the contribution of an external potential
to the classical action; thus, Eq. (2) becomes

Sn½xμðλÞ� ¼ −mnc2
Z

dτ −
Z

dτVnðxμÞ; ðB5Þ

which assumes that the external forces in the Fermi-Walker
frame can be satisfactorily characterized through a poten-
tial. For most relevant situations involving neutral atoms,
this is typically the case, and one routinely employs
magnetic and optical potentials to describe their inter-
actions with magnetic fields or light fields. Otherwise, one
would need to replace the potential term on the right-hand
side of Eq. (B5) by a suitable alternative describing the
interaction of the atoms with the external forces.
A useful expression for the classical action in the

Fermi-Walker frame analogous to Eq. (B1) can also be
obtained in this case by proceeding similarly to the
derivation in the previous subsection. First, one groups
the two integrals in Eq. (B5) into a single one with the
integrand −(mnc2 þ VnðxμÞ). Next, one uses the general
expression for the proper time in Eq. (2) specialized to the
Fermi-Walker coordinates and with the metric components
given by Eqs. (A1)–(A3). One can then factor the curva-
ture-independent term of the metric component −g00 times
c2 out of the radicand and expand the remaining square root
perturbatively in powers of (v=c) and ðxi=lÞ, as done in the
previous subsection, to obtain

Sn½xðtÞ�≈−
Z

dτc(mnc2 þVnðτc;xÞ)
�
ð1þ aðτcÞ · x=c2Þ

− ð1þ aðτcÞ · x=c2Þ−2
�
1

2

v2

c2
þ 1

2c2
xTΓðτcÞx

��

≈−
Z

dτc(mnc2 þVnðτc;xÞ)
�
ð1þ aðτcÞ · x=c2Þ

−
�
1

2

v2

c2
þ 1

2c2
xTΓðτcÞx

��
; ðB6Þ

where the expansion has been truncated at the same order,
ðv=cÞ2 and ðxi=lÞ2, as Eq. (B1). Furthermore, in the second
equality, we have assumed that ja · xj=c2 ≪ 1 and
neglected terms involving powers of ða · xÞ=c2 times
ðv=cÞ2 or ðxi=lÞ2. One can easily check that for typical

parameters in atom interferometry, this new factor is also
very small. Indeed, for an acceleration a ¼ 10 m=s2 and a
wave-packet size Δx ¼ 1 mm, one has ðaΔx=c2Þ ∼ 10−19.
Even for the steepest guiding potentials employed, one

typically hasmnc2 ≫ Vn ∼mnv2. Neglecting terms involv-
ing the potential times powers of order ða · xÞ=c2, ðv=cÞ2,
ðxi=lÞ2, or higher, the action in Eq. (B6) becomes

Sn½xðtÞ� ≈
Z

dτc

�
−mnc2 − Vnðτc; 0Þ þ

mn

2
v2

−
1

2
xT(VðnÞðτcÞ −mnΓðτcÞ)x − VðnÞ

anh:ðτc;xÞ
�
;

ðB7Þ

where VðnÞ
ij ðτcÞ ¼ ∂i∂jVnðτc;xÞjx¼0 and VðnÞ

anh:ðτc;xÞ corre-
sponds to any anharmonic contributions to the external
potential that remain after subtracting the harmonic part
(i.e., all terms up to quadratic order in x). Note that the
terms linear in x on the right-hand side of Eq. (B7) have
canceled out. This cancelation would take place even
without the approximations that have been made when
deriving Eqs. (B6) and (B7), and it is a consequence of the
central trajectory fulfilling the classical equation of motion,
which, in the Fermi-Walker frame, amounts to Eq. (14).
The Hamiltonian operator associated with the classical

action in Eq. (B7) is given by

Ĥn ¼ mnc2 þ Vnðτc; 0Þ þ ĤðnÞ
c ; ðB8Þ

with

ĤðnÞ
c ¼ 1

2mn
p̂2 þ 1

2
x̂T(VðnÞðτcÞ −mnΓðτcÞ)x̂; ðB9Þ

which is valid for a locally harmonic potential (i.e., well
approximated by a quadratic function within a region of the
size of the wave packet). Otherwise, one needs to add the

anharmonic contribution VðnÞ
anh:ðτc;xÞ to the right-hand side

of Eq. (B9). When computing the unitary time-evolution
operator between comoving times τ1 and τ2 associated with
the Hamiltonian Ĥn, the first two terms on the right-hand
side of Eq. (B8) give rise to a pure c-number phase factor
that can be written as eiSn=ℏ, with

Sn ¼ −
Z

τ2

τ1

dτc (mnc2 þ Vnðτc; 0Þ); ðB10Þ

and it can be interpreted as the wave packet’s propagation

phase. The Hamiltonian ĤðnÞ
c , on the other hand, governs

the dynamics of the centered wave packet jψ ðnÞ
c ðτcÞi in the

Fermi-Walker frame.
For a locally harmonic potential, if one chooses a

centered wave packet with hx̂i ¼ hp̂i ¼ 0 at some initial
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time, the vanishing expectation values will be preserved by
the propagation dynamics. This result will no longer hold if
one needs to include anharmonic contributions from

VðnÞ
anh:ðτc;xÞ that are odd under xi → −xi transformations.

However, even in that case, one can still use the classical
central trajectory to define the Fermi-Walker frame as long
as the nontrivial evolution of the expectation values

generated by the anharmonic contributions to ĤðnÞ
c fulfills

the conditions hx̂i ≪ l;l0 and hp̂i=mn ≪ c. Exactly the
same conclusions would apply to the anharmonicities
associated with higher multipoles of the gravitational field
discussed in the previous subsection.
Finally, by following the same procedure described at the

end of the previous subsection, one can systematically
compute the corrections associated with the terms involv-
ing higher powers of (v=c), ðxi=lÞ, and ða · xÞ=c2 that have
not been included in the Hamiltonian ĤðnÞ

c given by
Eq. (B9) and governing the dynamics of the centered wave
packets.

3. Guided propagation around the waveguide minimum

As pointed out in Sec. V D, when studying guided
interferometry, it is convenient to consider the Fermi-
Walker frame associated with the spacetime trajectory
Xμ
0ðtÞ ¼ (ct;x0ðtÞ) of the potential minimum, where it

becomes Xμ
0ðτcÞ ¼ ðcτc; 0Þ. The derivation of the action in

this frame is very similar to the derivation in the previous
subsection, except that the terms linear in x do not cancel
out. This cancellation was a consequence of the central
trajectory satisfying the classical equation of motion, which
is no longer the case for Xμ

0ðtÞ. In fact, the linear
contribution of the potential vanishes at the minimum,
where ∂Vn=∂xi ¼ 0, and the linear term is entirely given by
the acceleration dependence of the g00 metric component in
Eq. (A1). Therefore, instead of Eq. (B7), one has

Sn½xðtÞ� ≈
Z

dτc

�
−mnc2 − Vnðτc; 0Þ −mnaðτcÞ · x

þmn

2
v2 −

1

2
xT(VðnÞðτcÞ −mnΓðτcÞ)x

− VðnÞ
anh:ðτc;xÞ

�
: ðB11Þ

By solving the equation of motion that follows from this
action, one can calculate the deviations of the actual central
trajectory with respect to Xμ

0ðτcÞ. Furthermore, evaluating
the action along this solution provides the corrections to the
propagation phase due to those deviations. Indeed, whereas
the first two terms in the integrand correspond to comput-
ing the action along Xμ

0ðτcÞ, the remaining terms account
for the extra contributions that arise when evaluating it
along the actual central trajectory. The interest of working
in this frame is that for sufficiently steep guiding potentials,

the deviations of the central trajectory and the associated
corrections to the propagation phase are both small.
Note that for the particular example in which Xμ

