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Half a century after its discovery, the Josephson junction has become the most important nonlinear
quantum electronic component at our disposal. It has helped reshape the International System of Units around
quantum effects and is used in scores of quantum devices. By itself, the use of Josephson junctions in volt
metrology seems to imply an exquisite understanding of the component in every aspect. Yet, surprisingly,
there have been long-standing subtle issues regarding the modeling of the interaction of a junction with its
electromagnetic environment. Here, we find that a Josephson junction connected to a resistor does not
become insulating beyond a given value of the resistance due to a dissipative quantum phase transition, as is
commonly believed. Our work clarifies how this key quantum component behaves in the presence of a
dissipative environment and provides a comprehensive and consistent picture, notably regarding the treatment
of its phase.
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I. INTRODUCTION

In 1983, Schmid [1] predicted that a dissipation-driven
quantum phase transition (DQPT) should occur for any
Josephson junction (JJ) connected to a resistance R: When
R > RQ ¼ h=4e2 ≃ 6.5 kΩ, the junction should be insulat-
ing at zero temperature, while ifR < RQ, the junction should
be superconducting (see Fig. 1). The prediction was made
more precise shortly after by Bulgadaev [2], and since
then, many theoretical works using different techniques
[3–12] have further confirmed it. Attempts to investigate this
prediction experimentally are scarce [13–15], and these early
experiments were all affected by technical limitations (see the
Appendix A) that made their interpretation debatable. In this
work, we revisit this prediction using well-controlled linear
response measurements on the insulating side of the phase
diagram, and we find no sign of the junctions becoming
insulating. By revisiting the theory, we provide arguments
explaining why, actually, no superconducting-to-insulating
transition is expected, and we propose an alternative com-
prehensive physical picture for this system.
Let us first motivate our work by explaining why the

predicted phase diagram is problematic. The left axis in the

Schmid-Bulgadaev (SB) phase diagram [Fig. 1(b)] corre-
sponds to R → ∞, where we can simply remove the resistor
from the circuit. In this limit, we are left with only the
junction represented as a pure Josephson element in parallel
with the junction’s geometric capacitor C defining the
charging energy EC ¼ ð2eÞ2=2C. Such a disconnected
junction is known as a Cooper pair box (CPB) in the
domain of quantum circuits; it behaves as a nonlinear
oscillator and has been extensively investigated theoreti-
cally and experimentally [16–19]. In particular, for any
junction with a nonzero Josephson coupling EJ, a CPB has
finite charge fluctuations through the junction, in contra-
diction with it being on the insulating side of the phase
transition, and it was shown that one can indeed drive finite
ac supercurrents through the junction [20]. Furthermore,
since the anharmonicity of the CPB vanishes upon increas-
ing the ratio EJ=EC [18], one expects (at least in the large
EJ=EC range) the effect of a finite parallel resistance R
on this nonharmonic oscillator to be similar to that on a
harmonic oscillator [21,22]: When R is varied, the phase
and charge fluctuations have no abrupt change at R ¼ RQ.
Approaches that go beyond considering the junction as a
pure inductor [23,24] confirm this intuition down to the
moderately large EJ=EC range: They predict a super-
conductive junction that smoothly retrieves the “bare”
(with no resistor) CPB behavior as the environment
impedance gets large and cold. More generally, any
Josephson junction connected to a large impedance Z is
intuitively expected to smoothly recover the (superconduct-
ing) behavior of the CPB in the Z → ∞ limit. This was
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confirmed theoretically in the specific case of a purely
inductive environment in Ref. [25]. In summary, several
known theoretical results [18,21–25], many experimental
results [16–18,20], and intuitive expectations in simple
limits are consistent among themselves and conflict with
the prediction of the insulating phase shown in Fig. 1(b).

II. EXPERIMENT

In order to test the SB prediction, we designed an
experiment that closely implements the circuit of
Fig. 1(a) while allowing us to probe the linear response
of Josephson junctions in ac. A schematics of the experi-
ment and a micrograph of a sample are shown in Fig. 2, and
the main sample parameters are given in Table I. Instead
of a single junction, we use a superconducting quantum
interference device (SQUID) behaving as an effective
tunable Josephson junction: By applying a magnetic flux
Φ in the SQUID loop, its Josephson coupling energy is
tuned as EJ ≃ EJmaxj cosðπΦ=Φ0Þj with Φ0 ¼ h=2e the
flux quantum. The input capacitor Cc is chosen small
enough that, at the measurement frequency, it essentially
converts the input ac signal into a current source for the
parallel junction-capacitance-resistance system. This cur-
rent is split between these components according to their
admittance. The fraction of the current flowing through the
resistor is routed off chip to a microwave bias tee. The dc
port of the bias tee is shorted to ground, closing the circuit
in dc and ensuring there is no dc bias applied on the
junction. At the high-frequency port of the bias tee, the ac
signal coming from the resistor is sent through circulators

and filters to a chain of microwave amplifiers with an
overall gain of 106 dB. We used microwave simulations of
the circuit to check that in this design, the actual impedance
seen by the junction is close to R kC up to frequencies well
above ðRCÞ−1 (note that the impedance to ground of the
circuit following the resistor is negligible compared to R at
all frequencies). We used a vector network analyzer to
perform continuous-wave homodyne measurements of the
transmission S21 through the sample. Although in this setup
we measure variations of the fraction of the ac current
flowing through the resistor, they are directly related to the
variations of the junction admittance (see Appendix E).
The operating conditions of the experiment are subject to

constraints that we now detail. First, in order to improve our
sensitivity to the junction’s admittance [26], the measure-
ments need to be performed at a frequency well below the
“plasma frequency” ωp ¼ ðCLeff

J Þ−1=2 of the junction, so
that, as seen from the input capacitance, the ac current
through C is negligible. The current is then essentially
divided between the resistor and the junction’s effective
inductance Leff

J , should it exist, in proportion of their
respective admittance 1=R and 1=iLeff

J ω. We selected an
operating frequency of order 1 GHz in order to simulta-
neously fulfill this constraint (except in the vicinity of the
maximal frustration of the SQUID) and have a reasonably

FIG. 2. Top: Simplified schematics of the experimental setup.
Bottom: One of the samples measured. Two SEM micrographs
are stitched to show the entire central part and colorized to
evidence the different metals used (see Appendix B for fabrica-
tion details).

(a) (b)

FIG. 1. (a) A Josephson junction connected to a resistor R
(abbreviated as JJþ R). The junction’s capacitance C deter-
mines the charging energy EC ¼ ð2eÞ2=2C, while the trans-
parency of the tunnel barrier and the superconducting gap set its
Josephson coupling energy EJ. (b) Sketch of the Schmid-
Bulgadaev phase diagram for the circuit in (a). In the phase
I (S), the junction is predicted to be insulating (superconduct-
ing) at zero temperature. The insulating phase is paradoxical
because the left axis (green line, where R ¼ ∞) is the location
of the Cooper pair box family of superconducting qubits for
which it is well known that the junction is superconducting.
Similarly, our samples S1 and S2 are found to remain super-
conducting when lowering the temperature, even though they
are supposed to be well inside the insulating phase.

TABLE I. Main sample parameters. See Appendix B for details
on their determination.

Sample Ec=kB (K) EJmax=kB (K) RðkΩÞ CcðfFÞ
1 2.6 0.12 12 0.3
2 0.64 0.39 8 0.3
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good noise temperature for our microwave amplifier.
Second, since we aim to probe the linear response of the
junction at equilibrium, the ac phase excursion must be
δφ ≪ 2π, so that the junction is properly described by an
admittance 1=iLeff

J ω. Assuming the worst case where all the
current flows through the resistor, this inequality restricts the
ac amplitude at the sample input V in ≪ Φ0=RCc (that is,
Pin ≪ −50 dBm for the values used in the experiment; see
below). Correspondingly, all the measurements that we show
here are taken in the low-power limit where S21 no longer
depends on the input power (see Appendix D). The last
constraint also restricts the admissible input power: The
Joule power dissipated by ac current flowing through the
resistor should not raise its temperature significantly. We use
the results of Ref. [27] to estimate the electronic heating.
Neglecting electron-phonon cooling in the resistor, for the
maximum S21 value of −50 dB, and at the input power of
−70 dBm used for the sample 2 data at the lowest temper-
ature (Tph ¼ 13 mK) in Fig. 3, one predicts an upper bound
for the electronic temperature rise of approximately 1.0 mK
(0.5 mK for sample 1) close to the junction (see
Appendix C). Note that for such a low power level, the
signal-to-noise ratio at the input of the first cryogenic HEMT
amplifier is such that each data point necessitates averaging
for about 20 min. Above about 50 mK, electron-phonon
cooling becomes effective (see Appendix C); it is then
possible to speed up the measurement by increasing the
excitation amplitude (still remaining in the linear regime)
without raising the electronic temperature.
In Fig. 3, we show the transmission S21 for the two

samples we measured, for different flux through the

SQUID and different temperatures. On the left panels,
we show S21 as a function of the flux in the SQUIDs at the
lowest temperature. We observe that when the flux is zero
in the SQUID, the junction has the highest admittance
(S21 minimum), whereas its admittance is minimum when
the SQUID is frustrated with half a flux quantum in the
loop. On the right panels, we show the temperature
dependence of S21 for several values of the flux in the
SQUIDs. We observe that in the low temperature range, for
any fixed value of the flux, S21 reaches plateaus indicating
that the junction admittance saturates to a finite value. In
other words, at low temperature, the modulation of S21 with
the flux proves that the SQUID still carries supercurrent,
and it shows no tendency to become insulating at lower
temperatures.

