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Unraveling the structure and function of the brain requires a detailed knowledge about the neuronal
connections, i.e., the spatial architecture of the nerve fibers. One of the most powerful histological methods
to reconstruct the three-dimensional nerve fiber pathways is 3D-polarized light imaging (3D-PLI). The
technique measures the birefringence of histological brain sections and derives the spatial fiber orientations
of whole human brain sections with micrometer resolution. However, the technique yields only a single
fiber orientation for each measured tissue voxel even if it is composed of fibers with different orientations,
so that in-plane crossing fibers are misinterpreted as out-of-plane fibers. When generating a detailed model
of the three-dimensional nerve fiber architecture in the brain, a correct detection and interpretation of nerve
fiber crossings is crucial. Here, we show how light scattering in transmission microscopy measurements
can be leveraged to identify nerve fiber crossings in 3D-PLI data and demonstrate that measurements of
the scattering pattern can resolve the substructure of brain tissue like the crossing angles of the nerve fibers.
For this purpose, we develop a simulation framework that permits the study of transmission microscopy
measurements—in particular, light scattering—on large-scale complex fiber structures like brain tissue,
using finite-difference time-domain (FDTD) simulations and high-performance computing. The simu-
lations are used not only to model and explain experimental observations, but also to develop new analysis
methods and measurement techniques. We demonstrate in various experimental studies on brain sections
from different species (rodent, monkey, and human) and in FDTD simulations that the polarization-
independent transmitted light intensity (transmittance) decreases significantly (by more than 50%) with an
increasing out-of-plane angle of the nerve fibers and that it is mostly independent of the in-plane crossing
angle. Hence, the transmittance can be used to distinguish regions with low fiber density and in-plane
crossing fibers from regions with out-of-plane fibers, solving a major problem in 3D-PLI and allowing for a
much better reconstruction of the complex nerve fiber architecture in the brain. Finally, we show that light
scattering (oblique illumination) in the visible spectrum reveals the underlying structure of brain tissue like
the crossing angle of the nerve fibers with micrometer resolution, enabling an even more detailed
reconstruction of nerve fiber crossings in the brain and opening up new fields of research.
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I. INTRODUCTION

The human brain consists of a huge network of nerve
fibers: Around 100 billion nerve cells are connected to
10 000 other nerve cells on average [1,2]. Understanding the
structure and function of the brain remains a key challenge
for neuroscience. To figure out how brain function emerges
from its structural organization, it is necessary to study the
neuronal connections, i.e., the three-dimensional nerve fiber
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architecture of the brain. Developing a detailed network
model of the brain, the so-called connectome [3], reveals
connected brain regions and helps to identify important
nerve fiber connections, which is a prerequisite for brain
surgery. Furthermore, the connectivity of the nerve fibers
exposes pathological changes in the brain’s tissue structure,
enabling studies of neurodegenerative diseases like
Alzheimer’s or Parkinson’s disease and the development
of new treatments and tools for improved diagnostics.

A. Neuroimaging techniques and their limitations

Diffusion magnetic resonance imaging (dMRI) is to
date the only possibility to study the brain’s nerve fiber
architecture in living human subjects [4,5]. However, due to
motion artifacts and limited scanning times, the resolution
of clinical data is limited to the millimeter scale [6,7], so
that crossing fiber pathways (i.e., bundles composed of
thousands of individual nerve fibers) cannot properly be
resolved. Even in postmortem human brains, where dMRI
achieves resolutions down to a few hundred micrometers
[8,9], fiber pathway tractography algorithms show system-
atically false-positive fiber pathways due to the lack of
detailed knowledge about the fiber crossings [10]. The
exact organization principles of nerve fibers in the brain, in
particular, fiber crossings, remain a major point of dis-
cussion in the MRI community [11–13].
Standard histological methods based on tissue staining

[14,15] or histochemistry [16] provide detailed information
about the nerve fiber architecture in the cortex (outer
surface of the brain) but mostly fail in white matter regions
with densely packed nerve fibers. Tracer studies can be
used to map individual nerve fibers across long distances
but can be applied only to animal brains [17]. To visualize
and derive brain tissue properties and organization princi-
ples at neuronal scales, light-microscopy techniques are
widely used [18,19]. Technological progress and new
advances in tissue preparation and labeling have enabled
the development of techniques that reveal the 3D nerve
fiber architecture in both living and postmortem brains with
high resolution [20], such as optical coherence tomography
[21–23], microoptical sectioning tomography [24], light-
sheet microscopy [25–29], or two-photon fluorescence
microscopy (TPFM) [29–33]. However, it is very challeng-
ing to apply these techniques to larger tissue samples—in
particular, human brains—and to determine fiber orienta-
tions in regions with densely packed nerve fibers.

B. 3D-polarized light imaging (3D-PLI)

The neuroimaging technique 3D-PLI [34,35] is used to
study the 3D nerve fiber architectures in whole postmortem
human brains with micrometer resolution, bridging several
orders of scale. The birefringence of unstained histological
brain sections is measured with a polarimeter, thus
revealing the spatial orientations of the nerve fibers [36].

The birefringence is mainly caused by the highly ordered
molecular structure of the myelin sheaths [37,38] which
surround many axons in the white matter of the brain [39].
(In the following, the term nerve fiber is used only for
myelinated axons.)
In recent years, 3D-PLI has proven the potential to serve

as a validation for fiber tractography algorithms in order to
improve the interpretation of clinical dMRI data [40,41]. In
contrast to dMRI, where thousands of fibers are comprised
in one measured tissue voxel, it is only a few tens of fibers
in 3D-PLI.
Currently, 3D-PLI is one of the most powerful histo-

logical methods for mapping nerve fibers in whole post-
mortem brains. Because of recent advances, e.g., by using a
tiltable specimen stage [42,43], 3D-PLI reliably determines
not only the in-plane, but also the out-of-plane orientation
of the nerve fibers in most white matter regions. However,
3D-PLI yields only a single fiber orientation for one
measured tissue voxel, even if it is composed of crossing
fibers with different fiber orientations. As a consequence,
brain regions with in-plane crossing fibers are misinter-
preted as out-of-plane fibers, i.e., fibers pointing out of the
section plane.

C. Scope of this study

In this paper, we address this limitation of 3D-PLI and
show how crossing nerve fibers and even fiber crossing
angles can be determined by exploiting light scattering in
brain tissue, providing a major enhancement for recon-
structing complex nerve fiber architectures in the brain.
We demonstrate that the transmittance (polarization-

independent transmitted light intensity) of nerve fibers is
dominated by isotropic scattering of light and that it
contains valuable additional information about the under-
lying nerve fiber structure. Besides various experimental
studies on brains from different species (ranging from
rodent and nonhuman primates to humans), we use
biophysical modeling and finite-difference time-domain
(FDTD) simulations on high-performance computers to
explain our experimental observations, create new models
for the interpretation of measured data, and develop new
imaging methods. Apart from 3D-PLI measurements of
brain tissue, the developed simulation framework can be
used to model other transmission microscopy techniques
and to study light scattering on comparable large-scale
complex fiber structures (e.g., muscle fibers, collagen, or
artificial fibers).
In this paper, we present two major achievements for an

improved reconstruction of the brain’s nerve fiber archi-
tecture at micrometer resolution.
First, we overcome a major limitation of 3D-PLI, by

developing an improved analysis of already measured data
that allows for correcting misinterpreted nerve fiber ori-
entations: By taking the transmittance of a measured brain
section into account, regions with in-plane crossing fibers
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and regions with low fiber densities can be distinguished
from regions with out-of-plane fibers. As the transmittance
is determined as part of a standard 3D-PLI measurement,
our method can be used to improve the interpretation of
already existing data. Moreover, the transmittance can be
measured with conventional bright-field transmission
microscopes, so that laboratories that are not equipped
with special instruments to study 3D fiber architectures
can use our findings to extract 3D information from 2D
transmittance images—without a need to change the
experimental setup or to repeat measurements.
Second, we develop a new technique that measures the

scattering of light under oblique illumination and reveals
the substructure of a measured tissue voxel, in particular,
the crossing angle(s) of the nerve fibers, with microscopic
resolution for whole brain sections. The technique allows a
more detailed reconstruction of nerve fiber crossings in the
brain, thus opening up new fields of research.

D. Outline

In Sec. II, we present the basic methods of our studies
(details are described in Appendix A).
In Sec. III, we present a classification procedure that

enables the correction of misinterpreted 3D-PLI signals:
We show in both experimental and simulation studies
(combining 3D-PLI and TPFM measurements as well as
FDTD simulations) that the transmittance of regions with
in-plane crossing fibers and low fiber densities differs
significantly from regions with out-of-plane fibers and
can, therefore, be used to distinguish between these
regions. The classification procedure is experimentally
validated on known anatomical brain regions.
In Sec. IV, we demonstrate the great potential of

scattering measurements to reveal the substructure of brain
tissue like the crossing angles of the nerve fibers. First, we
show in simulations that the scattering patterns reveal the
underlying fiber structure like the in-plane, the out-of-
plane, and—most importantly—the crossing angles of the
nerve fibers. Then, we show in experimental studies that
scattering measurements can indeed be used to determine
the correct crossing angle between two nerve fiber bundles.
Finally, we demonstrate that the measurement results in
known anatomical brain regions correspond very well to
the simulated scattering patterns, validating our simulation
approach.

II. MATERIALS AND METHODS

A. Preparation of brain sections

The measurements are performed on healthy brains from
mice, rats, vervet monkeys, a hooded seal, and humans.
All brains are obtained directly after death in accordance
with legal and ethical requirements. The brains are deeply
frozen, cut into sections of 60 μm thickness, embedded in a
solution of 20% glycerin, cover slipped, and measured

1–2 days afterward. A detailed description of the brain
preparation can be found in Appendix A 1.

B. 3D-PLI measurement

The 3D-PLI measurements are performed using a polar-
izing microscope with a numerical aperture of 0.15 and an
object-space resolution of about 1.33 μm per pixel [34,35].
The microscope consists of an LED light source with
550 nm wavelength, a rotating linear polarizer, a specimen
stage containing the brain section, a circular polarization
analyzer, and a camera which records the transmitted light
intensity for different rotation angles f0°; 10°;…; 170°g of
the polarizer. More information about the 3D-PLI meas-
urement can be found in Appendix A 2.
The amplitude of the measured intensity signal (retar-

dation j sin δj) is related to the birefringence of the brain
section and serves as a measure of the out-of-plane
inclination angle α of the nerve fibers, using δ ∝ cos2α
[36]. As the out-of-plane inclination is considered inde-
pendently from the in-plane orientation of the fibers, all
inclination angles are given as absolute values without
sign (α ∈ ½0°; 90°�).
The transmittance is computed from the same signal

without additional measurements by averaging the mea-
sured light intensities over all rotation angles. To consider
only effects caused by the brain tissue, the resulting
transmittance values are normalized for each image pixel
by the average transmitted light intensity without a sample
(normalized transmittance IT;N).

C. TPFM measurement

The TPFM measurements are performed with a custom-
made two-photon fluorescence microscope with a wave-
length of 800 nm [29,44]. The microscope achieves a
resolution of 0.244 × 0.244 × 1 μm3 and allows in-depth
scans of the sample (see Appendix A 3 for more details).
Brain tissue exhibits weak intrinsic autofluorescence

which slightly differs between different tissue components.
Therefore, TPFMmeasurements of brain tissue can be used
to manually separate nerve fiber bundles from surrounding
tissue.

D. Light scattering measurement

The scattering measurements are performed by placing
a mask with a hole on top of an LED array (525 nm
wavelength) so that the center of the sample is illuminated
under a polar angle between 47° and 49° with respect to the
section plane normal (see Fig. 10 in Appendix A 5). During
the measurement, the mask is rotated in equidistant steps
around the center of the sample, and an image is recorded
for each rotation angle. The resolution in object space is
about 6.5 μm. In Appendix A 5, the measurement setup is
described in more detail.

TOWARD A HIGH-RESOLUTION RECONSTRUCTION OF 3D … PHYS. REV. X 10, 021002 (2020)

021002-3



E. FDTD simulation

The FDTD simulations enable studies of light scattering
in brain tissue with microscopic detail. The algorithm
discretizes time and space, models the propagation of
the light wave by approximating the spatial and temporal
derivatives in Maxwell’s curl equations by second-order
central differences, and numerically computes the electro-
magnetic field components in space and time [45–49]. As
the mesh size of the spatial discretization needs to be much
smaller than the wavelength (at most 25 nm), simulations
of tissue samples with dimensions of several micrometers
are computationally very intense. Therefore, a simplified
simulation model for the brain tissue and the optics of the
imaging system is developed, enabling studies of larger
fibrous tissue samples.
To examine the transmittance and scattering of light,

the 3D-PLI measurement is simulated for various artificial
nerve fiber configurations. The fiber configurations consist
of about 700 fibers with uniformly distributed diameters
between 1.0 and 1.6 μm and different fiber orientations. All
fibers are generated in a volume of 30 × 30 × 30 μm3

without intersections. (The generation of the fiber configu-
rations is described in Appendix C in more detail.) Each
fiber is represented by a simplified nerve fiber model,
consisting of an inner axon with a constant radius and a
surrounding myelin sheath with two layers, defined by
different refractive indices (see Appendix D).
The propagation of the light wave through the tissue

sample (artificial fiber configuration) is computed by a
conditionally stable FDTD algorithm (see Appendix E).
The resulting electric field components are processed with
analytical methods taking all optical components of the
polarizing microscope into account, including the objective
lens (with numerical aperture NA ¼ 0.15) and the camera
detector (see Appendix G).
All simulation studies in the subsequent sections are

performed for normally incident light with 550 nm
wavelength and for the simulation parameters listed in
Appendix F. One simulation run (volume of 30 × 30×
30 μm3, mesh size of 25 nm) consumes about 8000 core
hours on the supercomputer JUQUEEN using an MPI
(message passing interface) Cartesian grid of 16 × 16 × 16,
allowing for many simulation runs with different parameters.
The accuracy of the simulation results is discussed in
Appendix H.