0ðτcÞ is a
static trajectory in a time-independent gravitational field,

one has aðτcÞ ¼ −g, and as long as VðnÞ
anh:ðτc;xÞ can

be neglected, it coincides with the case considered in
Sec. IV C, where the shift Δxn of the equilibrium position
was determined. On the other hand, if Xμ

0ðτcÞ corresponds
to some nonrelativistic motion around the static trajectory,
the acceleration is given instead by aðτcÞ ¼ −gþ ẍ0ðτcÞ,
with ẍ0ðτcÞ calculated in the Fermi-Walker frame of the
static trajectory. Such a time-dependent acceleration leads
to a situation analogous to that in Sec. IV C but with a time-
dependent shift ΔxnðτcÞ of the equilibrium position.
Besides the trap potentials considered here, the approach

of this subsection can also be applied to the periodic
potentials generated by optical lattices. The Fermi-Walker
frame associated with the worldline of one of the potential
minima corresponds to working in the comoving frame
where the optical lattice is at rest. A nonvanishing accel-
eration of the worldline then gives rise to Bloch oscillations
[59,112], which can be analytically described in fairly
simple terms for the two opposite regimes of shallow and
deep lattices. Further details on this approach will be
provided elsewhere.

APPENDIX C: FULL ATOM INTERFEROMETER

In order to determine the outcome of an atom interfer-
ometer in curved spacetime and including relativistic
effects, one can proceed as follows. First, one computes
the evolution of the atomic wave packets along each
interferometer branch (the different branches for a Mach-
Zehnder interferometer are shown in Fig. 12 as an exam-
ple). The propagation between laser pulses can be obtained
by means of the general formalism introduced in Sec. IV
and derived in Appendix B, whereas the effect of the laser
pulses is discussed below. In this way, the resulting state of
the wave packet evolving along branch a is eiϕa jψ cðτcÞi,
where the centered wave packet jψ cðτcÞi is a solution of the
Schrödinger equation with the Hamiltonian operator of
Eq. (12) or (15) in the presence of external forces, and the
phase ϕa consists of the propagation phases for the various
segments of the central trajectory associated with that
branch as well as the laser phases stemming from the
different pulses. Completely analogous expressions hold
for the wave packets evolving along the other branches.
The state after the last beam splitter can be written as a

superposition jψi ¼ jψ Ii þ jψ IIi of the states for the two
exit ports. Moreover, if we assume that the central
trajectories for the two branches a and b contributing to
port I coincide after the last beam splitter and that the
centered wave packets experience the same evolution along
the two branches, the state at this exit port is given by the
following coherent superposition:
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jψ Ii ¼
1

2
ðeiϕa þ eiϕbÞjψ ci ¼

1

2
ð1þ eiδϕÞeiϕa jψ ci: ðC1Þ

The interference signal is thus encoded in the phase shift
δϕ ¼ ϕb − ϕa, which determines the probability that an
atom is detected in port I:

hψ Ijψ Ii ¼
1

2
ð1þ cos δϕÞ: ðC2Þ

Analogous results hold for the second exit port (II), and the
probability that an atom is detected instead in that port is

hψ IIjψ IIi ¼
1

2
ð1 − cos δϕÞ: ðC3Þ

The factor 1=2 on the right-hand side of Eq. (C1) is the
product of two factors 1=

ffiffiffi
2

p
associated, respectively, with

the initial and final beam-splitter pulses. This factor would
differ for an interferometer with additional intermediate
beam splitters and more than two exit ports, or in the case of
unbalanced beam splitters (not leading to equal-amplitude
superpositions).
As already pointed out, for simplicity, we have consid-

ered a closed interferometer, where the central trajectories
of the two interfering wave packets coincide. The case of
open interferometers, where they no longer coincide, is
analyzed below. On the other hand, the additional
assumption that the evolution of the centered wave packets
is the same along different branches is a good approxima-
tion in many applications, including those explicitly con-
sidered here (because the gravity gradients are nearly the
same on both branches), but a detailed investigation of the
implications when this is not the case will be presented
elsewhere [110].

The results presented in this Appendix can be extended
to quantum-clock interferometry by including the
superscript (n) labeling the internal state and taking into
account the evolution of the different internal states
along the interferometer branches, as done in Sec. IV
and Appendix B, as well as the effects of the initialization
pulse, briefly introduced in Sec. II B and discussed in detail
in Appendix D.

1. Transformation between different frames

Before analyzing the effect of the laser pulses and the
case of open interferometers, it is necessary to understand
how wave packets transform under frame changes. Let us
consider the Fermi-Walker coordinates fcτc;xg associated
with a worldline Xμ

1ðλÞ and a second worldline Xμ
2ðλÞ with

its corresponding Fermi-Walker coordinates fcτ0c;x0g that
intersects the first one at some point in spacetime. If we
choose the origin for both comoving times (τc and τ0c) at the
intersection point, the two sets of Fermi-Walker coordinates
are related in the neighborhood of that point by the
following Lorentz transformation:

τ0c ¼ γvðτc − v · x=c2Þ
≈ τc þ τcðv2=2c2Þ − v · x=c2; ðC4Þ

x0 ¼ x⊥ þ γvðxjj − vτcÞ ≈ x − vτc; ðC5Þ

where Uμ
2 ¼ ðcγv; vγvÞ is the four-velocity of worldline

Xμ
2ðλÞ at the intersection point expressed in terms of the

Fermi-Walker frame associated with Xμ
1ðλÞ; xjj and x⊥

denote, respectively, the parallel and perpendicular projec-
tions to v; and the last equality on the right-hand side of
both equations is a good approximation for nonrelativistic
relative velocities, i.e., v ≪ c. The derivation of Eqs. (C4)
and (C5) relies on the fact that the metric at the intersection
point is the Minkowski metric in both reference frames.
Corrections to the Minkowski metric in the neighborhood
of the intersection point are small, provided that ja ·
Δxj=c2 ≪ 1 and ðΔxÞ2 ≪ l2 for both frames, and have
been neglected, but they can be included if necessary.
In this context, the transformation of wave packets under

frame changes takes a particularly simple form in position
representation. Indeed, given a wave packet with central
trajectory Xμ

2ðλÞ, one can immediately find how the
expressions in the two frames are related near the inter-
section point by making use of Eqs. (C4) and (C5):

e−imc2τ0c=ℏψ cðx0; τ0cÞ ≈ e−imc2τc=ℏe−imv2τc=2ℏ

× eimv·x=ℏψ cðx − vτc; τcÞ: ðC6Þ

This result is only valid for nonrelativistic relative velocities
because the nonrelativistic version of Eqs. (C4) and (C5)
has been employed in its derivation. Note, however, that

FIG. 12. Schematic representation of the central trajectories of
the atomic wave packets in a light-pulse atom interferometer,
where branches a and b correspond to the two interfering wave
packets in exit port I. The example displayed here is a Mach-
Zehnder interferometer with different times between the mirror
pulse and the initial and final beam-splitter pulses.
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although suppressed by 1=c2, the last two terms on the
right-hand side of Eq. (C4) give rise to a non-negligible
contribution in the nonrelativistic limit when multiplied
by mc2.