III. DISCUSSION

Would the predicted insulating phase exist, the junctions
would be in the quantum critical regime where one expects
the junction admittance to follow a power law of the
temperature [28]. This is clearly not the case in our
experiments. In a totally independent experiment with a
different objective, Grimm et al. [29] have recently
observed that a SQUID with Emax

J =EC ≃ 0.3 in series with
a 32-kΩ resistance ðRQ=R ≃ 0.2Þ had a clear dc super-
current branch that was modulated with the flux. We
consider their observation to support our results.
Together with the known R → ∞ limit of qubits and the

observed superconducting junctions at EJ=EC ≳ 7 and
RQ=R ∼ 0.6 in Refs. [14,30] (see Appendix A), we con-
clude that the experimental observations are consistent with
a complete absence of the predicted insulating phase.
We now turn to theoretical considerations. In the first

step, we revisit the framework in which the SB prediction
of a superconducting-to-insulating phase transition was
made. In the second step, we explain the exact nature of the
predicted transition and provide arguments according to
which JJs are actually not expected to become insulating in
any Ohmic environment.
The SB prediction was cast using the model introduced

by Caldeira and Leggett (CL) [31], which describes a
Josephson junction and its capacitor (forming a CPB)
analogous to a massive particle in a washboard potential,
coupling the particle position (the junction phase) to a
bath of harmonic oscillators that provide viscous damping.
The corresponding Hamiltonian is

H ¼ ECN2 − EJ cosφþ
X
n

4e2
N2

n

2Cn
þ ℏ2

4e2
ðφn − φÞ2

2Ln
;

where φ (resp. N) denotes the junction’s phase (resp.
number of Cooper pairs on the junction capacitance) which
are conjugate ½φ; N� ¼ i, and the φn (resp. Nn) denote
the phase (resp. dimensionless charge) of the harmonic
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FIG. 3. Measured modulus of the transmission S21 (as a power
ratio) for sample 1 (top panels) and 2 (bottom panels). Left
panels: jS21j as a function of the flux through the SQUIDs at the
base temperature. The modulation is periodic with the flux (data
not shown), as usual for a SQUID; only half a period is
represented. Note that the position of the zero flux is different
in the top and bottom panels. Right panels: jS21j for several flux
values (using the same colors as on the left panels) as a function
of the temperature. For sample 2, the error bars are smaller than
the symbols used (note the larger vertical scale).
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oscillators. H is not invariant upon φ → φþ 2π, so that
values of φ differing by 2π are naturally regarded as
distinguishable states of the junction, and φ is said to be
an “extended phase.” Correspondingly, N has its spectrum
in R, and we call it an extended charge too.
A unitary transformation H0 ¼ U†HU with U ¼

expðiφNRÞ and NR ¼ P
n Nn (the charge passed through

the resistor) yields another Hamiltonian of interest

H0 ¼ ECðN − NRÞ2 − EJ cosφþ
X
n

4e2
N2

n

2Cn
þ ℏ2

4e2
φ2
n

2Ln
;

where the CPB now couples to the environment through N,
here representing the number of transmitted Cooper
pairs through the junction. Unlike H, H0 is evidently
invariant upon the discrete translation φ → φþ 2π so that
the values of φ differing by 2π can be regarded as
indistinguishable (wave functions in φ are 2π periodic),
and the usual terminology is that φ is a “compact phase.”
In principle, φ can still be described as an extended
variable, in which case the periodicity of the potential
implies that wave functions in φ are Bloch functions
ΨqðφÞ ¼

P
n anðqÞeiðnþqÞφ. Here, the “quasicharge” q is

a conserved quantity fixed by initial conditions. However, a
Bloch function with quasicharge q can be transformed to
any other Bloch function by a global shift of the bath
charge, and the resistance is translationally invariant in both
charge and phase (this invariance being respected in the CL
model [31]). Thus, in this resistively shunted JJ, states with
different quasicharges can be considered degenerate in the
sense that no measurement on the circuit can distinguish
them after the initial charge shift of the bath has decayed
[32]. Thus, one can choose to use only compact phase states
(q ¼ 0 mod 2π) for convenience. In this case, N has a
discrete spectrum inZ (even though there is no island in the
circuit), and the Josephson coupling term can be written as
EJ cosφ ¼ 1

2
EJð

P
N∈Z jNihN þ 1j þ H:c:Þ as customary

for CPBs, which we expect to recover in the R → ∞ limit.
With these provisos, H and H0 operate on wave functions

with different symmetries; they almost seem to describe
different physical systems. This issue was known from the
start, and several theory papers considered the suitability
of either phase description for the system considered here,
but no clear-cut answer emerged (for an overview, see
Ref. [33]). However, a unitary transformation cannot break
a symmetry of the system, and the contradiction resolves
when one properly transforms the boundary and initial
conditions together with the Hamiltonian [33,34].
Provided this transformation is carried out properly and
barring any spontaneous symmetry breaking, H and H0 can
be used indifferently to describe the system, and any valid
state of the system should thus be representable with eitherH
or H0. As we mention above, in the R ¼ ∞ limit of the
bare CPB, the phase is known to be compact; hence, by
continuity, compact states are also the states to consider at

finite R, unless one shows a spontaneous symmetry breaking
of the discrete phase translation invariance occurs, a phe-
nomenon also known as the “decompactification” [6,35] of
the phase (and which goes along with an “undiscretization”
of the charge).
The SB theory is precisely all about dissipation causing

spontaneous symmetry breaking; we now describe the core
ideas of this theory. Close to the bottom axis of the phase
diagram, in the so-called scaling limit where EC → ∞
(which constrains N ¼ NR), H0 becomes equivalent to the
tight-binding model used in Refs [3,4] (see Appendix G).
In this model, at low friction (low R), the junction’s zero-
temperature reduced density matrix ρ is completely delo-
calized in the discrete charge basis, and thus corresponds to
a perfectly localized compact phase. For such a state, using
an extended description for both charge and phase, the
diagonal of ρ is a Dirac comb in both charge and phase
representation [Fig. 4(b), bottom right]. For R > RQ,
however, the discrete translational invariance symmetry
of the charge is broken, and the charge localizes at a given
value of hNi ¼ TrρN. In ρ, the result of this charge
localization can be seen as multiplying the charge Dirac
comb by a bell-shaped function b and broadening each
peak of the phase Dirac comb by convolving it with the
Fourier transform of b [Fig. 4(b), bottom left]. Across the
transition, the charge fluctuations (the width of b) vary
continuously [4], but the dc charge mobility μ (related
to the charge fluctuations according to the standard
Green-Kubo relations; see Appendix F) is predicted to

(a) (b)

FIG. 4. (a) Reinterpreted Schmid-Bulgadaev phase diagram,
in which the junction is superconducting everywhere, except for
EJ ¼ 0. In the S parts, the junction is superconducting with a
fully delocalized charge and, correspondingly, a fluctuationless
(classical) compact phase. Partial charge (phase) localization
occurs in the CL (PL) part. The classical phases S are artifacts
which disappear when improving the model (see text and
Appendix G). (b) Final description of the junction’s behavior
in the parameter space. Drawings are sketches of the diagonal
elements of the junction’s reduced density matrix in an extended
description (red, charge representation; green, phase representa-
tion). Close to the left (right) half of the upper (lower) axis, they
nearly take the form of Dirac combs where the phase is almost a
classical variable. In the lower left (upper right) sector, partial
charge (phase) localization occurs, as in (a). The density matrix
evolves continuously, interpolating between these limits, without
any phase transition.
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vanish (resp. diverge) for R > RQ (resp. R < RQ) at T ¼ 0,
hence, the prediction of a superconducting-to-insulating
transition.
At the time of the prediction, this mobility argument was

often associated with the simple picture of infinite polaronic
trapping in the insulating phase R > RQ and the correspond-
ing suppression of the coherence EJhcosφi between charge
states. More elaborate renormalization group (RG) flow
arguments [1–3,6,12,36] led to the conclusion that an
immobilization of the junction charge indeed occurred in
the whole domain where the cutoff frequency of the Ohmic
damping is the fastest dynamics in the system, i.e., EJ=EC <
ðRQ=RÞ2 [see part CL in Fig. 4(a); note that our experimental
parameters are in this zone].
However, works on the closely related spin-boson

problem (SBP; the CL model is an infinite-spin generali-
zation of the SBP) have shown that the picture of infinite
polaronic trapping is too naive. In this system, the spin and
the bath entangle in the ground state, involving an infinite
number of bosonic excitations and yielding resilient finite
coherences (possibly very small) [37–40] that depend
algebraically on the UV cutoff of the Ohmic bath. In the
CL model itself, perturbation theory in EJ shows as well
that, while EJhcosφi ¼ 0 at zeroth order, EJhcosφi ¼
OðE2

