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When monitoring the dynamics of stochastic systems, such as interacting particles agitated by thermal
noise, disentangling deterministic forces from Brownian motion is challenging. Indeed, we show that there
is an information-theoretic bound, the capacity of the system when viewed as a communication channel,
that limits the rate at which information about the force field can be extracted from a Brownian trajectory.
This capacity provides an upper bound to the system’s entropy production rate and quantifies the rate at
which the trajectory becomes distinguishable from pure Brownian motion. We propose a practical and
principled method, stochastic force inference, that uses this information to approximate force fields and
spatially variable diffusion coefficients. It is data efficient, including in high dimensions, robust to
experimental noise, and provides a self-consistent estimate of the inference error. In addition to forces, this
technique readily permits the evaluation of out-of-equilibrium currents and the corresponding entropy
production with a limited amount of data.
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I. INTRODUCTION

From nanometer-scale proteins to micron-scale colloids,
particles in biological and soft-matter systems undergo
Brownian dynamics [1,2]: Their deterministic motion due
to the forces competes with the random diffusion due to
thermal noise from the solvent. At a larger scale, the
overdamped Langevin equation describing Brownian
dynamics is commonly used as an effective model for
the stochastic evolution of complex systems such as motile
cells [3], financial markets [4], or climate dynamics [5],
where the noise corresponds to the random influence of
fast, unresolved degrees of freedom, while force fields
model persistent, deterministic trends. In the absence of
forces, all trajectories would thus look alike [Fig. 1(a)]: The
force field simultaneously shapes a system’s trajectory
[Figs. 1(b) and 1(c)] and encompasses most physical
information about the system. The inference of such force
fields from experimental data is therefore crucial to FIG. 1. Typical trajectories of example Brownian systems

studied in this article. (a) Pure Brownian motion in 2D without
forces. (b) A drifted Brownian motion trajectory. (c) The sto-
chastic Lorenz process (see Fig. 5). (d) Time series of a 6D out-
of-equilibrium Ornstein-Uhlenbeck process (see Fig. 4). (e) The
same trajectories as in (d), with additional time-uncorrelated
measurement noise. (f) Self-propelled active Brownian particles
with soft repulsion and harmonic confinement (see Fig. 7).
(g) Simulated single-molecule trajectories in a complex environ-
ment with space-dependent diffusion (see Fig. 9).
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problems as varied as understanding the dynamics of single
molecules in complex cellular environments [6,7], quanti-
fying the interactions between colloidal particles [8],
calibrating devices to optically trap particles [9], or
identifying the laws governing the motion of cells [10].
This problem is particularly relevant in the context of living
or driven out-of-equilibrium systems, where active forces
induce dissipative currents at the mesoscale [11]. The
knowledge of the force field in such cases would allow
one to measure the mean entropy production rate and thus
quantify the irreversibility of the dynamics, a question
which gained attention recently [12–18]. Moreover, it
would also enable one to measure the fluctuations of heat,
work, and entropy production—the subject of stochastic
thermodynamics [19]—which is so far only possible in
highly controlled systems [20].
Numerous previous studies have proposed methods to

reconstruct force fields motivated by applications in soft
matter [21,22], cell biology [23–25], climate dynamics
[26,27], finance [28–32], and other complex systems [33].
However, force inference in Brownian systems remains a
hard problem, and a general method is still missing, in
particular one addressing the many challenges associated
with experimental data in soft-matter andbiological systems.
First, there needs to be enough information about the force
available in the trajectory:Short trajectoriesaredominatedby
noise [Fig. 1(a)], and only after a long enough observation
time does the effect of the force field become apparent
[Fig. 1(b)]. Second, one needs a practical method to extract
that information and reconstruct the force field, which is
challenging for out-of-equilibrium systems with a complex
spatial structure [Fig. 1(c)], in particular for high-dimen-
sional processes [Figs. 1(f)] and in the presence of measure-
ment error [Fig. 1(e)] and multiplicative noise [Fig. 1(g)].
Here we address these challenges for steady-state

Brownian trajectories. We first use communication-theory
tools to quantify the maximal rate at which information
about a force field can be inferred from a trajectory
(Sec. II). We relate this rate, that we term channel capacity
of the system, to the entropy production rate, thus providing
a novel link between stochastic thermodynamics and
information theory. We then propose a practical procedure,
stochastic force inference (SFI), to use the information in a
trajectory and reconstruct the force field by projecting it
onto a finite-dimensional functional space (Sec. III). By
inferring the information contained in a trajectory, we
propose a practical criterion to control overfitting, an
aspect generally overlooked by previous approaches. We
ensure that this method is robust to the presence of
experimental noise. Finally, the diffusion coefficient can
depend on the state of the system, which significantly
complicates force inference: In such cases, we adapt our
method to infer the space-dependent diffusion and force
field (Sec. IV). Using simple model stochastic processes,
we demonstrate that our method permits a quantitative

evaluation of phase-space forces, currents, and diffusion
coefficients, and estimate the entropy production with a
minimal amount of data.
We focus in this article on stochastic systems governed

by the overdamped Langevin equation, where friction
dominates over inertia, as is typically the case in subcellular
biological systems, for instance. We thus consider a system
where the phase-space coordinates xμ obey Brownian
dynamics,

_xμ ¼ FμðxÞ þ
ffiffiffiffiffiffiffi
2D

p
μνξν; ð1Þ

where FμðxÞ is the force field (we absorb the mobility
matrix in its definition), Dμν is the diffusion tensor, and ξμ
is a Gaussian white noise, hξμðtÞξνðt0Þi ¼ δðt − t0Þ, and we
use the Einstein convention of summation over repeated
indices throughout. In Secs. II and III of this article, we
assume that Dμν is space independent and known; in
Sec. IV, we address the case of inhomogeneous diffusion,
which modifies Eq. (1).

II. THE INFORMATION CONTENT
OF BROWNIAN TRAJECTORIES

We propose to interpret Brownian dynamics [Eq. (1)] as a
noisy transmission channel, where the force is the encoded
signal, and

ffiffiffiffiffiffi
2D

p
ξ is the noise (Fig. 2). Information can be

read out from such a channel at a maximal rate C called the
channel capacity, which relates to the signal-to-noise ratio of
the input [34]. This finite capacity fundamentally limits the
ability to infer forces by monitoring the dynamics. To build
up intuition, consider the simplest case of a spatially constant
force with isotropic diffusion, corresponding to drifted
Brownian motion [Fig. 1(b)]. The capacity is then given
by C ¼ F2=4D (expressed in natural information units, or
nats, per timeunit—1 nat ¼ 1= log 2 bits). The force to infer
here is equal to the persistent velocity, which can be esti-
mated as F̂μ ¼ Δxμ=τ, where Δx is the end-to-end vector
along the trajectory of duration τ. The relative error on this
estimator due to random diffusion is hkF̂ − Fk2=F2i ¼
2dD=τF2 ¼ d=2I, where d is the space dimension. We
identify here I ¼ Cτ, defining it as the information in the
trajectory. Persistent motion thus starts to emerge from the
noise if the trajectory duration τ is longer than d=C,
corresponding to the diffusive-to-persistent transition for
themean-squared displacement. Equivalently, the force starts
tobe resolved if I > d, i.e., ifmore thanone bit of information
is available for each degree of freedom F̂μ to infer.
We now give a precise meaning to the notion of capacity

for general Brownian systems, where interparticle inter-
actions and external fields lead to a force that depends
on the state x of the system in phase space. We recognize
that within communication theory, the dynamics of a
Brownian system [Eq. (1)] corresponds to an infinite-
bandwidth Gaussian channel [34]. The signal transmitted
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is the force, with signal power equal to its time-averaged
square. The corresponding channel’s capacity, which we
refer to as the system’s capacity, is thus (see Appendix A)

C ¼ 1

4

Z
FμðxÞD−1

μνFνðxÞPðxÞdx; ð2Þ

where PðxÞ is the steady-state probability distribu-
tion function of the process. This quantity was previously
considered as a penalty term to regularize force infer-
ence [35].
The steady-state Fokker-Planck equation allows us to

decompose the force into a sum of two terms,

Fμ ¼ vμ þDμν∂ν logP; ð3Þ

where vμ is the average phase-space velocity quantifying
the presence of irreversible currents, and Dμν∂ν logP
quantifies reversible, diffusive currents. Interestingly, this
decomposition implies that the capacity defined in Eq. (2)
splits into two non-negative parts, one related to dissipation
and the other to spatial structure, as

4C ¼ _Sþ G: ð4Þ

Here, _S is the steady-state entropy production of the process
[19], _S ¼ R

vμD−1
μν vνPðxÞdx (we set the Boltzmann con-

stant kB ¼ 1 throughout). In the case of thermal systems
satisfying the Einstein relation, _S corresponds to the rate at
which the system dissipates heat into the bath, divided by
the temperature; in other cases, _S quantifies the irrevers-
ibility of the dynamics. The second term named inflow rate
G ¼ R

gμDμνgνPðxÞdx with gμ ¼ ∂μ logP was previously
introduced and studied in Ref. [36]. It reflects the amount of
information that the force field injects into the system in
order to maintain probability gradients against diffusion
and is positive even at equilibrium. Indeed, in a thought
experiment where the force field would be suddenly
switched off, G would correspond to the instantaneous
entropy production rate due to the relaxation of probability

gradients (see Appendix B 2). The inflow rate quantifies the
fact that in steady state, the system dwells in convergent
regions of the force field: An equivalent expression for it is
indeed [36] G ¼ −

R ∂μFμðxÞPðxÞdx. In a deterministic
system, it would thus correspond to the average phase-
space contraction rate. The connection between the inflow
rate and the previously introduced notions of traffic and
frenesy [37,38] is explored in Appendix B 3. As G ≥ 0,
Eq. (4) provides a generic upper bound to the entropy
production in Brownian systems, _S ≤ 4C.
The decomposition of the information into dissipative and

structural contributions introduced inEq. (4) canbe expressed
at the level of individual trajectories in phase space. Indeed,
the entropy production rate corresponds to the rate at which
trajectories C ¼ fxðtÞgt¼0;…;τ become distinguishable from
their time-reversed version −C ¼ fxðτ − tÞgt¼0;…;τ, as
quantified by the Kullback-Leibler divergence rate [19]:
_S ¼ limτ→∞ð1=τÞhlogPðCjFÞ=Pð−CjFÞiF. Here, PðCjFÞ
is the probability that the system follows a trajectory C under
Brownian dynamics [Eq. (1)] in the force field F, and h·iF
corresponds to averaging over all possible trajectories C
with weight PðCjFÞ. Time reversal ðC; FÞ ↦ ð−C; FÞ
changes the sign of the heat produced along the
trajectory, and thus connects dissipation and irreversibi-
lity of the dynamics. Interestingly, a similar expression
can be derived for the inflow rate [36]: G ¼
limτ→∞ð1=τÞhlogPðCjFÞ=Pð−Cj − FÞiF, where −F corre-
sponds to the reversed force field. Indeed, the operation
ðC; FÞ ↦ ð−C;−FÞ now leaves the heat unchanged
but reverses the sign of the divergence of the force. At
equilibrium, this operation corresponds to inverting the
energy landscape: For a typical trajectory that dwells in
potential wells, the reverse trajectory is atypical in the force
field −F, as it spends time around unstable maxima of
energy. Finally, the capacity can be expressed as 4C ¼
limτ→∞ð1=τÞhlogPðCjFÞ=PðCj − FÞiF: This operation
reverses both heat and force divergence. Intuitively, there
is information about the force in a trajectory if it allows one to
distinguish the force field from its reverse.More naturally, the
capacity quantifies the rate at which a trajectory becomes
distinguishable from force-free Brownian motion: Indeed, it
can bewritten asC ¼ limτ→∞ð1=τÞhIðCÞiF, wherewe define

FIG. 2. The dynamics of an overdamped system can be seen as a noisy data-transmission channel encoding information about the
force field, with a rate bounded by the channel capacity C as defined in Eq. (2). Note that this definition does not include the information
loss stemming from the measurement device. This analogy is further discussed in the Appendix A.
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IðCÞ ¼ log
PðCjFÞ
PðCj0Þ ð5Þ

as the trajectory-wise information gain about the force field.

III. STOCHASTIC FORCE INFERENCE

A trajectory of finite duration contains finite information
quantified by Eq. (5). We now introduce a practical method,
stochastic force inference (SFI), that uses this information to
reconstruct the force field. In contrast with the drifted
Brownian motion, a spatially variable force field is, in
principle, characterized by an infinite number of degrees of
freedom: the force value at each point in space. With a finite
trajectory, only a finite number of combinations of degrees
of freedom can be estimated. It is therefore natural to
approximate the force field as a linear combination of a
finite basis ofnb known functionsb ¼ fbαðxÞgα¼1;…;nb . The
force can, in principle, be approximated arbitrarily well by
using a large enough set of functions from a complete
basis, such as polynomials, wavelets or Fourier modes.
Alternatively, a limited number of functions might suffice if
an educated guess of the functional form of the force field
can be made. We propose to perform this approximation by
projecting the force field onto the space spanned by bαðxÞ
using the steady-state probability distribution functionP as a
measure. This approximation corresponds to a least-squares
fit of the force field by linear combinations of the bα’s.
To this aim, we define the projector cαðxÞ¼B−1=2

αβ bβðxÞ,
where Bαβ is an orthonormalization matrix such thatR
cαcβPðxÞdx ¼ δαβ. Our approximation of the force field

is then FμðxÞ ≈ FμαcαðxÞ with the projection coefficient

Fμα ¼
Z

FμðxÞcαðxÞPðxÞdx: ð6Þ

This approach is akin to projecting the dynamics
onto a finite-dimensional subchannel of capacity Cb ¼
1
4
D−1

μνFμαFνα < C. Similarly, we can define the projection
vμα of the phase-space velocity. The corresponding entropy
production _Sb ¼ D−1

μν vμαvνα is then a lower bound to the total
entropy production. Interestingly, for a system obeying
Brownian dynamics [Eq. (1)] but where only a subset of
degrees of freedomcan be observed, our framework gives the
force averaged over hidden variables and provides a lower
bound on the entropy production limited to the observable
currents (see Appendix E).
The projected force field has a finite number of degrees

of freedom Nb ¼ dnb, one per element of the d × nb tensor
Fμα, and corresponds to a finite capacity Cb. Inferring
the approximate force with a finite trajectory thus becomes,
in principle, possible when the information Ib ¼ τCb >
Nb. However, the force coefficients introduced in Eq. (6)
are not directly accessible from experimental data. Indeed,
neither the force nor the probability distribution function P

are known, the latter being also required in the definition of
the orthonormal projectors cα. Instead, the available data
are typically a discrete time series xðtiÞ of phase-space
positions at sampling times ti ¼ iΔt. We thus propose to
estimate phase-space averages by discrete time integrals
along the trajectory. The empirical projectors are defined as
ĉα ¼ B̂−1=2

αβ bβ, with B̂αβ ¼
P

i bα(xðtiÞ)bβ(xðtiÞ)ðΔt=τÞ.
Furthermore, the force can be expressed in terms of a
local Itô average of _x [39]: A local estimator for the force at
xðtiÞ is thus ΔxðtiÞ=Δt, with ΔxðtiÞ ¼ xðtiþ1Þ − xðtiÞ.
Combining these two insights yields an operational defi-
nition for the estimator of Eq. (6) in terms of a discrete Itô
integral (see Appendix C),

F̂μα ¼
1

τ

X
i

ΔxμðtiÞĉα(xðtiÞ); ð7Þ

which is the discretized version of the Itô integral
ð1=τÞ R τ

0 ĉα(xðtÞ)dxμðtÞ. Indeed, discretizing Eq. (1) yields
ΔxðtiÞ ¼ F(xðtiÞ)Δtþ

ffiffiffiffiffiffi
2D

p
Δξi, where Δξi is indepen-

dent of xðtiÞ: In the long-trajectory limit, the main con-
tribution comes from the force, while the noise averages to
zero. Equation (7) corresponds to a linear regression of the
local force estimator, previously suggested for one-dimen-
sional systems [29], and coincides with the maximum-
likelihood estimator of the force projection coefficients.
The typical squared relative error on the inferred coef-
ficients due to the diffusive noise can be estimated in
practice as δF̂2=F̂2 ∼ Nb=2Îb (see Appendix C), where
Îb ¼ ðτ=4ÞD−1

μν F̂μαF̂να is the empirical estimate of infor-
mation contained in the trajectory. This formula indicates
that again, in order to resolve the force coefficients, the
information in the trajectory should exceed the number of
inferred parameters. Another source of error stems from the
fact that the force varies over a finite time step Δt; we
provide an estimator for the magnitude of the resulting bias
in Appendix F.
We now demonstrate the utility of our method using

simulated data of simple models. The simplest spatially
varying force field is a harmonic trap, i.e., an Ornstein-
Uhlenbeck process (Fig. 3). We benchmark our method by
using a first-order polynomial basis b ¼ f1; xμg, which can
capture the exact force field. The 2D trajectory displayed in
Fig. 3(a) has an information content of I ¼ 27.6 bits, while
this linear channel has Nb ¼ 6 degrees of freedom,
allowing precise inference of the projected force field
[Fig. 3(a)]. Indeed, the squared relative error on the force
coefficients is 0.15; this is consistent with the operational
estimate of this error, Nb=2Îb ¼ 0.16. The force along
the trajectory is thus inferred to a good approximation
[Fig. 3(a) inset]. Furthermore, the projected force field
F̂μαĉαðxÞ provides an ansatz that can be extrapolated
beyond the trajectory [Fig. 3(a)], which works equally
well here as the functional form of the force field is fully
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captured by our choice of basis. More quantitatively, we
confirm the predicted behavior for the squared relative error
by studying an ensemble of trajectories [Fig. 3(b)].
In the case of out-of-equilibrium Brownian systems, our

method also permits the approximation of phase-space
currents and entropy production. Indeed, the phase-space
velocity v can be expressed in terms of a local Stratonovich
average of _x, reflecting the fact that it is odd under time
reversal [40]. Our estimator for the projection coefficients
of the phase-space velocity is thus (see Appendix D)

v̂μα ¼
1

τ

X
i

ΔxμðtiÞĉα
�
xðtiþ1Þ þ xðtiÞ

2

�
ð8Þ

which is the discretized version of the Stratonovich integral
ð1=τÞ R τ

0 ĉα(xðtÞ) ∘ dxμðtÞ. This allows the inference of the
entropy production rate _̂Sb ¼ D−1

μν v̂μαv̂να associated with the
observed currents. This estimator for the entropy production
rate is biased, with an error that can be self-consistently

controlled as _̂Sb¼ _Sbþ2Nb=τþOf(2 _̂Sb=τþð2Nb=τÞ2)1=2g:
The entropy production rate in the channel can thus be
inferred using a single trajectory provided that several kB’s
per degree of freedom are dissipated.
The simplest structure for phase-space currents corre-

sponds to cyclic circulation around a point. The detection
of such features in active biological systems has been the
focus of a number of recent studies which employ phase-
space coarse graining [11,14,17]. This method is, however,
limited to low-dimensional systems, and even then requires
large amounts of data: Indeed, the capacity per degree of
freedom is low, as each grid cell is visited infrequently. In

contrast, our method provides a way to detect circulation
in any dimension with minimal data. Using the centered
linear basis bαðxÞ ¼ x̄α ¼ xα −

R
xαðdt=τÞ, we can infer

the velocity coefficients v̂μα, which have a matrix structure.