2. Laser kicks and laser phases

Here, we focus on idealized laser pulses whose finite
duration as well as any dispersive effects are neglected and
that amount to multiplying the wave function for the atom’s
c.m. (in position representation) by a factor i expðikeff ·
y þ iφÞ expressed in the coordinate system ft; ygwhere the
laser modes are calculated. Since the wave-packet evolution
is best described in a comoving frame defined by its central
trajectory, it is convenient to rewrite this factor in the
following equivalent form: exp½ikeff · (y −XðtjÞ)�×
i exp½iφþ ikeff ·XðtjÞ�, whereXðtjÞ is the central position
of the wave packet when the laser pulse is applied. These
quantities are expressed in the coordinate system consid-
ered above for the laser modes. On the other hand, in the
Fermi-Walker frame associated with the wave packet’s
central trajectory, the first factor becomes expðik̃eff · xÞ,
where k̃eff takes into account the Doppler effect due to the
velocity of the central trajectory with respect to the frame of
the laser modes. Since in most applications this velocity is
small and the laser pulses are based on two-photon
processes such as Bragg diffraction where the first-order
Doppler effect cancels out, we consider k̃eff ≈ keff, but very
similar conclusions are reached without this approximation
(see below) [113]. Furthermore, any corrections to the
exponent that are nonlinear in x and may arise from the
change of coordinates have been neglected, but they will be
briefly discussed at the end of this subsection.
The effect of the laser pulse on an atomic wave packet

with central trajectory Xμ
1ðλÞ and centered wave packet

ψ cðx; τcÞ can then be easily understood thanks to the results
of the previous subsection. If we choose the origin of the
comoving time (τc ¼ 0) at the time when the laser pulse is
applied, the product eikeff ·xψ cðx; τcÞ coincides with the
right-hand side of Eq. (C6) for a velocity v ¼ keff=m≡
vrec. Therefore, we can conclude that the effect of the pulse
was to change the central trajectory of the wave packet to a
new trajectory Xμ

2ðλÞ with a relative velocity vrec with
respect to the first one. From that point on, one can consider
the Fermi-Walker frame associated with Xμ

2ðλÞ, and corre-
sponding to the left-hand side of Eq. (C6), in order to study
the propagation of the wave packet. Note that in the
derivation, we have assumed that the recoil velocity vrec
is nonrelativistic, which is always the case in this context.
On the other hand, even if the Doppler effect for the pulse’s
wave vector is not neglected as done above, very similar
conclusions would still be obtained. In that case, one would
need to consider k0

eff and the corresponding recoil velocity
in the Fermi-Walker frame; however, when transforming
back to the frame of the laser modes, the change of the

central trajectory would correspond to a momentum trans-
fer of ℏkeff , in agreement with the expectations from
momentum conservation.
Consequently, when calculating the wave-packet propa-

gation along a given branch, the action of each laser pulse
can be summarized as follows. First, the central trajectory
experiences a momentum kick, as explained above, leading
to a velocity change εjvrec, with εj ¼ �1 depending on
whether the direct or inverse transition takes place, and
where the index j labels the pulse number. In addition, the
wave packet gets multiplied by a phase factor

i exp½iεjφj þ iεjkeff ·XðtjÞ�; ðC7Þ

whereXðtjÞ is the central position of the wave packet in the
coordinate system used for the laser modes. The wave
vector keff is often the same for all pulses; otherwise, it
needs to be explicitly labeled with the corresponding pulse
number. One also needs to take into account that beam-
splitter pulses generate an equal-amplitude superposition of
two different wave packets: one following the original
trajectory, undeflected, with no additional phase factor, and
the other following the deflected central trajectory and
multiplied by the phase factor (C7).
Idealized laser pulses have been considered here in order

to concentrate on the key aspects of the associated matter-
wave diffraction. Nevertheless, building on the framework
introduced above, a detailed study of the dynamics of the
atomic wave packets during the diffraction process is
possible. Indeed, one can take into account the finite pulse
duration and off-resonant transitions as well as velocity
selectivity and dispersion effects (i.e., momentum depend-
ence of the diffraction amplitudes) by means of semi-
analytical treatments such as those of Refs. [114–116], or
even numerical simulations, adapted to the Fermi-Walker
frame. In this respect, it can be useful to consider the Fermi-
Walker frame for a trajectory interpolating between the
initial and final central trajectories, particularly for large-
momentum-transfer (LMT) beam splitters and mirrors
consisting of multiple pulses.
Furthermore, a more realistic treatment of the laser

modes would require considering Gaussian beams rather
than plane waves and, more generally, the propagation of
electromagnetic waves in curved spacetime as well as the
change of coordinates to the relevant Fermi-Walker frame.
The effects of curved spacetime on the laser modes are
typically negligible in most applications, but the influence
of gravitational waves on the propagation of laser beams
over long baselines plays a crucial role in proposed
gravitational antennas involving a pair of atom interfer-
ometers a long distance apart and interrogated by common
laser beams.
In any case, all of these effects associated with realistic

laser pulses have a rather limited impact on the doubly
differential measurement scheme presented in Sec. VI
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because they affect, in the same way, repeated realizations
where only the initialization time is changed, and they
cancel out when taking the difference.

3. Open interferometers and separation phase

In open interferometers, the central trajectories of the
two interfering wave packets at the exit port, Xμ

aðλÞ and
Xμ
bðλÞ, do not coincide. The separation is typically com-

parable to or smaller than the wave-packet width Δx and
much smaller than the characteristic curvature radius l.
Therefore, one can naturally consider the Fermi-Walker
frame associated with a midtrajectory, where the two

central trajectories become −δXðτcÞ=2 and δXðτcÞ=2,
respectively. Nevertheless, it is instructive to also consider
more general frames where the spatial coordinates of the
midterm trajectory X̄ðtÞ and the associated momentum P̄ðtÞ
do not vanish. As long as the relative velocity between the
different frames is nonrelativistic [and approximating the
Fermi-Walker metric at the exit port by the Minkowski
metric, i.e., neglecting the curvature terms in Eqs. (A1)–
(A3)], one can make use of the results derived in
Appendix C 1 and, in particular, Eq. (C6). The modulus
of the wave-packet superposition at the exit port can then be
written in position representation as follows:

jψ Iðx; tÞj ¼
1

2
jeiϕaψaðx; tÞ þ eiϕbψbðx; tÞj ¼

1

2
jeiϕaeiPa·ðx−XaÞ=ℏψ cðx −Xa; tÞ þ eiϕbeiPb·ðx−XbÞ=ℏψ cðx −Xb; tÞj

¼ 1

2
jeiϕaeiP̄·δX=2ℏe−iδP·ðx−X̄Þ=2ℏψ cðx − X̄þ δX=2; tÞ þ eiϕbe−iP̄·δX=2ℏeiδP·ðx−X̄Þ=2ℏψ cðx − X̄ − δX=2; tÞj; ðC8Þ

where we have taken into account that X̄ ¼ ðXa þXbÞ=2,
P̄ ¼ ðPa þ PbÞ=2, δX ¼ Xb −Xa, and δP ¼ Pb − Pa, and
have factored out some common phase factors that do not
contribute to the modulus. Squaring the right-hand side of
Eq. (C8) and integrating over space, one obtains the
following representation-free expression for the detection
probability in port I:

hψ Ijψ Ii ¼
1

2
ð1þ C cos δϕ0Þ; ðC9Þ

where δϕ0 ¼ ϕb − ϕa þ δϕsep, with the separation phase
δϕsep given by

δϕsep ¼ −P̄ · δX=ℏ: ðC10Þ
In turn, the contrast C, which characterizes the amplitude of
the oscillations as a function of the phase shift, corresponds to

C ¼ jhψ cðtÞjD̂ðδX; δPÞjψ cðtÞij ≤ 1; ðC11Þ
where D̂ðδX; δPÞ denotes the displacement operator