J=ECÞ (as in the bare CPB) at the next order [41] for
any R > RQ=2. Hence, it is no longer believed that the
coherences vanish in the “insulating phase,” and this has
dramatic consequences: (i) It enables a finite supercurrent
flow (as evidenced by our experiments), and (ii) previously
calculated dc charge mobility does not describe the actual
transport properties, because it does not take into account
the inductive behavior associated with the supercurrent (see
Appendix F). The qualitative explanation for the robustness
of the coherence is that the inductive response of the
junction shunts the low-frequency modes of the environ-
ment that were supposed to fully suppress the coherence
[23]. In this new understanding of the (previously believed)
insulating phase, the partially localized charge states are
similar to those of the bare CPB, and they very naturally
coincide with them in the R → ∞ limit. The difference
between the resistively shunted junction and the CPB with
an island is that in the first case there is a degenerate
continuum of localized charge states at all values of hNi,
while in the second case where no dc current can flow, hNi
is pinned, and the ground state is unique.
Close to the top axis of the phase diagram, one follows

similar reasoning in the “dual” picture [42], where charge
and phase are interchanged. One then starts from a tight-
binding description of Wannier states for the phase located
in the different wells of the cosine potential (and where the
strength of the friction is inverted [42]). Mirroring what
occurs on the bottom axis, this duality predicts that the
diagonal of ρ is again a Dirac comb in both charge and
phase representations [upper left of Fig. 4(b)] at low friction
(large R) and that a smooth spontaneous symmetry

breaking transition to partial “phase localization” occurs
for R < RQ [part PL in Fig. 4(a)]. We thus identify this
transition as a progressive decompactification of φ. This
shows that a generic decompactified phase state is the dual
of a CPB state, i.e., a superposition of classical phase states
differing by 2π in several adjacent wells of the cosine. To
our knowledge, this is the first time the decompactification
process is clarified, and it is a key result as it shows this
spontaneous symmetry breaking does not yield generic
extended phase states, contrary to what was generally
assumed so far (see Appendix H). In particular, Schmid
and subsequent authors treated φ as extended, which led
them to attribute an insulating character to the “delocalized
phase” in all the wells of the cosine (for R > RQ). However,
when considering a compact phase, the junction is insulat-
ing only when the phase is completely delocalized within
one period (all coherences vanishing: hcos nφi ¼ 0,
∀ n ∈ N�), meaning that the diagonal of ρ is completely
flat in the phase representation.
In Fig. 4(a), we show our reinterpretation of the SB phase

diagram, where the junction is superconducting every-
where, except at EJ=EC ¼ 0, in the so-called scaling limit.
Note that in actual implementations, EC is always finite, so
that the insulating state of the scaling limit can be achieved
only by choosing EJ ¼ 0, i.e., trivially, an already fully
insulating junction (even in the normal state). This reinter-
preted diagram is in agreement with experiments and
resolves the conflicts mentioned in the Introduction. At this
point, the vertical boundaries at R ¼ RQ which remain from
the SB prediction are continuous transitions from fluctua-
tionless phase states to states having finite zero-point phase
fluctuations, i.e., classical-to-quantum transitions. However,
one can show these transitions arise from properties of the
uncoupled bosonic bath (Ref. [3] and Appendix G), and one
expects that a better treatment (taking into account the
aforementioned entanglement of the junction with the bath)
should restore finite phase fluctuations in the phases S,
turning this transition into a crossover.
The emergent understanding of this system is represented

pictorially in Fig. 4(b): The junction is superconducting
everywhere, and its reduced density matrix evolves contin-
uously as a function of the parameters, interpolating between
the limit cases depicted. From this diagram, one sees that
when the effective Josephson Hamiltonian is deemed
adequate to model a Josephson junction (see Appendix I),
the junction phase can be essentially regarded as compact
(and one can use the discrete charge basis of a CPB) below
the main antidiagonal, while one expects a partial decom-
pactification of the phase above that antidiagonal.
Obviously, generic extended phase states do not have

the appropriate symmetries within this understanding.
Consequently, assuming an extended phase to describe
the low-energy states in such a system is at best approxi-
mate or it appeals to (perhaps unspoken) ingredients
external to the CL model. Yet, many predictions (besides
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the DQPT) were made assuming an extended phase and
have been checked to well describe the Josephson physics.
This raises the question of when can one safely use such a
description? A nonoperative answer is that such a descrip-
tion is fine as long as interference effects that would appear
in a proper treatment of the phase (more or less complete)
translation invariance play no significant role.
Before closing this discussion, let us comment on the

striking dips observed in the temperature dependence of the
transmitted power near T ∼ 100 mK corresponding to a
maximum of the junction admittance. They can be under-
stood at a qualitative level using the usual charge descrip-
tion of the CPB (consistent with the above discussion),
assuming the resistance is large enough. In the regime
EJ ≪ EC and at very low temperature, the state of the CPB
is nearly a classical state at the minimum of a charging
energy parabola with a given N. This state nevertheless
has quantum fluctuations that can be computed by
second-order perturbation theory, with virtual transitions
through the neighboring charge states. This process results
in an effective Josephson coupling for the ground state
Eeff
J ¼ EJhcosφi ∝ E2

J=EC, the energy denominator EC
being the energy of the virtual states. At finite temperatures
kBT ≲ EC, low-energy modes of the resistance are ther-
mally populated; they can lend their energy to the virtual
state, lowering the energy denominator and thus increasing
the effective Josephson coupling. At higher temperatures,
thermal fluctuations eventually reduce the gap of Al,
reducing the Josephson coupling.

IV. METADISCUSSION

Given that the present work contradicts more than 35 years
of literature on the understanding of a Josephson junction
in a resistive environment, one may rightfully wonder if
alternative explanations of our results could exist. One can
hypothesize that

(i) we might over- or misinterpret our experimental data
and that of Grimm et al. [29] when we conclude that
the junctions remain superconducting at low temper-
atures, and

(ii) there could be hidden flaws in our theoretical
analysis of the CL model, which leads us to
conclude that no insulating phase is expected in
JJþ R systems,

such that the original SB prediction regarding JJs could
stand. Within these hypotheses, signatures of the insulating
state could, for instance, appear only out of the experimental
windows for some reason to be worked out, making our
experimental data compatible with the original prediction.
However, we stress that the inconsistency of the insulating
phase with the intuitive limits that we point to in the
Introduction would still need to be addressed.
We thus encourage experimental and theoretical work

in this domain that could complete, clarify, or correct our
findings, in the hope that the community soon reaches

consensus on the expected behavior of this key quantum
component in the presence of an environment.

V. CONCLUSIONS

Our experimental results show no evidence of the
superconducting-to-insulating DQPT in Josephson junc-
tions predicted by Schmid and Bulgadaev, contrary to
present widespread expectations. We provide theoretical
arguments according to which the superconducting coher-
ence in JJs is actually resilient to dissipation, thereby
barring the occurrence of that DQPT in JJþ R systems
(the DQPT does occur in nonsuperconducting 1D systems,
however; see Appendix J). We reach a global and consistent
qualitative description of JJs with an environmental imped-
ance that dovetails all well-known limits. As an important
by-product, our analysis for the first time clearly exposes
how phase decompactification occurs in Josephson junc-
tions. This shows that generic extended phase states are
not rigorous solutions for this system, hopefully settling
decades of controversies. Our work also highlights that
there are presently no comprehensive and quantitative
predictions for the effect of dissipation on the CPB able
to reproduce our results. Finally, our results prompt for a
critical reexamination of the works where the Schmid-
Bulgadaev prediction regarding Josephson junctions was
used to draw predictions for other systems such as super-
conducting nanowires proposed to implement quantum
phase slip junctions [43–45].
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APPENDIX A: FORMER EXPERIMENTAL TESTS

The SB prediction has been researched experimentally
[13–15,30], but the scaling laws expected to be the hall-
mark of the predicted quantum critical regime have not
been thoroughly investigated.
In these experiments, the junction and its Ohmic shunt

resistance Rwere typically “current biased” using a voltage
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source in series with a large resistor Rbias>R and measured
using a lock-in technique at frequencies fLI ∼ 100 Hz
or below. Could such a setup properly measure the linear
response of the junction?
For junctions with small critical current, it is well known

that spurious noise in the setup rapidly reduces the apparent
maximum supercurrent [46–48], and particularly so for
underdamped junctions, i.e., when EJ=EC ≫ ðRQ=RÞ2.
However, even when the technical noises are completely
eliminated, a lock-in measurement has intrinsic limitations
when the junction’s admittance becomes smaller than 1=R.
In that case, keeping a small phase excursion in these setups
requires an ac voltage excitation at the junction Vac ≪
Φ0fLI < 1 pV which, even taking into account the resistive
bridge division R=ðRþ RbiasÞ, is several orders of magni-
tude smaller than required to have a sufficient signal-to-
noise ratio in lock-in measurements. Thus, the former
experiments aiming to test the DQPT could not properly
measure the linear response of junctions with very low
admittances: Several periods of the cosine were explored,
rapidly averaging any small supercurrent to zero. In
contrast, in our setup, measuring at much higher frequen-
cies enables us to use larger excitation voltages while
remaining in the linear phase response regime, even when
the admittance of the junction becomes very low.
On the other hand, it is easy to observe the supercurrent

branch of junctions having a large critical current, even
with an imperfect setup, because the junction very effec-
tively shunts noise. Indeed, the authors of Refs. [14,30]
found that a superconducting branch was observed for all
junctions supposed to be in the insulating phase, provided
that EJ=EC ≳ 7. At the time of this result, the discrepancy
with the DQPT prediction was resolved by arguing that the
observed superconducting state was a transient and that the
true equilibrium insulating state would be reached only
after a possibly cosmologically long time [6,14,30]. The
argument given was that when the junction’s (extended)
phase starts localized in one well of the cosine potential, it
will eventually delocalize in all other wells of the cosine by
tunneling (and this delocalized state was assumed insulat-
ing), but the tunneling rate becomes immeasurably small
for large EJ=EC. However, when timescales become very
long and energies very small, one should seriously recon-
sider all other approximations made in the modeling, such
as, for instance, neglecting the level separation in the
electrodes. When considering a compact phase, such a
slow phenomenon simply does not exist: The phase is
always instantly delocalized in all wells of the cosine, and
moreover, that state is superconducting. The superconduct-
ing state observed in these experiments was then the
genuine equilibrium state.