This matrix reads v̂μα¼C−1=2
αβ Aβμ, whereCμν¼

R
x̄μx̄νðdt=τÞ

is the covariance matrix, and the antisymmetric part of Aμν

is Afμνg ¼ ð1=2τÞ R x̄μdxν − x̄νdxμ, which is the rate at
which the process encircles area in the ðμ; νÞ plane [18,41].
This rate, sometimes called probability angular momentum
[42,43], intuitively quantifies circulation and closely con-
nects to cycling frequencies [15,44]. Indeed, the eigenvec-
tors of Afμνg can be used to define cycling planes (see
Appendix H). The entropy production rate due to cycling

reads _̂Sb ¼ D−1
μνAνρC−1

ρσAσμ.
We demonstrate the potency of our cycle-detection

method on a challenging dataset: a short trajectory of an
out-of-equilibrium Ornstein-Uhlenbeck process in dimen-
sion d ¼ 6 [Fig. 4(a)], which is equivalent to popularly
used bead-spring models [14,16,44]. Our method identifies
the principal circulation plane accurately, together with the
force field [Fig. 4(c)]. Quantitatively, we demonstrate that
the angular error in the identification of this plane vanishes
with increasing trajectory length [Fig. 4(e)], concomitant

with the convergence of _̂Sb to the exact value [Fig. 4(f)].
The entropy production inferred is associated with the
observable currents: If only a fraction of the degrees of

freedom can be observed, _̂Sb is a lower bound to the total
entropy production of the system [Fig. 4(g)], as some
currents are not observable. In particular, if only 1 degree of

freedom can be measured, this technique will yield _̂Sb ¼ 0;
alternative techniques based on the non-Markovianity of
the dynamics are better suited to inferring entropy pro-
duction in this case [45].
A major challenge in the inference of dynamical

properties of stochastic systems from real data is time-
uncorrelated measurement noise, which often dominates
time derivatives of the signal. Indeed, in our inference
scheme, Eq. (7) is highly sensitive to such a noise. In
contrast, the time-reversal antisymmetry of the velocity
coefficients v̂μα makes them robust against measurement
noise (see Appendix F). Exploiting this symmetry, we
obtain an unbiased estimator for the force by using the
relation between Itô and Stratonovich integration,

F̂μα ¼ v̂μα þDμνĝνα; ð9Þ

where ĝμα ¼ −
P

iðΔt=τÞ∂μĉα(xðtiÞ) is an estimator for
the projection of gμ ¼ ∂μ logP onto the basis [note that
while ĝμðxÞ≡ ĝμαĉαðxÞ is an estimate of ∂μ logPðxÞ, it is
not a gradient and thus cannot be integrated to estimate
PðxÞ]. The modified estimator proposed in Eq. (9) can be
computed only if the projection basis is smooth, and would
not apply to grid coarse graining, for instance. It requires

FIG. 3. Stochastic force inference for a 2D Ornstein-Uhlenbeck
process with force field FμðxÞ ¼ −Ωμνxν and isotropic diffusion.
(a)An example trajectory. The inferred force field for this trajectory
using SFI with functions b ¼ f1; xμg (blue arrows) is compared to
the exact force field (black arrows). Inset: The inferred force
components along the trajectory versus the exact force components
with normalizedmean-squared error (MSE). (b) The average of the
relative error ½ðF̂μα − Fτ

μαÞD−1
μν ðF̂να − Fτ

ναÞ�=½F̂μαD−1
μν F̂να� on the

inferred projection coefficients F̂μα and its self-consistent estimate
Nb=2Îb both converge to Nb=2Ib, as expected from theory (see
Appendix C). Here, Fτ

μα ¼
R
Fμ(xðtÞ)ĉα(xðtÞ)ðdt=τÞ is the pro-

jection of the exact force on the empirical projectors.
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knowledge of the diffusion tensor Dμν, as we discuss in
Sec. IV. Using this modified force estimator allows precise
reconstruction of the force field, circulation, and entropy
production even in the presence of large measurement noise
[Figs. 4(b) and 4(g)]. The limiting factor on force inference
due to measurement noise then becomes the blurring of the
spatial structure of the process. For observations with a
finite time step Δt, the currents are also blurred by time
discretization, introducing an additional bias in the force
estimator (see Appendix F) and resulting in an under-
estimate of the entropy production. Note, however, that this
finite Δt effect induces a bias on v̂μα only: For an
equilibrium, time-reversible process, v̂μα → 0 and the force

estimator reduces to Dμνĝνα, which is independent of the
time ordering of the data.
We have so far considered only the case of linear systems

projected onto linear functions. In general, force fields are

FIG. 4. (a) Time series of a 6D out-of-equilibrium Ornstein-
Uhlenbeck process, with anisotropic harmonic confinement and
diffusion tensor, and circulation. The force field is FμðxÞ ¼
−Ωμνxν. The matrix Ω and the diffusion matrix are chosen from a
random ensemble. The antisymmetric part of D−1Ω has rank
two, thus inducing circulation in a randomly chosen plane. (b)
The same trajectories as in (d) with additional time-uncorrelated
measurement noise. (c) SFI for the trajectory in (a) allows precise
identification of the plane of circulation and reconstruction of the
force along the trajectory. (d) SFI applied to the trajectory in (b)
with measurement noise. It can still detect forces accurately. (e)
Convergence of the angular error for cycle detection with
increasing trajectory length for the process shown in (d) and
(e). (f) Inferred entropy production rate for this process with and
without measurement noise (we subtract here the systematic bias
2Nb=τ). The shadowed area indicates the self-consistent con-
fidence interval for the inferred entropy production. The dotted
line shows the exact value of the entropy produced; for the noisy
process, SFI underestimates this value due to blurring of the
currents. (g) Entropy production captured when observing
a d-dimensional projection of the trajectory averaged over
direction of observation for long trajectories. In (e)–(g), the error
bars indicate the standard deviation over an ensemble of 32
trajectories. Parameters of the simulations are presented in
Appendix H.

FIG. 5. Stochastic force inference with nonlinear force fields.
(a) Trajectory of an out-of-equilibrium process with harmonic
trapping and circulation, and a Gaussian repulsive obstacle in the
center. The force field is given by FμðxÞ ¼ −Ωμνxν þ αe−x

2=2σ2xμ
where Ω has both a symmetric and antisymmetric part. (b)
Trajectory of the stochastic Lorenz process, a 3D process with a
chaotic attractor. The force field is Fx ¼ sðy − xÞ, Fy ¼
rx − y − zx, Fz ¼ xy − bz, where we choose r ¼ 10, s ¼ 3,
and b ¼ 1. (c)–(h) SFI for these two trajectories, respectively,
with polynomials of order n ¼ 1, 3, 5 and n ¼ 1, 2, 3: inferred
force versus exact force (left) and bootstrapped trajectory using
the inferred force field (right). (i),(j) Capacity (top) and entropy
production (bottom) of each process projected on different bases
for an asymptotically long trajectory as a function of the number
of degrees of freedom Nb in the basis. These bases are poly-
nomial and Fourier functions with order n ¼ 0;…; 7, and a
coarse-grained approximation with a variable number of grid
cells n ¼ 2;…; 7 in each dimension. Parameters and details of the
simulations are presented in Appendix H.
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nonlinear, which can result in a complex spatial structure.
We illustrate this in Figs. 5(a) and 5(b) for processes with,
respectively, nonpolynomial forces and a complex attractor
[46]. For such processes, SFI with a linear basis captures
the covariance of the data and the circulation of their
current. However, it fails to reproduce finer features, as
evident by inspecting bootstrapped trajectories generated
using the inferred force field [Figs. 5(c) and 5(d)]. A better
approximation of the force can be obtained by expanding
the projection basis, for instance by including higher-order
polynomials fxμxνg; fxμxνxρg… [Figs. 5(h)] or Fourier
modes. The captured fraction of the capacity and entropy
production increases monotonically when expanding the
basis [Figs. 5(i) and 5(j)], corresponding to finer geomet-
rical details: The force field is well resolved if the measured
capacity does not increase upon further expansion of the
basis. However, expanding the basis also results in an
increase in the number of parameters to infer, which
eventually leads to overfitting.
For a finite trajectory, there is therefore a trade-off

between the precision of the inferred force and the
completeness of the force-field representation. This is
demonstrated in Figs. 6(a) and 6(b) by plotting the force
inference error along the trajectory as a function of the

number Nb of degrees of freedom in the basis. At small
Nb, this error decreases, as it mostly originates from
underfitting. At large Nb, the error increases, as all sta-
tistically significant information is already captured, and
adding new functions primarily fits the noise. This is
reflected in the inferred information Îb, which steadily
increases with the number of fitting parameters Nb: The
increase is initiallymainly due to the increase in the captured
information Ib, but asNb grows, so does the typical error on

Îb, δÎb≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ÎbþN2

b=4
q

(see Appendix C 4), and this error
eventually overwhelms the gain in Ib. As a practical criterion
to optimize between under- and overfitting and best estimate
the force along the trajectory, we thus propose to use the
basis b which maximizes the information Ib that can be
statistically resolved. In practice, we find that choosing the
basis size that maximizes Îb − δÎb (i.e., the inferred infor-
mation minus one standard deviation) robustly selects the
optimal basis size for a given trajectory [star symbols in
Figs. 6(a) and 6(b)]. An alternative optimization procedure
based on a similar balance was suggested in Ref. [29] for
one-dimensional processes. We empirically observe that
when using this criterion to adapt the basis to the trajectory,
the typical squared error on force inference scales as τ−1=2

with the trajectory duration τ [Figs. 6(c) and 6(d)]. There is
an exception to this scaling: When the force field can be
exactly represented by a finite number of functions of the
basis, such as the Lorenz process with order 2 polynomials,
this same criterion selects the smallest adapted basis: Further
adding functions does not resolve more information. This
results in a faster convergence of the force field as τ−1

[Fig. 6(d)], which is the rate of convergence of the force
projections for a given basis size.
Systems with many degrees of freedom, such as active

interacting particles [Fig. 7(a)], are challenging to treat.
Indeed, with limited data, the criterion Îb ≫ Nb precludes
even the inference of gross features of the force field. In such
cases, however, the use of symmetries can make the problem
tractable. For instance, treating particles as identical implies
that forces are invariant under particle exchange, which
greatly reduces the number of parameters to infer. Forces can
then be expanded as one-particle terms, pair interactions,
and higher orders by choosing an appropriate basis (see
AppendixH 6).With this scheme, a large number of particles
actually results in enhanced statistics, allowing accurate
inference of the force components [Figs. 7(a) and 7(b)]
and reconstruction of the pair interactions [Fig. 7(c)] with a
limited amount of data. This method could be straightfor-
wardly extended to include, e.g., alignment interactions
between particles. In contrast to standard methods to infer
pair interaction potentials, we do not rely here on an
equilibrium assumption.

IV. INHOMOGENEOUS DIFFUSION

We have so far assumed that the diffusion tensor does not
depend on the state of the system. While this is a natural

FIG. 6. Influence of the size of the basis on the precision
of SFI. (a),(b) SFI error as a function of the number of fit
parameters, respectively, for the models presented in Figs. 5(a)
and 5(b) with a Fourier basis, and for different numbers of
time steps in the trajectory. Specifically, the y axis is the mean-
squared relative error on the inferred force along the trajectory,
hðF̂μ − FμÞD−1

μν ðF̂ν − FνÞi=hF̂μD−1
μν F̂νi. The crossover from

under- to overfitting is apparent and takes place at larger Nb
and lower error with longer trajectories. The star symbols indicate
the optimal basis size predicted by our self-consistent criterion of
maximizing Îb − δÎb. (c),(d) The squared error as a function of
the amount of information Cτ in a trajectory of duration τ for the
optimal basis, averaged over n ¼ 3 trajectories. For the Lorenz
process with a polynomial basis [(d) orange squares], the
convergence is fast as the basis is adapted to the exact force
field, and the saturation of the error to a lower plateau is due to the
finite time step (see Appendix F).
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first approximation, it is rarely strictly the case: For
instance, the mobility of colloids depends on their distance
to walls and other colloids due to hydrodynamic inter-
actions [47]. In order to mathematically describe Brownian
dynamics in the presence of an inhomogeneous diffusion
tensor DμνðxÞ, Eq. (1) should be modified into

_xμ ¼ ΦμðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞ

p
μνξν ð10Þ

written in the Itô convention, i.e., evaluating DðxÞ at the
start of the step. Here, Φμ is the drift, which relates to the
physical force through

ΦμðxÞ ¼ FμðxÞ þ ∂νDμνðxÞ: ð11Þ

The additional term ∂νDμν, sometimes called “spurious
force,” combines with the noise term to ensure that the
dynamics does not induce currents and probability gradients
in the absence of forces [47]. To our knowledge, the only
way to infer the physical force is to infer both terms in
Eq. (11) independently and involves taking gradients of the
inferred diffusion. Here we show how to infer both the
diffusion field and the drift field, following the same idea as
in Sec. III.
We propose to approximate DμνðxÞ by its projection

as a linear combination of known functions DμνðxÞ ≈
DμναcαðxÞ with Dμνα ¼

R
DμνðxÞcαðxÞPðxÞdx. As before,

we can estimate the projectors ĉα using trajectory averages;
the only missing ingredient is a local estimate d̂μνðtiÞ for the
diffusion tensor Dμν(xðtiÞ). Such an estimator can be
constructed as d̂μνðtiÞ ¼ ΔxμðtiÞΔxνðtiÞ=2Δt, so that our
estimator for Dμνα reads

D̂μνα ¼
1

τ

X
i

d̂μνðtiÞĉα(xðtiÞ)Δt: ð12Þ

The relative error on these projection coefficients is of orderffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NbΔt=τ

p
(see Appendix G). Similar to Eq. (7) for the

force field, Eq. (12) corresponds to a linear regression of
d̂μνðtiÞ, and was previously suggested for one-dimensional
systems in Ref. [29]. We test this estimator using two
minimal models: a one-dimensional ratchet process with
sinusoidal force and diffusion coefficient inspired by the
Büttiker-Landauer model [48,49] [Figs. 8(d)] and a two-
dimensional process in a harmonic trap with a constant
diffusion gradient [Figs. 8(h)]. We quantitatively recover
the diffusion coefficient as a function of the position
[Figs. 8(b) and 8(f)] and confirm that the error vanishes
in the limit of long trajectories [Figs. 8(d) and 8(h)].
Importantly, the estimator introduced in Eq. (12) is biased
in the presence of noise on the measured x and becomes
effectively useless if this noise is larger than the typical Δx.
Inspired by the estimator proposed by Vestergaard et al.
[50] for homogeneous, isotropic diffusion, we define a
bias-corrected local estimator

d̂ðtiÞ ¼
½Δxðti−1Þ þ ΔxðtiÞ�2

4Δt
þ ΔxðtiÞΔxðti−1Þ

2Δt
; ð13Þ

where tensor products are implied. Modifying Eq. (12)
accordingly thus corrects measurement noise bias
[Fig. 8(h)] at the price of an increased relative error for
short trajectories (see Appendix G).
We also approximate the drift as a linear combination of

functions ΦμðxÞ ¼ ΦμαcαðxÞ. Equation (7) provides an
estimator for the projection coefficients Φμα in terms of an
Itô integral. This estimator is, however, impractical for
experimental data, as even moderate measurement noise
induces large errors in these coefficients. As in Eq. (9), we
exploit the Itô-to-Stratonovich conversion to obtain an
estimator that is not biased by measurement noise:

Φ̂μα ¼ v̂μα −
1

τ

X
i

d̂μνðtiÞ∂νĉα(xðtiÞ)Δt; ð14Þ

where v̂μα is the velocity projection coefficient [Eq. (8)],
and d̂μνðtiÞ can either be the local biased-corrected esti-
mator [Eq. (13)] or another estimator of DμνðxiÞ. The
convergence properties of Φ̂μα to its asymptotic value are
similar to those of Eq. (7).