D̂ðδX; δPÞ ¼ exp ðiδP · X̂=ℏ − iδX · P̂=ℏÞ; ðC12Þ
and the inequality in Eq. (C11) is saturated only when
δX ¼ δP ¼ 0. Hence, open interferometers lead to a loss
of contrast for the oscillations of the integrated atom number
in each exit port. Note also that the expectation value in
Eq. (C11) is, in general, a complex quantity, and one needs to
add its argument to the phase shift δϕ0 in Eq. (C9). However,
for symmetric or antisymmetric centered wave packets, i.e.,
those with ψ cð−xÞ ¼ �ψ cðxÞ, the expectation value is real,
and there is no additional contribution to δϕ0 [31].
When considering the Fermi-Walker frame associated

with the midtrajectory, we have P̄ ¼ 0, and the separation
phase vanishes. On the other hand, the nonvanishing
separation phase for P̄ ≠ 0 can be interpreted in terms of
the proper-time difference between the two branches,

together with the relativity of simultaneity in different
frames. Indeed, let us consider simultaneous end points for
the central trajectories of the two interfering wave packets
in a reference frame where these have a nonvanishing
velocity v̄. The proper-time difference between the two
branches obtained in this way will differ from the analo-
gous calculation in the Fermi-Walker frame of the mid-
trajectory because the two end points considered above will
no longer correspond to simultaneous events in this frame.
Making use of Eq. (C4), one finds that this time difference
between the two end points is δτc ≈ −v̄ · δX=c2, which
corresponds to a phase difference −mc2δτc=ℏ ≈mv·
δX=ℏ ¼ P̄ · δX=ℏ. But this phase difference exactly can-
cels out the separation phase in Eq. (C10), so the total phase
shift δϕ0 calculated in the frame with v̄ ≠ 0 coincides with
the result obtained in the framewhere the midtrajectory is at
rest. This cancellation is important because the fraction of
atoms detected in each port, which is determined by δϕ0
through Eq. (C9), must be independent of the reference
frame. Notice that although we have implicitly assumed a
vanishing δv in the previous argument, one can straight-
forwardly show that it also holds for δv ≠ 0.
For simplicity, the discussion of the previous paragraph

is illustrated in Fig. 13 with the example of a Ramsey
interferometer consisting of two π=2 pulses, but the argu-
ment only depends on the central trajectories at the exit port
and holds for any interferometer configuration. In general,
open interferometers arise from otherwise closed interfer-
ometers due to gravity gradients [31], a case that will be
considered in Appendix F, or due to changes of the pulse
timing such as changing the time between the second and
third pulses in a Mach-Zehnder interferometer by δT
[31,117,118]. (Rotations also give rise to open interferom-
eters mainly along the transverse direction, i.e., along the
direction orthogonal to keff [30,31,72].)
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We close this subsection with some brief remarks on the
fringe pattern of the density profile at the exit ports of an
open interferometer. For Gaussian wave packets, expand-
ing BECs within the time-dependent Thomas-Fermi
approximation or wave packets, in general, at sufficiently
late times [31], the spatial probability density at the exit
port is given by

jψ Iðx; tÞj2 ≈ ð1=2Þ½1þ Cfr cosðkfr · xþ δϕ0Þ�jψ cðx; tÞj2;
ðC13Þ

where 0 ≤ Cfr ≤ 1, the vector kfr is determined by a linear
combination of δX and δP [31], and its modulus jkfrj ¼
2π=λfr is inversely proportional to the fringe spacing λfr. In
the above expression for the density profile, we have

assumed that the relative displacement δX is small com-
pared to the size of the envelope, and one can make
the approximation jψ cðx − δX=2; tÞjjψ cðxþ δX=2; tÞj≈
jψ cðx; tÞj2. It is clear from Eq. (C13) that the phase shift
δϕ0 can be extracted from the relative location of the fringes
with respect to the envelope [31,117,118] or to the fringes
of the other atomic cloud in a differential measurement
[19,74,119].

APPENDIX D: TWO-PHOTON TRANSITION FOR
THE INITIALIZATION PULSE

As seen in the laboratory frame, the initialization pulse
employed in the interferometry scheme presented in
Sec. VI consists of a pair of counterpropagating equal-
frequency laser beams with suitable polarizations and
four-dimensional wave vectors kμ� ¼ ðjkj;�kÞ, where
jkj ¼ ω0=2c corresponds to half the transition frequency
between the two clock states [26]. This configuration can
be naturally implemented with a beam injected along the
vertical direction that is retroreflected by a vibrationally
isolated mirror.

1. Atomic wave packet at rest

For an atom at rest in the laboratory frame, the counter-
propagating beams resonantly drive the transition between
the clock states through a two-photon process with vanish-
ing momentum transfer to the atom’s c.m. motion.
Specifically, each laser beam drives allowed E1 and M1
dipole transitions to a third state that are both far off
resonance [26]. After adiabatically eliminating the third
state, one is effectively left with a two-level system
experiencing Rabi oscillations between the two clock states
driven by two-photon processes. More precisely, the
dynamics of the internal state jΦðtÞi ¼ gðtÞjgi þ eðtÞjei
is governed by the following equation:

i

�
_eðtÞ
_gðtÞ

�
¼

�
ω0

Ω
2
e−iω0teiφ

Ω
2
eiω0te−iφ 0

��
eðtÞ
gðtÞ

�
: ðD1Þ

The angular Rabi frequency associated with the two-photon
process is given by Ω ¼ Ω1Ω2=2Δ, where Ω1 and Ω2 are
the Rabi frequencies of the allowed off-resonant transitions
and Δ is the detuning of these single-photon processes. In
turn, Ω1 is proportional to the transition matrix element of
the electric-dipole operator and to the amplitude of the
electric field, whereas Ω2 is proportional to the transition
matrix element of the magnetic-dipole operator and to the
amplitude of the magnetic field. Therefore, Ω is, overall,
proportional to the laser intensity and inversely propor-
tional to the detuning Δ.
On the other hand, the time-dependent phase factors

in the off-diagonal matrix elements of Eq. (D1) arise
from contributions to the product of the electric and
magnetic fields of the counterpropagating beams that are

(a)

(b)

FIG. 13. Central trajectories at the exit port of an open
interferometer. Simultaneous detection for nonvanishing central
velocities (a) corresponds to nonsimultaneous spacetime events
in the comoving frame, where the interfering wave packets are at
rest (b). The resulting proper-time difference, corresponding to
the dashed segment in panel (b), is exactly compensated by the
nonvanishing separation phase δϕsep in panel (a).
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proportional to e−iω0t=2eiφ1eik·x and e−iω0t=2eiφ2e−ik·x,
respectively. The spatially dependent factors cancel out,
and the phase oscillations are thus independent of the
position along the beam; thus, the spacetime hypersurfaces
of constant phase coincide with the hypersurfaces of
simultaneity in the laboratory frame. In this context, the
laser phase φ ¼ φ1 þ φ2 has a simple interpretation:
φ ¼ ω0ti corresponds to a time ti when the oscillating
phase factor equals 1.
In order to obtain the time evolution generated by

Eq. (D1), it is convenient to work in a corotating internal
frame where the off-diagonal matrix elements become time
independent. In this case, the corresponding change of
basis is equivalent to working in the interaction picture,
where the evolution associated with the free Hamiltonian
and corresponding to the diagonal matrix elements is
absorbed in the redefinition of the state vectors. By
changing from the Schrödinger to the interaction picture
at time t0, which implies

gðtÞ → gIðtÞ ¼ gðtÞ;
eðtÞ → eIðtÞ ¼ eiω0ðt−t0ÞeðtÞ; ðD2Þ

Eq. (D1) becomes

i

�
_eIðtÞ
_gIðtÞ

�
¼

�
0 Ω

2
e−iω0ðt0−tiÞ

Ω
2
eiω0ðt0−tiÞ 0

��
eIðtÞ
gIðtÞ

�
ðD3Þ

and can be easily solved. Let us first consider a square pulse
with constant Ω and pulse duration Δt. If we assume that
the atoms are initially in the ground state, i.e., that
jΦðt0ÞiI ¼ jgi for any time t0 before the pulse, the state
at any time t after the pulse is given by

jΦðtÞiI ¼ cos

�
ΩΔt
2

�
jgi − ie−iω0ðt0−tiÞ sin

�
ΩΔt
2

�
jei:

ðD4Þ

In particular, for ΩΔt ¼ π=2, the pulse generates an equal-
amplitude superposition of the same form as the initialized
state in Eq. (6). These results will also hold for smooth
pulses (and for any time-dependent intensity, in general)
with the replacement ΩΔt →

R t2
t1 dt

0Ωðt0Þ, valid for pulses
with support within the interval t1 < t0 < t2.
One can then change back to the Schrödinger picture by

inverting the transformations in Eqs. (D3). The result for a
π=2 pulse is given by

jΦðtÞi ¼ 1ffiffiffi
2

p ðjgi − ie−iω0ðt−tiÞjeiÞ; ðD5Þ

for any time t after the pulse. Equation (D5) shows that
what really matters is the “laser phase,” encoded in the time
ti, rather than the exact initial time for a square pulse or the

exact timing of the envelope ΩðtÞ for a smooth one. Mirror
vibrations and laser phase noise will lead to fluctuations of
ti from shot to shot, but this is not a problem for the scheme
proposed in Sec. VI because they affect, in essentially the
same way, both interferometer branches.
Note that in order to avoid cumbersome expressions, we

have focused on the internal states, but analogous results
are obtained by considering the full wave function in the
Fermi-Walker frame and substituting τc for t. In addition,
one needs to take into account the gravitational redshift of
the laser frequency ω0. The consequences will be discussed
in the next subsection, where the case of a nonvanishing
central velocity in the laboratory frame (e.g., for freely
falling atoms) is also considered.

2. Atomic wave packet with nonvanishing velocity
and gravitational redshift

For an atom with a nonvanishing velocity v parallel to k
in the laboratory frame, it is convenient to work in the
comoving frame with coordinates fτc;x0g, where the atom
is at rest and the four-dimensional wave vectors for the two

counterpropagating beams become kμ
0

� ¼ ðjk0
�j;k0

�Þ, with

cjk0
�j ¼ ω� ¼ ω0

2

�
1 ∓ v=c
1� v=c

�
1=2

: ðD6Þ

When deriving the analog of Eq. (D1) in this case, the time-
dependent phase factor in the off-diagonal matrix elements
is given by e−iω̄cτc (and its complex conjugate) with ω̄c ¼
ωþ þ ω− and

ωþ þ ω− ¼ ω0(1þ ð1=2Þðv=cÞ2)þO(ðv=cÞ4)
≈ ðΔmc2 þ Δmv2=2Þ=ℏ: ðD7Þ

Furthermore, the spatially dependent factors from the two
beams no longer cancel out, and one has an additional
phase factor eik̄

0·x0, with k̄0 ¼ k0þ þ k0
− and

k0þ þ k0
− ¼ −ðω0=cÞðv=cÞ þO(ðv=cÞ3)
≈ −Δmv=ℏ: ðD8Þ

In fact, the total phase factor can be equivalently obtained
by transforming the phase factor in the laboratory frame to
the comoving frame: exp(− iω0ðt− tiÞ)¼ exp (− iω̄cðτc−
τðiÞc Þ þ ik̄0 · ðx0 − x0

iÞ). In particular, the laser phase φ is

given by φ ¼ ω0ti ¼ ω̄cτ
ðiÞ
c − k̄0 · x0

i, and the associated
hypersurfaces of constant phase no longer correspond to
simultaneity hypersurfaces in the comoving frame. Instead,
a spatial separation Δz along the beam direction implies a
time difference

ΔτðiÞc ¼ ðk̄0 · Δx0
iÞ=ω̄c ≈ −ðv=c2ÞΔz: ðD9Þ
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As pointed out above, what determines the phases accu-
mulated by the two clock states are the hypersurfaces of
constant phase for the initialization pulse rather than the
exact timing of its envelope. For two wave packets with a
separation Δz of their central positions in a freely falling
frame where they are both at rest, these hypersurfaces
correspond to the time difference given by Eq. (D9), which
is considered in Sec. VI B.
As seen from Eq. (D7), we have ω̄c ¼ ω0 − δ with a

detuning δ ¼ −ðω0=2Þðv=cÞ2, so the two-photon process is
no longer exactly on resonance when v ≠ 0. One can still
proceed similarly to the previous subsection and change to
a corotating internal frame through the following time-
dependent unitary transformation:

gðτcÞ → g̃ðτcÞ ¼ gðτcÞ;
eðτcÞ → ẽðτcÞ ¼ eiω̄cðτc−τð0Þc ÞeðτcÞ; ðD10Þ

which leads to an equation analogous to Eq. (D3) but with
the first diagonal matrix element replaced by δ. For a square
pulse, this equation can be solved exactly, and one finds a
result analogous to Eq. (D4) but with the modified Rabi
frequency

Ωeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
ðD11Þ

and Rabi oscillations with amplitude ðΩ=ΩeffÞ < 1. The
oscillations are therefore largely suppressed far off reso-
nance (for δ2 ≫ Ω2), whereas nearly full amplitude is
recovered sufficiently close to resonance (for δ2 ≪ Ω2).
As a quantitative example, for ω0 ¼ 2π × 400 THz and
v ¼ 10 m=s, one has δ ≈ 2π × 0.2 Hz, which is much
smaller than Ω ¼ 2π × 25 Hz, corresponding to a π=2
pulse of 10 ms duration.
After inverting the unitary transformation in Eq. (D10)

and returning to the original Schrödinger picture, one is left
with a state analogous to that in Eq. (D5) but with δ-
dependent phase factors multiplying the ground and excited
states. First, a common factor e−iδΔτc=2, where Δτc ≈ Δt
denotes the pulse duration in the comoving frame,multiplies
both states. This factor will not affect differential phase-shift
measurements of the two internal states. Second, a factor

eiδðτ
ðfÞ
c −τðiÞc Þ, where τðfÞc denotes the time when the pulse ends,

multiplies the excited state. Nevertheless, since δ ≪ ω0, the

phase contribution from e−iδτ
ðiÞ
c will be much smaller than

from the factor eiω0τ
ðiÞ
c , which decisively contributes to the

signal of interest. On the other hand, eiδτ
ðfÞ
c does not

significantly affect the phase shift for the excited state either
because the factor is the same for both interferometer arms
except for small differences in the pulse duration of order
Δz=c due to the finite speed of light. Indeed, these
differences give rise to an extra phase shift of order
Δmv2ðΔz=cÞ=ℏ ∼ ðv=cÞΔmgΔzT=ℏ (assuming v ∼ gT),

which is largely suppressed by a factor (v=c) compared
to the signal of interest. Finally, there is an additional factor
multiplying the ground state that for δ ≪ Ω reduces to
eiδ=Ωeff . (This phase is slightly modified for small deviations
of the pulse area from the condition ΩeffΔt ¼ π=2.) In
principle, this factor does not affect the interferometer phase
shift for the ground state, provided that Ωeff is the same for
both branches, which requires that the laser intensity should
be the same, to a sufficiently high degree, for a spatial
separationΔz. A quantitative estimate of how closeΩeff for
both branches should actually be is provided in the
next paragraph as is a simple method for relaxing this
requirement.
Similar conclusions will apply to other sources of detun-