APPENDIX B: FABRICATION DETAILS

The fabrication of the sample starts from a gold 50-Ω
coplanar waveguide (CPW) defined by optical lithography

and providing the input and output ports for the microwave
signals. The central conductor of the transmission line is
interrupted on a length of 38 μm, creating a cavity in which
the resistor and junctions are fabricated in two subsequent
steps, using e-beam lithography and evaporation through
suspended masks. The resistor consists of a 8.5-nm-thick,
approximately 100-nm-wide and 16-μm-long Cr wire, peri-
odically overlapped with 45-nm-thick, 1 × 1 ðμmÞ2 Cr cool-
ing pads. One end of the resistor connects to the output
transmission line. The junctions are produced by standard
double-angle evaporation of aluminum. The SQUID is
connected on one side to the ground plane of the CPW,
and on the other side to the other end of the Cr resistor.
Microwave simulations of the circuit are used to check that in
this design the actual impedance seen by the junction is close
to R kC up to frequencies well above ðRCÞ−1. In order to
meet this condition, it is important that the whole SQUIDþ
resistor layout is very compact to avoid stray inductances and
capacitances.

1. Determination of the sample parameters

Since the values of EJ and R cannot be independently
measured directly on the sample, the values reported in
Table I come from the room-temperature measurements of
the resistance of several other junctions and resistors having
the same dimensions and fabricated at the same time on the
sample. From the scatter of these measurements, the values
reported are believed to be accurate within �15%. The
value of Ec is estimated from the area of the junction using
the commonly used value 100 fF ðμmÞ−2 for the capaci-
tance per unit area of aluminum-aluminum oxide junctions.
The value of the coupling capacitance is obtained from
microwave simulations.

APPENDIX C: JOULE HEATING
IN THE RESISTOR

Here we show that for the measurements shown in Fig. 4,
the Joule power dissipated in the chromium resistor does not
substantially raise the electronic temperature. For this, we
rely on the analysis of heating in diffusive wires detailed in
Ref. [27], where it is assumed that the electron temperature
can be well defined locally, i.e., that the thermalization
between electrons occurs faster than their diffusion through
the wire and that we can neglect the radiative cooling of the
wire. In this reference, the diffusive wire is supposed to be
connected to two normal-metal reservoirs at both ends, and
these reservoirs are supposed to be large enough so that their
electronic temperature is equal to the phonon temperature.
In our case, on the junction side the Cr wire is connected to
superconducting Al which blocks any heat exchange at very
low temperatures. We can nevertheless obtain the electronic
temperature at this point by considering the results of
Ref. [27] in the middle of a wire with twice the length,
twice the resistance, and twice the dissipated power.
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We first evaluate the maximum Joule power PR dissipated
in the Cr resistor for the measurements performed at the
lowest temperature (13 mK) in Fig. 4. This power is
proportional to the power Pout at the output of the sample by

PR ¼ R
Z0

Pout;

where Z0 ¼ 50 Ω is the impedance of the microwave
circuitry, and

Pout ¼ PVNA10
½ðS21−GÞ=10�;

where PVNA is the power at the vector network analyzer
(VNA) output, S21 is the measured transmission of the setup
(in dB), and G ¼ þ106 dB the overall gain (in dB) of the
microwave chain from the sample output to the VNA input.
For sample 2, using the maximum value MaxðjS21jÞ ¼
−50 dB, PVNA ¼ þ3 dBm, and R ¼ 8 kΩ, this leads to a
maximum PR≃80 aW [for sample 1: MaxðjS21jÞ¼−50 dB,
PVNA ¼ −4 dBm, and R ¼ 12 kΩ give a maximum
PR ≃ 25 aW].
Looking for an upper bound for the electronic temper-

ature, we consider the simple “interacting hot-electron”
limit, where electron-phonon interaction in the wire is
neglected, so that cooling occurs only through diffusive
electronic exchange with the reservoir (here the gold central
conductor of the CPW). In this limit, the maximum
temperature (reached in the middle of the wire in
Ref. [27] and at the Cr-Al interface in our case) is

Tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
ph þ

3

4π2

�
e
kB

�
2

2R2PR

s
;

where Tph is the phonon temperature in the reservoir. At the
lowest temperature Tph ¼ 13 mK, and for the above values
this yields

Tmax ≃ Tph þ
�
1 mK for sample 2;

0.5 mK for sample 1;

which sets an upper bound for the electronic temperature of
the electromagnetic environment in our experiments. These
considerations show that in the entire experimental range,
Joule heating of the resistor is negligible.
In the above analysis, the thick intermediate pads

incorporated in the wire design (see Fig. 2) play absolutely
no role. They are meant to increase electron-phonon
coupling, but they are effective only at higher temperature,
as we now discuss. At the maximum power dissipated in
the resistor, we can estimate the electronic temperature
TΣ ¼ ðP2

R=ΣΩÞ1=5 [27] that would be reached if only
electron-phonon cooling was taking place. Taking the
entire volume of the resistive wire and of the intermediate
cooling pads Ω ≃ 0.20 ðμmÞ3 and assuming the standard

electron-phonon coupling constant Σ ≃ 2 nW ðμmÞ−3K−5

gives TΣ ≃ 36 mK (for sample 2). We could thus increase
the measurement power at temperatures above 50 mK in
order to speed up the measurements while still not heating
the electrons.

APPENDIX D: CHECKING THE LINEARITY
OF THE RESPONSE

In order to ascertain that we measure the linear response
of the junction properly, we check that S21 no longer
depends on applied power at low power. In Fig. 5, we
show the variations of jS21j as a function of the applied
measurement power for various fluxes in the two samples at
the lowest temperature (13 mK). We indeed observe that in
the low-power range, jS21j no longer changes, confirming
that we measure the linear response and that we are not
heating the resistor. We used such measurements to choose
the operating power for the data presented in Fig. 3,
selecting the value at the end of the horizontal plateau
(shown as the dashed vertical line in Fig. 5), i.e., −77 dBm
for sample 1 and −70 dBm for sample 2.

APPENDIX E: LINK BETWEEN THE MEASURED
S21 AND THE JOSEPHSON-JUNCTION

PARAMETERS

Assuming a probe signal has a low enough amplitude,
the circuit between the input port and the output port of
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FIG. 5. Variations of the transmission through the samples (top,
sample 1; bottom, sample 2), as a function of the power at the
sample input, for different values of the flux through the SQUIDs,
at the lowest temperature (variations are taken with respect to the
value at Pin ¼ −80 dBm). The size of the error bars does not vary
monotonically because the averaging time was increased when
reducing the power. The dashed lines indicate the power levels
that were chosen to take the data shown in Fig. 3.
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the sample chip is then a linear quadrupole as depicted in
Fig. 6, with the junction described as a linear admittance
YðωÞ corresponding to the parallel combination of the
capacitance and the SQUID of Fig. 2. For such a quadru-
pole, the input and output waves’ amplitudes at both ports
(assumed to have the standard microwave characteristic
impedance Z0 ¼ 50 Ω) are related by an S matrix [49].
Considering that at the frequency of the experiment
ðiCcωÞ−1 ≫ R ≫ Z0, the S matrix of the sample is
approximately

S ≃ I þ S21σx;

where I is the 2 × 2 identity matrix, σx the Pauli matrix, and

S21 ¼
2iCcωZ0

1þ RYðωÞ
is the transmission amplitude from the input to the out-
put port.
Thus, in principle, a measurement of the (complex-

valued) transmission S21 with a vector network analyzer
can give access to the complex junction admittance.
However, in order to access this ideal on-chip S, one must
carefully calibrate the whole microwave setup using several
reference devices (e.g., thru, reflect, and line) in place of the
sample [49] in order to deembed the effect of the rest of the
setup. Such a procedure is needed, in particular, to define a
reference for arg S21 and to cancel any stray transmission
between input and output (Ystray in Fig. 6). As our
demonstration involves evidencing only a SQUID modu-
lation that saturates at low temperature, it requires only
qualitative measurements, and thus, for simplicity, such a
calibration is not performed. The measured (uncalibrated)
jS21j variations can nevertheless be qualitatively compared
to the ideal prediction

jS21j2 ¼
ð2CcωZ0Þ2
j1þ RYðωÞj2 :