III. CORRECTING MISINTERPRETATIONS
IN 3D-PLI

Figure 1 shows the reconstructed nerve fiber orientations
of a vervet monkey brain section obtained from a 3D-PLI
measurement (the three-dimensional nerve fiber orienta-
tions are encoded in different colors; see the color bubble in
the upper right corner). In a standard 3D-PLI analysis, the
out-of-plane fiber orientation angle α is computed from the

measured birefringence signal j sin δj, assuming δ ∝ cos2 α
(valid for dense parallel nerve fibers [36]). Thus, regions
with a low birefringence signal (δ ≪ 1) are interpreted as
steep (out-of-plane) fibers (α ≫ 1). The enlarged area
illustrates that there exist three different types of brain
tissue that all yield low birefringence signals: (i) gray
matter regions with low fiber density which contain less
birefringent tissue components and therefore yield a low
birefringence signal, (ii) regions with crossing fibers in
which the birefringence signals cancel out, and (iii) regions
with actual out-of-plane fibers.
In this section, we correct for the misinterpretations in

3D-PLI: We show that the transmittance of regions with
low fiber density and regions with in-plane crossing fibers
differs significantly from regions with out-of-plane fibers
and can, therefore, be used to distinguish them. The
inclination of the out-of-plane fibers can then be derived
using standard 3D-PLI analysis.
The transmittance is a measure of how much the light is

attenuated when it passes through the brain tissue; i.e., it
depends on tissue absorption as well as scattering of light.
As the absorption coefficient of brain matter is small
(less than 0.1 mm−1 [50,51]), the measured transmittance
is expected to be mainly influenced by scattering. To study
such complex light-tissue interactions at the microscopic
level and explain the experimental observations, we employ
FDTD simulations to compute the propagation of the light
wave through the brain tissue sample [45–49].

Cross density
Low 

Steep

FIG. 1. Fiber orientation map of a coronal vervet monkey brain
section, obtained from a 3D-PLI measurement with 1.33 μm
pixel size. The enlarged area highlights three brain regions that all
yield low birefringence signals: (i) gray matter with low fiber
density, (ii) crossing nerve fibers (corona radiata), and (iii) steep
out-of-plane fibers (fornix).
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In regions with low fiber density (gray matter), it is
already known that the transmittance is notably higher than
in regions with densely packed nerve fibers (white matter)
due to the high attenuation coefficient of white matter
[50,51]. In Sec. III A, we show that the transmittance
decreases with an increasing out-of-plane inclination angle
of the enclosed nerve fibers; i.e., the transmittance depends
on the orientation of the nerve fibers with respect to the
light beam. In Sec. III B, we show that the transmittance does
not depend on the crossing angle of in-plane nerve fibers.
Finally, in Sec. III C, we demonstrate that regions with in-
plane crossing fibers and regions with low fiber density can
be distinguished from regions with out-of-plane fibers by a
combined analysis of the transmittance and the strength of
the measured birefringence signal.

A. Transmittance of inclined nerve fibers

First, we show in various experimental studies
(Sec. III A 1) that the transmittance of mostly parallel,
densely packed nerve fibers decreases significantly (by
more than 50%) with an increasing out-of-plane inclination
angle of the fibers. In the subsequent simulation studies
(Sec. III A 2), we demonstrate that this decrease is mainly
caused by isotropic light scattering and by the finite
numerical aperture of the imaging system.

1. Experimental studies

The transmittance of a brain section depends on many
factors which differ from tissue to tissue, such as the degree
of myelination, the density of the nerve fibers, the type of
brain tissue, the species, the preparation of the tissue, or the
exact tissue composition.
Myelination and fiber density are less relevant in this

section, because we consider only white matter regions with
densely packed, myelinated nerve fibers. In order to make
general statements about the inclination dependence of the
transmittance—independently from intersubject differences
and variations in tissue preparation or composition—we
combine studies on different species (rodent, monkey, and
human), subjects, and brain sections. To access the fiber
inclination, we use both 3D-PLI and TPFM measurements
as well as analyses of different anatomical planes and 3D
reconstruction. For reasons of clarity, we here provide only a
summary of the most important results. The whole study is
described in Appendix B.
To figure out how the transmittance of a brain region

depends on the orientation of the nerve fibers with respect
to the section plane, we investigate sections from brains that
are cut along mutually orthogonal anatomical planes: One
brain is cut along the coronal plane (dividing the brain into
back and front), and the other brain is cut along the sagittal
plane (dividing the brain into left and right). As the sagittal
plane is oriented perpendicular to the coronal plane, the
transmittance of the same anatomical brain region can be
evaluated for flat (in-plane) nerve fibers in one section

plane and for steep (out-of-plane) nerve fibers in the other
section plane.
Figure 2 shows the transmittance images for a coronal

and a sagittal section of a vervet monkey brain. The
approximate orientation of the nerve fibers is known
from vervet brain atlases [52–54]: In the coronal section
plane, fibers in the cingulum (cg) and the fornix (f) are
mostly oriented out of plane, while fibers in the corpus
callosum (cc) are mostly oriented in plane. In the sagittal
section plane, it is exactly the other way around.
In each brain section, regions with steep nerve fibers

(marked in yellow) have more than 50% lower trans-
mittance values than regions with flat nerve fibers (marked
in green). As expected, images obtained from conventional
bright-field transmission microscopy with unpolarized light
show similar effects. The exact transmittance values and
evaluation of other anatomical regions—including rat and
human brain samples—can be found in Appendix B 1.
As always, when the same anatomical brain region is

investigated in different section planes, it is reasonable to
assume that differences in the tissue structure (myelination,
fiber density, and tissue composition) are small. Differences
in tissue preparation and interspecimen differences are
addressed by only comparing transmittance values within
one brain section.

(a)

(b)

FIG. 2. Normalized transmittance images IT;N of a coronal (a)
and a sagittal (b) vervet brain section, obtained from a 3D-PLI
measurement with 1.33 μm pixel size (the fiber orientation map
in Fig. 1 is obtained from the same coronal brain section). For
reference, the coronal (sagittal) section plane is indicated by a
vertical blue (red) line in the respective other brain section. The
enlarged areas on the right show anatomical brain regions with
predominantly in-plane (out-of-plane) nerve fibers in green
(yellow). Within each section, in-plane nerve fibers have larger
transmittance values than out-of-plane fibers. cg ¼ cingulum,
cc ¼ corpus callosum, and f ¼ fornix.
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In a further study (see Appendix B 2), we examine the
transmittance of several consecutive brain sections that are
registered onto each other. While there are no interspeci-
men differences, the 3D-reconstructed volume of trans-
mittance images shows that the average transmittance
differs between brain sections, most likely due to minor
differences in tissue preparation. Nevertheless, our obser-
vation that steep nerve fibers appear much darker than in-
plane nerve fibers (within each brain section) is consistent
across hundreds of consecutive brain sections and large
anatomical structures.
In regions with distinct nerve fiber bundles, like the

caudate putamen of rodent brains, the fiber inclination can
be estimated by manually evaluating the course of the fiber
bundles in different section planes. We study the trans-
mittance contrast between nerve fibers and surrounding
gray matter in mutually orthogonal section planes of the
caudate putamen (see Appendix B 3). As gray matter can be
considered to be mostly independent of the section plane, it
is used as a reference. We find once again that steep fiber
bundles (with respect to the section plane) show lower
transmittance values than flat fiber bundles.
With TPFM measurements, we finally reveal the sub-

structure of the caudate putamen, determine the inclination
angles of individual fiber bundles, and compare them to the
corresponding transmittance values of the measured brain
section [see Fig. 3(a)]. The resulting scatter plot shows a
clear tendency toward a decrease in transmittance with an
increasing fiber inclination angle. As expected, the trans-
mittance for regions with maximum fiber density (blue) is
lower than for regions with reduced fiber density (orange),
but it decreases even further with an increasing inclination
angle. This result shows that low transmittance values in
regions with densely packed nerve fibers are mainly caused
by inclined nerve fibers. (Appendix B 4 provides a more
detailed evaluation.)
All our experimental studies show that the transmittance

of brain tissue decreases steadily and significantly (by more
than 50%) with an increasing out-of-plane inclination angle
of the enclosed nerve fibers.

2. Simulation studies

Although the experimental studies clearly demonstrate
that the transmittance decreases with an increasing incli-
nation angle of the nerve fibers, they do not provide enough
information to explain this effect in detail. To develop a
model and better understand the observed transmittance
effect, we perform numerical simulations on artificial nerve
fiber configurations with different inclination angles. This
simulation has the advantage that the exact underlying fiber
structure and, thus, the inclination angles of the nerve fibers
are known—also in bulk tissue with densely packed fibers.
We generate an artificial bundle of densely grown

fibers [see Fig. 3(b)(i) and Appendix C 1] for different
inclination angles α ¼ f0°; 10°;…; 90°g and compute the

transmittance from a simulated 3D-PLI measurement (see
Sec. II E). To study the effect of the finite numerical
aperture of the imaging system on the measured trans-
mittance values, we simulate the imaging system without
an aperture (NA ¼ 1) considering light scattered under all
angles and with an aperture (NA ¼ 0.15) considering only
light scattered under angles <8.6°. The resulting trans-
mittance images and scattering patterns can be found in
Fig. S3 in Supplemental Material [55].
Figure 3(b) shows the resulting transmittance curves

(mean values of the simulated transmittance images plotted
against the inclination angles of the fiber bundle) for
NA ¼ 1 (purple curves) and NA ¼ 0.15 (green curves).
The solid curves are obtained from the bundle of densely
grown fibers (i) which has similar fiber orientations (the

0

(a)

(b)

FIG. 3. Transmittance of inclined fiber bundles. (a) Mean
normalized transmittance values IT;N plotted against the nerve
fiber inclination angles α determined, respectively, from 3D-PLI
and TPFM measurements of nerve fiber bundles in a mouse brain
section (see Fig. S2 in Supplemental Material [55]). The values in
blue belong to regions with similar (maximum) fiber density, and
the values in orange belong to regions with variable fiber density
in which the transmittance might be overestimated. The error bars
indicate the standard error of the mean for the evaluated trans-
mittance values. (b) Simulated transmittance curves (mean trans-
mittance IT;N vs inclination α) for a bundle of densely grown
fibers (i) and a bundle with broad fiber orientation distribution (ii)
for NA ¼ 1 (purple curves) and NA ¼ 0.15 (green curves). The
transmittance curves are normalized by the mean transmittance
values of the horizontal bundles, respectively. The simulations are
performed with the parameters specified in Appendix F, using
normally incident light with 550 nm wavelength. Both exper-
imental and simulated data show that the transmittance decreases
with an increasing fiber inclination (for NA ¼ 0.15).
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mode angle difference between the local fiber orientation
vectors and the predominant orientation of the fiber bundle
is less than 10°; see Appendix C 1). The dashed curves are
obtained for a bundle with broad fiber orientation distri-
bution (ii) which contains many different fiber orientations
(the mode angle difference is about 25°; see Appendix C 2).
To enable a better comparison between the different curves,
all curves are normalized by the mean transmittance value
of the horizontal bundle (α ¼ 0°), respectively.
For NA ¼ 1, the transmittance for steep fibers (α > 45°)

is similar to or even slightly larger than the transmittance for
flat fibers (α < 45°). For NA ¼ 0.15, the transmittance
decreases significantly between α ¼ 30° and α ¼ 70°.
Hence, the observed decrease in transmittance is caused
by the finite numerical aperture of the imaging system: For
steep fibers, the light is scattered almost uniformly in all
possible directions [see Fig. S3(c) in Supplemental Material
[55] for α ¼ 70°] so that the detected transmitted light
intensity becomes minimal. In simulation studies with
polarized light, we could show that the decrease in trans-
mittance is independent of the direction of polarization [see
Fig. 18(a) in Appendix H], which suggests that the decrease
is caused by isotropic (not by anisotropic) scattering of light.
For vertical fibers (α ¼ 90°), the transmittance increases
again. In real brain tissue, however, it is rather unlikely that a
tissue voxel is completely filled with vertical fibers over the
whole section thickness of 60 μm, so this behavior is not
expected to be commonly observed in the measurement.
The transmittance for the bundle with broad fiber

orientation distribution decreases monotonically with an
increasing fiber inclination angle and becomes minimal for
vertical fibers (the transmittance for vertical fibers is more

than 80% less than for horizontal fibers). Because of the
broad fiber orientation distribution, the vertical bundle
contains many fibers with inclinations between 60° and
70°, which explains why the minimum transmittance is
shifted to larger inclination angles.
Especially for the bundle with broad fiber orientation

distribution, the simulated transmittance curves [Fig. 3(b)]
show a similar behavior as the measured transmittance
values in the scatter plot [Fig. 3(a)].

B. Transmittance of crossing nerve fibers

In the previous section, we show that the transmittance of
brain tissue depends on the out-of-plane angle of the nerve
fibers. In this section, we examine how the transmittance
depends on the in-plane crossing angle of the fibers. Both
experimental studies (Sec. III B 1) and simulation studies
(Sec. III B 2) reveal that the transmittance is mostly
independent of the crossing angle.

1. Experimental studies

To study the transmittance of in-plane crossing fibers, we
consider the optic chiasm of a hooded seal [56]—a region
where the two optic nerves of the brain cross each other
[see Fig. 4(c)]. The section plane is chosen such that it
contains mostly in-plane nerve fibers with a broad distri-
bution of crossing angles.
Figure 4(b) shows the transmittance and retardation

images for the middle section of the chiasm. As expected
from the broad distribution of crossing angles [cf. Fig. 4(c)],
the retardation values in the region with crossing fibers
(region B in orange) are broadly distributed, because the
birefringence signals of crossing fibers partly cancel out

Optic nerves (o.n.)

Optic tracts (o.t.)

(A) Parallel fibers
(B) Crossing fibers

(A) Parallel fibers
(B) Crossing fibers
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FIG. 4. Crossing nerve fibers in the optic chiasm of a hooded seal: (a) brain tissue before sectioning, (b) unnormalized transmittance
and retardation images of the middle brain section obtained from 3D-PLI measurements with 1.33 μm pixel size, (c) schematic drawing
of the optic chiasm consisting of optic tracts (o.t.) and optic nerves (o.n.), (d) normalized histograms of the transmittance image (IT) and
retardation image (j sin δj) for a region with mostly parallel fibers (blue) and a region with nearly 90°-crossing fibers (orange). Unlike the
retardation, the transmittance does not depend on the crossing angles of the nerve fibers, only on the tissue density. More information
about the sample can be found in Dohmen et al. [56] [(a) and (c) are adapted from Figs. 1 and 5B0 in [56] copyright 2015, with
permission from Elsevier].
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(depending on the crossing angle). In contrast to the
retardation, the transmittance values in the crossing region
show a similar distribution as in a region with mostly parallel
fibers (region A in blue); see the histograms in Fig. 4(d). The
peak transmittance value of region B is slightly lower than in
region A, because the number of fibers in the crossing region
(two crossing bundles) is larger than in the region with
parallel fibers (one bundle). Thus, the transmittance depends
on the tissue density but not on various crossing angles
between the nerve fibers.