ing provided that they are sufficiently small. In particular, if
we assume that the emission frequency of the laser beam is
ω0=2 in the laboratory frame, one will need to take into
account thegravitational redshift of the laser frequency at the
position of the wave packet. For a weak and approx-
imately uniform gravitational field, this redshift implies a
detuning δ ≈ ω0gLz=c2, where Lz is the height difference
between the atomicwave packets and the laser emission (the
effect of the small height difference between the two
branches is addressed in the next paragraph), and it is of
the same order as the detuning associated with the non-
vanishing velocity (assuming Lz ∼ gT2 and v ∼ gT above).
This detuning will give rise to a phase-shift contribution
ðδ=ΩeffÞðΔΩeff=ΩeffÞ ∼ ðΔmgLzΔt=ℏÞðΔΩeff=ΩeffÞ for a
change of the Rabi frequency ΔΩeff due to differences
between the laser intensities for the two interferometer
branches. (The small deviations from ΩeffΔt ¼ π=2 due
to ΔΩeff lead to an additional factor of order 1=2.) The
contributionwill bemuch smaller than the right-hand side of
Eq. (43) as long as ðΔΩeff=ΩeffÞ ≪ ðΔz=LzÞðT=ΔtÞ. If we
takeΔz ¼ 1 cm,Lz ¼ 10 m, T ¼ 1 s, andΔt ¼ 10 ms, the
condition becomes ðΔΩeff=ΩeffÞ ≪ 1=10 and requires
differences in the laser intensity well below the 10% level.
Nevertheless, this requirement can be relaxed considerably
by exploiting another obvious source of detuning: A change
of the emission frequency byΔω leads to δ ¼ −Δω. Indeed,
by selecting Δω ¼ ðω0=2Þð−v2=2c2 þ gLz=c2Þ, one can
cancel the total detuning contribution due to the nonvanish-
ing velocity and gravitational redshift discussed above. This
process would also involve chirping the frequency shift Δω
to account for the time dependence of v and Lz during
the pulse.
For the effects considered so far, the detuning was the

same for both interferometer branches. In contrast, the
different gravitational redshift of the laser frequency for
the two branches due to their vertical separation Δz leads to
detunings that differ by Δδ ¼ ω0gΔz=c2. This difference
gives rise to a phase shift of order ΔmgΔzΔt=ℏ, which is
suppressed by a factor ðΔt=TÞ compared to the signal of
interest. Moreover, it will cancel out in the doubly differ-
ential measurement when comparing the differential phase
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shifts for two different initialization times because it
contributes in the same way to both of them.
Finally, it should be noted that the spatially dependent

phase factor associated with the nonvanishing wave vector
k̄0, given byEq. (D8), imparts a smallmomentumkickℏk̄0 to
the central trajectory of the wave packet of the excited state,
which corresponds to a recoil velocity Δv ¼ −ðΔm=mÞv.
Although this residual recoil velocity is very small, it
can give rise to a non-negligible phase-shift contribution.
Nevertheless, it does not hinder the measurement scheme
proposed in Sec. VI because it affects both interferometer
branches in the same way, as explained in Sec. VI C.
Furthermore, its contribution to the detuning δ, which is
quadratic in Δm=m, is negligible.

APPENDIX E: DIFFRACTION OF ATOMS IN
INTERNAL-STATE SUPERPOSITIONS

1. Magic-wavelength Bragg diffraction

A natural way of diffracting atoms in a superposition of
different internal states is by employing pulses of counter-
propagating laser beams at the magic wavelength so that
the resulting optical potential is the same for both internal
states. This choice implies that the Rabi frequency for the
two-photon transition corresponding to Bragg diffraction of
the atomic wave packets, which is proportional to the
amplitude of the optical potential, is the same in both cases.
Therefore, for a suitable duration and laser intensity, such
pulses can simultaneously act as π=2 pulses for the two
internal states or any quantum superposition thereof. On the
other hand, since both internal states are diffracted by the
same Bragg pulses, with a given keff , the differential recoil
discussed in Sec. V C 2 due to the mass difference Δm
gives rise to a slightly open interferometer for at least one
of the two internal states. Nevertheless, any phase-shift
contribution associated with this lack of closure cancels out
in the doubly differential measurement of Sec. V C.
Moreover, the relative displacement between the interfering
wave packets is too small to generate any significant loss of
contrast.
A disadvantage of this diffraction mechanism is that the

two-photon Rabi frequency is rather small unless high laser
intensities are employed. The magic wavelength is typi-
cally largely detuned from any resonant transition, and the
contribution of any state (as a virtual state) to the Rabi
frequency, which is given by Ω1Ω2=2Δ in terms of the
corresponding single-photon Rabi frequencies Ω1 and Ω2,
is suppressed by the frequency detuning Δ of the single-
photon transitions. Although one could employ longer
pulse durations, this possibility is limited due to the
velocity selectivity of the pulse because the maximum
momentum width of wave packets that can be efficiently
diffracted is inversely proportional to the pulse duration.
As an example, for 87Sr, a two-photon Rabi frequency of

1 kHz would require an intensity of about 8 × 101 W=cm2

[120], so more than 30 W of laser power would be needed
for a beam waist of 5 mm. Since such requirements on laser
power are rather demanding, in the next subsection we
consider an alternative diffraction mechanism with lower
requirements but applicable only to fermionic isotopes.

2. Simultaneous single-photon clock transitions

Single-photon transitions between the two clock states
for group-II atoms such as Sr or Yb are, in principle,
forbidden by selection rules. However, for fermionic
isotopes such as 87Sr or 171Yb, they are actually weakly
allowed due to hyperfine mixing of the excited clock state
[7,8] but still with a narrow linewidth of about 1 mHz.
Atom interferometers based on such transitions exhibit a
number of interesting properties, including insensitivity to
laser-phase noise in long-baseline gravitational antennas
[104]. They have already been demonstrated experimen-
tally for Sr atoms in a horizontal optical guide [55] and in
free space [68,69] (although, in the latter case, bosonic
isotopes were employed and the transition was weakly
allowed by applying an external magnetic field).
Interestingly, these single-photon transitions can also be

exploited for quantum-clock interferometry as we explain
next. The proposed diffraction mechanism is based on a
pair of counterpropagating laser beams that drive single-
photon transitions between the two clock states with the
momentum transfer in the same direction, as indicated by
the red and blue arrows in Fig. 14. By sending simultaneous
pulses for the two beams and choosing the intensity and
duration so that they both correspond to π=2 pulses, one
can create an equal-amplitude superposition of an undif-
fracted atomic wave packet and a diffracted one with
swapped internal states. After repeating the process with
a subsequent pair of simultaneous π pulses as shown in
Fig. 15, the diffracted wave packet gets an additional
momentum kick, and its internal states are swapped again.
The net effect is therefore a diffracted wave packet with the
same internal state as the undiffracted one but a total
momentum transfer ℏkeff corresponding to twice the
single-photon momentum. This momentum transfer can
be increased by applying a sequence of additional pairs of π
pulses.
Besides driving a resonant transition, there are also off-

resonant transitions associated with each pulse. The rel-
evant ones for the first pair of pulses are indicated with
dashed lines in Fig. 14. They are off resonant by 2ωrec,
where ωrec ¼ ℏk2=2m ≈ ðω0=2ÞðΔm=mÞ is the recoil fre-
quency in this case and ℏk is the single-photon momentum.
Hence, for a Rabi frequency of the resonant processes
sufficiently small compared to ωrec and a Gaussian pulse
envelope, these spurious transitions can be exponentially
suppressed [115,116]. In turn, small Rabi frequencies
require a momentum width of the atomic wave packet that
is narrow enough compared with ℏk to guarantee a high
diffraction efficiency for all of its Fourier components.
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For the second pair of pulses, their frequencies need to be
additionally shifted by −2ωrec and 2ωrec, respectively, to
account for the nonvanishing momenta of the wave packets
diffracted by the first pair. (Alternatively, these shifts can be