Given our choice of parameters RCω ≪ 1, the capacitive
contribution in Y can be neglected for the evaluation of S21,
and we can consider only the contribution of the Josephson
element YðωÞ ≃ 1=iLeffω (assuming a superconducting
character). Under this form, it is clear that larger values
of jS21j correspond to small junction admittance (large
effective inductance, small supercurrent) and vice versa.
For sample 1, in the low-temperature limit, the modu-

lation of jS21j with flux is small, showing that jYjR ≪ 1.
Assuming the junction behaves as a usual symmetric
SQUID, its inductance depends on the flux Φ as
LeffðΦÞ−1 ¼ 2eIeff0 j cosðπΦ=Φ0Þj=ℏ, with Ieff0 the effective
critical current. By adjusting the amplitude of the S21
modulation for sample 1 in the low-temperature limit, this
gives Ieff0 ∼ 70 pA, much smaller than the Ambegaokar-
Baratoff I0 ¼ EJ2e=ℏ ¼ 5.0 nA value obtained from the
junction’s tunnel resistance. This decrease is qualitatively
expected, because zero-point phase fluctuations [23,50,51]
are known to reduce the effective critical current, or,
equivalently, to “renormalize” the apparent Josephson
coupling. One can also check that the change of jS21j of
approximately −1.4 dB between the maximum frustration
of the SQUID at low temperature (where Y ≃ 0) and the
critical temperature Tc ∼ 1.2 K of Al (where all lines merge
at Y ≃ 1=RT) is consistent with RT ≃ 62 kΩ, the junction
normal-state tunnel resistance. This line of reasoning is also
true for sample 2: The change of jS21j of approximately
−3.6 dB is consistent with RT ≃ 19 kΩ.
For sample 2, however, it is not possible to correctly

reproduce the shape of the variations of S21 in the bottom
left panel of Fig. 3 by assuming the SQUID behaves as a
standard one with LeffðΦÞ−1 ¼ 2eIeff0 j cosðπΦ=Φ0Þj=ℏ and
adjusting the effective Ieff0 as done for sample 1. Given the
shape of the modulation, it seems very likely that a weak
stray transmission in our setup (as Ystray in Fig. 6) causes
jS21j to saturate at a minimum value of approximately
−65.7 dB. Note that even if this were not the case, we
expect the modulation curve could still not be accurately
fitted using LeffðΦÞ−1 ¼ 2eIeff0 j cosðπΦ=Φ0Þj=ℏ, because in
this sample, the jS21j measurements show that the junction
admittance is modulated from jYj≲ or ≪ 1=R at the maxi-
mum frustration to jYj ≫ 1=R at minimum frustration, such
that the total effective impedance at the junction and the
corresponding zero-point phase fluctuations (which deter-
mine Ieff0 ) vary much with Φ. This variation of admittance
should lead to a strongly flux-dependent Ieff0 ðΦÞ, and hence,
an overall non-abs(cos) modulation of the inverse induct-
ance [23].
Finally, the striking nonmonotonic dependence of the

transmission on the temperature is explained qualitatively
in the main text before the Conclusion.
Our experiment demonstrates that when quantitative

predictions become available for the junction inductance
in high-impedance Ohmic environments, calibrated S21

FIG. 6. Quadrupole model of the on-chip components for the
calculation of the transmission S21. In the ideal case where the
external circuit can be fully calibrated by measuring reference
samples, S21 would depend only on Cc, R, and Y, the admittance
of the junction. In our experiment, this full calibration is not
performed, and a weak stray admittance jYstrayj ≪ jiCcωj very
likely dominates our measurements at lower values of S21, when
the junction admittance is large ðjYjR ≫ 1Þ.
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measurement in such a setup should allow a quantitative
comparison.

APPENDIX F: LINEAR RESPONSE
AND MOBILITY IN THE

CALDEIRA-LEGGETT MODEL

Considering the Hamiltonian H0 of the main text

H0 ¼ ECðN − NRÞ2 − EJ cosφþ
X
n

4e2
N2

n

2Cn
þ ℏ2

4e2
φ2
n

2Ln
;

the operator for the current flowing through the junction is

I ¼ 2e
ℏ
∂H0

∂φ ¼ 2e
ℏ
EJ sinφ ¼ I0 sinφ:

Now we consider a thought experiment where the junction
phase φ is given a time dependence φ → φþ δφðtÞ, so
that the Hamiltonian acquires a time dependence too,
H0 → H0ðtÞ. We can obtain the corresponding change in
the current by using the general response formula of
Ref. [52] [Eq. (1) with Xðt0Þ≡ φðt0Þ and ÔðtÞ≡ IðtÞ],

δIðtÞ
δφðt0Þ ¼

−i
ℏ
θðt − t0Þ

��
IðtÞ; ℏ

2e
Iðt0Þ

�	

þ δðt − t0Þ 2e
ℏ
EJhcosφiðtÞ;

where h…i ¼ tr½ρðtÞ…� with the time-dependent density
matrix ρðtÞ. This result expresses the exact Hamiltonian
evolution, making essentially no assumption on the system
or on the drive δφðtÞ. However, it involves the time-
dependent density matrix ρðtÞ. The linear response of
the system is obtained from this general formula by
considering vanishingly small δφðtÞ, in which case, we
can use the equilibrium density matrix in the above
expression (with the last term becoming time independent
and the first one depending only on t − t0).
Using the fact that the voltage fluctuations across the

junction are δV ¼ ðℏ=2eÞðd=dtÞ½δφðtÞ�, and going to the
frequency domain, the above result yields the junction’s
linear admittance

YðωÞ ¼ δIðωÞ
δVðωÞ ¼

1

ℏ

Z þ∞

0

2h½IðtÞ; Ið0Þ�i e
iωt − 1

ω

dt
2π

þ
�
2e
ℏ

�
2 EJhcosφi

iω
: ðF1Þ

In the first term, one recognizes the standard linear
susceptibility of the usual Kubo formula. The second term
is due to the (change in the) current carried by the ground
state, yielding a purely inductive response of the junction.
Even if we do not know what the equilibrium density
matrix is in our system (because the junction is entangled

with the bath), this term is nonzero as long as
EJhcosφi ≠ 0.
Using the fact that 2e _N ¼ I, the first term in the above

expression can also be formulated in terms of the junction’s
charge correlator

YðωÞ ¼ 4e2

ℏ

Z þ∞

0

2h½NðtÞ; Nð0Þ�iωeiωt dt
2π

þ
�
2e
ℏ

�
2 EJhcosφi

iω
:

The impedance defined by this thought experiment is an
equilibrium property of the junction coupled to its environ-
ment. In practice, when one wants to measure this linear
response, indirect driving of the junction phase can be
realized in several ways, say, by threading an ac magnetic
field in the circuit loop or by using a capacitive bias as in our
experimental setup. As long as the probing circuitry does not
alter the impedance seen by the junction, the measured linear
response is (and it must be) independent of the biasing
scheme chosen. We further stress that the linear response
theory naturally embraces finite frequencies so that YðωÞ is a
genuine equilibrium property of the system, even at finite
frequency. In this regard, our probing of the system at
approximately 1 GHz poses no problem of principle.

1. dc mobility vs full linear response

In the entire literature on the Schmid-Bulgadaev tran-
sition, the transport quantity that was focused on is the
so-called dc charge mobility,

μ ¼ δIdc
δVdc

¼ ReYðω ¼ 0Þ;

which entirely comes from the first term of the admittance
(F1) and that is obtained considering only the equilibrium
charge (or current) correlator. Note that, by definition, μ
describes dissipative transport.
However, if the inductive term in YðωÞ is nonzero

(i.e., if the system can sustain a supercurrent), the zero-
frequency limit of Eq. (F1) considered in μ is disregard-
ing a diverging term, and, given that there are never
strictly zero-frequency measurements, one may wonder
about the relevance of this quantity for describing trans-
port. Indeed, we now show that no experimental meas-
urement protocol gives access to μ in a superconducting
system. Let us, for instance, consider the initial unbiased
equilibrium state with hφi ¼ 0 in which there is no
current flowing [Iðt ≤ 0Þ ¼ 0] and assume that at t ¼ 0, a
voltage step δVðtÞ is applied, ending on a plateau δV ≠ 0
after a time τ. If mobility were appropriately describing
the linear dc response, one would expect that after a
transient, δIðt ≫ τÞ → μδV. However, this is clearly not
the case for a linear superconducting inductor because
the inductive response to the voltage pulse is a linearly
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increasing current, not a transient. It is also incorrect for
a Josephson junction and its nonlinear inductance
because the interplay of the Josephson nonlinearity and
the non-Markovianity due to the retarded response of the
RC circuit results in a complex dynamics of the system
involving potentially many harmonics of the Josephson
frequency ωJ ¼ 2eδV=ℏ. There is presently no general
theory that is able to predict the resulting dc current for
all parameters and, in particular, when phase fluctuations
are large. Here we assume a voltage bias scheme, but one
can similarly show that the inductive response cannot be
ignored in other biasing schemes and that this cannot be
fixed by changing the frequency, the amplitude, or the
temperature at which the measurement would be per-
formed. In a nutshell, the linear mobility simply does not
properly describe transport in a system that can sustain a
supercurrent (i.e., where EJhcosφi ≠ 0 in the case we
consider) because it ignores the dominant effect of the
supercurrent.
Consequently, finding a vanishing dc mobility (as in

Refs. [1–6,9,11,12]) is not by itself a correct way of
proving the system is insulating. For being an acceptable
proof, it requires, in addition, that the coherences are
suppressed in the ground state. Note that interestingly,
Schmid [1] also considered the renormalization of the
coherence factor EJhcosφi (see the following section), but
he regarded this as an independent proof of his mobility
result, and not a condition for it.