2. Simulation studies

Although the experimental results show that the trans-
mittance is mostly independent from various crossing

angles, the exact substructure and crossing angles of the
fibers are unknown. To study the effect in more detail, we
simulate the transmittance of horizontal (in-plane) crossing
fibers for different crossing angles and compare the results
to the transmittance of steep (out-of-plane) fibers. The
horizontal crossing fibers are generated as separate and
interwoven fiber bundles [see Figs. 5(a) and 5(b) and
Appendix C 2] with different crossing angles χ ¼ f0°;
15°;…; 90°g. In addition, we study the transmittance for
three mutually orthogonal, interwoven fiber bundles [see
Fig. 5(c) and Appendix C 2].
Figure 5(d) shows the mean transmittance values of the

different fiber bundles for NA ¼ 0.15 plotted against the
crossing angle χ (in the case of horizontal crossing fibers).

(a)

(d)

(b) (c)
Separate bundles Interwoven bundles Orthogonal bundles

FIG. 5. Simulated transmittance of crossing fibers. (a),(b) Separate and interwoven fiber bundles with crossing angle χ: The upper
figures show the generated bundles before cropping. The lower figures show the bundles after being cropped to a volume of
30 × 30 × 30 μm3. The white dotted line indicates the border between the upper and the lower bundle of the separate crossing fibers. (c)
Three mutually orthogonal, interwoven fiber bundles cropped to a volume of 30 × 30 × 30 μm3. The white dotted lines indicate the
main directions of the two horizontal fiber bundles in the xy plane, and the third fiber bundle is oriented in the z direction. All fiber
configurations are generated from 700 fibers with diameters between 1.0 and 1.6 μm. (d) Mean transmittance values for different
crossing angles χ shown for in-plane crossing (solid curves) and out-of-plane fiber configurations (densely dotted curves). For better
comparison, the values are divided by the mean transmittance value of the corresponding horizontal fiber bundle for χ ¼ 0°. The mean
normalized transmittance values IT;N are computed from a simulated 3D-PLI measurement (with numerical aperture NA ¼ 0.15). The
simulations are performed with the parameters specified in Appendix F, using normally incident light with 550 nm wavelength. Apart
from the fiber configurations shown in this figure, the mean transmittance values are also displayed for the bundle of densely grown
fibers [see Fig. 3(b)(i)] for α ¼ 70° and 90° and for a vertical fiber bundle with broad fiber orientation distribution [see Fig. 3(b)(ii)]. The
mean transmittance is mostly independent of the crossing angle and larger than the mean transmittance of out-of-plane fibers.
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For better comparison, the values are divided by the mean
transmittance value of the corresponding horizontal fiber
bundle (for χ ¼ 0°), respectively. The solid curves belong
to the horizontal crossing fibers (separate and interwoven
bundles), and the densely dotted lines below belong to fiber
constellations that contain vertical or steep fibers: the
bundle of densely grown fibers for α ¼ 90° and 70°
[cf. Fig. 3(b)(i)], the mutually orthogonal fiber bundles
[cf. Fig. 5(c)], and the bundle with broad fiber orientation
distribution for α ¼ 90° [cf. Fig. 3(b)(ii)].
The transmittance curves of horizontal crossing fibers

are similar for separate and interwoven fiber bundles. The
mean transmittance of the separate crossing fibers corre-
sponds more or less to the mean transmittance of the
horizontal fiber bundle for χ ¼ 0°. The transmittance values
of the interwoven crossing fibers slightly increase with an
increasing crossing angle (by maximum 11%) and are up to
13% larger than those for the separate fiber bundles.
For the vertical bundle of densely grown fibers, which is

unlikely to occur in real brain tissue and shown only as a
limiting case, the mean transmittance value is already more
than 26% less than for the horizontal crossing fibers.
For interwoven crossing fibers, the transmittance value is
reduced by more than one-half when the horizontal cross-
ing fibers are combined with a vertical fiber bundle
(orthogonal bundles). For the vertical bundle with broad
fiber orientation distribution and the steep bundle of
densely grown fibers (with α ¼ 70°), the difference
between the transmittance values is especially large: The
transmittance is about 80%–90% less than for the hori-
zontal crossing fibers.
Our studies show that the transmittance for in-plane

fibers is mostly independent of the crossing angle between
the bundles and much larger than the transmittance for out-
of-plane fibers. This finding suggests that the transmittance
values can be used to distinguish in-plane crossing fibers
from out-of-plane fibers in 3D-PLI measurements and to
detect out-of-plane fibers within fiber crossings.

C. Classification of misinterpreted 3D-PLI signals

Based on the results from the previous sections, we
develop a classification procedure that allows for correcting
misinterpreted 3D-PLI signals, i.e., identifying regions
with low fiber density and in-plane crossing fibers, which
are misinterpreted as out-of-plane fibers due to their low
birefringence signals: By using a combined analysis of
transmittance and retardation images, it is possible to
classify regions with small birefringence signals into
regions with low fiber density (higher transmittance than
in-plane parallel fibers), in-plane crossing fibers (similar
transmittance as in-plane parallel fibers; see Sec. III B),
and out-of-plane fibers (lower transmittance than in-plane
parallel fibers; see Sec. III A). To demonstrate the func-
tionality of the classification procedure, we consider a

coronal section (right occipital lobe) of a vervet monkey
brain (see Fig. 6).
Since the transmittance depends on the fiber density, the

region with maximum fiber density is used as a reference:
The retardance δ of brain tissue becomes maximal for a
region with in-plane fibers (α ¼ 0) and maximum thickness
d of birefringent tissue components (δ ∝ dΔn cos2α,
where Δn is the birefringence of the tissue [34]).
Assuming that a brain section contains a large variety
of nerve fiber configurations, the region with maximum
retardation signal j sin δjmax (orange ellipse in Fig. 6) is
therefore expected to contain mostly in-plane parallel fibers
(α ≈ 0°) with a high fiber density (maximum dΔn). Regions
with even lower transmittance values are accordingly
expected to contain steep (out-of-plane) fibers which
increase the scattering and, thus, the attenuation of light.
By comparing the normalized transmittance values

(IT;N) of regions with small retardation values to the
transmittance of the region with maximum retardation
[Iref ≡ IT;Nðj sin δjmaxÞ], the regions can be classified into
three categories (see Fig. 6):

(a) (b)

Max
Max

Steep 
fibers
Steep 
fibers

Low fiber 
density

Crossing 

fibers
Crossing 

fibers

Low fiber 
density

FIG. 6. Combined analysis of transmittance and retardation
images allowing the classification of brain regions with low
birefringence signals in 3D-PLI measurements. The figure shows
the normalized transmittance image (IT;N) and the retardation
image (j sin δj) of a coronal section through the right hemisphere
(occipital lobe) of a vervet monkey brain [cf. Fig. 13(a) in
Appendix B 2] obtained from a 3D-PLI measurement with
1.33 μm pixel size. The transmittance in the region with
maximum retardation (orange ellipse) is used as a reference
value: Regions with small retardation values and notably lower
transmittance values (regions surrounded by a yellow line) are
expected to contain steep (out-of-plane) fibers. Regions with
small retardation values and similar transmittance values (cyan)
are expected to contain flat (in-plane) crossing fibers. Regions
with small retardation values and larger transmittance values
(purple) belong to regions with low fiber density, i.e., regions
with a large amount of unmyelinated axons or surrounding tissue.
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(i) IT;N ≪ Iref .—Regions with notably lower transmit-
tance values are expected to contain steep (out-of-
plane) fibers (yellow);

(ii) IT;N ∼ Iref .—Regions with similar transmittance
values are expected to contain flat (in-plane) cross-
ing fibers (cyan);

(iii) IT;N ≫ Iref .—Regions with notably larger transmit-
tance values are expected to have a lower fiber
density (purple).

For regions with slightly lower or larger transmittance
values, an unambiguous classification is not possible.
Provided that the region with maximum retardation has
the largest tissue absorption, lower transmittance values can
be caused only by out-of-plane fibers. Similar transmittance
values, however, could also be caused by a small number of
out-of-plane fibers, and larger transmittance values could
be caused by a small number of in-plane crossing fibers
(or a smaller number of out-of-plane fibers). A classifica-
tion by means of retardation and transmittance values can,
therefore, serve only as an indication of the underlying fiber
configuration and should always be considered in addition
to individual tissue characteristics. As the transmittance
depends on the tissue preparation, the combined analysis of
transmittance and retardation should be performed only
sectionwise. Brain atlases and 3D-reconstructed images
(see Fig. 13 in Appendix B 2) validate the classification of
regions in Fig. 6.
After identifying the regions with low fiber density and

in-plane crossing fibers which are misinterpreted as steep

fibers, the determined out-of-plane inclination angles of
the remaining regions with steep fibers can be considered
as reliable.

IV. SCATTERING MEASUREMENTS
OF BRAIN TISSUE

The classification procedure presented in the previous
section allows an automated identification of nerve fiber
crossings in 3D-PLI measurements. However, it is not
possible to determine the exact substructure of the tissue,
e.g., the crossing angles of the nerve fibers, without
considerable manual effort. In the following, we show
the potential of scattering measurements to reveal the
substructure of measured tissue voxels for a whole brain
section with micrometer resolution.

A. Scattering patterns reveal tissue substructure

Figure 7 shows the simulated scattering patterns for
the nerve fiber configurations investigated in Sec. III: (a)
densely grown fiber bundle with different inclination angles
[cf. Fig. 3(b)(i)] and (b) separate and interwoven fiber
bundles with different crossing angles [cf. Figs. 5(a)
and 5(b)]. The scattering patterns and transmittance images
for all simulated inclination angles (0°; 10°;…; 90°) can be
found in Fig. S3 in Supplemental Material [55]. The
scattering patterns show the intensity per wave vector
angle θk of light transmitted through the sample. The
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(b)
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FIG. 7. Simulated scattering patterns for different artificial nerve fiber constellations: (a) densely grown fiber bundle [cf. Fig. 3(b)(i)]
with different inclination angles α and (b) in-plane crossing fibers [separate and interwoven bundles; cf. Figs. 5(a) and 5(b)] with
different crossing angles χ. The scattering patterns show the underlying substructure, e.g., the crossing angle of the fibers (indicated by
the black lines around the patterns).
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white circles represent steps of Δθk ¼ 10°, from 0° (center)
to 90° (outer circle).
For in-plane fibers (α < 30°), the light is mostly scattered

under angles perpendicular to the principal axis of the fiber
bundle (i.e., along the y axis). For intermediate inclination
angles, the light is scattered more and more in the direction
of the fibers (i.e., in the positive x direction). The minimum
angular distance between the maxima decreases with an
increasing inclination angle. For an inclination angle of 70°,
the light is broadly scattered in the direction of the fibers
(positive x axis); see Fig. 7(a). For an inclination angle of
90°, the light is uniformly scattered in all directions.
The simulated scattering patterns of separate and inter-

woven crossing fiber bundles look similar for all crossing
angles [see Fig. 7(b)]. The underlying fiber configuration,
i.e., the crossing angle of the fiber bundles, is clearly visible
in all scattering patterns.
The simulations suggest that a measurement of the

scattering pattern provides valuable information about
the tissue substructure, in particular, the crossing angle
of the nerve fibers. In the simulation, the light falls
vertically onto the sample and is scattered in different
directions behind the sample; the computed scattering
pattern shows the intensity of the scattered light for
different scattering angles. For the scattering measurement,
we take advantage of the fact that the light path is
reversible: Instead of measuring the scattering pattern,
we illuminate the sample from different angles (oblique
illumination) and record the light that falls vertically onto
the camera. To extract the major features of the scattering
pattern like the direction, inclination, and crossing angle
of the fibers, it is enough to consider only one angle of
scattering, i.e., one outer circle in the simulated scattering
pattern [cf. white dashed circles in Fig. 9(b)]. We therefore
perform our measurements with a fixed polar angle of
illumination with respect to the section plane normal
(around 47°–49°) and rotate the point of illumination
(azimuthal angle) around the center of the sample. In
Appendix A 5, the scattering measurement is described
in more detail.

B. Artificial crossing of fiber bundles as a model system

In real brain tissue, the underlying substructure and
crossing angles of the nerve fibers are usually unknown.
Therefore, we first test our measurement on a sample with a
well-defined crossing angle. For this purpose, we extract
two optic tracts from a 30 μm section of a human optic
chiasm [cf. Fig. 4(c)] and place them manually on top of
each other with a crossing angle of about 80° (see Fig. 8,
top). The optic tracts contain mostly in-plane and parallel
nerve fibers and are well suited as a model system for
separate crossing fiber bundles.
The graphs in Fig. 8 show the average measured trans-

mitted light intensity plotted against the angle of illumi-
nation for three selected regions: two regions with parallel

fibers [(1) and (2)] and one region with crossing fibers (3).
The yellow squares in the upper image mark the selected
regions; the green and purple lines indicate the in-plane

FIG. 8. Scattering measurement of two optic tracts, extracted
from a 30-μm-thin section of a human optic chiasm, placed on top
of each other with a crossing angle of approximately 80°. The
measurement is performed as described in Appendix A 5 with a
pixel size in object space of about 6.5 μm and a mask with a
rectangular hole which illuminates the sample under a fixed polar
angle of 49.1°. During the measurement, the mask is rotated by
angles of f0°; 15°;…; 345°g around the center of the sample
(starting on top and rotating clockwise; see the compass rose on
top). The upper image shows the transmitted light intensity
recorded by the camera averaged over all rotation angles of the
mask. For evaluation, a region of 10 × 10 pixels is selected in each
of the two fiber bundles [(1) and (2)] and in the crossing region (3).
The selected regions are indicated by a yellow square in the upper
image, and the in-plane orientations of the nerve fibers (derived
from visible tissue structures) are indicated by green and purple
lines. The graphs show the average transmitted light intensity I in
the three evaluated regions plotted against the rotation angle of the
mask (black curves). The red curves show the transmitted light
intensity of the middle pixel (1 × 1 pixels) in the selected regions.
The dashed vertical lines indicate the orientations of the fibers as
marked in the upper image. The dash-dotted lines in (3) indicate
the position of the measured peaks.
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orientation of the nerve fibers (derived from visible
structures). The black curves show the average transmitted
light intensity in the selected regions (10 × 10 pixels), and
the red curves the transmitted light intensity in a corre-
sponding central pixel. The fact that the black and red
curves are almost identical demonstrates the stability of our
results and that the curve of a single image pixel can be
used to determine the substructure of the corresponding
tissue voxel (here, with an object-space resolution of
6.5 μm per pixel).
During the scattering measurement, the nerve fibers light

up when the direction of illumination is perpendicular

to the fibers: For example, at a rotation angle of 0°
(illumination along the y axis), fibers that are oriented
perpendicular to the direction of illumination (along the
x axis) light up. Therefore, in regions with parallel in-plane
fibers [(1) and (2)], the intensity curves show two distinct
peaks that lie 180° apart, and the position of the minima
corresponds to the in-plane orientation of the optic tracts
(35° and 125°; see dashed vertical lines). In the crossing
region (3), the intensity curve shows four peaks (peaks
lying 180° apart belong to one optic tract), and the
distance between two neighboring peaks (75°–90°) indi-
cates the crossing angle between the two optic tracts