understood as the Doppler shift that arises when trans-
forming to the reference frame where these wave packets
are at rest and where the situation, including the effects of
the off-resonant transitions, becomes identical to that
discussed for the first pulse.) Because of these frequency
shifts, the net momentum transfer experienced by the two
internal states after the two pairs of pulses is actually
slightly different, with a relative difference of order Δm=m,
but any phase-shift contribution caused by it will cancel out
in the doubly differential measurement. The recoil veloc-
ities, which are additionally affected by the differential
recoil due to the mass difference Δm, will also exhibit a
relative difference of the same order and give rise to slightly
open interferometers, but the resulting relative displace-
ment between the interfering wave packets is too small to
generate any significant loss of contrast.
Since the experimental setup typically involves a

retroreflection mirror, for each laser pulse there will
be an additional one with the same frequency in the
laboratory frame but propagating in the opposite direction.
Nevertheless, if the pulses are applied when the atoms are
far from the apex of the atomic fountain and hence moving
with a velocity of several m/s, only one of the two pulses
will be resonant in each case because, when transforming to
the rest frame of the atoms, one of the two equal-frequency
pulses is redshifted while the other is blueshifted. It should
also be noted that common laser-phase noise will affect the
two resonant transitions in Fig. 14 with an opposite sign,
and phase noise due to mirror vibrations will affect only
one of the two. Fortunately, the subsequent pair of pulses in
Fig. 15, which acts on swapped internal states, will have the
reverse effect (except for high-frequency laser-phase and
vibration noise with frequencies comparable to the inverse
of the pulse duration, which are easier to mitigate), so these
phase contributions cancel out in the differential phase-shift
measurements of the two internal states.
The ac Stark shift associated with off-resonant transi-

tions, such as those shown with dashed lines in Fig. 14, can
lead to different phase contributions for the two interfer-
ometer branches. Interestingly, however, the main shifts
experienced by the two clock states coincide, and their
contributions cancel out in the differential phase-shift
measurement. (This result is also true for the shifts induced
by the additional beams that are present in a retroreflection
setup.) Furthermore, any phase-shift contributions from
light shifts cancel out in the doubly differential measure-
ment, provided that the laser intensities are stable from shot
to shot. A more detailed investigation of these questions
will be presented elsewhere.

APPENDIX F: GRAVITY GRADIENTS AND
PROPER-TIME DIFFERENCE

In this Appendix, we analyze the effect of gravity
gradients on the proper-time difference in a Mach-
Zehnder interferometer. For that purpose, it is particularly

FIG. 14. Single-photon transitions between the clock states
shown in an energy-momentum diagram that takes into account
the internal energy and the c.m. motion (as described in the freely
falling frame where the atoms are initially at rest). The frequen-
cies of the two counterpropagating beams are shifted by ωrec and
−ωrec from the clock frequency ω0 so that they drive resonant
transitions of atoms initially at rest through absorption (blue
arrow) and stimulated emission (red arrow), respectively. By
applying simultaneous π=2 pulses, one can generate an equal-
amplitude superposition involving an undiffracted wave packet
plus a diffracted one with swapped internal states and a single-
photon momentum transfer. Relevant off-resonant transitions are
additionally indicated with dashed lines.

FIG. 15. If one shifts the frequencies of the two counter-
propagating beams by 3ωrec and −3ωrec, one can resonantly
address the diffracted atoms in Fig. 14 with an additional single-
photon momentum transfer in the same direction while swapping
the internal states again. When simultaneous π pulses with these
frequencies are applied right after the simultaneous π=2 pulses of
Fig. 14, the net result is to leave the internal states unchanged but
generate an equal-amplitude superposition, as far as the c.m.
motion is concerned, of an undiffracted wave packet and a
diffracted one with a total momentum transfer ℏkeff correspond-
ing to twice the single-photon momentum.
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convenient to consider the freely falling frame where the
atomic wave packet is initially at rest and where the main
results can be understood in simple terms [121]. The central
trajectories in this frame are shown in Fig. 16.
Before starting the analysis in the freely falling frame, it

is important to understand the effect that the change of
frame has on the laser phases. Given a laser phase
exp (iεjφj þ iεjkeff ·XðtjÞ) for the jth pulse in the labo-
ratory frame and a nonrelativistic frame transformation
[122] characterized by t → t0 ¼ t and x → x0 ¼ x − x0ðtÞ,
the laser phase takes an analogous form in terms of the new
coordinates, namely, exp (iεjφ0

j þ iεjkeff ·X0ðtjÞ), with

φ0
j ¼ φj þ keff · x0ðtjÞ: ðF1Þ

Thus, when working in the freely falling frame mentioned
above, the information on the initial position and velocity
of the atomic wave packet with respect to the laboratory
frame is entirely contained in the phases φ0

j associated with
the various laser pulses. For small time-independent gravity
gradients, the trajectory x0ðtÞ, which corresponds to the
central trajectory that the atomic wave packet would follow
in the laboratory frame in the absence of kicks from the
laser pulses, is well approximated by

x0ðtÞ ≈ ðx0ð0Þ þ v0ð0ÞtÞ þ
1

2
gt2

þ 1

2
ðΓt2Þ

�
x0ð0Þ þ

1

3
v0ð0Þtþ

1

12
gt2

�
; ðF2Þ

up to terms of higher order in ðΓt2Þ. The contribution
of the spatially independent part of the laser phases to the

phase shift of the Mach-Zehnder interferometer is then
given by

δφ0 ¼ φ0ð2TÞ − 2φ0ðTÞ þ φ0ð0Þ
¼ δφþ keff · gT2

þ kT
effðΓT2Þ

�
x0ð0Þ þ v0ð0ÞT þ 7

12
gT2

�
; ðF3Þ

where T is the time between pulses.
Having discussed the transformation of the laser phases,

let us now focus on the phase shift between the interfering
wave packets at the first exit port (I). In the freely falling
frame, the contributions of the spatially dependent laser
phases εjkeff ·X0ðtjÞ to the phase shift cancel out because
X0

bð0Þ ¼ X0
aðTÞ ¼ 0 and X0

bðTÞ ¼ X0
að2TÞ as can be

easily seen in Fig. 16. Therefore, besides δφ0, the phase
shift is essentially due to the proper-time difference
between the central trajectories of the two arms (a and
b) and the corresponding difference of the propagation
phases. This difference can, in fact, be easily determined to
leading order in Γ. First of all, one notes that the segments
B and C belonging to the two branches are equivalent and
lead to identical propagation phases whose contributions to
the phase shift cancel out. Hence, besides δφ0, the phase
shift is entirely given by the difference of the propagation
phases for segments A andD, which can be evaluated using
Eq. (3) with UðX0Þ ¼ −ðm=2ÞX0TΓX0. Moreover, the
contributions of the kinetic and potential terms clearly
vanish for segment A, for which X0ðtÞ ¼ 0. We are there-
fore left with the contribution from segment D. To leading
order in Γ, only the potential term evaluated along the
unperturbed trajectory X0ðtÞ ¼ vrecT contributes, and the
total phase shift is given by