2. Insulating state in the
Caldeira-Leggett model?

From the above material, it emerges that for an
insulating state to exist in this Caldeira-Leggett model,
it is necessary (and sufficient) that the environment fully
suppresses the coherences between charge states in the
ground state.
As explained in the main text, RG flow analysis on the

Josephson coupling initially indicated that coherences
also vanished in the insulating phase, seemingly validat-
ing the mobility calculation (on the insulating side).
However, results on the spin-boson problem, as well
as perturbation theory in EJ in the CL model contradict
the RG analysis and indicate that finite coherences
always survive in the ground state of the CL model
(as long as EJ=EC > 0). Hence, from the theory point of
view, it is clear by now that within the CL model, a
dissipative environment can reduce the coherence only to
a certain point. So, a remaining finite supercurrent is to
be expected, and that is indeed what we and Grimm et al.
[29] observe. Beyond our experiment, this behavior is
expected for the entire parameter space: The junction is
superconducting everywhere. This resolves the conflicts
evoked in the Introduction.
Note that our conclusion that mobility calculations

do not correctly describe transport in the CL model (and

therefore cannot be used to predict a superconducting-
insulating transition) is independent of whether one
considers a compact or extended phase description; it
applies also to old works which explicitly considered an
extended phase for evaluating the mobility. The compact
phase symmetry put forward by our analysis is still very
important because it enables us to reach a simple
consistent picture in all known limits, and, through the
self-duality of the model, it clarifies how decompactifi-
cation occurs.

APPENDIX G: THE PREDICTED
PHASE TRANSITION IN

THE PðEÞ THEORY

In Ref. [4], Aslangul et al. use a tight-binding model
to describe junctions coupled to a linear environment in
the so-called scaling limit, and they confirm Schmid’s
prediction of a phase transition. Here we go over their
derivation using the notations more commonly used at
present for Josephson circuits.
First we express the Hamiltonian H̃ considered in

Ref. [4] as

H̃ ¼ EJ

2

�X
N∈Z

jNihN þ 1jeiφ̃þ2ieVt=ℏ þ H:c:

�
þHbath;

where N is the number of charges passed through the
junction, and φ̃ is the fluctuating phase across the
(disconnected) environment (in the notations of Ref. [4],
Bþ ¼ eiφ̃, ℏΔ ¼ EJ). For more generality, we consider the
case where a voltage source is present (the results of
Ref. [4] are recovered taking V ¼ 0). This Hamiltonian is
also considered in Ref. [53]. Note that when using this
tight-binding description of discrete charge states, it implies
the junction phase is considered compact.
The current operator through the junction is

Î ¼ i
2e
ℏ
EJ

2

�X
N∈Z

jNihN þ 1jeiφ̃þ2ieVt=ℏ − H:c:

�
:

We now evaluate the current correlator

SIIðtÞ ¼ hÎðtÞÎð0Þi;

assuming that the backaction of the junction on the
environment is weak enough to not modify the equilib-
rium properties of the bath. At first view, this assumption
can be justified if the junction impedance at its plasma
oscillation is much larger than the environment resistance
(i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=EJ

p
≫ R=RQ), in which case the environment

imposes its phase fluctuations onto the junction. This
condition is indeed fulfilled in the scaling limit consid-
ered in Ref. [4]. Within these hypotheses, the correlator
evaluates to
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SIIðtÞ ¼
�
2e
ℏ
EJ

2

�
2
��X

N∈Z
hNjρjNi

�
ðheiφ̃ðtÞe−iφ̃ð0Þie2ieVt=ℏ þ he−iφ̃ðtÞeiφ̃ð0Þie−2ieVt=ℏÞ

−
�X

N∈Z
hNjρjN þ 2iheiφ̃ðtÞeiφ̃ð0Þie2ieVt=ℏ þ hNjρjN − 2ihe−iφ̃ðtÞe−iφ̃ð0Þie−2ieVt=ℏ

��
; ðG1Þ

where ρ is the reduced density matrix of the junction.
Considering that the linear environment remains in equi-
librium, its fluctuations are Gaussian, and one has

he�iφ̃ðtÞe∓iφ̃ð0Þi ¼ eJðtÞ

and

he�iφ̃ðtÞe�iφ̃ð0Þi ¼ e−JðtÞþ2Jð∞Þ

with

JðtÞ ¼ h½φ̃ðtÞ − φ̃ð0Þ�φ̃ð0Þi

¼
Z þ∞

−∞

dω
ω

ReZðωÞ
2RQ

e−iωt − 1

1 − e−βℏω
;

with Z being the total environment admittance as seen from
the Josephson element, including the junction capacitance
[i.e., ZðωÞ ¼ ðR−1 þ iCωÞ−1]. For an Ohmic environment
ReJð∞Þ ¼ −∞, so that the terms in the second line of
Eq. (G1) vanish, and using tr ρ ¼ 1, the correlator finally
reduces to

SIIðtÞ ¼
�
2e
ℏ
EJ

2

�
2

eJðtÞ cos
2eVt
ℏ

;

or, in the frequency domain,

SIIðωÞ ¼
�
2e
ℏ
EJ

2

�
2

½Pðℏωþ 2eVÞ þ Pðℏω − 2eVÞ�;

where

PðEÞ ¼ 1

2πℏ

Z
∞

−∞
exp½JðtÞ þ iEt=ℏ�dt

is the usual PðEÞ function considered in dynamical
Coulomb blockade. For the RC environment considered
here, at zero temperature one has [53]

PðEÞ ∝ E2R=RQ−1: ðG2Þ

1. Charge transport

The standard Green-Kubo relations link the admittance
YGK to SII,

ReYGKðω; VÞ ¼
1

2ω
½SIIðωÞ − SIIð−ωÞ�: ðG3Þ

Note that, even after applying Kramers-Kronig relations to
get the imaginary part, this admittance YGK corresponds
only to the first term in Eq. (F1) and therefore lacks the
inductive response of the junction, which we know is
important (see Appendix F). If we nevertheless proceed,
from Eq. (G3) one predicts a differential conductance

dI
dV

ðVÞ ¼ ReYGKðω → 0; VÞ

¼ 2e2

ℏ
E2
J½P0ð2eVÞ þ P0ð−2eVÞ�;

and the I − V characteristics are obtained by straightfor-
ward integration

IðVÞ¼ e
ℏE

2
J½Pð2eVÞ þ Pð−2eVÞ�: ðG4Þ

The above results are already found in Ref. [53]. They
describe inelastic tunneling processes of Cooper pairs
with real transitions in the environment modes. The I − V
characteristic (G4) is known to quantitatively describe
experiments [50,54] at finite voltages when the Josephson
coupling is small enough that the environment modes remain
in equilibrium.
From the above results, one predicts the junction zero-

bias conductance

G ¼ YGKðω → 0; V ¼ 0Þ

¼ 2e
ℏ
E2
JP

0ð0Þ; ðG5Þ

which corresponds to the dc charge mobility calculated by
Aslangul et al. [4]. Thus, for the RC environment considered
here, at T ¼ 0, using Eqs. (G2) and (G5), one recovers the
“superconducting-to-insulating” phase transition at R ¼ RQ,
as found by Aslangul et al. [4] (Schmid [1] and Bulgadaev
[2] obtained the same results for the mobility by mapping the
problem onto a log-gas). However, as noted above, the
charge-transfer processes described here are inelastic, and it
is therefore not correct to describe this type of process as
superconducting transport for R < RQ.

2. Conclusions on the phase transition

(i) As shown in Appendix F, YGK is not the full linear
admittance; it entirely misses the inductive response
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of the junction and cannot properly describe charge
transport (and notably the supercurrent branch in the
I-V characteristics) because of that. This perturbative
tight-binding approach does predict a transition in
the charge correlator (a partial charge localization),
but it is incorrect to infer from this result that a
superconducting-insulating transition exists.

(ii) The predicted transition in the junction charge
correlator arises entirely from the PðEÞ function,
i.e., from the equilibrium fluctuations across the RC
environmental impedance not connected to any-
thing. It has nothing to do with the junction. This
is already noted in Ref. [3].

(iii) As we mention in the main text, for R < RQ, the
charge is predicted to be fully delocalized, and
correspondingly, the junction phase is fluctuation-
less (and its dynamics is that of a classical quantity).

The last two points seem odd and most likely too sketchy.
Just as it is now understood that the coherence factors do
not actually vanish in this system, it is quite clear that
taking into account the backaction of the junction on the
environment (causing their entanglement) would suppress
the above sharp transition in the charge correlator and turn
it into a smooth crossover with finite but small phase (resp.
charge) fluctuations in the (resp. dual of the) delocalized
charge state. Actually, we know this is the expected
behavior when EJ ≫ EC and R ≫ RQ [upper left corner
of the diagram in Fig. 4(b)]: At low temperatures, such a
junction behaves essentially as a linear inductor, and it is
well known that parallel RLC circuits have finite charge
and phase fluctuations for all parameters. Then, using the
duality argument, the presence of finite charge and phase
fluctuations should also be true for EJ ≪ EC and R < RQ.
Finally, by continuity, this should be also true in the entire
diagram.
The continuous crossover that emerges from our analysis

contrasts with the results of the Monte Carlo simulations
performed assuming an extended phase in Ref. [11], where
an abrupt transition in the phase correlator at T ¼ 0 and
R ¼ RQ is found. This discrepancy illustrates that consid-
ering an extended phase can lead to results inconsistent
with our analysis (see Appendix H).
In conclusion, we expect no DQPT transition in the CL

model: neither a superconducting-insulating transition nor
a transition in the charge or phase correlator.