Parallel in-plane fibers Parallel out-of-plane fibers In-plane crossing fibers

Corpus 
callosum

Fornix

Corona 
radiata

Rotation angle Rotation angle Rotation angle

Rotation angleRotation angleRotation angle

peak

peak
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ak

FIG. 9. Scattering measurement of a coronal vervet brain section in comparison to simulated scattering patterns. (a) The scattering
measurement is performed as described in Appendix A 5 with a pixel size in object space of 6.3 μm and a mask with a circular hole with
a fixed polar angle of illumination of 47.6° and rotation angles of f0°; 22.5°;…; 337.5°g. Three regions with parallel in-plane fibers
(corpus callosum), parallel out-of-plane fibers (fornix), and in-plane crossing fibers (corona radiata) are selected for evaluation. The
images in the top row show the fiber orientation maps obtained from a 3D-PLI measurement with 1.33 μm pixel size (the fiber
orientation map of the whole brain section is shown in Fig. 1). The selected regions (10 × 10 pixels) are marked by a small square, and
the in-plane orientations of the nerve fibers (derived from visible structures and/or anatomical knowledge) are marked by purple and
green lines. The second row shows the average transmitted light intensity I in the evaluated regions plotted against the rotation angle of
the mask (black curves). The red curves show the transmitted light intensity of the middle pixel (1 × 1 pixels) in the selected regions.
The dashed vertical lines indicate the orientations of the fibers as marked in the fiber orientation maps. (b) The bottom row shows
artificial fiber bundles and the simulated scattering patterns (cf. Fig. 7): parallel in-plane fibers, parallel out-of-plane fibers with 70°
inclination, and interwoven crossing fibers with a 90° crossing angle. The green and purple lines around the scattering patterns indicate
the main orientations of the artificial fibers. The white dashed circle indicates the angle under which the sample is illuminated in the
measurement (47.6°). The graphs above show the intensity of the corresponding scattering pattern, evaluated along the dashed circle in
the clockwise direction starting at the top (see the white arrow in the scattering pattern). To account for the finite size of the hole of
illumination, a Gaussian blur with a diameter of 8° in angular space is applied to the scattering patterns before evaluation.
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(approximately 80°). Taking into account that the scattering
measurement is performed in steps of 15°, the measured
crossing angle corresponds very well to the actual crossing
angle of the specimen.

C. Validation on known brain regions

To demonstrate that the scattering measurement can be
used to reveal the substructure of whole brain tissue
samples, we measure a brain section with known anatomi-
cal structures [coronal vervet monkey brain section, shown
in Figs. 1 and 2(a)] and compare the results to the simulated
scattering patterns in Sec. IVA.
Three different anatomical structures are selected for

evaluation: parallel in-plane fibers (corpus callosum),
parallel out-of-plane fibers (fornix), and in-plane crossing
fibers (corona radiata). Figure 9(a) shows the fiber ori-
entation maps of the corresponding structures (upper
images). The little yellow squares mark the evaluated
regions (10 × 10 pixels); the purple and green lines indicate
the in-plane orientation of the nerve fibers (derived from
visible structures and/or anatomical knowledge). The
graphs below show the average transmitted light intensity
for each evaluated region plotted against the azimuthal
angle of illumination (black curves, whole region; red
curves, middle pixel). Again, the black and red curves
are very similar to each other, demonstrating the stability
of our results.
Just as observed for the two optic tracts (Sec. IV B),

regions with in-plane nerve fibers light up when the direction
of illumination is perpendicular to the fibers; i.e., the
minimum of the intensity curves indicates the in-plane
orientation of the fibers (see dashed vertical lines): In regions
with parallel fibers (e.g., corpus callosum), the intensity
curve shows two distinct peaks that lie 180° apart [Fig. 9(a),
left]; in regions with crossing fibers (e.g., corona radiata), the
curve shows four peaks [peaks lying 180° apart belong to
one fiber bundle; see Fig. 9(a), right]. Regions with steep
fibers show a different behavior: The intensity curve has a
single broad peak, and the position of the peak coincides
with the orientation of the fibers [see Fig. 9(a), middle].
Figure 9(b) shows the simulated scattering patterns for

parallel in-plane fibers, parallel out-of-plane fibers with 70°
inclination, and interwoven crossing fibers with a 90°
crossing angle (cf. Fig. 7). To enable a comparison with
the measured data, the scattering patterns are evaluated
along the circle of illumination (47.6° from the center; see
the white dashed circle in the scattering pattern).
The resulting graphs in Fig. 9(b) correspond very well to

the graphs obtained from the scattering measurements in
Fig. 9(a), which demonstrates that our simulations make
accurate predictions and that scattering measurements can
indeed be used to extract valuable information about the
substructure of brain tissue like the crossing angle of the
nerve fibers.

V. DISCUSSION

A. Transmittance measurements of brain sections

When studying brain tissue properties, it should be noted
that there exists a large variability between brains from
different species, but also between brains from different
subjects [57,58]. In addition, every brain section is unique in
terms of its exact tissue composition and preparation. In
contrast to the birefringence signal, the transmittance of
brain tissue depends very much on these factors, causing dif-
ferences in consecutive brain sections [cf. 3D-reconstructed
volume of transmittance images in Figs. 13(b) and 13(c)].
For this reason, we combine various experimental studies on
different species, subjects, and brain sections (Sec. III A) to
demonstrate that the transmittance decreases steadily with an
increasing inclination angle of the nerve fibers (by more than
50% for all investigated tissues)—independently from these
factors. This finding suffices to perform the classification
procedure of brain tissue presented in Sec. III C and to
distinguish in-plane crossing from out-of-plane nerve fibers.

B. Simulating light scattering in brain tissue

To model and better understand the observed trans-
mittance effects, we perform FDTD simulations using
artificial nerve fiber models. In previous top-down simu-
lation approaches of 3D-PLI, the birefringence of the nerve
fibers has been modeled by series of Jones matrices
[36,56]. In contrast to the birefringence, the transmittance
of brain tissue is less determined by absorption (absorption
coefficient is small [50,51]) and mostly by scattering of
light, for which there exists to date no simple model. The
FDTD simulations solve Maxwell’s equations in a bottom-
up approach and require much more computing time, but
they enable studies of complex light-matter interactions
like scattering at micrometer resolution, without detailed
knowledge of the scattering behavior of brain tissue.
Therefore, we use FDTD simulations to develop a model
for the transmittance of brain tissue and to improve the
interpretation of measured data.
FDTD simulations are a proven tool for studying light

scattering in lithography applications [59–61] or nano-
structures [62–64]. They have also been applied to inves-
tigate microscopy measurements of nonbiological and
biological tissue samples [59,65,66] but not yet to brain
tissue. One reason is that simulations of tissue samples that
have dimensions of several micrometers and include all
structural details are computationally too intense, because
the mesh size in the simulation needs to be much smaller
than the wavelength and should be small enough to resolve
all geometrical features. To still enable the investigation of
larger samples like brain tissue, we use high-performance
computing and a simplified simulation model for the
optics of the imaging system and the inner structure of
the nerve fibers.
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Most nerve fibers in the brain are surrounded by a
so-called myelin sheath, which consists of multiple layers
with 3–5 nm thickness (see Appendix D). If the exact
layered structure of the myelin sheath is modeled, the mesh
size in the simulations can be at most 3 nm. In this case, the
simulation of a single nerve fiber with 1 μm diameter
consumes almost 290 000 core hours (see Appendix H 1).
To enable the simulation of larger tissue samples with
various simulation parameters, we develop a simplified
nerve fiber model with double myelin layers and a mesh
size of 25 nm.
Despite these simplifications, FDTD simulations are

feasible to model sample sizes only up to the order of
100 × 100 × 100 μm3, which is much smaller than the
investigated brain sections (with diameters of several
centimeters). However, as the in-plane resolution of the
employed imaging systems and the nerve fiber diameters
are on the order of 1 μm, the sample size used for the
simulations (30 × 30 × 30 μm3) is still sufficient to make
predictions for different fiber configurations within a
measured tissue voxel.
The FDTD simulations are computationally too expen-

sive to simulate all different possible substructures. In order
to develop general models that can be applied to the
interpretation of brain tissue, the predictions from the
simulations should not depend on the very details of
the simulated substructure. Although the scattering of light
depends on details of the simulated nerve fiber configura-
tions like the axon diameter, myelin sheath thickness, or
fiber orientation distribution [67], these dependencies are
negligible compared to the influence of the fiber inclination
(see Appendix H and Sec. III A 2).

C. Validation of the simulation approach

While the FDTD algorithm itself is an established
method and has been proven to yield reliable results
[47,68], the validation of the simulation approach to
correctly model brain tissue properties is not so straightfor-
ward. Artificial phantoms that provide similar dimensions
and properties as nerve fibers are not available and cannot
be used for validation. Therefore, we validate our simu-
lation approach and the employed models in different ways.
To validate the model of the imaging system, the

simulation algorithm was tested on a well-defined sample
[U.S. Air Force (USAF) resolution target; see Appendix H 2
and Ref. [67] ]. The robustness of the simulation model with
respect to changes in the simulation parameters (numbers of
myelin layers, wavelengths, and mesh sizes) is validated in a
rigorous study; see Appendix H. We show that the simplified
models still reproduce the transmittance effects observed in
the measurements (Sec. III A 2) and that our results are not
sensitive to small changes in the simulation parameters, so
our model is a good compromise between accuracy and
computing time.

Finally, the predictions of our simulation algorithm are
validated both experimentally and by using anatomical
knowledge.
The experimental and simulation studies in Sec. III B are

performed independently from each other and still yield the
same result that the transmittance is mostly independent
of the crossing angle. The validation of the classification
procedure in Sec. III C is partially based on the predictions
from the simulation studies and, therefore, also serves as an
indirect validation of the simulation approach.
Most importantly, the scattering measurement is

designed after analyzing the simulated scattering patterns.
The measurement results correspond well to the simulated
prediction, both in a well-defined model system (two
crossing optic tracts, Sec. IV B) and in whole brain tissue
samples (Sec. IV C). In particular, the model system has a
very similar structure as the simulation model of separate
crossing fiber bundles and can, therefore, serve as a tissue
“phantom.” The correspondence between experimental and
simulation results provides compelling evidence that both
our simulation algorithm and our experimental procedures
work as intended.

D. Generalization of the developed
simulation framework

The developed simulation framework can easily be
adapted to microscopy techniques with different optics
(numerical aperture, wavelength, polarization, etc.). Our
framework is optimized for large-scale, complex fiber
structures with dimensions in the micrometer scale, but
our findings are not restricted to brain tissue. As the
simulated samples are characterized only by their geometry
and refractive indices, biological and nonbiological sam-
ples with comparable fibrous structures and refractive index
differences (e.g., muscle fibers, collagen, and artificial
fibers) are expected to show similar transmittance effects.
(To increase the transmittance contrast between flat and
steep fiber structures, the embedding solution should have a
noticeably different refractive index than the fibers.)
Scattering measurements revealing the fiber crossing
angle could, for example, enhance the interpretation of
collagen structures in the sclera or the lamina cribrosa of
the eye [69,70].

E. Correction of misinterpreted 3D-PLI signals

In Sec. III C, we present a classification procedure to
correct for misinterpreted 3D-PLI signals. The classifica-
tion can be applied to already existing 3D-PLI data, without
a need for an advanced setup with a tiltable specimen stage.
This feature allows an automated postprocessing of
large image datasets, improving the reliability of 3D-PLI
nerve fiber orientations in already existing brain atlases.
By identifying misinterpreted regions with low fiber
density or in-plane crossing fibers, the computed 3D fiber
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orientations in all other regions can be considered as
reliable.
While tilting allows an improved interpretation of out-of-

plane nerve fibers in regions with low fiber density (e.g., in
the cortex), the employed model assumes parallel fibers and
does not take fiber crossings into account [42,43]. With the
developed classification procedure, we are now able to
reliably identify regions with crossing nerve fibers, which
can serve as a priori information for anatomical studies and
tractography algorithms. From simulation studies, we know
that the strength of the birefringence signal (retardation)
decreases with an increasing crossing angle of the nerve
fibers [56]. Future studies should investigate how the
strength of the birefringence signal can be used to estimate
the fiber crossing angle in regions with identified fiber
crossings.

F. Applications in conventional
transmission microscopy

Polarization-dependent light scattering which leads to
diattenuation (polarization-dependent attenuation of light)
cannot explain the observed inclination dependence of the
transmittance, because the diattenuation of brain tissue is
small [71,72]. In the present study, we show that the
observed transmittance effect is mostly independent of the
polarization [see Fig. 18(a)]. Therefore, simple transmis-
sion microscopy images, which usually provide only 2D
information, can be used to distinguish out-of-plane from
in-plane fiber structures—provided that the reference
(region with in-plane fibers and maximum density, e.g.,
corpus callosum) is known. The analysis is possible with-
out a need to change the experimental setup or to repeat
measurements and adds important 3D information to the
analysis of measured data. Moreover, our findings enable
an automated segmentation of brain tissue into regions with
white and gray matter, which is traditionally done by
evaluating cell density distributions.

G. Scattering measurements revealing
tissue substructures

In Sec. IVA, we show the great potential of scattering
measurements to reveal the underlying substructure of a
measured tissue voxel, e.g., the crossing angle of the nerve
fibers. Similar to how x-ray crystallography with a wave-
length of about one angstrom can be used to reconstruct the
structure of a crystal at molecular resolution (in the order of
nanometers) [73], light in the visible spectrum (λ ∼ 0.5 μm)
that is scattered when passing through a brain section
contains information about the substructure of the tissue at
the resolution of single fibers (in the order of micrometers).
The present study is a proof of concept, intended to

validate the simulated scattering patterns and to show that it
is indeed possible to obtain valuable additional information
by measuring the scattering patterns of brain tissue. We use
a prototype setup with limited spatial resolution (≥6.3 μm

per pixel) and oblique illumination with a limited number
of angles (≥15° steps). Despite its simplicity, we are able to
use the employed setup to reveal highly complex nerve
fiber structures like crossing fibers in the corona radiata
(see Sec. IV C). To resolve more details in the scattering
pattern, e.g., in the case of fibers with small crossing angles
or multiple crossings, the spatial and angular resolutions
can easily be improved. By using more advanced tech-
niques, e.g., by rotating the sample and light source or
moving the detector behind the sample, it would be
possible to measure the complete scattering pattern, gaining
even more information about the underlying substructure,
for example, the tissue homogeneity.
The FDTD simulations are essential to develop a model

for the correct analysis of the scattering measurements.
Once the model has been developed, it can be used for the
analysis (e.g., in-plane fibers with different crossing angles)
without a need for further simulations or computing time.
When extracting different information from the scattering
patterns (e.g., information about tissue homogeneity),
further improvements of the model are needed. Future
studies should address an automated evaluation of the
scattering measurements.
The setup used for the scattering measurements can

easily be integrated in the 3D-PLI setup, enabling studies of
both scattering and birefringence on the same brain section
without moving the sample, and the development of a more
realistic model of the 3D nerve fiber architecture in the
brain—also in regions with crossing fibers.