δϕ ¼ δφ0 þ ℏ
2m

kT
effΓkeffT3 þO(ðΓT2Þ2): ðF4Þ

Furthermore, the main conclusions (no contribution from
the spatially dependent laser phases and a nontrivial
contribution only from segment D) hold to all orders
in Γ. In fact, they hold even in a fully relativistic treatment
as long as the gravity-gradient tensor Γ is time independent.
The effect of gravity gradients in atom interferometry has
been considered, e.g., in Refs. [123–125] but not in terms
of proper-time differences.
It is important to note that gravity gradients lead to a

relative displacement δX0 ≈ vrecTðΓT2Þ between the inter-
fering wave packets at each exit port of a standard Mach-
Zehnder interferometer [126] as illustrated in Fig. 16. This
relative displacement implies an additional phase-shift
contribution from the separation phase discussed in
Appendix C 3. However, in the freely falling frame
considered here, this contribution vanishes to leading order
in Γ for the first exit port because P̄0 ¼ ðP0

a þ P0
bÞ=2 ≈

mvrecðΓT2Þ plus higher-order corrections. On the other

FIG. 16. Central trajectories for a Mach-Zehnder interferometer
in the freely falling frame where the atomic wave packet is
initially at rest at z ¼ 0. They are no longer straight lines (except
for segment A) due to the tidal forces associated with the gravity
gradient. From the figure, it is clear that the propagation phases
for segments B and C are the same and so are the spatially
dependent parts of the laser phases for branches a and b.
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hand, there will be a nonvanishing contribution to second
order in ðΓT2Þ and higher, which can still be interpreted in
terms of the proper-time difference between the two
branches as well as the relativity of simultaneity for
different inertial frames, as explained in Appendix C 3.
So far, we have focused on the first exit port.

Nevertheless, analogous results can be obtained for the
second exit port (II) by considering an alternative freely
falling frame where the atomic wave packet on branch b is
at rest after the first beam-splitter pulse.
We close this Appendix with some brief remarks on how

the phase shift in Eq. (F4), associated with the different tidal
forces acting on the two interferometer arms, was actually
measured in the experiments reported in Ref. [19]. What
was directly measured was the differential phase shift of two
simultaneous interferometers at different heights and inter-
rogated by common laser beams in a gradiometer setup. In
this way, the laser phase noise and the effect of the
vibrations of the retroreflection mirror cancel out in the
differential measurement. However, the signal of interest,
namely, the second term on the right-hand side of Eq. (F4),
would also cancel out. Therefore, for half of the measure-
ments, a stack of lead bricks was placed near one of the two
interferometers to modify the gravity gradient experienced
by the atoms in this interferometer. After subtracting the
differential phase shifts for measurements with and without
lead bricks, one is left with a contribution analogous to that
in Eq. (F4) but with Γ replaced by the difference ΔΓ of the
gravity gradients in both cases. While additional contribu-
tions analogous to the third term on the right-hand side of
Eq. (F3) but with ΔΓ instead of Γ also remain, these can be
subtracted out by modeling the initial position and velocity
for that interferometer as well as the change of Γ caused by
the lead bricks. Furthermore, independently of that and due
to its quadratic (rather than linear) dependence on keff , the
contribution of interest in Eq. (F4) can be clearly identified
by performing a series of experiments where keff is changed
while leaving the remaining parameters unchanged.

APPENDIX G: FROM QFT IN CURVED
SPACETIME TO SINGLE-PARTICLE

QUANTUM MECHANICS

The description of the external dynamics of the two-level
atom employed in the rest of the paper can be regarded as
single-particle relativistic quantum mechanics in curved
spacetime, and it can be derived, under appropriate con-
ditions, from QFT in curved spacetime. In this Appendix,
we briefly outline the key aspects of such a derivation and
the conditions that need to be fulfilled.
QFT in curved spacetime is intrinsically a many-

body theory with nontrivial particle-creation effects,
even for free fields, and the absence of a preferred vacuum
(and the associated notion of particles as quantum exci-
tations thereof) for generic spacetimes. A single-particle
description is therefore only possible in a suitable regime

where nontrivial second-quantization effects are not impor-
tant. Indeed, provided that the Compton wavelength λm ¼
h=mc associated with the rest mass of the atom is much
smaller than the curvature radius l, one can consider
adiabatic vacua where vacuum ambiguities and particle
creation are exponentially suppressed [127]. Furthermore,
since similar effects arise for accelerated observers even in
flat space [127,128], an additional condition is required
when considering accelerated central trajectories: The so-
called Unruh temperature TU, which is proportional to the
acceleration, should be much smaller than the rest mass,
i.e., kBTU ≪ mc2. This inequality can be equivalently
rewritten as the following restriction on the acceleration:
aλm=c2 ≪ 1.
The two internal states can be represented by two

different fields [98,129] whose masses differ by Δm ¼
ΔE=c2, and the electromagnetic coupling driving transi-
tions between them can be modeled by a nonlinear
interaction term involving the electromagnetic field and
the fields of the two internal states. This interaction leads to
an additional requirement on the curvature radius l, which
should be much larger than the photon wavelength λph
corresponding to the transition between the two internal
states. The requirement is actually stronger than for the
Compton wavelength because Δm ≪ m, and it guarantees
that an adiabatic vacuum can be defined for the electro-
magnetic mode. It also guarantees that any spontaneous
excitation (or decay) induced by the time dependence of the
effective coupling in the curved background spacetime is
negligible. Similarly, demanding the absence of such
transitions due to the Unruh effect imposes the stronger
restriction aλph=c2 ≪ 1 on the acceleration of the central
trajectory, so kBTU ≪ ΔE.
If we focus, for simplicity, on spin-zero particles (such as

88Sr atoms), scalar fields can be employed for the second-
quantization description of the atoms. These fields satisfy
the Klein-Gordon equation, which may include an external
potential VextðxμÞ directly related to the potential VðxμÞ
considered in Sec. IV B and Appendix B 2 in order to
account for external forces. Among the solutions of the
Klein-Gordon equation, one can consider the subspace
generated by the positive frequency modes, identified up to
exponentially suppressed ambiguities as long as the con-
ditions mentioned above are fulfilled. Given any initial
wave packet within this subspace with size Δx ≪ l
and nonrelativistic momentum width, one can show that
the Klein-Gordon equation governing its evolution
reduces, in the corresponding Fermi-Walker frame, to
the Schrödinger equation for the centered wave packet
derived in Appendix B.
For nonvanishing spin, one can proceed analogously by

considering higher-spin fields and their corresponding
equations of motion (Dirac, Proca, or Bargmann-Wigner,
in general). These cases will generically lead to spin-
curvature coupling terms similar to those appearing in the
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Mathisson-Papapetrou equation, which describes the
motion of a spinning test particle in general relativity
and leads to deviations from geodesic motion [130–133].
Nevertheless, for spins that are a small multiple of ℏ, the
contribution of such terms is highly suppressed, typically
by a factor ðƛm=ΔxÞ ≲ 10−12, compared to the tidal forces
associated with the usual gravity-gradient term in the
equation of motion.
When considering the interaction with the electromag-

netic field, the details of the internal dynamics can be
encoded in a form factor that involves the transition-matrix
element between the two internal states of the electric-
dipole operator and that couples to the electric field. This
form factor holds for E1 transitions, but it can be gener-
alized to magnetic-dipole transitions as well as higher
electric and magnetic multipoles. Note that the calculation
in curved spacetime of the internal energy eigenstates, their
energies, and the relevant transition-matrix elements gives
rise to small corrections proportional to the Riemann tensor
of order ðaB=lÞ2, where aB is the Bohr radius [134].
Moreover, vacuum fluctuations will lead to a modified
Lamb shift, including small corrections proportional to the
Riemann tensor divided by the square of the electron mass,
which are of order ðλe=lÞ2.
Finally, one should also keep in mind that there is no

unique relativistic definition of the c.m. for a composite
system [135,136]. Several proposals exist, which each
feature desirable properties, but they are mutually incom-
patible and, in some cases, frame dependent. Nevertheless,
the corresponding worldlines for the different proposals are
confined within a worldtube with a radius comparable to
the Compton wavelength of the composite particle.
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