APPENDIX H: COMPACT VS EXTENDED
JUNCTION PHASE

The analysis of the CL model conducted in the main text
is based on symmetry considerations and leads to a “phase
diagram” [Fig. 4(b)], which is theoretically consistent
(including at its boundaries) and consistent with experi-
ments. In this phase diagram, the junction phase is compact
below the antidiagonal and it progressively decompactifies
above the antidiagonal in a smooth crossover.

We stress that when this decompactification does not
occur, compact phase solutions are dictated by the sym-
metry of (the effective Josephson Hamiltonian in) the CL
model; this symmetry is not for the physicist to choose.
As a corrollary, choosing to use an extended phase in
many earlier works on the CL model cannot be rigorously
justified theoretically because there are no known mech-
anisms within that model that would break the system’s
fundamental symmetry in this way. The only established
symmetry breaking for the phase is the partial decom-
pactification we describe in the main text (but it cannot be
found starting from an extended phase).
Since it cannot be justified within the model, making use

of an extended phase implicitly and forcefully adds poorly
controlled hypotheses or ingredients to the model, with
essentially unknown consequences. (In practice, it adds an
additional variable indexing the wells of the cosine and
enabling us to distinguish all of them in all circumstances,
which is not possible in the original model.) For sure,
this can be done theoretically—it works. But does such a
treatment still yield fully relevant predictions for the real-
world system that the model was originally meant to
describe? Clearly not. It is certain that predictions will
differ in circumstances where interferences between the
wells matter, and this difference is unavoidable in a system
with superconducting coherences such as the one we
consider. In other words, in the parameter space where
we now know the phase discrete translational symmetry is
not spontaneously broken, there exists mathematically
correct extended phase solutions for H that cannot be
unitarily transformed to a suitable (i.e., compact) solution
for H0. Such solutions do not respect the intrinsic system
symmetry, but it is nearly impossible to figure this incon-
sistency by considering only the extended phase hypothesis.
This subtle point on the junction phase symmetry and its

spontaneous breakage has never been properly understood
so far. We think that bringing this point up and clarifying it
is a significant achievement of the present work.

1. Retrospective on the compact
vs extended phase debate

Prior to this work, it was intuited that phase decom-
pactification must take place somehow (at least for some
parameters), but it was not understood how it was occur-
ring, and this resulted in a lot of ambiguities and confusion.
Here, we try to put into perspective why the situation was
so confusing.
An extended phase description contains the compact

phase solutions as solutions of higher symmetry (periodic
solutions in phase representation), so that, in principle, it
should be the only description ever needed. Indeed, when
starting from a Hamiltonian such as H in the main text, for
which an extended phase is the “natural” point of view, one
can obtain the compact phase solutions by considering
highly nontrivial initial and boundary conditions [33,34].
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However, in the existing literature based on using H, this
was not done, and, as a consequence, compact phase
solutions (which are of utmost importance as our work
shows) were not found or not recognized as such.
Until now, this seemed not too problematic, and it was

even rationalized that compact phase states were irrelevant
in systems that are most conveniently described using H
(essentially, systems where a dc current can flow). The
rationale was that in these systems, a “full decompactifi-
cation” process (i.e., yielding only nonperiodic extended
phase states solutions of H) would always occur for all
parameters and all temperatures. At first, this was just
argued for qualitatively [55]. Soon after, Zwerger et al. [56]
showed that such a full decompactification process should
indeed always occur for Ohmic environments, but their
derivation can no longer be considered conclusive as it
did not take into account the entanglement of the junction
with the environment, which we now know is key. Later,
Apenko proposed another justification [35], but in his
derivation, the identification of different phases in the
circuit was not rigorous (similar to what we discuss
about the Hamiltonian of the fluxonium circuit in
Appendix H 4).
Hence, schematically, for a very long time, it was

broadly considered that the symmetry of the phase and
the Hamiltonian used were somehow tied: (H ⇔ extended
phase assumed to be a decompactified phase) XOR
(H0 ⇔ compact phase).
To support this dichotomic view, several arguments or

criteria were used to favor using a compact or an extended
phase description, depending on the problem considered.
For instance, it was frequently argued that a compact
junction phase is suitable only in circuits having an “island”
connected to the junction, as it would be a manifestation of
the charge quantization in the island or of the tunneling of
individual Cooper pairs through the junction. In other
words, a compact phase should not be appropriate in a
circuit where the charge can flow continuously (and thus,
consideringH0 to describe the Ohmic shunted junction was
not considered appropriate). Although the general discus-
sion of the main text already shows such arguments are not
relevant, in the following subsections of this Appendix we
nevertheless specifically discuss why these arguments do
not hold.

2. Phase compactness is not due to the tunneling
of individual Cooper pairs through the junction

If instead of a Josephson junction one considers a
superconducting ballistic (or nearly ballistic) weak link,
then the current-phase relation is still periodic with the
phase, so that one can again use a discrete charge basis to
describe the state of the weak link. In that case, this
apparent “charge discretization” obviously cannot be
directly linked to an underlying charge quantization due
to the tunneling of charge carriers.

3. Is charge quantization due to the
presence of islands?

As we discuss in the main text, using the discrete charge
basis of the CPB (equivalent to considering a compact
phase) arises from the symmetries of the system. It does not
require the presence of “an island” in which the charge is
“naturally quantized.” The simplest argument against this is
that in a CPB the mere presence of the Josephson junction
destroys this charge quantization (the ground state of the
CPB consists of a coherent superposition of charge states,
with finite zero-point fluctuations). This “charge quantiza-
tion” is not observable, it is only a mathematical illusion,
actually.
Our statement is further supported by the fact that the

form of the Caldeira-Leggett Hamiltonian is independent of
whether the circuit has an island or not. This can be shown
using the explicit decomposition of the total circuit imped-
ance into oscillators according to the rules in Ref. [22].
Finally, one can show that the Hamiltonian of a circuit

with an island has a smooth limit to the islandless case by
taking the limit where the capacitance defining the island
becomes infinite. Correspondingly, all the finite-frequency
linear response functions of the system have smooth limits
too. However, as the system is nonlinear, the linearity
range may vanish at low frequency (see, e.g., Appendix A),
depending on the type of response probed. This agrees with
the obvious expectation that at strictly zero frequency no dc
current can flow when there is an island, while it can if there
is no island. As we explain in the main text, the absence of
dc current in a circuit with an island results from having a
single ground state, while there is a continuum of them in
the islandless case permitting a dc current flow.
As a conclusion, whether one considers a CPB with an

island or a galvanically shunted junction does not radically
change the way the system is modeled.

4. The junction’s phase in the fluxonium

It is frequently argued that one must use an extended
phase description for describing the fluxonium circuit [57]
where a Josephson junction is connected in parallel with a
inductor (instead of a resistor in this paper).
Indeed, for the fluxonium, the Hamiltonian proposed in

Refs. [25,57] is

Hf1 ¼
q2

2C
− EJ cosφþ ðΦext − ℏ

2eφÞ2
2L

; ðH1Þ

where ðℏ=2eÞφ and q denote the branch flux and charge
of the junction, and Φext is the magnetic flux enclosed by
the loop formed between the junction and the inductor
considered as an external control parameter, i.e., a fixed
real number. In this model, obviously not invariant upon
φ → φþ 2π, the junction’s phase clearly appears as
extended. However, the eigenstates of the system have
current fluctuations that, in addition to vacuum flux
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fluctuations, cause fluctuations of the flux in the loop,
which contradicts the assumption that Φext is a fixed
parameter. Thus, the model is not fully consistent.
Another fluxonium Hamiltonian is derived in Ref. [45].

It reads

Hf2 ¼
ðQþ qÞ2

2C
− EJ cosφþΦ2

2L
: ðH2Þ

In this writing, Φ and Q denote the branch flux and charge
of the inductor, while ðℏ=2eÞφ and q still denote the branch
flux and charge of the junction. This Hamiltonian thus has 2
quantum degrees of freedom (each with fluctuations), and
the flux in the loop is given by Kirchhoff’s law

ℏ
2e

φ −Φ ¼ Φloop

so that Φloop fluctuates too (as expected) and has an
expectation value related to the externally applied flux
Φext. It is only by suppressing one of the quantum degrees
of freedom, turning it into a classical one, that Eq. (H2)
becomes Eq. (H1) (and, strictly, φ can no longer be
considered as a degree of freedom describing the sole
junction). The junction’s phase appearing as extended in
Eq. (H1) thus results from an approximation (perhaps a
very good one); it is not an obligation.
The inconsistency pointed out above is a general

problem of the circuit quantization scheme proposed in
Ref. [22], where loop fluxes are always assumed constant.
It can be easily fixed though. Other quantization schemes
have also been proposed [45,58,59] which do not neces-
sarily force this approximation.

a. The fluxonium is not in the phase diagram

In the fluxonium circuit, the impedance seen by the
junction has ReZðω ¼ 0Þ ¼ 0, which would naively locate
it on the right axis of the SB phase diagram. However, in
that limit, the system considered in the main text is ill-
defined as neither the loop inductance L (which defines a
new energy scale EL ¼ ℏ2=8e2L in the problem) nor the
external flux Φext threading the loop are specified. Thus,
the phase diagram would need to be refined with extra
parameters close to the right axis.
Nevertheless, depending on its parameters, we expect

the fluxonium’s junction phase will evolve between fully
decompactified (in a single well of the cosine) when
EL ≫ EJ and Φext mod Φ0 ≠ 1

2
, partially decompactified

(in several wells) when EL ∼ EJ, and essentially compact
(populating many wells nearly equally) [25] when EL → 0.