FIG. 7. Stochastic force inference for harmonically trapped
active Brownian particles with soft repulsive interactions FðrÞ ¼
1=ð1þ r2Þ between particles at distance r. (a) Snapshot of a
configuration for 25 active particles. The black dots indicate the
direction of self-propulsion. We perform SFI on a trajectory of
only 25 frames blurred to mimic measurement noise. Background
shows the trajectory of one particle and force on each particle,
inferred (blue arrows) and exact (black arrows). The fitting basis
for SFI consists of a combination of harmonic trapping, constant-
velocity self-propulsion, and radial interactions between particles
with the form rke−r=r0 with k ¼ 0;…; 5 and r0 a typical nearest-
neighbor distance between particles. (b) Inferred versus exact
components of the force on all particles along the trajectory. (c)
Inferred radial force between interacting particles, compared to
the exact force.
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We can now combine our diffusion [Eq. (12)] and drift
[Eq. (14)] projection estimators to reconstruct the force
field,

F̂μðxÞ ¼ Φ̂μαcαðxÞ − D̂μνα∂νĉαðxÞ ð15Þ

using Eq. (11). This estimator allows for quantitative
inference of the force, provided that the divergence of
the diffusion coefficient is well approximated. We demon-
strate this [Figs. 8(c), 8(d), and 8(g)] for the simple
processes presented in Figs. 8(a) and 8(e) using an adapted
basis to fit the diffusion coefficient.

V. DISCUSSION

In this article, we introduce stochastic force inference, a
method to reconstruct force and diffusion fields and
measure entropy production from Brownian trajectories.
Based on the communication-theory notion of capacity, we
show that such trajectories contain a limited amount of
information. With finite data, force inference is thus limited
by the information available per degree of freedom to infer.
SFI uses this information to fit the force field with a linear
combination of known functions. We demonstrate its utility
on a variety of model systems and benchmark its accuracy
using data comparable to current experiments.
We now briefly compare SFI to other existing methods to

infer forces from Brownian trajectories. SFI combines the
ability to infer arbitrary force fields, for nonequilibrium
processes, in high dimensions and in the presence of
measurement noise. In contrast, many previous methods
essentially rely on a specific linear [51] or parametric [52]
form for the force or are specific to one-dimensional
systems [29,31,32]. Other approaches include spectral
methods [28,53], Bayesian methods [24,25,54,55],
maximum-likelihood techniques [21], or methods that rely
on coarse graining through constant-by-parts [23,30,33]
or linear-by-parts [22] approximations. However, these
techniques become inefficient as the system’s dimension-
ality increases. Furthermore, none offers a generic unbiased
estimator in the presence of measurement noise. Few of
these general methods are being used on experimental data
in soft-matter and biological systems. We quantitatively
compare SFI to two of the most popular such methods
[23,25,33] that rely on spatial binning (Fig. 9). Our method
significantly outperforms them for a two-dimensional
process simulating single-molecule dynamics in a complex
cellular environment, in particular in the presence of
realistic measurement noise.
An important by-product of SFI is the ability to quantify

the irreversibility of a system by measuring the entropy
production associated with its currents. Alternative meth-
ods to estimate entropy production also exist, either by
coarse graining trajectories to estimate currents [13,14,17],
by measuring cycling frequencies [15,44], by using non-
Markovian signatures of irreversibility in hidden variables
[45], or by using thermodynamic bounds on the fluctua-
tions of dissipative currents [16,56]. These methods are,
however, inherently limited to relatively low-dimensional
systems with homogeneous diffusion, and even then
require large amounts of well-resolved data. SFI, in
contrast, performs well in high dimensions—even with
trajectories too short to resolve the steady-state density—
and in the presence of measurement noise and inhomo-
geneous diffusion.
We limit our scope here to systems whose dynamics is

described by Eqs. (1) or (10), with a time-independent force
field and white-in-time noise. When the force field varies in
time, for instance due to the dynamics of unobserved

FIG. 8. Stochastic inference of inhomogeneous diffusion and
forces. (a) A trajectory of a 1D ratchet model with FðxÞ ¼
F0 cosð2πxÞ andDðxÞ ¼ 1þ a cosð2πxÞ, with periodic boundary
conditions. (b),(c) For the trajectory presented in (a), inferred and
exact diffusion coefficient [using Eq. (12)] and force field [using
Eq. (15)] as a function of the position. We use a first-order Fourier
basis to infer both force and diffusion. (d) Analysis of the
convergence of the diffusion (blue) and force (orange) estimators
as a function of the trajectory duration for the process presented
in (a). The dotted and dashed black lines are the self-consistent
estimates for the squared error, respectively, for the diffusion and
the force. The plateau for the diffusion inference is due to the
finite time step. (e) A trajectory of a minimal 2D model, an
isotropic harmonic trap at equilibrium FμðxÞ ¼ −DμνðxÞxν in a
constant gradient of isotropic diffusion DμνðxÞ ¼ ð1þ aρxρÞδμν.
(f),(g) Inferred versus exact diffusion coefficient [using Eq. (12)]
and force components [using Eq. (15)] along trajectory (a).
A linear polynomial basis is used to fit the diffusion coefficient
and a quadratic basis to fit Fμ. (d) Convergence of the diffusion
projection estimator (normalized by the average diffusion tensor)
to its exact value for the process shown in (a). Circles, using
Eq. (12); diamonds, using Eq. (12) in the presence of time-
uncorrelated measurement noise; triangles, using the bias-
corrected local estimator. Error bars represent the standard
deviation over 64 samples. Details and parameters in Appendix H.
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variables, SFI captures the average projection of the force
onto the observed variables (see Appendix E). Furthermore,
SFI could be extended to capture an explicit time depend-
ence of the force by using a time-dependent basis. Finally,
force inference is notably complicated by non-Markovian
terms in the dynamics [57], such as colored noise; however,
in such cases, our projection approach to estimate phase-
space velocities [Eq. (8)] remains useful and valid.
Our approach, all in all, proposes a solution to the inverse

problem of Brownian dynamics: inferring the force and
diffusion fields from trajectories. This method consists of a
few intelligible equations and provides a powerful data
analysis framework that could be used on a broad class of
stochastic systems where inferring effective forces and
currents from limited noisy data is of interest. Our work
thus applies to microscopic systems where thermal noise is
relevant, such as single molecules [23], active colloids
[58,59], and cytoskeletal filaments [15,17]. Beyond thermal

systems, for stochastic dynamical systems that can be
effectively modeled by Brownian dynamics, applications
of our framework range from the behavior of cells [3,10,60]
and animals [61] to modeling of climate dynamics [5,51,62]
and trend finding in financial data [4]. Our method could be
combined with sparsity-promoting techniques, as used to
infer dynamical equations in deterministic systems [63],
to go from force fitting to identifying the simple rules
governing the dynamics.

A. Material and methods

All formulas presented in this article are derived in the
Appendixes, together with the details of each simulated
system.
Code availability: A readily usable PYTHON package to

perform stochastic force inference is available at [64]. It
includes minimal examples.
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APPENDIX A: GAUSSIAN CHANNEL
INTERPRETATION OF BROWNIAN DYNAMICS

In this Appendix, we address the question of quantifying
the rate at which information can be read out or is encoded
in a trajectory. We assume that the system follows the
overdamped Langevin equation,

_xμ ¼FμðxÞþ
ffiffiffiffiffiffiffi
2D

p
μνξν; hξμðtÞξνðt0Þi¼ δðt− t0Þ: ðA1Þ

Here and in the main text, what we refer to as a “force” is in
fact the physical force multiplied by the mobility matrixM,
which has the dimension of a mobility. So, in terms of our
F, the system is out of equilibrium if D−1F does not derive
from a potential. Indeed, a system in equilibrium has a
physical force that is derived from a potential, and a
mobility matrix which is proportional to the diffusion
coefficient: D ¼ MT where T is the temperature. Our
approach thus does not distinguish out-of-equilibrium
systems due to the difference in the temperature between

FIG. 9. Quantitative comparison of SFI with other methods on a
simulated system mimicking 2D single-molecule trajectories in a
complex cellular environment with multiple potential wells, out-
of-equilibrium circulation, and space-dependent isotropic diffu-
sion. (a) The diffusion field (blue gradient) and drift field (white
arrows, scaled as jΦj1=2 for better legibility). (b) The steady-state
probability distribution function (PDF) of the process. The blue
traces show two representative trajectories with n ¼ 100 time
steps. The red traces show trajectories blurred by moderate
Gaussian measurement error (with amplitude shown as a red
kernel). (c)–(f) Comparison of the performance of SFI with
adaptive Fourier basis (green circles) and two widely used
inference methods: InferenceMAP [25], a Bayesian method for
single-molecule inference (blue triangles), and grid-based bin-
ning with maximum-likelihood estimation [23,33] [Eq. (7)] and
an adaptive mesh size (orange squares). We evaluate the perfor-
mance of these methods on the approximation of the drift field
[(c),(e)] and diffusion field [(d),(f)] as a function of the number N
of single-molecule trajectories [similar to those in (b)] used, with
ideal data [(c),(d)] and in the presence of measurement noise [(e),
(f)]. The performance is evaluated as the average mean-squared
error on the reconstructed field along trajectories. SFI outper-
forms both other methods in all cases; for noisy data, SFI is the
only one that provides an unbiased estimation of the drift. Details
and parameters in Appendix H 9.
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components, such as popular bead-spring models, from
systems driven by nonreciprocal force fields. We assume
through most of this article that this diffusion matrix is
known and space independent (although it can be aniso-
tropic); the case of a spatially variable diffusion matrix and
how to infer it from the data is treated in Appendix G. We
also assume that a steady state exists and that the system is
ergodic, i.e., that time averages converge to phase-space
averages. Note, however, that the discussion below can be
readily extended to averages over an ensemble of trajecto-
ries instead of time averages over a single long trajectory.
The complete force field is characterized by an infinite

number of degrees of freedom, and thus, in principle,
contains an infinite amount of information (the value of the
force components at each location in phase space). It is
therefore pertinent to ask if there is a bound to the rate at
which this information can be read off from the trajectory.
We consider an infinite-length trajectory, from which, in
principle, all information about the force field can be
recovered. We argue that indeed there is such a maximal
rate, given by the capacity (in natural information units, or
nats)

C ¼ 1

4
D−1

μν

Z
FμðxÞFνðxÞPðxÞdx: ðA2Þ

To explain this formula, let us first focus on a one-
dimensional system. A trajectory which satisfies the
dynamics given by Eq. (A1) encodes the information about
the force field in the form of a continuous-time signal
F(xðtÞ) corresponding to the values of the force field at the
points xðtÞ that the trajectory visits. However, what can
actually be read out from the trajectory is _x, i.e., the signal
F(xðtÞ) with noise ξ added to it (Fig. 2). Thus, we can
think of the dynamics Eq. (A1) as a noisy communication
channel, with Gaussian white-correlated noise, where the
information about the force is transmitted in the form of a
code word F(xðtÞ) which satisfies limτ→∞1=τ

R
τ
0 F

2dt ¼R
F2ðxÞPðxÞdx. In communication theory, such a channel

is called an infinite-bandwidth Gaussian channel [34].
It has a well-defined capacity, i.e., a maximal rate of
information transmission: For code words of duration τ that
satisfy the so-called “power constraint” 1=τ

R
τ
0 dtF

2ðtÞ≤P
and a white noise with amplitude 2D, the capacity is given
by P=ð4DÞ nats per second. Information cannot be trans-
mitted through the channel at a faster rate. Stated differ-
ently, the capacity quantifies the (exponential) rate with
which the maximal number of distinguishable signals
grows with the amount of time the channel is used for,
in particular as τ → ∞. In our case, the capacity is related to
the distinguishability of different force fields with the same
power constraint. The maximal rate is obtained for a signal
which saturates the power constraint so that the relevant
constraint to consider isP ¼ limτ→∞1=τ

R
τ
0 F

2dt. Thus, our
trajectory which has limτ→∞1=τ

R
τ
0 F

2dt ¼ R
F2PðxÞ dx

cannot produce information about the force field at a rate
faster than the capacity as defined in Eq. (A2). Note that in
contrast to the usual communication-theory setting, we do
not control the code word through which the force field is
encoded, only the decoding scheme—the code word is
determined by the dynamics, the force field being sampled
according to the probability density function (PDF) PðxÞ.
To go from the capacity for a one-dimensional process to
that of a d-dimensional process [Eq. (A2)], we decompose
the channel into d parallel channels and add their
capacities. Indeed, let us first go into the basis where the
noise is diagonal and normalize its amplitude to two, such
that all components of the new force D−1=2

μν Fν have the
same units (t−1=2). The components of the noise become
independent, and the d components in that basis become
parallel channels, with signals measured in the same units,
whose capacities sum up to Eq. (A2).

1. The Shannon-Hartley formula and
infinite-bandwidth channels

The infinite-bandwidth capacity of Brownian dynamics,
as presented in Eq. (A2), corresponds to that of the
continuous dynamics. It can also be seen as the Δt → 0
limit of a discrete signal (i.e., a finite-bandwidth signal)
such as can be acquired in practice. The capacity of such a
discrete Gaussian channel is given by the Shannon-Hartley
formula [34]

C ¼ 1

2Δt
log

�
1þ PΔt

N

�
; ðA3Þ

where we consider as before power-limited signals, where
PΔt=N is the signal-to-noise ratio, P is the signal power
(note that it is not the power of the system in the energetic
sense, only in the signal theory sense), andN =Δt the noise
power. When the bandwidth is taken to infinity, i.e.,
Δt → 0, we get

C0 ¼
P
2N

log2 e bits per sec; ðA4Þ

which corresponds to Eq. (A2). For a finite but small Δt,
the expression for the capacity becomes

C ¼ P
2N

−
P2Δt
4N 2

þ � � � ≈ C0ð1 − C0ΔtÞ: ðA5Þ

The first correction to the continuous-time capacity due to
the finite rate of sampling is thus of relative orderC0Δt, i.e.,
the information per sample. The loss of information when
monitoring Brownian dynamics at a finite rate is thus
negligible provided that the information per sample
remains small. This has an important practical consequence
for experimental applications, where there is often a trade-
off between the acquisition rate and duration of the
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experiment (for instance, due to photobleaching of fluo-
rescent proteins): When the information per sample
becomes small, very little can be learned about the force
field by increasing the acquisition frequency.

APPENDIX B: INFORMATION AT THE
TRAJECTORY LEVEL

In this Appendix, we relate the notion of capacity to
trajectory-level quantities and relate it to other stochastic
thermodynamics quantities: the entropy production and the
inflow rate. While Appendix A is restricted to the case of
constant-diffusion Brownian dynamics, here we consider
the general case with not only a state-dependent force, but
also a state-dependent diffusion tensor. In that case, the
noise is no longer additive: It has a multiplicative compo-
nent, and care must be taken to specify the convention
within which the Langevin equation is written. We use the
Itô convention here, writing

_xμ ¼ ΦμðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞ

p
μνξν; ðB1Þ

where ΦμðxÞ ¼ FμðxÞ þ ∂νDμνðxÞ is the drift term [47],
and FμðxÞ equals the mobility matrix times the physi-
cal force.

1. The capacity as a Kullback-Leibler
divergence rate

To relate the capacity to path-dependent quantities, we
consider a trajectory CN ¼ fxð0Þ;xðΔtÞ;…;xðNΔtÞg,
with ti ¼ iΔt, and where we define the discrete difference
ΔxμðtiÞ ¼ xμðti þ ΔtÞ − xμðtiÞ and τ ¼ NΔt. The path
integral formula for the probability density PðCN jFÞ of a
trajectory CN in the force field F written in the Itô
convention reads [39]

PðCN jFÞ¼P0(xð0Þ)
ð4πÞdN=2

YN−1

i¼0

1

fdetD(xðtiÞ)Δtg1=2
ðB2Þ

×exp

�
−
1

4
Δt

�
ΔxμðtiÞ
Δt

−Fμ(xðtiÞ)−∂ρDμρ(xðtiÞ)
�

×D−1
μν (xðtiÞ)

�
ΔxμðtiÞ
Δt

−Fν(xðtiÞ)−∂σDνσ(xðtiÞ)
��
:

ðB3Þ

Note that in the limit of long trajectories, the initial point
probability becomes unimportant. We show here that the
capacity of the system relates to the Kullback-Leibler
divergence rate between PðCN jFÞ and the probability
density at zero force (but with the same diffusion field),
PðCN j0Þ≡ PðCN jF ¼ 0Þ:

C ¼ lim
τ→∞

1

τ

Z
DCτPðCτjFÞ logPðC

τjFÞ
PðCτj0Þ

¼
�
1

4
Fμ(xðtÞ)D−1

μν (xðtÞ)Fν(xðtÞ)
�
: ðB4Þ

Indeed, for a constant diffusion coefficient, the right-hand
side of the above equation reduces to the capacity discussed
in Appendix A 2, Eq. (A2). Note that for systems with
multiplicative noise, to the best of our knowledge, a
formula for the channel capacity, as defined in transmission
theory, has yet to be derived. Moreover, the interpretation
from the standpoint of transmission theory is further
complicated as, from physical considerations, we wish to
infer Fμ rather than Φμ. However, one may use the
trajectory-based formula in Eq. (B4) as a general definition
of the capacity for Brownian dynamics. Then, the gener-
alization of Eq. (A2) to systems with inhomogeneous
diffusion is seen to be

C ¼ 1

4

Z
D−1

μν ðxÞFμðxÞFνðxÞPðxÞdx: ðB5Þ

Let us proceed to show Eq. (B4),

C ¼ lim
τ→∞

1

τ

Z
DCτPðCτjFÞ logPðC

τjFÞ
PðCτj0Þ ðB6Þ

¼ lim
τ→∞

1

τ

�
1

2

Z
Itô
dt _xμD−1

μνFν(xðtÞ)

−
1

2

Z
τ

0

dtð∂ρDρμÞD−1
μνFν(xðtÞ)

−
1

4

Z
τ

0

dtFμD−1
μνFν(xðtÞ)

�
ðB7Þ

¼
�
1

4
Fμ(xðtÞ)D−1

μν (xðtÞ)Fν(xðtÞ)
�
; ðB8Þ

where we use that hR Itô dt_xμD−1
μνFν(xðtÞ)i ¼

hR τ
0 dtðFμ þ ∂ρDρμÞD−1

μνFν(xðtÞ)i. Note that passing
between the first and second line in the above equation
is equivalent to deriving the Girsanov formula for
diffusions.