VI. CONCLUSION

In this paper, we perform comprehensive experimental
and simulation studies to investigate how light scattering
in microscopy measurements can be leveraged to obtain
additional information about the 3D structure of fibrous
tissue samples like brain tissue. We show how misinter-
preted signals in 3D-PLI can be corrected and present a new
measurement technique that reveals nerve fibers crossings
at the micrometer scale, allowing a reliable, high-resolution
reconstruction of the brain’s nerve fiber architecture.
First of all, we developed and successfully applied a

versatile simulation framework based on the FDTD
method. Using high-performance computing and a sophis-
ticated simulation model, our tool enables one for the
first time to use FDTD simulations to study transmission
microscopy measurements, in particular, light scattering,
on large-scale complex structures like brain tissue. We
demonstrated that our simulations make valid predictions,
provide explanations for effects observed in the measure-
ment, and enable the development of new techniques that
enhance the interpretation of the measured data and extract
new information. The simulation framework can easily be
generalized to other microscopy techniques with different
optics and to tissue samples with comparable fibrous
structures and refractive indices (e.g., muscle fibers,
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collagen, and artificial fibers), allowing applications
beyond neuroscience.
Using extensive experimental studies on brain tissue

(ranging from rodents and monkeys to humans) and FDTD
simulations, we developed two major advances how the
high-resolution reconstruction of nerve fibers, in particular,
nerve fiber crossings, can be improved.

(i) 3D-PLI provides information about the 3D nerve
fiber orientations at micrometer resolution. However, re-
gions with in-plane crossing fibers were so far misinter-
preted as out-of-plane fibers. We could demonstrate that
with a combined analysis of transmittance and retardation
(strength of the birefringence signal), it is possible to
distinguish between these regions, allowing a more reliable
reconstruction of nerve fiber orientations in the brain. A
major advantage of this method is that it can be applied to
past 3D-PLI measurements and correct misinterpreted
nerve fiber orientations in large datasets without the need
to repeat any measurements. Our findings can also be used
to distinguish between in-plane and out-of-plane fibers in
simple transmission microscopy images, adding important
3D information to the analysis of measured data, and to
perform an automated segmentation of brain tissue into
white and gray matter regions. As 3D-PLI reconstructs the
3D nerve fiber architecture with microscopic resolution, the
knowledge about the existence of fiber crossings already
significantly improves the reconstruction of the highly
complex nerve fiber architecture in the brain.
(ii) We show that light scattering in the visible spectrum

reveals the substructure of an image voxel, i.e., the crossing
angle of the nerve fibers, with micrometer resolution.
Our findings open up a new field of research: Scattering
measurements can be used to obtain an even more detailed
reconstruction of nerve fiber crossings in the brain and to
solve the ongoing debate about the organization principles
of crossing fibers. The improved reconstruction of nerve
fiber crossings leads to an improved nerve fiber tractog-
raphy, and thus not only to a better understanding of the
structural organization principles in the brain, but also to a
better interpretation of clinical data obtained from diffusion
magnetic resonance imaging.
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APPENDIX A: MEASUREMENT METHODS

1. Preparation of brain sections

The measurements are performed on sections from
human brains (Fig. 8: female, 74 yr old; Fig. 12: male,
87 yr old), as well as on brain sections from vervet monkeys
(African green monkey: Chlorocebus aethiops sabaeus,
male, between 1 and 2 yr old), rats (Wistar, male, 3 months
old), mice (C57BL/6, male, 6 months old), and a
hooded seal [56]. All animal procedures have been
approved by the institutional animal welfare committee
at Forschungszentrum Jülich GmbH, Germany, and are in
accordance with European Union (National Institutes of
Health) guidelines for the use and care of laboratory
animals. The human brains are acquired in accordance
with the local ethic committee of the University of Rostock,
Germany, and the Netherlands Brain Bank, in the
Netherlands Institute for Neuroscience, Amsterdam. A
written informed consent of the subjects is available.
The brains are removed from the skull within 24 hr after
death, immersed in a buffered solution of 4% formaldehyde
for several weeks, immersed for several days in solutions of
10% and 20% glycerin combined with 2% Dimethyl
sulfoxide for cryoprotection, dipped in cooled isopentane
for several minutes, and deeply frozen. The frozen brains
are cut with a cryostat microtome (Leica Microsystems,
Germany) at a temperature of −30 °C into sections of
60 μm. (The human optic chiasm shown in Fig. 8 is cut into
sections of 30 μm.) The brain sections are mounted on
cooled glass slides, embedded in 20% glycerin solution,
covered by a cover glass, sealed with lacquer, and weighted
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for several hours to prevent the development of air bubbles.
The sections are measured 1–2 days after embedding.

2. 3D-PLI measurement

The 3D-PLI measurements are performed with a high-
resolution polarizing microscope (PM) manufactured by
Taorad GmbH, Germany. The microscope has been used in
previous 3D-PLI studies to measure the three-dimensional
nerve fiber orientations at a high resolution [34,35,41,76].
The light source consists of a single white LED (IntraLED
2020þ operated at 24 W) with integrated Köhler illumi-
nation and a bandpass filter, generating a wavelength
spectrum λ ¼ ð550� 5Þ nm. Further components are a
rotatable linear polarizer, a specimen stage, a circular
analyzer (quarter-wave retarder combined with linear
polarizer), and a CCD camera (monochrome RETIGA-
4000R camera by QImaging with a Kodak KAI-04022-
ABA image sensor) which records an image for each
rotation angle ρ ¼ f0°; 10°;…; 170°g of the polarizer,
yielding a series of 18 images. The microscope is equipped
with a motorized specimen stage (Märzhäuser, Germany)
which performs a translational scan of the brain section in
tiles of 2.7 × 2.7 mm2. To allow for stitching, the tiles
are measured with an overlap of 30% on all sides. The
objective lens (Nikon TL Plan Fluor EPI P 5×) has a
5× magnification and a numerical aperture of 0.15. The
resolution in object space is about 1.33 μm per pixel.
The transmittance and retardation images are computed

as described by Axer et al. [34,35] by performing a discrete
harmonic Fourier analysis on the measured light intensities
IðρÞ per image pixel: IðρÞ ¼ a0 þ a2 cosð2ρÞ þ b2 sinð2ρÞ.
The transmittance IT corresponds to the average over all 18
images and is computed from the Fourier coefficient of
order zero (IT ¼ 2a0); the retardation j sin δj corresponds to
the amplitude of the intensity signal and is computed from
the Fourier coefficients of order zero and two [j sin δj ¼
ða22 þ b22Þ1=2=a0], where δ is the phase shift induced by the
birefringent brain tissue. The transmittance images are
normalized by the transmittance image measured without
a sample, yielding normalized transmittance images (IT;N).
Images of several consecutive brain sections (Fig. 13 in

Appendix B 2) are registered onto each other using in-
house-developed software tools based on the software
packages ITK, ELASTIX, and ANTs [77–81], which perform
linear and nonlinear transformations. As an undistorted
reference volume, aligned blockface images are used: A
picture of the brain block surface (blockface image) is taken
every time before sectioning, and a pattern of ARTag
markers [82] is used to determine the position of the brain
block in two-dimensional space [83].

3. TPFM measurement

The TPFM measurements are performed with a custom-
made two-photon fluorescence microscope [29,44] at the

European Laboratory for Non-Linear Spectroscopy (LENS),
University of Florence, Italy. The microscope is equipped
with a mode-locked titanium-sapphire laser with a wave-
length of 800 nm which is coupled into a scanning system
based on a pair of galvanometric mirrors. The laser is
focused onto the sample by a water-immersion 25× objec-
tive lens (LD LCI Plan-Apochromat 25 × =0.8 Imm Corr
DICM27). The lateral displacement of the sample is realized
by a motorized xy stage (enabling tilewise scanning of
the sample). The axial displacement (along the z axis) is
realized by a closed-loop piezoelectric stage. The fluores-
cence signals are collected by two photomultiplier tubes,
which detect red and green fluorescence. The setup achieves
a resolution of 0.244 × 0.244 × 1 μm3. The sample is
measured in tiles of 250 × 250 μm2, with an overlap of
10% to allow for stitching.

4. Bright-field transmission microscopy

The bright-field transmission microscopy images (Fig. 12
in Appendix B 1 and Fig. S1 in Supplemental Material [55])
are obtained from ZEISS Axio Imager Vario. The micro-
scope is equipped with a white microLED, which emits
unpolarized light with wavelengths between 400 and
750 nm. The objective lens (Plan Apochromat 5×) has a
5× magnification and a numerical aperture of 0.16. The
resolution in object space is about 0.91 μm per pixel.

5. Light scattering measurement

The scattering measurements are performed with the
setup shown in Fig. 10. The customized light source (FZJ-
SQ300-DL-G-WCO provided by LUMIMAX®, iiM AG,
Germany) consists of a matrix of 36 × 36 LED diodes
(NSPG 510S, Nichia Corporation) and a diffuser plate
(acrylic glass), which illuminate an area of approximately
30 × 30 cm2 and generate mostly incoherent and unpolar-
ized light with a wavelength of ð525� 25Þ nm.
A mask with a hole is placed on top of the light source

so that the sample is illuminated under an angle around
47°–49° [see Fig. 10(a)]. The transmitted light intensity
behind the sample is recorded by a CCD camera (AVT
Oscar F-810C, sensor ICX-456AQ, objective lens Apo-
Rodagon-N 4.0=90, focal length 90 mm), which is placed
above the sample at a sufficient distance to ensure that only
light with nearly perpendicular incidence is collected.
During the measurement, the mask is rotated around the
center in equidistant steps in the clockwise direction, and
an image is recorded for each rotation angle. To achieve
a sufficient signal-to-noise ratio, a long exposure time
(0.5–2 sec) is chosen.
For the scattering measurement of the coronal vervet

brain section in Sec. IV C, a mask with a circular hole
[diameter 3.5 cm, distance from center 11.5 cm; see
Fig. 10(b)] is used. The distance between the light source
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and sample is set to 10.5 cm so that the center of the hole
illuminates the center of the sample under an angle of 47.6°
[see Fig. 10(a)]. The distance between the camera objective
and sample is set to 27.9 cm, yielding a pixel size in object
space of about 6.3 μm. During the measurement, the mask
is rotated in steps of 22.5° with an exposure time of 0.5 sec.
For the scattering measurement of the human optic

chiasm in Sec. IV B, a mask with a rectangular hole
(2.4 × 4 cm2, distance from center 12 cm) is used. The
distance between the light source and sample is set to
10.4 cm so that the center of the hole illuminates the center
of the sample under an angle of 49.1° [see Fig. 10(a)]. The
distance between the camera objective and sample is set to
28.5 cm, yielding a pixel size in object space of about
6.5 μm. During the measurement, the mask is rotated in
steps of 15° with an exposure time of 2 sec.

APPENDIX B: TRANSMITTANCE
MEASUREMENTS OF INCLINED FIBERS

1. Transmittance of flat and steep nerve fibers

In large anatomical structures with densely packed nerve
fibers, the inclination angles of the nerve fibers cannot be
exactly determined by 3D-PLI or TPFM measurements.
By investigating sections from brains that are cut along
mutually orthogonal anatomical planes, the transmittance
of the same brain region can be evaluated for flat nerve
fibers (with inclination angles α < 45°) in one section plane
and for steep nerve fibers (α > 45°) in the other section

plane. Since different brain sections from different spec-
imens might not be comparable due to differences in the
tissue structure and preparation, the transmittance values
are compared only within the same brain section.
Figure 11 shows the normalized transmittance images

IT;N of coronal and sagittal sections from rat and vervet
monkey brains. The coronal (sagittal) section planes are
indicated by blue (red) lines in the respective other brain
section for reference. Selected brain structures are identi-
fied according to rat [14,84,85] and vervet [52–54] brain
atlases. The transmittance values are evaluated in brain

(a) (b)
Camera

Sample

Mask

FIG. 10. Schematic setup of the scattering measurement. (a) Side
view of the setup, consisting of an LED panel with a mask, a
specimen stage with a sample, and a camera. The numbers without
brackets belong to the scattering measurement of the vervet brain
section (Sec. IV C), and the numbers in brackets to the measure-
ment of the human optic chiasm (Sec. IV B). (b) Top view of the
mask used for the scattering measurement in Sec. IV C (circular
hole with 3.5 cm diameter and 11.5 cm distance from the center,
yielding an illumination angle of 47.6° with respect to the center of
the sample). During the measurement, the mask is rotated in steps
of 22.5° around the center in the clockwise direction. [For the
scattering measurement in Sec. IV B, a mask with a rectangular
hole (2.4 × 4 cm2) and steps of 15° are used.].

FIG. 11. Transmittance and retardation images of coronal and
sagittal brain sections for a rat (a) and a vervet monkey (b). The
coronal (sagittal) section planes are indicated by blue (red) lines
in the respective other brain section for reference, and selected
anatomical structures are labeled (see the legend). The upper two
rows of each panel show the normalized transmittance images
IT;N , and the third row shows the retardation images j sin δj, both
obtained from 3D-PLI measurements with 1.33 μm pixel size.
The images in the first row show the whole brain section, and the
images in the second and third rows show an enlarged view.
The selected regions in yellow (green) belong to steep (flat) nerve
fibers, which appear dark (bright) in the transmittance and
retardation images.
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regions that have a relatively homogeneous tissue compo-
sition and that include predominantly flat nerve fibers
(areas surrounded in green) or steep nerve fibers (areas
surrounded in yellow).
The approximate orientation of the nerve fibers is known

from the anatomy of the rat and the vervet brain as
described in the atlases and is confirmed by the retardation
images j sin δj shown below the transmittance images in
Fig. 11: Regions with flat (noncrossing) nerve fibers are
expected to show larger retardation values than regions with
steep nerve fibers (δ ∝ cos2 α). The mean transmittance
values and the standard deviation for the evaluated green
and yellow areas can be found in Table I.
In regions with flat nerve fibers, the mean transmittance

values are larger (IT;N ∈ ½0.18; 0.33�) than in regions with
steep nerve fibers (IT;N ∈ ½0.08; 0.15�). A region with flat
(steep) nerve fibers which shows large (small) transmit-
tance values in one section plane (coronal or sagittal) shows
the opposite behavior in the corresponding orthogonal
section plane. The difference is especially large when
comparing the transmittance values of the corpus callosum
(a massive fiber tract connecting the two hemispheres of the
brain) and the cingulum (aC-shaped fiber structure running
mostly perpendicular to the corpus callosum). In the
coronal brain sections, the fibers of the cingulum (cg)
run mostly perpendicular to the section plane and have
about 55%–67% lower transmittance values than the fibers
of the corpus callosum (cc) which lie mostly within the
section plane. In the sagittal brain sections, the situation is
exactly the opposite: The transmittance values of the corpus
callosum are about 50%–54% less than the transmittance
values of the cingulum. Fibers in the rat and vervet monkey
brains show a similar pattern.
Images obtained from conventional bright-field trans-

mission microscopy with unpolarized light show similar
effects, not only in vervet but also in human brain sections
(see Fig. 12 and Fig. S1 in Supplemental Material [55]):
Regions with steep (out-of-plane) nerve fibers appear
darker than regions with flat (in-plane) nerve fibers.