5. Phase in current-biased junctions

When considering the case of a current-biased junction,
where the current source “tilts the washboard potential,”
the different wells of the cosine appear as nonequivalent.

Here again, the obligation to use an extended phase is
only apparent.
First, the current source can be modeled by considering a

very large inductor loaded with an initial flux. So we are
back to considering the fluxonium case for which we argue
above that there is no obligation to use an extended phase.
One can arrive at a similar conclusion by performing a

time-dependent unitary transformation [34] that removes
the tilt of the washboard, restoring the periodicity of the
cosine potential. In this case, however, the states of the
system will be time dependent.
In such a current-biased junction, the final degree of

phase decompactification will depend on the dissipation
in the system and on the ratio EJ=EC (as in the unbiased
case) but certainly also on the current bias Ib which sets an
extra energy scale IbΦ0 in the system, with an associated
dynamics.

APPENDIX I: VALIDITY OF THE EFFECTIVE
JOSEPHSON HAMILTONIAN AND

CONSISTENCY OF THE
CALDEIRA-LEGGETT MODEL

In the CL model, the junction is modeled using the
effective Josephson Hamiltonian (i.e., the celebrated wash-
board potential for the junction phase) which describes
only Cooper pair tunneling, and one couples this effective
Hamiltonian to the linear environment.
This effective Josephson Hamiltonian emerges from the

tunneling of quasiparticles at second order in perturbation
theory in the absence of an environment [60,61], and it is
commonly admitted it describes well a junction at energies
much lower than the superconducting gap Δ and in the
absence of quasiparticles (which is expected at kBT ≪ 2Δ).
Even when these conditions are fulfilled, one may wonder
whether considering the effect of the environment on this
effective Hamiltonian—as done in the CL model—is fully
consistent.
A more rigorous and consistent way of considering the

effect of the environment on the junction consists of going
back to the tunneling of quasiparticles [23,62,63]. Doing
so, one however finds that at second order in tunneling
(corresponding to the effective Josephson Hamiltonian
used in H or H0), the junction sees the bare zero-point
fluctuations of the RC circuit. However, at that lowest order
in perturbation, phase fluctuations are divergent for any
Ohmic environment, and this divergence predicts a com-
plete suppression of the supercurrent at all temperatures
[23], even for R < RQ, in the phase where a classical
compact phase is predicted. This shows that the CL
description of the system (using H or H0) is inconsistent
when considering an Ohmic environment. These incon-
sistencies resolve at higher orders in the tunneling
Hamiltonian (or using a self-consistent approximation
[23]), when the inductive backaction of the junction on
the environment is taken into account: The junction and
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environment become entangled, voltage and phase fluctu-
ations are reduced, and they acquire an effective super-
Ohmic spectral density for which no DQPT is expected, the
junction preserving a finite supercurrent at T ¼ 0 for all
environmental impedances.
Our present work shows that even within the CL model

(although it is not fully consistent), the predicted phase
transition similarly disappears when considering the back-
action of the junction on the environment.

APPENDIX J: RELATIONSHIP WITH PHASE
TRANSITIONS IN OTHER SYSTEMS

The phase transition predicted by SB is closely related to
a number of other phase transitions predicted in different
systems (see Ref. [64]).
In particular, it is related to the impurity-induced transition

in a 1D conducting channel of interacting spinless fermions
(i.e., a Tomonaga-Luttinger liquid, TLL) predicted by Kane
and Fisher [65] (KF), according to which, at T ¼ 0, for any
nonzero strength of the impurity potential, the channel
conductance should vanish for repulsive interactions
g < 1, while it should reach the perfect TLL conductance
ge2=h for attractive interaction g > 1. This behavior is akin
to the SB prediction of a superconducting-to-insulating
transition. Kane and Fisher showed that these systems are
indeed described by the same effective action, and, accord-
ing to the principle “the same equations have the same
solutions” made famous by Feynman, no one questioned
they would have the same phase transition physics until now,
even when it became evident that the SB prediction con-
flicted with known results on Josephson junctions.

1. Confirmations of the KF phase transition

Repulsive Luttinger liquids with rational values of g < 1
have been extensively studied theoretically since they
notably describe the low-energy physics of fractional
quantum Hall edge states [66]. Thanks to the methods
of integrable systems, exact results have been obtained
for the specific values of g ¼ 1=2 [67], g ¼ 1=3 [68], and
g ¼ 2=3 [69]. All these results corroborate the perturbative
RG analysis [65] predicting universal scaling laws for the
dc conductance which drive the system to an insulating
state as the temperature is lowered for all impurity back-
scattering strength.
The KF phase transition physics was confirmed exper-

imentally by taking advantage of a second mapping put
forward by Safi and Saleur [70], who noticed the action of
an impurity in a TLL is also equivalent to that of a single-
channel quantum point contact in series with a resistor
(QPC+R). In this mapping, the TLL interaction parameter g
is controlled by the resistance g ¼ 1=ð1þ R=4RQÞ, and
thus covers only the dynamics of repulsive TLLs. Since the
physical implementation of QPCþ R is much better con-
trolled than that of fractional quantum Hall physics, this

mapping enabled precise experimental investigations of the
dc-conductance scaling laws. The experiments reported in
Refs. [69,71,72] provide stringent tests of the predicted
universal critical behavior at low energies (temperature and
dc voltage), even though the system is not strictly in the
scaling limit because of the finite charging energy.

2. Same equations but different solutions?

At first sight, it is quite shocking that we invalidate the
SB phase transition after the KF one was accurately
confirmed; it obviously violates “the same equations have
the same solutions” principle.
The key of this paradox is that the principle makes

implicit assumptions on the equations’ context. Everyone
knows a given real-coefficient polynomial pðxÞ may have
roots or not depending whether the context is x ∈ C or
x ∈ R. The SB and KF systems can be described by the
same effective action, but when one goes back to the
underlying microscopic descriptions, different phenome-
nologies arise, providing different contexts for searching
the solutions to the equations.
For a Josephson junction, there is a gap in the excitation

spectrum of its electrodes. Consequently, after a slow enough
2π phase slip, the junction is still in its ground state, and
since the initial and final states of the junction are indis-
cernible, the junction’s phase is compact. Superconductivity
also yields a static phase coherence hcosφi ≠ 0, and an
inductive response. Our work shows that this “superconduct-
ing context” is robust to connecting a resistor to the junction:
The junction and the bath entangle, preserving finite
coherences which forbids the phase transition. To put it
more simply, in circuit engineering terms, the superconduct-
ing (ground-state) inductive response shunts the low-
frequency phase fluctuations arising from the series resis-
tance; this makes the global system super-Ohmic, allowing
the junction to preserve its superconducting character.
No such mechanism can take place in KF or QPCþ R

systems. In the case of an open 1D electonic channel with a
barrier connected at both ends to reservoirs, a 2π phase slip
at the barrier (however slow) corresponds to a voltage
pulse which, at T ¼ 0, can excite electrons and/or holes
at arbitrarily low energy and which will be dissipated in the
reservoirs. Thus, a phase slip takes this system to an
orthogonal (distinguishable) state, such that the phase needs
to be regarded as an extended phase. The Fermionic baths
hence provide a subtle mechanism that is not contained in
the equations of the effective model (where the Fermions no
longer appear) and that allows breaking the discrete trans-
lational invariance of the phase in a way that totally differs
from the partial decompatification mechanism we identify in
JJs. Furthermore, in this system there is no possibility of
a supercurrent in the ground state, and thus no static
coherence (hcosφi ¼ 0). Connecting a resistor to the chan-
nel brings the system in the critical regime of the DQPT,
with the expected localization effect described by Schmid
and Bulgadaev.
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The above discussion in the main text suggests that the
compactness of the phase—which we justify in the main
text from the symmetry of the effective Josephson
Hamiltonian—cannot be detached from the superconduct-
ing character of the Josephson junction and the existence of
the inductive response.

3. Superconducting-to-insulating transition
in 1D JJ arrays

Another superconducting-to-insulating phase transition
is predicted in 1D JJ arrays [73]. This latter transition was
related to the disordered-induced transition (i.e., Anderson
localization) predicted in fermionic 1D systems [74].
Recently, Kuzmin et al. investigated experimentally 1D
JJ arrays and observed they remained good superconduct-
ing transmission lines well beyond the threshold line
impedance predicted for their transition to the insulating
state [75]. Given the similarities between that system and
the one we consider, we believe it could be worth revisiting
the predicted transition in 1D JJ arrays taking into account
what we understood on the sensitivity of the SB transition
to the superconducting character of the underlying system.
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