2. The inflow rate

In the main text, we connect the capacity to the inflow
rate G ¼ R

dxPðxÞgμDμνgν with gμ ¼ ∂μ logP. This quan-
tity was originally introduced and studied by Baiesi and
Falasco [36] in the case of Brownian dynamics with
homogeneous diffusion (and for discrete Markov proc-
esses, not discussed here). We generalize it here to systems
with inhomogeneous diffusion and discuss its properties.
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a. Relation between the inflow rate and an
instantaneous entropy production rate

Let us show that it corresponds to an instantaneous
entropy production rate that would be present if the
force was suddenly set to zero. Consider the entropy
SðtÞ ¼ −

R
dxPðx; tÞ logPðx; tÞ, after the force is set to

zero: Fμ ¼ 0, denoting that instant by t ¼ 0. At that instant,
one has ∂tP ¼ ∂μ½Dμν∂νP�. Then,

∂tSjt¼0 ¼ −
Z

dx logPðxÞ∂μ½Dμν∂νPðxÞ�

þ
Z

dx∂μðDμν∂νPÞ

¼
Z

dx
∂μPðxÞ

P
Dμν∂νPðxÞ

¼
Z

dxPðxÞ∂μ logPðxÞDμνðxÞ∂ν logPðxÞ

¼ G; ðB9Þ
where we use integration by parts, assuming the boundary
terms vanish. We can define vFickμ ¼ −Dμνgν, a Fick velo-
city related to the current jFickμ ¼ −Dμν∂νP, that would re-
sult from diffusion of particles with an initial density profile
PðxÞ in the absence of forces. Indeed, in these notations, G
has a similar form to the entropy production rate

G ¼
Z

vFickμ vFickν D−1
μνPðxÞdx: ðB10Þ

However, the inflow rate is nonzero even at equilibrium.
It measures the heterogeneity of the steady-state probability
distribution. Indeed, for an equilibrium process Fμ ¼
Dμν∂μ logP (and G ¼ C trivially). In a sense, it is the
amount of information that the force field needs to
continuously inject into the system in order to maintain
its spatial structure, while the entropy production can be
seen as the amount of information the force field injects
into the system to maintain its currents.

b. The inflow rate as a phase-space
contraction rate

The relation Dμνgμ ¼ Fμ − vμ (which holds for a space-
dependent diffusion tensor) can be used to rewrite the
inflow rate as

G ¼
Z

dxPðxÞgμDμνgν ¼
Z

dxPðxÞð∂μ logPÞðFμ − vμÞ

¼
Z

dx½∂μPðxÞ�Fμ þ
Z

dx∂μ½vμPðxÞ� logP

¼ −
Z

dxPðxÞ∂μFμ; ðB11Þ

where in the second line the steady-state relation
∂μ½vμPðxÞ� ¼ ∂μjμ ¼ 0 is employed. We thus obtain an
expression for the inflow rate as (minus) the average
divergence of the force. In a deterministic dynamical system,
this is equal to the average sum of the Lyapunov exponents
and is called the average phase-space contraction rate. It then
corresponds to the mean rate of entropy production in the
environment [38]. For nondeterministic systems, it was
mentioned in Ref. [38] as a “natural entropy production.”
It is worth stressing the difference between the deterministic
case and overdamped Brownian dynamics in this context.
While for a deterministic system at equilibrium, i.e., a
Hamiltonian system, the divergence of the force is identi-
cally zero due to the symplectic structure (there is no entropy
production), for an equilibrium overdamped system whose
divergence is nonzero. Indeed, the inflow rate (which does
not correspond to an actual entropy production in this case)
is positive, as we discuss above.

c. Trajectory-based interpretation of the inflow rate

Here we prove that an equivalent expression for the
inflow rate is

G ¼ lim
τ→∞

1

τ

Z
DCτPðCτjFÞ log PðCτjFÞ

Pð−Cτj − FÞ

¼ lim
τ→∞

1

τ

�
log

PðCτjFÞ
Pð−Cτj − FÞ

�
F
: ðB12Þ

The simplest way to do that is to express the probability
density of a trajectory [Eq. (B3)] in an alternative form, as
we now show. We begin with the expression for the
probability of a transition to the point x from the point
x0 in an infinitesimal time Δt [39],

Pðx; tþ Δtjx0; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞd detDðxÞΔt

p exp

�
Δt

	
−∂μΦμðxÞ þ ∂μ∂νDμνðxÞ

−
1

4

�
xμ − x0μ
Δt

−ΦμðxÞ þ 2∂ρDμρðxÞ
�
D−1

μν ðxÞ
�
xν − x0ν
Δt

−ΦνðxÞ þ 2∂σDνσðxÞ
�
�

: ðB13Þ

Note that here the diffusion coefficient and Φμ are both evaluated at the point x to which the system transitions. The
probability of a trajectory is then simply given by a product of such transition probabilities and the distribution of the initial
point. Using that Φμ ¼ Fμ þ ∂νDμν, we then get
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PðCN jFÞ¼P0(xð0Þ)
ð4πÞdN=2

YN−1

i¼0

1�
detD(xðtiþ1Þ)Δt

�
1=2exp

�
−∂μFμ(xðtiþ1Þ)Δt−

1

4
Δt

�
ΔxμðtiÞ
Δt

−Fμ(xðtiþ1Þ)þ∂ρDμρ(xðtiþ1Þ)
�

×D−1
μν (xðtiþ1Þ)

�
ΔxνðtiÞ
Δt

−Fν(xðtiþ1Þ)þ∂σDνσ(xðtiþ1Þ)
��

: ðB14Þ

It follows that the probability of the time-reversed trajectory −CN ¼ fxðtNÞ;xðtN−1Þ;…;xðt0Þg can be written in the form

Pð−CN jFÞ ¼ P0(xðNΔtÞ)
ð4πÞdN=2

YN−1

i¼0

1

fdetD(xðtiÞ)Δtg1=2
exp

�
−∂μFμ(xðtiÞ)Δt −

1

4
Δt

�
−ΔxμðtiÞ

Δt
− Fμ(xðtiÞ)þ ∂ρDμρ(xðtiÞ)

�

×D−1
μν (xðtiÞ)

�
−ΔxνðtiÞ

Δt
− Fν(xðtiÞ)þ ∂σDνσ(xðtiÞ)

��
: ðB15Þ

Now, it becomes straightforward to evaluate Eq. (B12),
dividing term by term in the product in Eq. (B3) by the
product in Pð−CN j − FÞ using Eq. (B15) with the reversed
sign for the force. Indeed, we notice that all terms cancel
out except for the divergence of Fμ, which yields (we
ignore the terms related to the initial and final distributions
whose contribution vanishes in the limit of τ → ∞)

G ¼ lim
τ→∞

1

τ

Z
DCτ PðCτjFÞ log PðCτjFÞ

Pð−Cτj − FÞ
¼ − lim

τ→∞

Z
τ

0

dt
τ
h∂μFμ(xðtÞ)i: ðB16Þ

3. Different decompositions of the capacity
and the relation to traffic

The trajectory-based expression for the capacity Eq. (B4)
is related to the “dynamical entropy” introduced in

Ref. [37]: It is equal to the dynamical entropy per unit
time in the limit τ → ∞, i.e., to a rate of dynamical entropy.
In Ref. [37], the dynamical entropy was split into two
contributions: a time-anti-symmetric contribution equal to
_S=2 and a time-symmetric contribution −T , where T is
called the traffic (and is related to the so-called frenesy in
Markov jump processes). The relations between the capac-
ity, the inflow rate we define, the entropy production, and
the steady-state traffic T are

C ¼ −T þ 1

2
_S; T ¼ ð _S −GÞ=4: ðB17Þ

The decomposition of the capacity that we present in the
main text can also be presented as the sum of time-
symmetric and -anti-symmetric parts but corresponding
to a different trajectory-based expression for the capacity:

4C ¼ lim
τ→∞

1

τ

Z
DCτ PðCτjFÞ log PðCτjFÞ

PðCτj − FÞ ¼ lim
τ→∞

1

τ

�
log

PðCτjFÞ
PðCτj − FÞ

�
F

ðB18Þ

¼ lim
τ→∞

1

τ

�Z
Itô
dt _xμD−1

μνFν(xðtÞ) −
Z

τ

0

dtð∂ρDρμÞD−1
μνFν(xðtÞ)

�
ðB19Þ

¼ lim
τ→∞

1

τ

�Z
Strat

dt _xμD−1
μνFν(xðtÞ)

�
− lim

τ→∞

1

τ

�Z
τ

0

dtDμρ∂ρðD−1
μνFνÞ(xðtÞ) −

Z
τ

0

dt∂ρðDρμÞD−1
μνFν(xðtÞ)

�
ðB20Þ

¼ lim
τ→∞

1

τ

�Z
Strat

dt _xμD−1
μνFν(xðtÞ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�
time antisymmetric

þ lim
τ→∞

1

τ

�
−
Z

τ

0

dt∂μFμ(xðtÞ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

time symmetric

− lim
τ→∞

1

τ

�Z
τ

0

dtFν∂ρðDρμD−1
μν Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

0

�
: ðB21Þ

Indeed, the first term in the last line is time antisymmetric
and is equal to the entropy production rate, and the
second term is time symmetric and is equal to the inflow
rate.

One can think of the decomposition of the capacity into _S
and G as decomposing the influence of the force field into
two types of “orders”: “go there” corresponding to a
dissipative, irreversible motion quantified by _S and “stay
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there” corresponding to a nondissipative, reversible motion
fighting thermal diffusion and quantified by G.

APPENDIX C: STOCHASTIC FORCE
INFERENCE: ESTIMATING

Fμα AND ITS ERROR

In this Appendix, we derive the core results of our article:
how to perform SFI in practice and self-consistently
estimate the error in the inference.

1. The force as a trajectory average

To be able to deduce the force from the trajectory, one
first needs an expression for the force in terms of meas-
urable quantities along the trajectory. We have

FðxÞ ¼ lim
ϵ→0

�
(xðtþ ϵÞ − xðtÞ)

ϵ

����xðtÞ ¼ x

�
¼ h _xþjxðtÞi ¼ hδ(xðtÞ − x) _xþi=PðxÞ; ðC1Þ

where h·jxðtÞ ¼ xi means averaging over realizations of
the noise, conditioned on being at position x at time t.
We define here _xþ as the right-hand derivative correspond-
ing to Itô calculus (see Appendix A of Ref. [40]). The
coefficients of the force field in its decomposition with
respect to the phase-space projector cαðxÞ are

Fμα ¼
Z

dxPðxÞFμðxÞcαðxÞ¼
Z

dxhδ(xðtÞ−x)_xþμ icαðxÞ

¼
�Z

dxδ(xðtÞ−x)_xþμ cαðxÞ
�
¼h_xþμ cαðxÞi: ðC2Þ

Because of this last expression, the force projection
coefficient Fμα can be expressed as an average quantity
along an infinitely long trajectory, which can thus be
estimated by computing it on a finite trajectory.
Note that, similar to the force, the phase-space velocity

can also be defined through an average of _x, where the time
derivative is taken in the Stratonovich sense:

vðxÞ ¼ lim
ϵ→0

�
(xðtþ ϵÞ − xðt − ϵÞ)

2ϵ

����xðtÞ ¼ x

�

¼
�
1

2
ð _xþ þ _x−Þ

����xðtÞ ¼ x

�

¼
�
δðxðtÞ − xÞ 1

2
ð _xþ þ _x−Þ

�
=PðxÞ ðC3Þ

(see Appendix A of Ref. [40]). The phase-space velocity in
its decomposition with respect to the phase-space basis
cαðxÞ is analogous to the force

vμα ¼
�
1

2
ð_xþμ þ _x−μ ÞcαðxÞ

�
: ðC4Þ

2. Projection on the empirical basis

The second difficulty in evaluating Eq. (2) of the main
text in practice is that the phase-space measure PðxÞ is
unknown in practice. As a consequence, the phase-space
basis cαðxÞ is not known either, as it is the orthonormalized
basis derived from b using P as the measure. Our approach
consists of approximating PðxÞ by the empirical measure

P̂τðxÞ ¼
1

τ

Z
τ

0

δ(x − xðtÞ)dt ðC5Þ

corresponding to a time average along the trajectory.
We then define the empirical projector ĉα with respect to

this measure, as in the main text:

ĉαðxÞ¼ B̂−1=2
αβ bβðxÞ with B̂αβ ¼

Z
bαðxÞbβðxÞ

dt
τ
: ðC6Þ

In the long-trajectory limit, these “empirical projectors”
ĉαðxÞ converge to the phase-space projectors cαðxÞ;
more precisely, we expect that for typical trajectories
ĉαðxÞ ¼ cαðxÞ þOð ffiffiffiffiffiffiffiffiffi

τ0=τ
p Þ, where τ is the duration of

the trajectory and τ0 is a relaxation time of the system. In
the case of the polynomial basis, for instance, the con-
vergence of the basis at order n is related to the convergence
of the nth cumulant of the probability distribution function.
We do not seek to make this statement more mathematically
precise here.
As an intermediate variable for this calculation, we

define the projection coefficients Fτ
μα of the (exact) force

onto these empirical projectors. These coefficients are
trajectory dependent; however, ĉα are directly accessible
from the trajectory, as is the empirical measure with respect
to which they are projectors, so that obtaining the coef-
ficients Fτ

μα precisely would result in an accurate approxi-
mation of the force field Fμ ≈ Fτ

μαĉα along the trajectory.
For this reason, we focus here on how the estimator F̂μα as
defined in Eq. (6) of the main text converges to Fτ

μα. The
relative errors presented in the main text also refer to this
convergence (rather than the convergence to the phase-
space projection Fμα). Recall that our estimator is given by

F̂μα ¼
1

τ

Z
Itô
ĉαðxÞdxμ

t ðC7Þ

¼1

τ

Z
τ

0

ĉαðxÞFμðxÞdt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fτ
μα

þ1

τ

Z
Itô
ĉαðxÞ

ffiffiffi
2

p
D1=2

μν dξνt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Zμα

ðC8Þ

using the Langevin equation (A1). Since Fτ
μα is what we

wish to infer, we propose to study now the statistics of
Zμα ¼ F̂μα − Fτ

μα, i.e., its mean and variance.
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3. Statistics of the error in the inference of the
projection coefficients

We thus study the first and second moment of the
random tensor Zμα, i.e., respectively, the systematic bias
and the typical error of F̂μα as an estimator of Fτ

μα. To make
the norm of these moments meaningful, it is necessary here
to go to dimensionless coordinates: Indeed, different phase-
space coordinates can have different dimensions (such as,
for instance, a phase space comprising both distances and
angles, as in Fig. 7 of the main text), and thus different
coordinates of Zμα cannot be compared or summed. To this

end, we define Wμα ¼ D−1=2
μν Zνα, all the coordinates of

which have the dimension of t−1=2.
First, recall that we define both phase-space and empiri-

cal projectors as a linear combination of the basis functions
b, cα ¼ B−1=2

αβ bβ, and ĉα ¼ B̂−1=2
αβ bβ, where

Bαβ ¼
Z

dxPðxÞbβðxÞbαðxÞ;

B̂αβ ¼
Z

τ

0

dt
τ
bβ(xðtÞ)bα(xðtÞ): ðC9Þ

Thus, we have limτ→∞B̂
−1=2
αβ ¼ B−1=2

αβ and hB̂αβi ¼ Bαβ. Let

us denote Δαβ ¼ B1=2
αγ B̂−1=2

γβ − δαβ the dimensionless error
on the orthonormalization matrix (indeed, the basis func-
tions bα can, in principle, have a dimension). We have
limτ→∞Δαβ ¼ 0; typically, we will have more precisely
Δαβ ¼ Oð1= ffiffiffi

τ
p Þ corresponding to the convergence of

trajectory integrals to phase-space integrals in Eq. (C9).
We then have

Zμα ≡ 1

τ

Z
Itô
ĉαðxÞ

ffiffiffi
2

p
D1=2

μν dξνt

¼ B−1=2
αβ

ffiffiffi
2

p
D1=2

μν
1

τ

Z
Itô
bβðxÞdξνt

þ B−1=2
αβ Δβγ

ffiffiffi
2

p
D1=2

μν
1

τ

Z
Itô
bγðxÞdξνt : ðC10Þ

For the remainder of this section, we denote the Itô integral
by a regular integration:

R
Itô dξνt ¼

R
τ
0 dξ

ν
t . We now put an

upper bound on the first moment of Zμα, i.e., on the
systematic bias. Note that the first term in Eq. (C10) has
zero average, as it is linear in the noise. In contrast, due to
possible correlations between the noise and the random
variable Δαβ, the second term may not average to zero.
Going to dimensionless coordinates, we use the Cauchy-
Schwarz inequality to bound the norm of this bias:

khWμαik2¼

�
B−1=2
αβ Δβγ

1

τ

Z
τ

0

bγðxÞD−1=2
μν

ffiffiffi
2

p
D1=2

νρ dξρt

�2
≤2B−1

βδ hΔβρΔρδi
�
1

τ2

Z
τ

0

bγðxÞdξμt
Z

τ

0

bγðxÞdξμt0
�
:

ðC11Þ

We can then use the Itô isometry relation [65] to prove that�Z
τ

0

bαðxÞdξμt
Z

τ

0

bβðxÞdξμt0
�

¼
�Z

τ

0

bα(xðtÞ)bβ(xðtÞ)dt
�

¼ hB̂αβi; ðC12Þ

which implies that

khWμαik2 ≤
2

τ
B−1
βδ hΔβρΔρδihB̂γγi: ðC13Þ

Since Δαβ ¼ Oðτ−1=2Þ, we thus have hWμαi ¼ Oð1=τÞ,
which corresponds to a fast convergence of the bias toward
zero: The bias is negligible compared to the fluctuating part
of inference error, which goes as Oðτ−1=2Þ.
Indeed, let us now compute the second moment of Wμα.