2. 3D reconstruction of transmittance images

So far, we have compared single brain sections from
different species to each other. To study the transmittance
across several consecutive brain sections, we register the
transmittance images of 234 coronal sections from the right
hemisphere of a vervet monkey brain onto each other using
in-house-developed software tools (see Appendix A 2).
Figure 13 shows the 3D-reconstructed transmittance images
along three orthogonal anatomical planes: coronal (a), sagittal
(b), and horizontal (c), aswell as a detail of the 3Dvolume (d).
The white arrows point to the sagittal stratum—a white
matter structure with nerve fibers that are oriented mostly
perpendicular to the imageplane (along thezdirection), as can
be seen in the sagittal and horizontal planes. The structure
appears much darker in the transmittance images than the
surrounding regions. Thus, the observation that steep nerve
fibers show lower transmittancevalues than flat nerve fibers is
consistent across several consecutive brain sections.

3. Transmittance contrast of nerve fiber bundles
in mutually orthogonal planes

In bulk tissue with densely packed nerve fibers, the fiber
inclinations cannot be exactly determined. In regions with
distinct fiber bundles, however, the inclination angles can
be estimated by manually evaluating the course of the fiber
bundles in different section planes. For this purpose, we
select a structure in the rat brain that contains several
distinct nerve fiber bundles with different, well-defined
inclination angles—the so-called caudate putamen. To esti-
mate the inclination angles of the nerve fibers, we evaluate

TABLE I. Mean transmittance values (IT;N) and standard
deviation for the selected green and yellow areas in Fig. 11.
Areas belonging to the same structure are evaluated together
(cg≡ cg1 ∪ cg2).

Rat Vervet

Coronal Sagittal Coronal Sagittal

ac � � � � � � � � �
cc
cg
df � � � � � � � � �
f � � � � � �
fi � � � � � �
sm � � � � � � � � �

(a) (b) (c)

(d)

Sagittal 
stratum

FIG. 12. Bright-field transmission microscopy vs 3D-PLI
measurement of a human brain section (right occipital lobe).
(a) Photograph of the brain block surface before sectioning
(blockface image). The enlarged region shows the sagittal stratum,
a white matter structure that runs mostly perpendicular to the
section plane (GM ¼ gray matter). (b) Bright-field transmission
microscopy image of the same region with 0.91 μm pixel size. (c)
Normalized transmittance image of the same region obtained from
a 3D-PLI measurement with 1.33 μm pixel size. (d) Correspond-
ing retardation image. Regions with steep out-of-plane fibers
(sagittal stratum) show lower transmittance (and retardation) values
than the neighboring regions with nonsteep fibers; the transmitted
light intensity images obtained from bright-field transmission
microscopy (b) and 3D-PLI (c) look similar.
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the course of the bundles in mutually orthogonal section
planes (coronal, sagittal, and horizontal); see Fig. 14(a). As
the brain sections are obtained from different brains and
might differ in tissue composition and preparation, the
transmittance images cannot be directly compared to each
other. To still enable a comparison between the trans-
mittance of flat and steep nerve fibers, the transmittance
values in regions with fibers are compared to the trans-
mittance values in regions with surrounding tissue for each
brain section separately, assuming that the transmittance of
the surrounding tissue does not depend much on the choice
of the section plane.
To separate the fiber bundles from the surrounding

tissue, we use the image contrast of the retardation images

[see the yellow lines in Fig. 14(b)]. Figure 14(c) shows the
corresponding histograms of the transmittance evaluated
in regions with nerve fibers (pink) and in regions with
surrounding tissue (cyan). As the coronal brain section
contains mostly steep nerve fibers which yield low retar-
dation values, the image contrast in the retardation image is
not large enough to separate the fibers from the surrounding
tissue. Therefore, we compute the histogram for the whole
caudate putamen (area surrounded by yellow line) and
assume that the peak with lower (larger) transmittance
belongs to nerve fibers (surrounding tissue).
From the minimum and maximum peak transmittance

values of the histograms [pink and cyan numbers in
Fig. 14(c)], we compute the transmittance contrast C≡
ðIT;max − IT;minÞ=ðIT;max þ IT;minÞ between fiber bundles
and surrounding tissue. For flat fiber bundles in the sagittal
and horizontal brain sections, this contrast is much lower
(5° ≤ α ≤ 60°: C ≈ 14%–20%) than for steep fiber bundles
in the coronal brain section (45° ≤ α ≤ 85°: C ≈ 62%).
Assuming that the transmittance of the surrounding tissue is
mostly independent of the fiber orientation, this result
demonstrates again that the transmittance values for steep
nerve fibers are significantly lower than for flat nerve
fibers.

4. Transmittance vs inclination of nerve
fiber bundles in TPFM images

The studies described in Appendices B 1–B 3 have been
performed without knowing the exact inclination angles
of the nerve fibers. To determine the fiber inclination, we
measure the caudate putamen of a coronal mouse brain
section both with 3D-PLI and with TPFM [see the inset in
Fig. 3(a) and Fig. S2 in Supplemental Material [55] ].
To obtain the inclination angles of the fiber bundles, the

cross sections of the bundles are determined in the first and
the last slice of the TPFM image stack [cf. Fig. S2(d) [55] ].
For each fiber bundle, the inclination angle is computed
from the midpoints of the corresponding cross sections and
from the thickness of the brain section [cf. Fig. S2(c) [55] ].
The fiber inclination and transmittance values are evaluated
for 40 fiber bundles in the caudate putamen [see the colored
shapes in Figs. S2(b) and S2(d) [55] ].
The scatter plot in Fig. 3(a) shows the averaged trans-

mittance values plotted against the determined fiber incli-
nation angles. Although the values are broadly distributed,
the scatter plot shows a clear tendency toward a decrease in
transmittance with an increasing fiber inclination angle.
The values in orange belong to regions with lower fiber
densities which might lead to overestimated transmittance
values. However, the decrease in transmittance is also
observed in regions with maximum fiber density (values
in blue): While the mean transmittance values for flat nerve
fibers (α < 50°) reach larger values (0.1 < IT;N < 0.2), the
mean transmittance values for steep nerve fibers (α > 60°)
are small (IT;N < 0.05).

(a)

(b)

(c)

(d)

FIG. 13. 3D-reconstructed normalized transmittance images
(IT;N) of the right hemisphere of a vervet monkey brain (234
consecutive sections from the occipital lobe) obtained from 3D-
PLI measurements with 1.33 μm pixel size. The brain is cut along
the coronal plane (xy plane), and the resulting brain sections are
registered onto each other in the z direction. (a)–(c) Cross
sections of the 3D volume shown along the coronal (xy), sagittal
(xz), and horizontal (yz) planes. The colored lines indicate the
position of the displayed xy, xz, and yz planes. (d) Detail of the
3D volume. The white arrows point to the sagittal stratum—a
white matter structure that runs mostly perpendicular to the image
plane (along the z direction) and which appears much darker in
the transmittance images than the surrounding tissue.
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APPENDIX C: GENERATION OF ARTIFICIAL
FIBER CONFIGURATIONS

1. Densely grown fiber bundle

The bundle of densely grown fibers [see Fig. 3(b)(i)] is
generated by in-house-developed software: N ¼ 700 circles
with uniformly distributed diameters (d ∈ ½1.0; 1.6� μm) are
randomly uniformly placed in the xy plane (in an area
of 45 × 30 μm2). The circles are initialized with a random
speed (maximum 0.1 μm displacement per step) and collide
with each other (assuming elastic collision with particle
mass r2) until a solution is reached without a collision in the
xy plane. To obtain well-distributed fibers, the previous step
is repeated 250 times before the positions of the circles are
stored. To obtain a 3D fiber volume, the circle positions are
stored while incrementing the z position by 1 μm per step.
To generate fiber bundles with different inclination angles,
the resulting bundle of densely grown fibers is rotated

around the y axis with respect to the center position and
cropped to a volume of 30 × 30 × 30 μm3. To prevent fibers
from touching each other after discretization, all fiber
diameters are reduced by 5%. In the resulting fiber bundle,
about 60% of the volume is filled with fibers.

2. Inhomogeneous fiber bundles

Inhomogeneous fiber bundles, like the bundle with broad
fiber orientation distribution [Fig. 3] or crossing fibers
[Figs. 5(a) and 5(b)], are generated by in-house-developed
software [86] which allows collision control in 3D. Starting
from well-distributed straight fibers with N ¼ 700 and d ∈
½1.0; 1.6� μm (obtained after 250 steps as described in the
previous section), the fibers are divided iteratively into
segments of 2–5 μm and assigned a random displacement
in the x, y, and z direction. The resulting fiber segments are
split or merged until the length of each segment is again
between 2 and 5 μm, ensuring that the maximum angle
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Fibers
Surrounding 
tissue

FIG. 14. Transmittance contrast of nerve fiber bundles in mutually orthogonal anatomical planes. (a) Normalized transmittance images
(IT;N) of a coronal, sagittal, and horizontal rat brain section obtained from 3D-PLI measurements with 1.33 μm pixel size. The colored
lines indicate the approximate position of the section planes. The enlarged views show the region of the caudate putamen and the
maximum and minimum angles under which the nerve fiber bundles are oriented with respect to the section planes. (b) Corresponding
retardation images (j sin δj) of the enlarged views. The image contrast is used to select regions with fibers and with surrounding tissue in
the caudate putamen (yellow lines). (c) Histograms of the transmittance values (IT;N) for the selected regions with nerve fibers (pink) and
with surrounding tissue (cyan) in the caudate putamen. For the coronal brain section, the retardation image cannot be used to separate the
fibers from the surrounding tissue, because the fibers are oriented almost perpendicular to the image plane, which leads to a small
retardation signal and a small image contrast. Therefore, the histogram is computed over the whole selected region, and the peak with
lower (larger) transmittance is assumed to belong to fibers (surrounding tissue). The contrast values are computed from the respective
peak values (numbers in pink and cyan) via C ¼ ðmax−minÞ=ðmaxþminÞ. The contrast for steep nerve fibers (coronal brain section) is
much larger than for flat nerve fibers (sagittal and horizontal brain section).
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between adjacent segments is less than 20°. When a
collision between two segments is detected, the segments
are exposed to a small repelling force, and the previous step
is repeated until no more collisions are detected. To prevent
fibers from touching each other, all fiber diameters are
reduced by 5%. The resulting fiber bundle is cropped to a
volume of 30 × 30 × 30 μm3. The fiber bundles are gen-
erated from different configurations of straight fibers and
different random displacements.

(i) Bundle with broad fiber orientation distribution
[Fig. 3(b)(ii)].—The fiber bundle is generated from
a bundle of straight horizontal fibers in the x direction
and a maximum random displacement of 10 μm.
In the resulting fiber bundle, about 33% of the volume
is filled with fibers. To generate fiber bundles with
different inclination angles, the resulting bundle is
rotated around the y axis with respect to the center
position.

(ii) Separate crossing fiber bundles [Fig. 5(a)].—The
bundle of straight horizontal fibers in the x direction
is divided into an upper and a lower bundle of
thickness z=2, respectively. The upper bundle is
rotated around the z axis about the center position by
an angleþχ=2, and the lower bundle is rotated by an
angle −χ=2, resulting in two separate bundles with
crossing angle χ [cf. Fig. 5(a)]. The resulting fibers
are used as input for the algorithm with a maximum
displacement of 1 μm. Depending on the crossing

angle of the resulting fiber bundle, between 40% and
50% of the volume is filled with fibers.

(iii) Interwoven crossing fiber bundles [Fig. 5(a)].—
Each fiber layer in the z direction of the straight
horizontal fiber bundle (oriented in the x direction)
is rotated alternately by �χ=2 [cf. Fig. 5(b)]. The
resulting fibers are used as input for the algorithmwith
a maximum displacement of 1 μm. Depending on the
crossing angle of the resulting fiber bundles, between
40% and 50% of the volume is filled with fibers.

(iv) Mutually orthogonal, interwoven fiber bundles
[Fig. 5(b)].—The straight horizontal fiber bundle
(oriented in the x direction) is divided into three
types of alternating layers: One layer is rotatedþ45°
around the z axis, one −45° around the z axis, and
one þ90° around the y axis, yielding two horizontal
fiber bundles in the xy plane and one vertical fiber
bundle oriented along the z axis. The resulting fibers
are used as input for the algorithm with a maximum
displacement of 1 μm. In the resulting fiber bundle
[cf. Fig. 5(c)], ca. 32% of the volume is filled with
fibers.