We have

hWμαWνβi

¼ 2

τ2

�
B̂−1=2
αγ B̂−1=2

βδ

Z
τ

0

Z
τ

0

dξμt dξνt0bγ(xðtÞ)bδ(xðt0Þ)
�
:

ðC14Þ

As B̂−1=2
αγ depends on all values of t, it is not adapted to the

Wiener process dξμt , and thus, we cannot apply the Itô
isometry. However, we have B̂−1=2

αγ ¼ B−1=2
αβ ðδβγ þ ΔβγÞ.

Applying the Itô isometry [Eq. (C12)] yields

hWμαWνβi ¼
1

τ2
δμνB

−1=2
αγ B−1=2

βδ 2τhB̂γδi þ Rμανβ ðC15Þ

¼ 2

τ
δμνδαβ þ Rμανβ; ðC16Þ

where we define the remainder

Rμανβ ¼
2

τ2

�
ðB−1=2

αγ B−1=2
βλ Δλδ þ B−1=2

αλ ΔλγB̂
−1=2
βδ Þ

×
Z

τ

0

Z
τ

0

dξμt dξνt0bγ(xðtÞ)bδ(xðt0Þ)
�
; ðC17Þ

which is, as we show now, subleading in Eq. (C15). We
now wish to bound the amplitude of the remainder
jhWμαWμαi − ð2=τÞNbj ¼ jRμαμαj. Since for typical trajec-
tories Δαβ ¼ Oðτ−1=2Þ, we can bound every element of the

matrix jB−1=2
αγ B−1=2

αλ Δλδ þ B−1=2
αλ ΔλγB̂

−1=2
αδ j ≤ ROγδ for such

trajectories, where R ¼ Oð1= ffiffiffi
τ

p Þ is a (nonfluctuating)
number, and Oγδ is the matrix with 1’s at all places. We get
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jhWμαWμαi −
2

τ
Nbj ¼

2

τ2

����
�
ðB−1=2

αγ B−1=2
αλ Δλδ þ B−1=2

αλ ΔλγB̂
−1=2
αδ Þ

Z
τ

0

Z
τ

0

dξμt dξ
μ
t0bγ(xðtÞ)bδ(xðt0Þ)

�����
≤

2

τ2

�
jðB−1=2

αγ B−1=2
αλ Δλδ þ B−1=2

αλ ΔλγB̂
−1=2
αδ Þj

����
Z

τ

0

Z
τ

0

dξμt dξ
μ
t0bγ(xðtÞ)bδ(xðt0Þ)

����
�

≤
2

τ2
ROγδ

�����
Z

τ

0

Z
τ

0

dξμt dξ
μ
t0bγ(xðtÞ)bδ(xðt0Þ)

����
�

≤
2

τ2
ROγγ

�����
Z

τ

0

Z
τ

0

dξμt dξ
μ
t0bδ(xðtÞ)bδ(xðt0Þ)

����
�

¼ 2

τ2
ROγγ

�Z
τ

0

dξμt bδ(xðtÞ)
Z

τ

0

dξμt bδ(xðtÞ)
�

¼ 1

τ2
ROγγ2τhB̂δδi ¼ Oð1=τ3=2Þ: ðC18Þ

In the fourth line, we use that for two semidefinite matrices

Mαβ andNαβ,MαβNβα ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ααN2
ββ

q
≤ MααNββ, an identity

based on the Cauchy-Schwarz inequality. In the fifth line,
we employ the Itô isometry [Eq. (C12)]. Again, this
subleading term originates from the convergence of the
empirical projected basis to its long-trajectory limit.

4. Self-consistent estimate of the error
on the projected force

The previous error estimates are rigorous but require
knowledge of the exact force field to assess their amplitude.
The goal of this section is to provide approximate estimates
of the typical error that can be obtained using only the
inferred force field and are thus useful in practical sit-
uations. Now that we know the statistical properties of the
dimensionless error term Wμα, we can write the covariance
of the inferred force projection coefficients explicitly:

hðF̂μα−Fτ
μαÞðF̂να−Fτ

ναÞi¼
2Dμν

τ
δαβ½1þOð1= ffiffiffi

τ
p Þ�: ðC19Þ

Now, let us define the information along the trajectory by

Iτb ¼
1

4
τFτ

μαD−1
μνFτ

να: ðC20Þ

In the long time limit, the rate of information Iτb=τ converges
to the capacity we discussed previously. Similarly, we
define the empirical estimate of the information along the
trajectory,

Îb ¼
τ

4
F̂μαD−1

μν F̂να ¼ Iτb þ
1

2
τFτ

μαD−1
μνZνα þ

1

4
τZμαD−1

μνZνα

¼ Iτb þ
1

2
τF̂μαD−1

μνZνα −
1

4
τZμαD−1

μνZνα ðC21Þ

so that

Iτb ¼ Îb −
1

2
τF̂μαD−1

μνZνα þ
1

4
τZμαD−1

μνZνα: ðC22Þ

We can also relate the average of the empirical infor-
mation to the trajectory information:

hÎbi − Iτb ¼
1

2
Nb ðC23Þ

at leading order. The estimator Îb is thus biased, with bias
1
2
Nb. The variance of this estimator is well approximated

by hðIτb − ÎbÞ2i ≈ 2hÎbi þ N2
b=4.

In practice, the “true” force field is not known—inferring
it is the goal here. It is therefore important to provide an
estimate of the inference error using only the inferred
quantities. Equation (C19) allows us to propose such a self-
consistent estimate of the error. Indeed, it can be interpreted
as the (squared) typical error on the force projection
coefficients, and its right-hand side can be estimated using
only trajectory-dependent quantities (again, we assume that
the diffusion matrix is known). We can also combine these
quantities in a single number quantifying the relative
inference error as

ðFτ
μα − F̂μαÞD−1

μν ðFτ
να − F̂ναÞ

F̂μαD−1
μν F̂να

∼ Nb=2Î: ðC24Þ

Thus, Nb=2Î provides a self-consistent estimate of the
relative error. Note that in the absence of forces, hÎi ¼
Nb=2, corresponding to an inferred error of 1, which is
consistent. Similarly, based on our estimate of the variance
of Îb, we define a self-consistent confidence interval around
this inferred information as δÎ2b ¼ 2Îb þ N2

b=4.

5. The force estimator and maximum likelihood

Here we show that the estimator we propose in Eq. (C8)
is also the maximum-log-likelihood estimator for Fμα.
Indeed, given a measured trajectory Cτ, we use the
expression for the probability of a trajectory Eq. (B3) to
calculate
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0 ¼ ∂ logPðCτjFÞ
∂Fτ

μα
¼

Z
dx

∂ logPðCτjFÞ
∂FνðxÞ

∂FνðxÞ
∂Fτ

μα
: ðC25Þ

We have

∂ logPðCτjFÞ
∂FνðxÞ

¼1

2

Z
τ

0

dtD−1
νμ f_xμðtÞ−Fμ(xðtÞ)gδ(x−xðtÞ):

ðC26Þ

Next, the empirical projectors ĉα corresponding to the
trajectory give the decomposition of the force as

FνðxÞ ¼ Fτ
ναĉαðxÞ þ F⊥

ν ðC27Þ

so that

∂FνðxÞ
∂Fτ

μα
¼ ĉαðxÞδμν ðC28Þ

and

0¼
Z

dx
∂ logPðCτjFÞ

∂FνðxÞ
∂FνðxÞ
∂Fτ

μα

¼
Z
dxĉαðxÞ

Z
τ

0

dtf_xνðtÞ−Fν(xðtÞ)gδ(x−xðtÞ) ðC29Þ

resulting in

Z
τ

0

dt_xνðtÞĉα(xðtÞ)
Z

dxδ(x − xðtÞ)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

¼
Z

dxĉαðxÞFνðxÞ
Z

τ

0

dtδ(x − xðtÞ)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
τP̂ðxÞ

¼ τFτ
να; ðC30Þ

which is solved by our estimator in Eq. (C8). This estimator
indeed maximizes the log-likelihood, since ĉαðxÞ is inde-
pendent of Fτ

μα so that

∂ logPðCτjFÞ
∂Fτ

μα∂Fτ
νβ

¼ ∂
∂Fτ

νβ

Z
dx

1

2

Z
τ

0

dtD−1
μρ f_xρðtÞ − Fρ(xðtÞ)gδ(x − xðtÞ)ĉαðxÞ

¼ −
Z

dx
1

2

Z
τ

0

dtD−1
μν δ(x − xðtÞ)ĉα(xðtÞ)ĉβ(xðtÞ) ¼ −

τ

2
δαβD−1

μν ; ðC31Þ

which is a negative definite matrix.

APPENDIX D: INFERENCE OF VELOCITIES
AND ENTROPY PRODUCTION

In this Appendix, we show how our approach allows the
inference of entropy production and phase-space currents
(or more specifically, phase-space velocities). We start by
some phase-space reminders about the entropy production
and then discuss how to infer the entropy produced from a
given trajectory.

1. Phase-space entropy production

The steady-state entropy production rate is defined
via [19]

_S ¼
Z

dxPðxÞvμðxÞD−1
μν vνðxÞ

¼
Z

dxPðxÞvμðxÞD−1
μνFνðxÞ; ðD1Þ

where vνðxÞ ¼ jνðxÞ=PðxÞ is the phase-space velocity
explicitly given by

vμ ¼ Fμ −Dμν∂ν logPðxÞ; ðD2Þ

and jν is the phase-space current. The equality between the
two expressions for the entropy production arises from the
steady-state condition ∂μjμ ¼ 0, implying that gμ ¼
∂ν logPðxÞ is orthogonal to vμ with respect to the
phase-space measure.
The quantity

R
dxPðxÞvμðxÞD−1

μνFνðxÞ is the entropy
production related to the heat produced in the bath. Indeed,
if the Einstein relation between the mobility and diffusion
matrix holds, then this term corresponds to the average
work performed by the force divided by the temperature.
As the system is overdamped, any work performed is
dissipated into heat. Note, however, that even if we do not
assume the Einstein relation holds (i.e., that the origin of
the white noise is a heat bath), this quantity is related to
time irreversibility.

2. Entropy production along a trajectory

One can define the entropy production along the tra-
jectory, or equivalently, the dissipated heat divided by the
temperature corresponding to the work performed by the
force as [19]

ΔΠτ ¼
Z

Strat
D−1F · _xdt¼

Z
τ

0

D−1
μνFν(xðtÞ) ∘ dxtμ; ðD3Þ
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where the integral is to be understood in the Stratonovich
sense (which, following usual notations, we denote as
∘ dxtμ). This entropy production is often referred to as the
entropy produced in the medium, and one can also define
what is called the total entropy production along the
trajectory (mediumþ system) [19]. Assuming the initial
point is drawn from the steady-state PDF, the total entropy
production is given by

ΔSτ ¼
Z

τ

0

D−1
μν vν(xðtÞ) ∘ dxtμ: ðD4Þ

In the limit τ → ∞, when divided by τ, the two definitions
for the entropy production converge to the same limit,
equal to the entropy production rate in the system _S ¼R
D−1

μν vνðxÞvμðxÞPðxÞdx ¼ R
D−1

μνFνðxÞvμðxÞPðxÞdx.

3. Velocity and entropy production inference

The probability density PðxÞ is generally not accessible
so that the phase-space velocity cannot be directly com-
puted. However, we have already discussed the empirical
density P̂ðxÞ, and we can also define the empirical current
(see, e.g., Ref. [66])

ĵμðxÞ ¼
1

τ

Z
τ

0

δðxðtÞ − xÞ ∘ dxtμ
¼ FμðxÞP̂ðxÞ −Dμν∂νP̂ðxÞ

þ 1

τ

Z
Itô
δðxðtÞ − xÞdξtμ ðD5Þ

using in the last line that xðtÞ satisfies the Langevin
equation and the relation between Itô and Stratonovich
integrals. This motivates the definition for the empirical
phase-space velocity

v̂μ ¼ ĵμðxÞ=P̂ðxÞ; ðD6Þ

and allows us to write

ΔΠτ ¼ τ

Z
FμðxÞD−1

μν ĵνðxÞdx

¼ τ

Z
FμðxÞD−1

μν v̂νðxÞP̂ðxÞdx: ðD7Þ

Note that in this last equation, the force is the exact force,
but the velocity (and probability measure) is the empirical
one defined in Eq. (D6) so that we obtain the trajectory-
wise entropy production related to the heat as in Eq. (D3). If
we now insert into this relation the projection onto the
empirical basis of the force and phase-space velocity, we
get the entropy production corresponding to that basis:

ΔΠτ
b ¼ τFτ

μαD−1
μν v̂να; ðD8Þ

where

v̂μα ¼
Z

Strat
_xμĉαðxÞ

dt
τ

¼ Fτ
μα þDμν

Z
∂νĉαðxÞ

dt
τ
þ 1

τ

Z
Itô
ĉαðxÞ

ffiffiffi
2

p
D1=2

μν dξtν

¼ F̂μα þDμν

Z
∂νĉαðxÞ

dt
τ

ðD9Þ

using integration by parts. The estimator for the entropy
production related to the basis is

ΔΠ̂b ¼ τF̂μαD−1
μν v̂να ¼ ΔΠτ

b þ τZμαD−1
μν v̂να: ðD10Þ

It is important to note that the projected entropy production
corresponding to the heat is not positive definite unless we
are able to resolve the entire force. Therefore, it does not
give a bound on the entropy produced. Furthermore, recall
that as is the case for the projection onto the phase-space
basis, the projected total entropy and that related to heat
generically differ.
On the other hand, the projection of the total entropy

production is positive definite, and therefore, it does give a
lower bound on the entropy production. The expression
v̂μαD−1

μν v̂να may be viewed as an estimator of the projection
of the total entropy production ΔSτb=τ or the total entropy
production rate in the steady state _Sb ¼ vμαD−1

μν vμα; how-
ever, some caution is required. Indeed, consider

ΔSτ=τ ¼
Z

vμðxÞD−1
μν ĵνðxÞdx

¼
Z

vμðxÞD−1
μν v̂νðxÞP̂ðxÞdx ðD11Þ

(note that one velocity is empirical and the other is exact in
this equation). Then,

ΔSτb=τ ¼ vτμαD−1
μν v̂να; ðD12Þ

and we can define the estimator

_̂Sb ¼ v̂μαD−1
μν v̂να: ðD13Þ

This estimator is less controlled than the estimator we
have for _Πτ

b. Indeed, the estimator v̂ has two sources of
error as an estimator of v. Defining

ṽμ ¼ Fμ −Dμν∂ν log P̂ðxÞ ðD14Þ

with the empirical PDF rather than the actual one, we
have v̂ ¼ ṽμ þ ð1=τÞ R Itô δðxðtÞ − xÞ ffiffiffi

2
p

D1=2
μν dξνt =P̂ðxÞ. In

particular, for the projection onto the empirical basis
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v̂μα ¼ ṽτμα þ Zμα; ðD15Þ

where ṽτμα − vτμα ¼ δvτμα ≠ 0, vτμα being the projection of
the actual phase-space velocity onto the empirical basis.
This is in contrast to the force, where our estimator includes
the projection of the actual force.
We write

_̂S ¼ ΔŜb=τ ¼ v̂μαD−1
μν v̂να

¼ ΔSτb=τ þ ZμαD−1
μν v̂να þ δvτμαD−1

μν v̂να: ðD16Þ

This is a biased estimator, since hZμαD−1
μν v̂ναi≈

hZμαD−1
μνZναi ¼ ð2Nb=τÞ. We do not have a formal estimate

for the last term δvτμαD−1
μν v̂να, but we expect δvτμα ∼

Oð1= ffiffiffi
τ

p Þ so that a reasonable estimate seems to be

_̂Sb¼
ΔSτb
τ

þ2Nb

τ
þO

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v̂μαD−1

μν v̂να
τ

þ
�
2Nb

τ

�
2

s �
: ðD17Þ

Here, for the estimate of the fluctuating part (the error
term), we estimate hZμαD−1

μνZναZρβD−1
ρσZσβi∼O½ð2Nb=τÞ2�,

and the contribution in the square root is the dominant term
when vτμα is nonzero, i.e., there is signal. We focus on the
long time limit τ → ∞, _Sτ → _S so that naturally an
estimator of ΔSτb=τ becomes also an estimator of _Sb, with
deviations which are again of order Oð1= ffiffiffi

τ
p Þ. Thus, we

may finally estimate

_̂Sb ¼ _Sb þ
2Nb

τ
þO

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _̂Sb
τ

þ
�
2Nb

τ

�
2

s �
; ðD18Þ

where _Sb ¼ vμαD−1
μν vμα. Note that this is an order-of-

magnitude error estimate, not a fully rigorous one.

APPENDIX E: INCOMPLETE OBSERVATIONS
AND TIME-DEPENDENT FORCES

In this article, we make strong assumptions on the
dynamics of the system we observe: that it obeys a
Langevin dynamics for the observed degrees of freedom
x and that the force field in phase space is time indepen-
dent. These two assumptions are linked. Indeed, consider
the very relevant case of systems which obey a Langevin
dynamics, but for which not all degrees of freedom are
observable. In that case, the force on the observed degrees
of freedom depends on the state of the hidden variables,
therefore, apparently violating the assumptions of our
formalism. It is interesting to note, however, that this
violation is only superficial. Indeed, “hiding” some degrees
of freedom of the system is completely equivalent to using a
projection basis where these degrees of freedom do not
appear explicitly (i.e., functions that are constant with
respect to these degrees of freedom). Therefore, provided

that the system as a whole obeys a constant-force Langevin
equation, SFI will capture the projection of the dynamics
onto the observed degrees of freedom, effectively averaging
over the hidden ones. Indeed, assume that the force takes
the form Fðx; yÞ where only x can be measured. We thus
project the force field onto a set of function bαðxÞ that
depends only on x. Hence,

Fμα ¼
Z

dxdyPðx; yÞcαðxÞFμðx; yÞ

¼
Z

dxdyPðyjxÞFμðx; yÞPðxÞcαðxÞ

¼
Z

dxF̄ðxÞPðxÞcαðxÞ; ðE1Þ

where F̄ðxÞ ¼ R
dyPðyjxÞFμðx; yÞ is the force at x aver-

aged over y. A similar formula applies to the phase-space
velocity, as well as when replacing the phase-space integral
by a time integral—in which case, one replaces the phase-
space measure with the empirical measure. As a conse-
quence, our formulas for the projected entropy production
and capacity remain valid and provide lower bounds to total
entropy production and capacity of the system:

_Stot ¼
Z

dxdyPðx; yÞvμðx; yÞD−1
μν vνðx; yÞ

¼
Z

dxPðxÞD−1
μν vμvνðxÞ ≥

Z
dxPðxÞD−1

μν v̄μðxÞv̄μðxÞ

≥ D−1
μν vμαvμα ¼ _Sb; ðE2Þ

where we apply Jensen’s inequality twice.

APPENDIX F: INFERENCE WITH IMPERFECT
DATA: MEASUREMENT NOISE AND

TIME DISCRETIZATION

Our inference method relies heavily on computing _x, i.e.,
the first time derivative of the signal, and on being able to
resolve the difference between Itô and Stratonovich time
derivatives for (the white-noise part of) the signal. One
expects that measurement noise would then swamp the
signal and make the distinction between the two, and thus,
our inference method, impractical. It turns out, however,
that even in the presence of measurement noise, we can
suggest estimators v̂μα and F̂μα, which are unbiased by the
measurement noise and accurately capture the currents and
forces, respectively.
Indeed, let us consider a noisy measure y of the system’s

state x at discrete times ti ¼ iΔt defined as

yμðtiÞ ¼ xμðtiÞ þ ηiμ; hηiμηjνi ¼ Λμνδi;j; ðF1Þ

where x obeys the dynamics (A1), and η is the measure-
ment noise (which we assume to be of zero average,
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without loss of generality). We assume this noise to be
uncorrelated between different (discrete) time points.

Consider first the estimator F̂ðnoisyÞ
μα for the force projection

coefficient in the presence of noise [we define, as before,
ΔyμðtiÞ¼yμðtiþ1Þ−yμðtiÞ and ΔxμðtiÞ¼xμðtiþ1Þ−xμðtiÞ]:

F̂ðnoisyÞ
μα ¼ 1

τ

X
i

ΔyμðtiÞcα(yðtiÞ) ðF2Þ

¼ 1

τ

X
i

ΔxμðtiÞcα(yðtiÞ)

þ 1

τ

X
i

Δtcα(yðtiÞ)
ηiþ1
μ − ηiμ
Δt

: ðF3Þ

There are two parts to the error due to measurement noise,
one stemming from the noise in the position and the other
from the noise in the velocity. We assume here that the
former is relatively small, i.e., that we can write

cα½yðtÞ� ≈ cα(xðtÞ)þ ημðtÞ∂μcα(xðtÞ)
þ ημην

2
∂2
μνcα(xðtÞ)þ… ðF4Þ

Then the average (over measurement noise) of the estimator
for the force projection reads

hF̂ðnoisyÞ
μα i ¼ F̂μα −

hημηνi
Δt

Z
∂νcα(xðtÞ)

dt
τ
þ… ðF5Þ

This second term is a “dangerous” bias, as it diverges with
Δt → 0, which is symptomatic of the influence of meas-
urement noise on force inference. Equation (F2) is thus
impractical in this case.
In contrast, it is interesting to notice than when doing the

same expansion with the velocity projection coefficients,
we have

v̂ðnoisyÞμα ¼ 1

τ

X
i

ΔyμðtiÞcα
�
yðtiÞ þ yðtiþ1Þ

2

�
ðF6Þ

¼ 1

τ

X
i

ΔxμðtiÞcα
�
yðtiÞ þ yðtiþ1Þ

2

�

þ 1

τ

X
i

Δt
ηiþ1
μ − ηiμ
Δt

cα

�
yðtiÞ þ yðtiþ1Þ

2

�
ðF7Þ

and

cα

�
yðtiÞ þ yðtiþ1Þ

2

�

≈ cα

�
xðtiÞ þ xðtiþ1Þ

2

�

þ ðηiþ1
μ þ ηiμÞ

2
∂μcα

�
xðtiÞ þ xðtiþ1Þ

2

�
þ… ðF8Þ

Now all the dangerous terms in 1=Δt have zero average.
Indeed, averaging over the measurement noise,�ðηiþ1

μ − ηiμÞ
Δt

ðηiþ1
μ þ ηiμÞ

2
∂νcα

�
xðtiÞ þ xðtiþ1Þ

2

��

¼ hηiþ1
μ ηiþ1

ν − ηiμη
i
νi

2Δt
∂νcα

�
xðtiÞ þ xðtiþ1Þ

2

�
¼ 0: ðF9Þ

The reason for these useful cancellations is that by
construction, the velocity projection coefficient is odd
under time reversal of the trajectory; in contrast, all
moments of the measurement noise are even under time
reversal, as it is assumed to be time uncorrelated. Note that
there remains a fluctuating term which is of the order
Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ=τΔt
p Þ, where Λ is the magnitude of the measure-

ment noise variance. Up to this zero-mean error term, our
estimator for the velocity projection coefficients is thus
unaffected by measurement noise on time derivatives.
To obtain an unbiased estimator for the force, we may

use the relation between Itô and Stratonovich integration
for a variable x which satisfies the stochastic differential
equation [Eq. (A1)]:

1

τ

X
i

ΔxμðtiÞcα(xðtiÞ)

¼ 1

τ

X
i

ΔxμðtiÞcα
�
xðtiþ1Þ þ xðtiÞ

2

�

−Dμν
1

τ

X
i

∂νcα

�
xðtiÞ þ xðtiþ1Þ

2

�
Δt: ðF10Þ

We can therefore use for the force estimator

F̂μα ¼ v̂μα −Dμν
1

τ

X
i

∂νcα

�
yðtiÞ þ yðtiþ1Þ

2

�
Δt; ðF11Þ

where we see that v̂μα is unbiased by the noise, and the last
term does not include a time derivative of the measurement
and so is also under control.
Note that both the empirical information Îb and the

estimated entropy production _̂Sb are now biased by the
measurement noise, the bias being of order O(1=ðτΔtÞ).
Thus, our treatment of the measurement noise remains
incomplete, and if no other method is used to take care of
the measurement noise, it requires sufficiently large τ as
well as not too small time steps Δt. In addition, if the
amplitude of the noise is not small compared to the typical
spatial variation of the trajectory, then there are additional
biases coming from evaluating the projectors at the wrong
points.
Finally, in order to resolve the force correctly, the time

step Δt must not be too large: Indeed, force variations
during the time step result in a blurring of the inferred force
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field. Specifically, the force variation over a time step is, on
average, hΔFμi ∼ ΔtFν∂νFμ. This results in a discretiza-
tion bias δF̂μα in the force estimator [Eq. (F2)], the
magnitude ϵdiscretization of which can be self-consistently
estimated as

ϵ2discretization¼
δF̂ναD−1

μν δF̂μα

F̂ναD−1
μν F̂μα

∼
Δt2

4Ĉ
hðF̂ρ∂ρF̂μÞD−1

μν ðF̂σ∂σF̂μÞi;

ðF12Þ

where F̂μðxÞ ¼ F̂μαĉαðxÞ is the inferred force field, Ĉ ¼
ˆFναD−1

μν
ˆFμα=4 is the inferred capacity, and h·i denotes

average over the trajectory. Note, however, that when using,
aswe suggest for “real” data, Eq. (F11) as an estimator for the
force projections, the discretization error is only for the
dissipative part of the force field, i.e., only on v̂. Indeed, the
second term in Eq. (F11) does not involve the time ordering
of the data, and is therefore independent ofΔt. Furthermore,
the use of a Stratonovich average for the estimate of v̂μα
reduces the squared error in Eq. (F12) by a factor of 4.

Comparing the discretization error estimate [Eq. (F12)]
with the error stemming from the limited amount of
information, Eq. (C24) allows us to self-consistently
determine whether the limiting factor to force inference
is the total trajectory length or the frame rate. This is
particularly important for the optimization of the acquis-
ition protocol in applications such as tracking of
fluorescently labeled biological objects, where photo-
bleaching limits the total number of frames that can be
captured.

APPENDIX G: INFERENCE IN THE
PRESENCE OF AN INHOMOGENEOUS

DIFFUSION COEFFICIENT

We now provide proofs of the results presented in
Sec. IVof the main text, regarding the inference of diffusion
and drift in the presence of a state-dependent diffusion
tensor. Our method of inference for the diffusion coefficient
follows a similar logic to that of the inference of the force.
We start with the local expression

DμνðxÞ ¼
1

2
lim
Δt→0

�½xðtþ ΔtÞ − xðtÞ�μ½xðtþ ΔtÞ − xðtÞ�ν
Δt

����xðtÞ ¼ x

�
; ðG1Þ

and define the projections

Dμνα ¼
1

2

Z
dxPðxÞDμνðxÞcαðxÞ ¼

Z
dx lim

Δt→0

�
δðxðtÞ − xÞ ½xðtþ ΔtÞ − xðtÞ�μ½xðtþ ΔtÞ − xðtÞ�ν

Δt

�
cαðxÞ

¼ 1

2

�Z
dxδðxðtÞ − xÞ lim

Δt→0

½xðtþ ΔtÞ − xðtÞ�μ½xðtþ ΔtÞ − xðtÞ�ν
Δt

cαðxÞ
�

¼ 1

2
lim
Δt→0

�½xðtþ ΔtÞ − xðtÞ�μ½xðtþ ΔtÞ − xðtÞ�ν
Δt

cαðxÞ
�

ðG2Þ

from which we get our estimator

D̂μνα ¼
1

τ

XN
i¼0

Δt d̂μνðtiÞĉα(xðtiÞ); ðG3Þ

where we define the local diffusion estimator,

d̂μνðtiÞ ¼
ΔxμðtiÞΔxνðtiÞ

2Δt
: ðG4Þ

1. Estimate of the error on the
projected diffusion coefficient

We now compute the typical error between the estimator
D̂μνα and the exact projection coefficient Dμνα. We work
with the discrete version of the overdamped Langevin
equation [Eq. (10)] written using the Itô convention:

ΔxμðtiÞ ¼ xμðtiþ1Þ − xμðtiÞ
¼ Φμ(xðtiÞ)Δtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D(xðtiÞ)

p
μνΔξ

ti
ν ; ðG5Þ

where Δξtiν is a centered Gaussian variable with variance
hΔξtiνΔξtiμ i ¼ Δtδμνδij. For error calculations, we consider
only the leading-order terms in Δt so that we can replace
ΔxμðtiÞΔxνðtiÞ by 2D1=2

μρ D1=2
νσ ΔξtiρΔξtiσ . Hence,

D̂μνα −Dμνα ¼
1

N

XN
i¼0

D1=2
μρ (xðtiÞ)D1=2

νσ (xðtiÞ)

×
�
ΔξtiρΔξtiσ

Δt
− δρσ

�
ĉα(xðtiÞ): ðG6Þ

We define the normalized (dimensionless) error
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Eα ¼ D̄−1
μν ðD̂μνα −DμναÞ ¼

1

N

XN
i¼0

D̃ρσ(xðtiÞ)ζtiρσ ĉα(xðtiÞ);

ðG7Þ

where D̄μν is a reference constant diffusion matrix used for
the normalization, which could be taken as the average
diffusion tensor: D̄μν ¼

R
DμνðxÞPðxÞdx. We also denote

D̃ρσ ¼ D1=2
ρμ D̄−1

μνD
1=2
νσ and ζtiρσ ¼ ΔξtiρΔξtiσ=Δt − δρσ. Note

that hζtiρσi ¼ 0 and hζtiρσζtjμνi ¼ δijðδρμδσν þ δρνδσμÞ:

hζtiρσζtiμνi ¼
��

ΔξtiρΔξtiσ
Δt

− δρσ

��
ΔξtiμΔξtiν

Δt
− δμν

��

¼ hΔξtiρΔξtiσΔξtiμΔξtiν i
Δt2

− δρσδμν

¼ δρμδσν þ δρνδσμ ðG8Þ

using Wick’s theorem in the last equality. The normalized
squared error is then given by

hEαEαi ¼
1

N2

XN
i¼0

XN
j¼0

hζtjμνζtiρσD̃ρσ(xðtiÞ)D̃μν(xðtjÞ)ĉα(xðtiÞ)ĉα(xðtjÞ)i: ðG9Þ

We compute the leading order of this error, replacing ĉα(xðtjÞ) by cα(xðtjÞ):

1

N2

XN
i¼0

XN
j¼0

hζtjμνζtiρσD̃ρσ(xðtiÞ)D̃μν(xðtjÞ)cα(xðtiÞ)cα(xðtjÞ)i

¼ 1

N2

XN
i¼0

hζtiμνζtiρσihD̃ρσ(xðtiÞ)D̃μν(xðtiÞ)cα(xðtiÞ)cα(xðtiÞ)i ¼
1

N2

XN
i¼0

hD̃νμ(xðtiÞ)D̃μν(xðtiÞ)cα(xðtiÞ)cα(xðtiÞ)i

¼ 1

N

�Z
τ

0

dt
τ
D̃νμ(xðtiÞ)D̃μν(xðtiÞ)cα(xðtiÞ)cα(xðtiÞ)

�

≤
dðDmaxÞ2

N

�Z
τ

0

dt
τ
cα(xðtiÞ)cα(xðtiÞ)

�
¼ ðDmaxÞ2Nb

N
¼ ðDmaxÞ2NbΔt

τ
: ðG10Þ

In the equality in the second line, we use that ζtiρσ is white in
time correlated and centered, i.e., that it is uncorrelated with
xðtjÞ for j ≤ i and that hζtiρσi ¼ 0, which gives an Itô
isometry type of result for the double sum. In the line before
last, we pass to the continuous limit of the sum using
τ ¼ NΔt. In the last line, we assume that D̃νμ(xðtiÞ) is
bounded from above in the domain. We denote byDmax the
maximum eigenvalue of D̃νμ(xðtiÞ) in the domain and
bound D̃νμ(xðtiÞ)D̃μν(xðtiÞ) ≤ dðD̃maxÞ2.
Let us comment that the correction to the above result,

due to the difference between ĉα(xðtjÞ) and cα(xðtjÞ) can
be bounded in a similar fashion as is done in Appendix C 3,
if one again uses the assumption that D̃νμ(xðtiÞ) is bounded
in the domain. This correction should result in a term of
order Oðτ−3=2Þ, which is subleading.
To summarize, we have the error estimate

hkD̄−1
μν ðD̂μνα −DμναÞk2i ≤

ðDmaxÞ2NbΔt
τ

ðG11Þ

with D̃max the maximum eigenvalue of D̃ρσ ¼
D1=2

ρμ D̄−1
μνD

1=2
νσ in the domain. Here the choice of normali-

zation D̄ is arbitrary, and it may be chosen as a diagonal
matrix with the maximal diffusion coefficients in the

domain on the diagonal, in a dimensionally consistent
way (i.e., if there are directions in phase space with
different units, each has its own maximal diffusion). In
that case, Dmax becomes of order unity.

2. Inference of the diffusion coefficient with
measurement noise

As in Appendix F, we now consider the case where the
exact trajectory is not known, but only a noisy approxi-
mation of it, due to imperfections of the measurement
device. To correct for such a measurement noise, we
suggest using the modified estimator

D̂ðnoisyÞ
μνα ¼ 1

τ

XN
i¼0

Δtd̂ðnoisyÞμν ðtiÞ ĉα(yðtiÞ); ðG12Þ

where as in Eq. (13) of the main text,

d̂ðnoisyÞμν ðtiÞ ¼
1

4Δt
½ΔyμðtiÞΔyνðtiÞ þ Δyμðti−1ÞΔyνðti−1Þ

þ 2Δyμðti−1ÞΔyνðtiÞ
þ 2ΔyμðtiÞΔyνðti−1Þ� ðG13Þ
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is the bias-corrected estimator proposed by Vestergaard
et al. for homogeneous diffusion inference in the presence
of measurement noise [50]. Indeed, the measurement noise-
induced terms compensate in Eq. (G13) thanks to the
additional cross terms Δyμðti−1ÞΔyνðtiÞ.
Let us compare the squared error for the corrected

estimator [Eq. (G12)] with that for the estimator
[Eq. (G3)]: On the one hand, the squared error for
Eq. (G3) has a nonvanishing bias of order D̄−2Λ2=Δt2
due to measurement noise, while Eq. (G12) has only a
contribution of order D̄−2Λ2=ðτΔtÞ, which vanishes for
long trajectories. On the other hand, the squared error
for the corrected estimator [Eq. (G12)] has an additional
contribution coming from the signal due to the
contributions to hζtiρσζtiμνi from Δyμðti−1ÞΔyνðtiÞ=Δtþ
ΔyμðtiÞΔyνðti−1Þ=Δt when squared:

�
Δξti−1μ Δξti−1ρ

Δt

��
ΔξtiνΔξtiσ

Δt

�
þ
�
ΔξtiμΔξtiρ

Δt

��
Δξti−1ν Δξti−1σ

Δt

�

þ
�
Δξti−1ν Δξti−1ρ

Δt

��
ΔξtiμΔξtiσ

Δt

�
þ
�
ΔξtiνΔξtiρ

Δt

��
Δξti−1μ Δξti−1σ

Δt

�
¼2δμρδνσþ2δνρδμσ ðG14Þ

giving a squared error that is 4 times larger than that of the
biased estimator in Eq. (G3). Therefore, there is a trade-off
where for short trajectories with sufficiently small meas-
urement noise, the estimator (G3) may outperform the
corrected estimator, but the (squared) error on it would
saturate at D̄−2Λ2=Δt2 for sufficiently long trajectories, for
which the error on the corrected estimator would continue
decreasing. This behavior is demonstrated in Fig. 8(d) in
the main text.

3. Drift inference for an inhomogeneous
diffusion coefficient

We now turn to the inference of the Itô drift [Eq. (11)].
As we discuss in the main text, in the presence of
inhomogeneous diffusion the force estimator we use before
[Eq. (C8)] becomes an estimator for the drift:

Φ̂μα ¼
1

τ

Z
Itô
ĉαðxÞdxμ

t

¼ 1

τ

Z
τ

0

ĉαðxÞΦμðxÞdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Φτ

μα

þ 1

τ

Z
Itô
ĉαðxÞ

ffiffiffi
2

p
D1=2

μν ðxÞdξνt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Zμα

;

ðG15Þ

where as in Appendix C, we defineΦτ
μα as the projection of

the exact drift onto ĉαðxÞ. This estimator is, however,
biased by measurement noise, as we discuss in Appendix F.
To circumvent this limitation and make our estimators
applicable to real, noisy data, we use again the relation

between the Itô and Stratonovich integrals. As in
Appendix F, we thus relate Φ̂μα to v̂μα, which can be
inferred as before (it is unaffected by inhomogeneous
diffusion) and is unbiased by measurement noise. We have

1

τ

Z
Itô
ĉαðxÞdxμ

t ¼
1

τ

Z
Strat

ĉαðxÞdxμ
t −

1

τ

Z
DμνðxÞ∂νĉαðxÞdt

¼ v̂μα−
1

τ

Z
DμνðxÞ∂νĉαðxÞdt: ðG16Þ

To make this a practical estimator, however, one needs to
substitute the unknown DμνðxÞ with an accessible value.
Using the standard diffusion estimator [Eq. (G4)] results in
an expression that is mathematically equivalent to
Eq. (G15): It is correct with ideal data but flawed in the
presence of measurement noise. With ideal data, we thus
recommend the use of Eq. (G15), which is significantly less
complex computationally. In the presence of measurement

noise, using the modified diffusion estimator d̂ðnoisyÞμν ðtÞ
[Eq. (G13)] corrects for the bias induced by measurement
noise. This yields our drift projection estimator adapted to
systems with measurement noise, Eq. (14) of the main text:

Φ̂μα ¼ v̂μα −
1

τ

X
i

d̂ðnoisyÞμν ðtiÞ∂νĉα(xðtiÞ)Δt: ðG17Þ

Indeed, hd̂ðnoisyÞμν ðtÞ∂νĉα(xðtÞ)i ¼ hDμν(xðtÞ)∂νĉα(xðtÞ)i:
To first order, the use of the modified local diffusion
estimator does not result in a bias in Eq. (G17).

4. Estimate of the error on the projected drift

Here we estimate the error on the inference of Φ̂μα. To
this end, we employ the Itô version of the estimator,
Eq. (G15). The error on Eq. (G17) has a similar form
but is analytically less tractable.
We thus want to estimate the relative magnitude of the

error term Zμα in Eq. (G15). The statistics of Zμα can be
derived following the derivation in Appendix C 3, except
that now the diffusion coefficient depends on x. Thus, the
normalized errorWμα is defined using the average diffusion
coefficient D̄μν, and the calculations go through resulting in
the same asymptotic behavior. However, now the variance
of the error reads

hZμαZνβi ¼
2

τ
hDμνcαcβi½1þOð1= ffiffiffi

τ
p Þ�; ðG18Þ

where the space dependence of Dμν prevents us from using
the orthonormality of cα. We thus have

hðΦ̂μα −Φτ
μαÞðΦ̂νβ −Φτ

νβÞi

¼ 2

τ
hDμνcαcβi½1þOð1= ffiffiffi

τ
p Þ�: ðG19Þ
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Finally, we can normalize by the average diffusion tensor
D̄μν to obtain the estimate

hðΦ̂μα −Φτ
μαÞD̄−1

μν ðΦ̂νβ −Φτ
νβÞi ≤

2nb
τ

Dmax; ðG20Þ

where we define Dmax as the maximal eigenvalue of the
matrix D̄−1

μρDρνðxÞ in the domain.
Finally, we note that in our method, the inferred physical

force F̂μðxÞ is obtained in Eq. (15) by combining the
drift with the divergence of the inferred diffusion tensor.
As there is no control of the error on this latter term—the
error on the gradient is a priori independent of the error
on the function estimate, in the absence of regularity
assumptions—we cannot provide an error estimate for
the inferred physical force.

APPENDIX H: MODEL DETAILS AND
SIMULATION PARAMETERS FOR

NUMERICAL RESULTS

1. Overdamped Langevin simulations

To benchmark our stochastic force inference method,
we test it on several simple models of Brownian dynamics.
We discretize the overdamped Langevin equation _xμ ¼
Fμ þ ξμ into

xðtþ dtÞ ¼ xðtÞ þ dtF(xðtÞ)þ
ffiffiffiffiffiffiffiffiffiffiffi
2Ddt

p
ζ; ðH1Þ

or, in the case of a state-dependent diffusion tensor
inducing multiplicative noise,

xðtþ dtÞ ¼ xðtÞ þ dtF(xðtÞ)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D(xðtÞ)dt

p
ζ

þ dt∇ ·D(xðtÞ): ðH2Þ

Here, ζ is a vector of independent normal random variables
with zero mean and unit variance. Again, the force here
includes the mobility matrix: The system is out of equi-
librium if D−1FðxÞ does not derive from a potential,
regardless of whether this comes from violations of
fluctuation-dissipation relations (such as interacting com-
ponents at different temperatures), nonreciprocal inter-
actions, or the presence of curl in the external force
fields. Note that in order to ensure numerical stability of
this equation, the interval dt must be sufficiently small,
while SFI can accommodate a moderately large value of dt
(see Appendix A). We therefore run the simulations at a
higher rate than the input for SFI; the value of Δt indicated
in the parameters is that of the SFI input, while the
elementary time step used to generate the trajectories is
denoted dt. All simulations presented here have an initial
state preequlibrated.
In the simulations presented in this article, the diffusion

matrix is assumed to be known, except in Fig. 8 where
inferring it is part of the object of the simulations. In all

other figures, it could, however, be inferred using our
method (but fitting it only with a constant). In general, in
the strong-noise cases considered in this article, inferring
the diffusion coefficient is significantly less demanding
than force inference and results in very little addi-
tional error.

2. 2D Ornstein-Uhlenbeck processes (Fig. 3)

The first model we benchmark our method on is a 2D
process in a linear trap, also known as an Ornstein-
Uhlenbeck process. We consider here an anisotropic
equilibrium process with isotropic diffusion; we set the
diffusion to unity, Dμν ¼ δμν. The force field is Fμ ¼
−Ωμνðxν − x0μÞ [black arrows in Fig. 3(a)], where we choose

x0 ¼
�
0

0

�
; Ω ¼

�
1 0.5

0.5 1

�
: ðH3Þ

We use a simulation time step dt ¼ 0.005 and Δt ¼ 0.01.
The trajectory presented and analyzed in Fig. 3(a) of the
main text has a length Nsamples ¼ 4000. It is analyzed by
SFI with basis b ¼ f1; x1; x2g. The inferred projected force
field on this basis [blue arrow in Fig. 3(a)] has the form
F̂μðxÞ ¼ −Ω̂μνðxν − x̂0Þ, where theNb ¼ 6 inferred param-
eters are

x̂0 ¼
�
0.27

0.13

�
; Ω̂ ¼

�
1.15 0.27

0.42 0.76

�
: ðH4Þ

Quantitatively, as wemention in the main text, this results in
a (squared) relative error on the inferred projection coef-
ficient ½ðF̂μα − FμαÞD−1

μν ðF̂να − FναÞ�=½F̂μαD−1
μν F̂να� ¼ 0.15.

The inferred information along this trajectory is Îb ¼
F̂μαD−1

μν F̂να ¼ 19.1 [i.e., 27.6 bits with the 1= logð2Þ nat-
to-bit conversion factor]. The self-consistent confidence
interval for this error is Nb=2Îb ¼ 0.16: The actual error is
thus within the confidence interval.
It is interesting to note that the inferred matrix Ω̂

[Eq. (H4)] is not symmetric, meaning that the inferred
model is out of equilibrium (it exhibits phase-space
cycling). This does not, however, result in significant
entropy production. Indeed, the inferred entropy produced
is Δ̂S ¼ 0.5kB.
In Fig. 3(b) of the main text, we study the statistics of

the relative error obtained over 64 realizations of trajecto-
ries of the same model, with varying length Nsamples ¼
24; 25;…; 217; 218. We present the average (and standard
deviation, blue symbols and error bars) of the squared
relative error ½ðF̂μα − FμαÞD−1

μν ðF̂να − FναÞ�=½F̂μαD−1
μν F̂να�;

the average self-consistent estimate of this error Nb=2Îb
(orange solid curve) and the asymptotic convergence to
Nb=2τCb, i.e., the actual information per degree of freedom
(black dashed line). These quantities match quantitatively
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in the long trajectory limit, as predicted from our analytical
reasoning (Appendix C). Interestingly, in the regime
where there is little information available in the trajectory,
our self-consistent formula reliably predicts a relative
error of order 1, consistent with the fact that there is no
signal.

3. 6D circulating Ornstein-Uhlenbeck
processes (Fig. 4)

The next example we use to test SFI is another Ornstein-
Uhlenbeck process with force Fμ ¼ −Ωμνðxν − x0μÞ, but
this time with several complications: It is high dimensional
(d ¼ 6), with anisotropic diffusion and trapping, and such
that we exert a torque in a given plane. We challenge our
method by applying it to the short trajectories displayed in
Fig. 4(a) in the main text, and even further in Fig. 4(b) in the
presence of strong measurement noise.
The diffusion and harmonic trapping matrices are

obtained as random matrices constructed to have a mod-
erate degree of anisotropy. The diffusion matrix is sym-
metric, while the confinement is not and induces
circulation. Specifically, we choose

Ω ¼

0
BBBBBBBBB@

1.34 −0.25 −0: 0.73 0.38 0.23

−0.07 1.77 −0.45 1.92 0.88 −0.09
0.24 0.52 0.81 −0.63 0.05 0.97

−0.24 −1.14 0.52 0.93 −0.32 −0.69
0.16 −0.01 0.07 0.66 0.92 −0.02
0.51 0.52 0.27 0.79 0.61 2.45

1
CCCCCCCCCA
;

D ¼

0
BBBBBBBBB@

1.92 1.27 0.29 −0.18 0.2 −0.02
1.27 1.87 0.26 −0.1 0.11 −0.25
0.29 0.26 0.98 −0.45 0.06 0.09

−0.18 −0.1 −0.45 1.03 −0.17 −0.15
0.2 0.11 0.06 −0.17 0.84 0.09

−0.02 −0.25 0.09 −0.15 0.09 0.81

1
CCCCCCCCCA
;

ðH5Þ

and x0 ¼ 0. Our simulation parameters are Δt ¼ 0.05 and
dt ¼ 0.01. The trajectory presented in Fig. 4(a) has
Nsamples ¼ 400 points, and the three plots correspond to
three projections of the same trajectory, respectively
(from left to right), along directions ðx1; x2Þ, ðx3; x4Þ,
and ðx5; x6Þ.
In Fig. 4(c), we present the results of SFI at linear

order (b ¼ f1; xμg) for the specific trajectory displayed in
Fig. 4(a). The inferred parameters are

x̂0 ¼

0
BBBBBBBBB@

−0.86
−0.64
−0.29
−0.46
−0.25
0.25

1
CCCCCCCCCA
;

Ω̂ ¼

0
BBBBBBBBB@

2.38 −1.24 0.47 0.4 0.19 0.29

0.96 1.06 −1.01 0.92 1.59 −0.91
−0.16 0.44 1.09 −1.13 0.58 0.96

0.18 −1.36 1.07 1.27 −0.91 −0.87
0.61 −0.28 −0: 0.36 1.01 0.22

0.25 0.29 0.86 0.91 0.29 3:

1
CCCCCCCCCA
;

ðH6Þ

with a squared relative error of 0.24, consistent with the
self-consistent estimate Nb=2Îb ¼ 0.22.
We show in Fig. 4(c) in the main text a 2D slice of the

inferred force field (blue) and the exact force field (black).
This slice is chosen as the plane of maximal inferred
circulation. To determine this plane, we consider the
nondimensionalized velocity projection coefficients Rαβ ¼
C−1=2
αμ v̂μβ with C the covariance matrix of the data. With

this choice of normalization, the rows and columns ofR are
normalized in the same way, and it thus makes sense to
consider its antisymmetric part to quantify circulation. The
eigenvalues of 1

2
ðRαβ − RβαÞ are imaginary and come in

conjugate pairs. We define the inferred principal circulation
plane as the real-space plane ðu; vÞ spanned by
ðC1=2

μα r1α; C
1=2
μα r2αÞ, where ðr1α; r2αÞ is the pair of eigenvectors

of R associated with the eigenvalue of largest norm. We
compare this inferred plane to the exact plane of maximal
circulation ðu0; v0Þ obtained through the same procedure
but with an asymptotically long trajectory (Nsteps ¼ 2.106).
In Fig. 4(e), we present the statistics of the angular error in
this cycle detection. This angular error is defined as
δ¼ku−ðu0:uÞu0−ðv0:uÞv0k2þkv−ðu0:vÞu0−ðv0:vÞv0k2,
where ðu; vÞ and ðu0; v0Þ are the pairs of orthogonal unit
vectors defining the inferred and exact maximal circulation
planes, respectively. This error is equal to 0.12 for the
trajectory presented in Fig. 4(a), and decays to zero as δ ∼
τ−1 with increasing trajectory length, as the inferred matrix
Ω̂ converges to Ω. Figure 4(f) shows the statistics of the

debiased entropy production, _̂S − 2Nb=τ.

a. Measurement noise

In Fig. 4(b), we present the same trajectories as in
Fig. 4(a), with an added challenge to force detection: a
strong “measurement noise,” i.e., a time-uncorrelated error
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on the input data xμ. We model such a noise by adding
Gaussian white noise to each coordinate of xμ, with
standard deviation equal to 0.5 (half the standard deviation
of the data). In the presence of such time-uncorrelated
noise, the estimate of _x becomes strongly noisy, and we
have to use the modified estimator for F̂μα, Eq. (F11). With
this estimator, we infer

x̂0 ¼

0
BBBBBBBBB@

−0.83
−0.64
−0.07
−0.51
−0.24
0.12

1
CCCCCCCCCA
;

Ω̂ ¼

0
BBBBBBBBB@

1.92 −1.04 0.26 −0.09 0.18 −0.26
1.07 0.71 −1.12 0.28 1.01 −1.31
−0.19 0.48 0.88 −1.19 0.21 0.83

0.03 −0.66 0.78 0.92 −0.2 −1.12
0.27 0.06 −0.04 −0.1 1.01 −0.17
0.21 0.23 0.45 0.67 0.32 1.91

1
CCCCCCCCCA
;

ðH7Þ

with a squared relative error of 0.6 on F̂μα and an angular
error on cycle detection of 0.156.

4. Nonlinear obstacle process
[Figs. 5(a), 5(c), 5(e), 5(g), 5(i)]

In Fig. 5(a), we study the case of a 2D stochastic process
with circulation in a nonlinear force field using stochastic
force inference with a polynomial basis at different orders.
The force field we use is

FμðxÞ ¼ −Ωμνxν þ αe−x
2=2σ2xμ

with α ¼ 10; Ω ¼
�

2 2

−2 2

�
; ðH8Þ

which is a nonpolynomial force field; i.e., it cannot be
captured exactly in our choice of basis. We use isotropic
diffusion with D ¼ 1. We simulate this process with Δt ¼
0.01 and dt ¼ 0.001; the trajectory in Fig. 5(a) has
Nsamples ¼ 4096. We perform SFI on the trajectory with
a polynomial basis at orders n ¼ 1, 3, 5 in Figs. 5(c), 5(e),
and 5(g); note that as the force field is odd under reversal
x → −x, the even orders in the polynomial expansion do
not contribute to it [as apparent in the n dependence of the
capacity in Fig. 5(i)]. The bootstrapped trajectories pre-
sented on the right column of Figs. 5(c), 5(e), and 5(g) are
obtained using the inferred projected force field F̂μαĉαðxÞ

to simulate new trajectories with the same starting point, τ,
dt and Δt as the original trajectory.
In Fig. 5(i), we present the capacity Cb and entropy

production _Sb captured by the projection of a long
trajectory with Nsamples ¼ 218 onto three different bases:

(i) Polynomials of order n ¼ 0;…; 7
(ii) Fourier modes of order n ¼ 0;…; 7; specifically, we

use all functions of the form cos ð2πPμ kμðxμ−
hxμiÞ=RμÞ and sin ð2πPμ kμðxμ − hxμiÞ=RμÞ with
non-negative integers kμ such that

P
μ kμ ≤ n. Here

we choose Rμ to be 1.05 times the diameter of the
trajectory in direction μ.

(iii) A constant-by-part grid coarse graining with n ¼
2…; 7 grid cells in each direction centered on hxμi
and with width Rμ.

5. Lorenz process [Figs. 5(b), 5(d), 5(f), 5(h), 5(j)]

Our second nonlinear process is a stochastic variant
of a popular model for dynamical systems, the Lorenz
system [46]. Its 3D Brownian dynamics is described by the
force field

Fx ¼ sðy−xÞ; Fy ¼ rx−y− zx; Fz ¼ xy−bz: ðH9Þ

In our simulations,we employ the parameters r ¼ 10, s ¼ 3,
and b ¼ 1. Diffusion is isotropic with D ¼ 1. We use
Δt ¼ dt ¼ 0.02, and the trajectory in Fig. 5(b) has
Nsamples ¼ 212. All images of trajectories are in the (xz)
plane. It should be noted that this force field is polynomial of
order two, implying that it can be fully captured by the order
n ¼ 2 of our polynomial expansion. Indeed, with polyno-
mial SFI at orders two and three [Figs. 5(f) and 5(h)], we
capture precisely the force field, and bootstrapped trajecto-
ries are very similar to the original data. As apparent in
Fig. 5(j), the order n ¼ 1 polynomial approximation cap-
tures only a fraction of the capacity and entropy production.
Interestingly, the order n ¼ 2 polynomial approximation
captures the whole capacity, but not the full entropy
production, as there are nonzero exchange terms with
higher-order moments (corresponding to the fact that the
logarithm of the PDF is not itself a polynomial).

6. Active Brownian particles simulations (Fig. 7)

The next system that we study in this article corresponds
to a model of self-propelled Brownian particles mimicking
in a somewhat realistic manner experimental systems
such as studied in Ref. [58]. Specifically, we simulate
Nparticles ¼ 25 self-propelled 2D particles, each character-
ized by its coordinates x and orientation θ. These particles
interact through soft repulsive pair interactions fðrÞ
between particles at distance r, are self-propelled toward
the direction θ at velocity v, and are harmonically confined
with strength ω: The force exerted on particle i is thus,

LEARNING FORCE FIELDS FROM STOCHASTIC … PHYS. REV. X 10, 021009 (2020)

021009-27



Fi ¼ −ωxi þ v

�
cos θi
sin θi

�
−
X
j≠i

fðrijÞ
rij
rij

; ðH10Þ

where rij ¼ xj − xj. The angle θ is freely diffusing (note
that we could include alignment interactions in this model).
In our simulations, we use fðrÞ ¼ 1=ðr2 þ 1Þ, ω ¼ 0.2,
v ¼ 1, isotropic diffusion with D ¼ 1 in spatial coordi-
nates, and angular diffusion with Dθ ¼ 0.1. We use a large
sampling time step Δt ¼ 1, while the simulation step is
dt ¼ 0.01. The number of frames for our study is very
limited Nframes ¼ 25, with significant positional and angu-
lar measurement noise (on both x, y, and θ with standard
deviation 0.4). These limitations are chosen to mimic those
of experimental data. Note that we assume that the identity
of the particles can be tracked along the trajectory.

a. Symmetrization of the forces

Each of the 25 particles being characterized by 3 degrees
of freedom, the phase space of this system is 75 dimen-
sional, making any “brute-force” approximation of the
force field in phase space hopeless: Even a simple form of
such a linear polynomial [which would be a terrible
approximation of Eq. (H10)] would have 5700 variables.
Here we propose to use a more subtle projection basis,
making use of the invariance of the force field when
exchanging two particles. More precisely, instead of using
a projection basis bαðfxigi¼1;…;Nparticles

Þ that depends on
each phase-space coordinate in an explicit way, we project
on symmetrized functions bαðxi; fxjgj≠iÞ that consider the
interaction between one particle i and all others, regardless
of the identity of i. The projected force field thus consists of
an approximation of the force on any particle i as

Fi;μ ≈ Fμαcαðxi; fxjgj≠iÞ; ðH11Þ

where, crucially, the projection coefficient Fμα and the
projector cα are independent of the identity of i. This
drastically reduces the number of degrees of freedom of our
approximation: Now the data on each particle contribute to
the inference of the same coefficients Fμα, and thus, a large
number of particles actually facilitates force inference.
These additional symmetry constraints on the projection
do not fit, strictly speaking, in the framework developed in
the rest of this article. Specifically, the orthonormalization
of the projector is now performed with an additional
average over all particles:

ĉα ¼ B̂αβbβ with

B̂αβ ¼
1

τNparticles

X
i

Z
dt bαðxiðtÞ; fxjðtÞgj≠iÞ

× bβðxiðtÞ; fxjðtÞgj≠iÞ; ðH12Þ

and all integrals are adapted accordingly. For instance, the
Itô integral for the force projection now reads

F̂μα ¼
1

τNparticles

X
i

X
t

(xi;μðtþ ΔtÞ − xi;μðtÞ)

× ĉαðxiðtÞ; fxjðtÞgj≠iÞ ðH13Þ

with Δt the time step.

b. Choice of the basis

So far, we use only the indiscernibility of the particles,
without any assumption on the nature of their interactions:
Eq. (H11) is completely generic and could, in principle,
approximate any type of interaction—provided that the
choice of projection basis is adapted. For instance, a natural
choice would be to expand the interaction in single-particle
terms (i.e., external fields), pair interactions, and possibly
higher orders as

Fi;μ ≈ Fð1Þ
μα c

ð1Þ
α ðxiÞ þ Fð2Þ

μβ

X
j≠i

cð2Þβ ðxi;xjÞ

þ Fð3Þ
μγ

X
j;k≠i

cð3Þγ ðxi;xj;xkÞ þ � � � ; ðH14Þ

where cð1Þ; cð2Þ; cð3Þ… are the respective projectors onto the
space spanned by the one-, two- and three-body interaction
terms in the basis. It is important to note that these projectors
should be orthonormalized as a whole, either hierarchically
(through the Gram-Schmidt process, for instance, by ortho-
normalizing the one-body term, then the two-body termwith
respect to itself, and the one-body term, etc.) or in a single
step as in Eq. (H12) but with the index α now understood as
comprising all terms in the expansion.
Let us also note that while polynomials constitute a

natural “default” basis for generic processes in an unstruc-
tured phase space, no such natural choice exists for the
interaction terms. Symmetries can serve as a guide: For
instance, for radially or spherically symmetric particles,
the magnitude of the pair interaction should depend on
the distance rij between particles. The use of such
symmetries warrants some caution: Indeed, the choice of
projection basis should be compatible with these sym-
metries. For instance, for radial symmetry, the basis b ¼
fðxi;xjÞ ↦ rnijgn¼0;1;2;…, i.e., polynomials in the distance
between particles, is not adapted. Indeed, a force written as
a linear combination of these functions would transform
as a scalar under rotations, not as a vector. Instead, b ¼
fðxi;xjÞ ↦ rij;μrn−1ij gμ¼1;…;d;n¼0;1;2;… would be adapted.
This does not constrain the force to be invariant under
rotation, but allows it. Finally, let us note that while this
choice is fine, it is not great: Indeed, polynomials in r put
most of their weight in the far field, i.e., in interaction
between faraway particles. SFI will thus put the most
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weight on capturing the tail of the interaction. In most
cases, interactions decay with distance, and it is more
interesting to capture the details of the interaction forces
between nearby particles. For this reason, decaying func-
tions of r, such as inverse power laws or exponentials, are
better adapted. We finally note that non-power-law func-
tions typically have a characteristic scale, or shape param-
eters. These parameters are not optimized upon by SFI,
which fits only the signal as a linear combination of the
basis functions: The outcome will thus depend on the
choice of parameter. While such shape parameters could, in
principle, be optimized upon (for instance, to maximize the
inferred information captured by SFI), we find that in
practice it is simpler, both computationally and analytically,
to improve the precision of SFI by expanding the basis then
by performing such shape parameter optimization. We
leave this possibility open for future work.
Motivated by these considerations, in practice, our

choice of basis for Fig. 7 of the main text is

bð1Þ ¼ fxμ; cos θ; sin θg;
bð2Þ ¼ frij;μrk−1ij expð−rij=r0Þgk¼0;…;5; ðH15Þ

where we choose r0 ¼ 2 corresponding to half the first
peak in the radial distribution function. The outcome of SFI
is not significantly affected by small changes in the number
of functions or their shape.

7. One-dimensional ratchet process [Figs 8(a)–8(d)]
Figure 8 of the main text deals with the case of Brownian

dynamics with multiplicative noise, i.e., with a space-
dependent diffusion tensor. Figures 8(a)–8(d) treat aminimal
example of it: a 1D ratchet process, where an out-of-
equilibriumcurrent is driven by the combination of a periodic
space-dependent diffusion coefficient and a periodic force,
such that the fluctuation-dissipation relation is not satisfied
for a unique temperature. This model falls within the class
described by Buttiker [48] and Landauer [49]. Specifically,
we consider a process on the segment [0,1], with periodic
boundary conditions. The dynamics is described by Eq. (H2)
with

FðxÞ¼F0cosð2πxÞ and DðxÞ¼D0þacosð2πxÞ; ðH16Þ

where we choose F0 ¼ −2, D0 ¼ 1, a ¼ 0.5, and the
discretization step is Δt ¼ 0.005. The trajectory presented
in Fig. 8(a) has 10 000 steps.
In Figs. 8(b) and 8(c), we perform SFI on the trajectory

in Fig. 8(a) using an adapted basis with b ¼
f1; cosð2πxÞ; sinð2πxÞg for both the diffusion and the
force. In Fig. 8(d), we present the convergence of the
inferred fields as a function of the trajectory duration for
n ¼ 32 repeats.

8. Minimal 2D model with diffusion
gradient [Figs. 8(e)–8(h)]

We next consider a minimal 2D equilibrium model with
inhomogeneous diffusion: an Ornstein-Uhlenbeck process
with a constant gradient of isotropic diffusion coefficient.
Specifically, we choose the following form for the space-
dependent diffusion tensor:

DμνðxÞ ¼ ð1þ aρxρÞδμν with a ¼
�
0.25

0

�
; ðH17Þ

and the following force field

FμðxÞ ¼ −DμνðxÞxν ðH18Þ

corresponding to a potential well with energy EðxÞ ¼ x2=2
and a space-dependentmobilitymatrix equal to the diffusion
tensor DμνðxÞ (i.e., the system obeys the Einstein relation
with kBT ¼ 1). This choice ensures that the probability
distribution function of the process is unaffected by the
inhomogeneity of DðxÞ. We simulate this process using the
discretized version of Eq. (8) of the main text, with
Δt ¼ dt ¼ 0.02. The trajectory in Fig. 8(e) and analyzed
in Figs. 8(f) and 8(g) has length nsteps ¼ 4096. The blue
symbols in Fig. 8(h) show the convergence of the diffusion
estimator with increasing trajectory length Nsteps ¼
24;…; 215. The green and orange symbols correspond to
the same data, with added measurement noise with ampli-
tude 0.075.

9. Reconstruction of the drift and diffusion
field for a complex 2D process (Fig. 9)

In our last figure, we present a comparison of SFI with
two preexisting methods, grid binning and InferenceMAP. To
this end, we simulate a model designed to mimic the
diffusion of single molecules in a complex cellular envi-
ronment. To allow for quantitative comparison with the
other methods, we consider here the inference of the drift
field rather than the physical force, and an isotropic space-
dependent diffusion tensor. The diffusion coefficient is
constructed as the ratio of two second-order polynomials in
the coordinates with randomly generated coefficients. The
drift field is chosen as the sum of an overall harmonic trap
with constant torque, three attractive Gaussian traps in a
triangle, and a repulsive one at the center. Typical scales are
Φ ∼ 1, D ∼ 1, the spatial extent of the process is approx-
imately 4, and we choose a time step Δt ¼ 0.01. We
consider two types of input signals: exact data, and noisy
data where each coordinate is blurred by a Gaussian
white noise of amplitude 0.1 [represented as a red dot in
Fig. 9(b)].
In single-molecule contexts, the total duration of a

trajectory is typically limited by photobleaching: The
exploration of a cellular environment is only possible by
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accumulating many such tracks. To reproduce this fact, we
use N ¼ 4;…; 104 independently generated finite-duration
trajectories with 100 time steps [four of which are depicted
in Fig. 9(b)], each starting at steady state. Each individual
track contains, on average, an information gain of hIi ¼ 2.8
bits about the drift field. We study the convergence of each
method to the true drift and diffusion fields as N → ∞. The
performance of drift and diffusion inference are assessed as
the mean-squared error between exact and inferred fields
along the trajectory, normalized by the mean-squared
inferred value. We now detail the parameters employed
for each of the three methods.

a. Stochastic force inference

We employ a Fourier basis over a window spanning
1.1× the total process extent for both diffusion and drift
inference. The order n ¼ 1;…; 9 of the basis is adapted to
the number N of trajectories as n ¼ blogðNÞc. We employ
noise-free estimators for the exact signal and noise-
corrected estimators [Eqs. (13) and (14)] for noisy data.

b. Maximum-likelihood grid binning

The principle of this method is simple: decomposing
the phase space as a regular grid and inferring a constant
drift vector and diffusion coefficient in each bin using
maximum-likelihood estimators. The estimators are

Φ̂ðxÞ ¼ 1

NðxÞ
X

i;xðtiÞ∈x

xðtiþ1Þ − xðtiÞ
Δt

;

D̂ðxÞ ¼ 1

NðxÞ
X

i;xðtiÞ∈x

½xðtiþ1Þ − xðtiÞ�2
2Δt

;

where the sum runs over all NðxÞ data points that are inside
the bin x. We use an adaptive grid size with n ¼ ffiffiffiffiffiffiffiffiffiffiffi

Nsteps
p

bins (width and height
ffiffiffi
n

p
), whereNsteps is the total number

of time points in all trajectories in the data. This ensures
that both the spatial resolution and the accuracy of
inference in each bin increase with the amount of data.
This method, or slight variants of it, is used in a large

number of contexts [23,33] and also often adapted to infer
phase-space velocities [11,14,17]. With ideal data, we find
that it performs reasonably well and converges to exact
values, although not as fast as SFI. With noisy data, it
becomes biased and does not converge.

c. InferenceMAP

The last method we compare to is InferenceMAP, a
Bayesian method relying on space discretization introduced
by Beheiry et al. [25]. This method is commonly used for
the analysis of trajectories of single molecules inside cells
[6,7,24]. We use the public implementation of this soft-
ware. Upon trying many different parameters, we find that
the best results are obtained with a square mesh, with
maximum mesh size (the software adapts it to the amount
of data), and the (D, drift) inference option. We manually
provide the amplitude of the measurement noise (0 or 0.1).
Typical outcome of the method is presented on Fig. 10. The
performance on the inference of D is slightly lower to that
of SFI; it significantly outperforms grid binning in the
presence of measurement noise. However, we find that the
performance on drift inference does not exceed that of grid
binning, and our method significantly outperforms
InferenceMAP. This is demonstrated quantitatively in Fig. 9
and on an example dataset in Fig. 10.
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