APPENDIX D: MODEL OF THE NERVE FIBERS

Most axons in the white matter of the brain are surrounded
by a myelin sheath, which consists of densely packed cell
membranes [87,88]. Figure 15(c) shows the layered structure

(a) (b) (e)

(d)(c)

Myelin 
sheath

Nerve 
fiber

Axon

Intracellular space

Extracellular space

Lipids

Lipids

Lipids

CytoplasmCytoplasm

ExtracellularExtracellular

FIG. 15. Modeling of nerve fibers. (a) Schematic drawing of a nerve fiber (myelinated axon). (b) Cross section through the nerve fiber
showing the inner axon and the surrounding myelin sheath (formed by a type of glial cell which spirally wraps around the axon). (c)
Schematic representation of the myelin structure consisting of several lipid bilayers (5-nm-thick cell membranes) with an intracellular or
cytoplasmic and an extracellular space of about 3 nm. (d) Each cell layer (two lipid bilayers with separating cytoplasm) is considered as
one “myelin layer” with an effective refractive index nm ¼ 1.47 (blue), the extracellular space is considered to be filled with glycerin
solution (“glycerin layer”) with a refractive index ng ¼ 1.37 (yellow). The myelin and glycerin layers are assumed to contribute 3=4 and
1=4 to the overall myelin sheath thickness tsheath, respectively. (e) Nerve fibers are modeled with double myelin layers with thickness
tm ¼ ð3=7Þtsheath and a single separating glycerin layer with thickness tg ¼ ð1=7Þtsheath. The myelin sheath thickness contributes
approximately one-third to the overall fiber radius (tsheath ¼ 0.35r). The inner axon is modeled with a radius rax ¼ 0.65r and a refractive
index nax ¼ 1.35.
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of the myelin sheath: It consists of alternating layers of cell
membranes (lipid bilayers of about 5 nm thickness) and
intracellular or cytoplasmic and extracellular space (of about
3 nm thickness) [39,89]. As the extracellular membranes are
not fused and swell in water [39,87], it is assumed that the
extracellular space is filled with the glycerin solution used
for embedding the brain sections.
The refractive indices n of the layers can be estimated

from literature values of cell membranes or lipids (n ¼ 1.47
[90], neglecting any proteins), cytoplasm (n ¼ 1.35 [91]),
and glycerin solution (n ¼ 1.37, measured with a digital
refractometer).
For the simulation studies in Secs. III and IV, a sim-

plified model is used to represent the myelin sheath [see
Fig. 15(d)]: Each cell layer (two lipid bilayers with
separating cytoplasm) is considered as one myelin layer
with an effective refractive index nm ¼ 1.47 (blue), and the
extracellular space is considered to be filled with glycerin
solution (glycerin layer) with a refractive index ng ¼ 1.37
(yellow). Assuming that the extracellular space increases
when being embedded in glycerin, the myelin and glycerin
layers are assumed to contribute 3=4 and 1=4 to the overall
myelin sheath thickness tsheath, respectively. The refractive
index of the cytoplasmic layer is neglected in this model.
The myelin sheath thickness contributes approximately

one-third to the overall fiber radius r [92]. Hence, the
myelin sheath thickness is chosen to be tsheath ¼ 0.35r and
the radius of the inner axon rax ¼ 0.65r. The refractive
index of the axon (green) is chosen to correspond to the
refractive index of cytoplasm (nax ¼ 1.35). The myelin
sheath is modeled as double myelin layers with thickness
tm ¼ ð3=7Þtsheath each and a single glycerin layer with
thickness tg ¼ ð1=7Þtsheath separating the myelin layers.
Interruptions of the myelin sheath (nodes of Ranvier) and
the small space between the axon and myelin sheath
(periaxonal space [88]) are neglected in this model.

APPENDIX E: FDTD ALGORITHM

The propagation of the polarized light wave through the
brain tissue samples (nerve fiber configurations) is simulated
by a massively parallel 3D Maxwell solver based on a
conditionally stable FDTD algorithm [45]. The algorithm
computes the electromagnetic field components numerically
by discretizing space and time and approximatingMaxwell’s
curl equations by finite differences: The discretization is
realized with a cubic Yee grid [93] (each electric field
component is surrounded by four magnetic field components
and vice versa) and a leapfrog time-stepping scheme. The
spatial and temporal derivatives in Maxwell’s curl equations
are approximated by second-order central differences. For
more details, see Menzel et al. [46].
The simulations are performed with the software

TDME3D™ [47,68]—a massively parallel three-dimensional
FDTD Maxwell solver, copyright European Marketing
and Business Development BVBA. The software solves

Maxwell’s equations for arbitrary-shaped objects that are
illuminated by arbitrary incident plane waves and that
consist of linear, isotropic, lossy materials with known
permeability, permittivity, and conductivity. For the FDTD
simulations, a combined algorithmic approach is used:
In free space, Yee’s algorithm is applied. To compute the
interaction of the light with brain tissue, an unconditionally
stable Lie-Trotter-Suzuki product formula approach is
used. This approach results in a computationally efficient
but conditionally stable algorithm. For more information,
see De Raedt [94]. The simulations are performed on the
supercomputer JUQUEEN [75] at Forschungszentrum
Jülich GmbH, Germany.

APPENDIX F: SIMULATION PARAMETERS

Table II lists the parameters that are used for the
simulation studies in Secs. III and IV.
All fiber configurations are generated in a volume of

30 × 30 × 30 μm3. As described in Appendix D, each
fiber is modeled by an inner axon and a surrounding
myelin sheath with two layers and different refractive
indices [see Fig. 15(e)]. The surrounding medium is
assumed to be homogeneous with a refractive index nsurr ¼
ng ¼ 1.37, which corresponds to the refractive index of
gray brain matter as well as to the refractive index of the

TABLE II. Parameters for the simulation studies in Secs. III and
IV: expenses of one simulation run (computation of one fiber
configuration, one wavelength, and one angle of incidence on
JUQUEEN), dimensions of the simulation volume, and fiber
properties (radius r, thickness t, and refractive index n).

General simulation parameters

Yee mesh size Δ ¼ 25 nm
Courant factor C ¼ 0.8
Number of periods 200
MPI grid 16 × 16 × 16
Core hours About 7000–8000
Wall time About 1:45–2:00 h
Minimum memory required About 260–360 GB

Simulation box

Volume x × y × z ¼ 30 × 30 × 35 μm3

Boundaries UPML (1 μm thick)

Surrounding medium

Dimensions x × y × z ¼ 30 × 30 × 31 μm3

Refractive index nsurr ¼ 1.37

Fiber configuration

Volume x × y × z ¼ 30 × 30 × 30 μm3

Fiber radius r ∼ 0.5 μm
Axon rax ¼ 0.65r, nax ¼ 1.35
Myelin sheath tsheath ¼ 0.35r ¼ tm þ tg þ tm
Double myelin layers tm ¼ 3

7
tsheath, nm ¼ 1.47

Single glycerin layer tg ¼ 1
7
tsheath, ng ¼ 1.37
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surrounding glycerin solution. To account for the fact
that the brain sections are embedded in glycerin solution
(see Appendix A 1), 0.5-μm-thick layers of glycerin sol-
ution (with refractive index ng ¼ 1.37) are added at the
bottom and on top of the sample, yielding a medium with
dimensions 30 × 30 × 31 μm3. The dimensions of the
simulation box are chosen to be 30 × 30 × 35 μm3 to leave
some space for light source and detection planes. The
simulation volume is surrounded by uniaxial perfectly
matched layer (UPML) absorbing boundaries of 1 μm
thickness, thick enough to prevent light from being
reflected back into the simulation volume. The different
components of the sample are simulated as dielectrics
with real refractive indices (as described in Appendix D).
Absorption is neglected, because the absorption coeffi-
cients of brain tissue are small [50,51].
The simulation studies are performed for a duration of

200 periods and a Courant factor of 0.8. The Yee mesh size
is chosen to be Δ ¼ 25 nm. This mesh size is just large

enough to account for the double myelin layers of the nerve
fiber model (see Appendix D: The glycerin layer for fibers
with 1 μm diameter is 25 nm thick).
The light source is modeled as a plane monochromatic

wave. The simulation studies are performed for normally
incident and coherent light with left-handed circular polari-
zation and a wavelength of 550 nm (corresponding to
the peak wavelength of the employed light source; see
Appendix A 2). Using an MPI grid of 16 × 16 × 16 on
JUQUEEN, each simulation run (i.e., the calculation of one
configuration, one wavelength, and one angle of incidence)
consumes between 7000 and 8000 core hours, requires a
minimum memory between 260 and 360 GB, and lasts
between 1:45 and 2:00 hours.

APPENDIX G: COMPUTATION OF THE
TRANSMITTED LIGHT INTENSITIES

Figure 16 shows how the 3D-PLImeasurement is modeled
by means of FDTD simulations. For the simulations, a

Camera

Analyzer

Retarder

Polarizer

Pixel size:

Detector: Moving average:

Numerical aperture:

Sample size: Sample size:

Numerical aperture:

Rasterizing:

Structures Mesh size

Refractive index: Refractive index:

Retardance: Retardance:

Partial polarization

Plane wave

Completely polarized

Wavelength: Wavelength:

Coherence length: Coherent light

Angle of incidence: Angle of incidence:

FIG. 16. Modeling of the 3D-PLI measurement. The figure and table on the left-hand side show the optical components of the
polarimeter (the order of the polarizing filters is different than in the measurement, but the setup is mathematically equivalent): light
source (green), polarizer and retarder (dark gray), sample (light gray), and objective lens, detector, and camera (blue). The table and
figure on the right-hand side show how the optical elements are modeled by FDTD simulations: The incoherent and diffusive light
source (LED) with peak wavelength λ̂ and full width at half maximum (FWHM) is modeled by performing several simulation runs with
plane waves that have different wavelengths (λ) and angles of incidence (φ, θ). The modeled light source emits coherent light that is
circularly polarized. The tissue sample is represented by an artificial fiber architecture, the rotating analyzer by a rotated Jones matrix
[with rotation matrix RðρÞ]. The numerical aperture (NA) of the imaging system is modeled by considering only wave vector angles
θk < arcsinðNAÞ. The spherical microlenses of the camera detector are modeled by performing a moving average over the area of the
microlens with radius r ¼ 1.33 μm=2.
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mathematically equivalentpolarimetric setupof theemployed
microscope is considered in which the sample is illuminated
by (left-handed) circularly polarized light and analyzed by a
rotating linear polarizer (analyzer).
The computation of the transmitted light intensities

consists of several steps.
(i) Maxwell solver.—After passing the polarizing filters

in front of the sample (see Fig. 16, left), the light wave is
left-handed circularly polarized. The propagation of the
light wave through the sample is computed by TDME3D as
described in Appendix E. The resulting light wave is
represented by a superposition of monochromatic plane
waves with different wave vectors k and real amplitudes
E0;k:

Ekðr; tÞ ¼ E0;k cosðk · r − ωtþ ϕÞ ðG1Þ

≡ Ak cosðk · r − ωtÞ − Bk sinðk · r − ωtÞ; ðG2Þ

where r and t are the spatial and temporal coordinates,
respectively, ω is the angular frequency, ϕ is the phase,
and Ak and Bk are defined as Ak ¼ E0;k cosϕ and
Bk ¼ E0;k sinϕ, respectively.
Note that every index k denotes a different wave vector k

and is not related to the wave number k ¼ 2π=λ (the
wavelength of the transmitted light waves is the same as for
the ingoing light wave).
(ii) Yee shift.—Before further processing, the electro-

magnetic field components are shifted in the x; y; z direc-
tion to the middle of the corresponding Yee cell,
respectively:

Ek;xðr; tÞ∶ y ↦ yþ Δy=2; z ↦ zþ Δz=2; ðG3Þ

Ek;yðr; tÞ∶x ↦ xþ Δx=2; z ↦ zþ Δz=2; ðG4Þ

Ek;zðr; tÞ∶x ↦ xþ Δx=2; y ↦ yþ Δy=2; ðG5Þ

where Δx ¼ Δy ¼ Δz is the side length of the cubic
Yee cell.
For each shiftΔj in the direction j ¼ fx; y; zg, the vector

components Ak;i and Bk;i are recomputed as follows:

Ǎk;i ¼ Ak;i cosðkjΔjÞ − Bk;i sinðkjΔjÞ; ðG6Þ

B̌k;i ¼ Ak;i sinðkjΔjÞ þ Bk;i cosðkjΔjÞ: ðG7Þ

After performing the shifts specified in Eqs. (G3)–(G5),
the resulting field vector is given by

E0
kðr; tÞ ¼ A0

k cosðk · r − ωtÞ − B0
k sinðk · r − ωtÞ: ðG8Þ

(iii) Scattering pattern.—To study how much light is
scattered under a certain angle (wave vector k), the
scattering pattern is computed, i.e., the intensity per wave
vector normalized by the ingoing light intensity (I0) per
image pixel (px):

Ik ≡ jE0
0;kj2

I0=ð# pxÞ
¼ jA0

kj2 þ jB0
kj2

I0=ð# pxÞ
: ðG9Þ

(iv) Rotating analyzer.—To model the 3D-PLI measure-
ment, the electric field vector E0

kðr; tÞ is processed through
the second linear polarizer (analyzer) rotated by angles ρ,
yielding

Ẽkðr; t; ρÞ ¼ ÃkðρÞ cosðk · r − ωtÞ
− B̃kðρÞ sinðk · r − ωtÞ: ðG10Þ

The x and y components of Ẽkðr; t; ρÞ are computed by
multiplying E0

kðr; tÞ with the Jones matrix of a rotated
linear polarizer [95,96]:

�
Ẽk;xðr; t; ρÞ
Ẽk;yðr; t; ρÞ

�
¼

�
cos ρ − sin ρ

sin ρ cos ρ

��
0 0

0 1

��
cos ρ sin ρ

− sin ρ cos ρ

��E0
k;xðr; tÞ

E0
k;yðr; tÞ

�

¼
� sin ρ½E0

k;xðr; tÞ sin ρ − E0
k;yðr; tÞ cos ρ�

− cos ρ½E0
k;xðr; tÞ sin ρ − E0

k;yðr; tÞ cos ρ�
�
: ðG11Þ

The z component is computed by applying Maxwell’s equation in free space and assuming Ẽkðr; t; ρÞ ¼ Ẽ0;kðρÞeiðk·r−ωtþϕÞ

(plane monochromatic wave):

divẼkðr; t; ρÞ ¼ 0 ⇔ k · Ẽkðr; t; ρÞ ¼ 0

⇔ Ẽk;zðr; t; ρÞ ¼ −
1

kz
½kxẼk;xðr; t; ρÞ þ kyẼk;yðr; t; ρÞ�

¼ðG11Þ − kx sin ρ − ky cos ρ

kz
½E0

k;xðr; tÞ sin ρ − E0
k;yðr; tÞ cos ρ�: ðG12Þ
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(v) Objective lens.—The objective lens is assumed to be
ideal, and both the specimen and detector are assumed to lie
within the corresponding focal planes of the lens. Thus,
the propagation of the electromagnetic wave between the
sample and detector is assumed to be free, and Ẽkðr; t; ρÞ is
evaluated at the z position of the detection plane behind the
sample (defined as z ¼ 0):

r ¼ ðrx; ry; 0ÞT: ðG13Þ

To account for the numerical aperture (NA) of the
objective lens, only k vectors are processed that fulfill

θk ¼ arccos

0
B@ kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y þ k2z
q

1
CA ≤ arcsinðNAÞ: ðG14Þ

The employed imaging system has a numerical aperture of
about 0.15, so only k vectors with angles θk ≤ 8.6° are used
for processing.
(vi) Detector microlenses.—The camera sensor contains

an array of spherical microlenses which bundle the light
onto subjacent photodiodes for each image pixel. Assum-
ing perfect microlenses and photodiodes that are com-
pletely covered by one microlens, respectively, the
microlenses are modeled by applying a moving average
over the area of the microlens. Instead of taking the
magnification and the physical size of the microlenses into
account, the microlenses are modeled with a diameter of
2r0 ¼ 1.33 μm, corresponding to the pixel size of the
microscope in object space:

Ĕkðr; t; ρÞ ¼ Ẽkðr; t; ρÞ � circðrÞ;

circðrÞ ¼
� 1

πr2
0

; r < r0

0; r ≥ r0
: ðG15Þ

To obtain the full image information (independent of the
detector pixel position), no rasterizing is applied.
(vii) Intensity.—In principle, the intensity detected by
the camera sensor depends on the angle of incidence
of the incident light: I cos θk. As the numerical aperture
is sufficiently small (NA ¼ sin θk ≈ 0.15 ⇔ cos θk >
0.9886), the angle dependence is neglected, which enables
us to represent the intensity Iðr; ρÞ as a Fourier series in ρ,
as described below.
With this assumption, the light intensity recorded by the

camera is given by the absolute squared value of the electric
field vector. To compute the intensity at a certain point r in
the image plane, the electric field vectors are summed over
k and averaged over time:

Iðr; ρÞ ∝ jEðr; ρÞj2 ≡ 1

T

Z
T

0

����X
k

Ĕkðr; t; ρÞ
����2dt

∝ jFT−1fÃkðρÞ þ iB̃kðρÞg � circðrÞj2; ðG16Þ

where FT−1 denotes the inverse discrete Fourier transform:

FT−1ffg ¼
X
k

fkeik·r: ðG17Þ

The discrete Fourier transform (FT) is defined analogously.
To save computing time, the convolution in Eq. (G16) is

replaced by a multiplication, making use of the convolution
theorem:

Iðr; ρÞ ∝ jFT−1f½ÃkðρÞ þ iB̃kðρÞ�FTfcircðrÞggj2 ðG18Þ

¼
����FT−1

�
½ÃkðρÞ þ iB̃kðρÞ�2

J1ðr0kxyÞ
r0kxy

�����2; ðG19Þ

where the function J1ðxÞ is the Bessel function of the

first kind of order one, with kxy ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and

r0 ¼ 0.665 μm.
To simplify notation, the following abbreviations are

defined:

ẼkðρÞ≡ ½ÃkðρÞ þ iB̃kðρÞ�2
J1ðr0kxyÞ
r0kxy

; ðG20Þ

E0
k ≡ ðA0

k þ iB0
kÞ2

J1ðr0kxyÞ
r0kxy

; ðG21Þ

Ẽðr; ρÞ≡ FT−1fẼkðρÞg; ðG22Þ

E0ðrÞ≡ FT−1fE0
kg: ðG23Þ

The intensity is then given by

Iðr; ρÞ ∝ jẼxðr; ρÞj2 þ jẼyðr; ρÞj2 þ jẼzðr; ρÞj2: ðG24Þ

The x and y components of the electric field vector
Ẽkðr; t; ρÞ behind the rotating analyzer are computed from
E0

kðr; tÞ ¼ A0
k cosðk · r − ωtÞ − B0

k sinðk · r − ωtÞ accord-
ing to Eq. (G11). As the equation is linear in the x and y
components of E0

kðr; tÞ, the x and y components of
fA0

k;B
0
k;E

0
kg are transformed to fÃkðρÞ; B̃kðρÞ; ẼkðρÞg

according to the same equation. As the Fourier transform is
independent from ρ, Eq. (G11) also holds for the x and y
components of E0ðrÞ and Ẽðr; ρÞ, yielding Fourier coef-
ficients of the order of zero and two:
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jẼxðr; ρÞj2 þ jẼyðr; ρÞj2 ¼ðG11Þsin2ρjE0
xðrÞj2 þ cos2ρjE0

yðrÞj2 − sin ρ cos ρ½E0
xðrÞE0�

y ðrÞ þ E0�
x ðrÞE0

yðrÞ�

¼ 1

2
½jE0

xðrÞj2 þ jE0
yðrÞj2�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

co

þ 1

2
½jE0

yðrÞj2 − jE0
xðrÞj2�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c2

cosð2ρÞ− 1

2
½E0

xðrÞE0�
y ðrÞ þ E0�

x ðrÞE0
yðrÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d2

sinð2ρÞ

ðG25Þ

≡c0ðrÞ þ c2ðrÞ cosð2ρÞ þ d2ðrÞ sinð2ρÞ; ðG26Þ

where trigonometric identifies have been used:
½cos2x ¼ 1

2
þ 1

2
cosð2xÞ; sin x cos x ¼ 1

2
sinð2xÞ�.

Similar analytical calculations yield Fourier coefficients
of the orders of zero, two, and four:

jẼzðr; ρÞj2 ¼ e0ðrÞ þ e2ðrÞ cosð2ρÞ þ f2ðrÞ sinð2ρÞ
þ e4ðrÞ cosð4ρÞ þ f4ðrÞ sinð4ρÞ; ðG27Þ

where emðrÞ and fmðrÞ are functions of the inverse discrete
Fourier transforms:

XxðrÞ≡ FT−1
�
kx
kz

E0
k;x

�
; XyðrÞ≡ FT−1

�
ky
kz

E0
k;x

�
;

ðG28Þ

YxðrÞ≡ FT−1
�
kx
kz

E0
k;y

�
; YyðrÞ≡ FT−1

�
ky
kz

E0
k;y

�
:

ðG29Þ

Thus, the transmitted light intensity Iðr; ρÞ can be written
in terms of a Fourier series:

Iðr; ρÞ ∝ jẼxðr; ρÞj2 þ jẼyðr; ρÞj2 þ jẼzðr; ρÞj2
¼ a0ðrÞ þ a2ðrÞ cosð2ρÞ þ b2ðrÞ sinð2ρÞ
þ a4ðrÞ cosð4ρÞ þ b4ðrÞ sinð4ρÞ; ðG30Þ

a0ðrÞ≡ c0ðrÞ þ e0ðrÞ; a2ðrÞ≡ c2ðrÞ þ e2ðrÞ;
b2ðrÞ≡ d2ðrÞ þ f2ðrÞ; a4ðrÞ≡ e4ðrÞ;
b4ðrÞ≡ f4ðrÞ; ðG31Þ

where the Fourier coefficients amðrÞ and bmðrÞ are com-
puted from the six inverse discrete Fourier transforms
defined above: E0

xðrÞ, E0
yðrÞ, XxðrÞ, XyðrÞ, YxðrÞ,

and YyðrÞ.
For non-normally incident light (kx ≠ 0 or ky ≠ 0), the

transmitted light intensity contains Fourier coefficients of
the order of four [cf. Eq. (G27)].
Using Eq. (G30), the light intensity is computed for

arbitrary rotation angles ρ and normalized by the ingoing
light intensity per image pixel:

INðr; ρÞ ¼
Iðr; ρÞ

I0=ð# pxÞ
: ðG32Þ

In the experiment, the measured light intensities are
normalized by the light intensities measured without a
specimen to compensate for filter inhomogeneities. This
image calibration could be modeled by performing an
additional simulation run without a sample. To save
computing time, the simulated light intensities are simply
normalized by I0 (without considering the imaging sys-
tem), and only relative values are used for the comparison
between measured and simulated light intensities.
The Fourier coefficient of the order of zero a0;NðrÞ

obtained from the simulated normalized transmitted light
intensity INðr; ρÞ is used to compute the simulated trans-
mittance images IT;NðrÞ:

IT;NðrÞ≡ a0;NðrÞ: ðG33Þ

Figure S5 in Supplemental Material [55] summarizes the
most important steps of computing the transmitted light
intensities for 3D-PLI simulations. The computation is
carried out in PYTHON (version 2.7.6) using the NumPy
package (version 1.12.1) [97,98]. To obtain the intensity at
a certain pixel position ðx; yÞ, the inverse discrete Fourier
transform is computed in two dimensions by means of the
fast Fourier transform (FFT) [99]. To enable an efficient use
of the FFT, the number of grid points in x and y (Nx andNy)
are set to be a multiple of two:

N0
x ¼ 2mx > Nx; ðG34Þ

N0
y ¼ 2my > Ny: ðG35Þ

APPENDIX H: ERROR ESTIMATION OF
SIMULATION RESULTS

When modeling the optical components of the imaging
system, the limitations of the simulation software need to
be taken into account: The simulated light wave is
completely polarized and coherent, the materials are
characterized by isotropic refractive indices, and the size
and resolution of the simulated geometries are limited due
to finite computing time.
Using completely polarized light for the simulations

implies that the optical elements are assumed to be ideal
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(unpolarized light source, ideal polarizing filters, no polari-
zation sensitivity of the camera). For the employed
polarizing microscope, these assumptions are reasonable,
because the optical components are of high quality.
Moreover, the transmittance can be considered to be
mostly independent from the polarization properties of
the imaging system.
The simulation studies in Sec. III are performed for a

reduced sample size (30 × 30 × 30 μm3) and 200 periods.
Simulations with larger sample sizes in x or y and more
periods yield similar results [67].
To further reduce computing time, the simulation studies

are performed for a simplified nerve fiber model [axon
surrounded by double myelin layers; cf. Fig. 15(e)], a
Yee mesh size of 25 nm, and normally incident light
with 550 nm wavelength. To estimate the accuracy of the
simulation results, the transmittance images are simulated
for different numbers of myelin layers L, different Yee
mesh sizes Δ, different wavelengths λ, and different angles
of incidence θ. To study the influence of one simulation
parameter at once, only one simulation parameter is varied
while all other simulation parameters are chosen as in
Table II (with normally incident light and 550 nm
wavelength).
To estimate the accuracy of the resulting transmittance

images, the absolute relative difference between the mean
values (ARDM) and the relative mean absolute difference
(RMAD) between the images are computed:

ARDM≡
���� himagei − href imagei

href imagei
����; ðH1Þ

RMAD≡ hjimage − ref imageji
jhref imageij : ðH2Þ

In this notation, the “image” refers to the transmittance
image for which the absolute relative difference is com-
puted (obtained, e.g., from simulations with different Yee
mesh sizes). The “reference image” is the transmittance
image used for comparison (obtained, e.g., from the
simulation with minimum mesh size). The symbol hi
represents the average over all image pixels. As the
simulation studies mostly investigate the mean transmit-
tance values, the ARDM is a direct measure for the
accuracy of the simulation results, while the RMAD is a
measure for the reliability of the ARDM as an error
estimate.

1. Different numbers of myelin layers

To estimate the accuracy of the simplified nerve fiber
model, a straight single fiber with reduced simulation
volume [see Fig. 17(a)] is simulated for different numbers
L of myelin layers with thickness tm (and L − 1 separating
glycerin layers with thickness tg ¼ tm=3) as well as for a
realistic model of the myelin sheath consisting of 43 thin

layers [see Fig. 17(b), right]. The Yee mesh size is chosen
to be small enough to resolve all geometric features: For
most samples, the mesh size is chosen to be one-third of the
glycerin layer thickness (Δ ¼ tg=3). Fibers with two myelin
layers (L ¼ 2) are also simulated for larger mesh sizes
(Δ ¼ tg=2 ¼ 12.5 nm and Δ ¼ tg ¼ 25 nm). The realistic
myelin sheath is simulated for Δ ¼ tg ¼ 3 nm, consuming
288 358 core hours on JUQUEEN (using an MPI grid
of 64 × 64 × 16).
Figure 17(c) shows the corresponding transmittance

images, mean values, and line profiles obtained from
3D-PLI simulations with normally incident light and λ ¼
550 nm for the straight single fibers shown in Fig. 17(b).
The mean values and line profiles for L ≥ 1 look similar. For
better comparison, Fig. 17(d) shows the absolute relative
differences (ARDM and RMAD) between the transmittance
images with L ¼ f0; 1; 2; 3; 4; 5g and the transmittance
image with a realistic myelin sheath. The relative differences
decrease with an increasing number of myelin layers L and
with decreasing mesh size Δ. A fiber with two or more
myelin layers and a mesh size Δ ¼ tg=3 yields similar
transmittance values as the fiber with a realistic myelin
sheath. With an increasing mesh size, the relative differences
increase. For a fiber with double myelin layers and a mesh
size Δ ¼ 12.5 nm (25 nm), the differences are ARDM
≈1.2% (2.3%) and RMAD ≈1.6% (2.8%). For a mesh size
of 25 nm, the differences are still smaller than for a fiber
without or with a single myelin layer. Thus, a fiber with
double myelin layers and a mesh size of 25 nm is a good
compromise between accuracy and computing time and is
used for all simulation studies in Secs. III and IV. In
interesting cases, the simulations are repeated for a reduced
mesh size (Δ ¼ 12.5 nm); see the black crosses in
Fig. 18(b).

2. Different wavelengths, angles of incidence,
and Yee mesh sizes

The light source of the employed polarizing micro-
scope emits light with slightly different wavelengths
[λ ¼ ð550� 5Þ nm] and different angles of incidence
(the sample is illuminated under angles θ < 3°) [67]. To
model this incoherent and diffusive light source, several
simulation runs with different wavelengths λ and angles
of incidence (φ, θ) are performed, and the resulting
intensities are added incoherently. A comparison of simu-
lated and experimental data for a well-defined sample
(USAF-1951 resolution target) reveal that the light source
can sufficiently be modeled by three different wavelengths
(λ ¼ f545; 550; 555g nm) weighted according to the wave-
length spectrum and five angles of incidence (θ ¼ 0°;
θ ¼ 3°, φ ¼ f0°; 90°; 180°; 270°g) [67].
The simulation studies in Secs. III and IV are performed

only for normally incident light and a single wavelength
(λ ¼ 550 nm). To estimate the accuracy of the simulation
results, especially for the transmittance curves in Fig. 3(b),
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the 3D-PLI simulations for the bundle of densely grown
fibers with inclination angles α ¼ f0°; 10°;…; 90°g are
performed for the three different wavelengths and five
angles of incidence defined above. The resulting trans-
mittance curves for NA ¼ 0.15 (solid curves) and NA ¼ 1

(dashed curves) are shown in Fig. 18(b). The simulations
are performed for a Yee mesh size of 25 nm. For some
inclination angles, the simulations for NA ¼ 0.15 are
repeated for a smaller mesh size (Δ ¼ 12.5 nm); see the
black crosses.

(a)

(b)

(c)

(d)

Realistic

Realistic

Realistic

Abs. rel.

Rel. mean

FIG. 17. Error estimation for different numbers of myelin layers. (a) Dimensions of the simulation volume (xy or yz plane) used to
simulate a straight single fiber with different numbers of myelin layers. (b) Cross section through fibers with different numbers L of
myelin layers and different Yee mesh sizes Δ. All fibers are modeled with a diameter of 1 μm, consisting of an inner axon (green) with a
diameter of 0.65 μm and a surrounding myelin sheath with a thickness of 0.175 μm. The myelin sheath is composed of alternating layers
of myelin (blue) and glycerin (yellow), and the myelin layers are 3 times thicker than the glycerin layers. The realistic model of the
myelin sheath contains 22 layers of 5-nm-thick cell membranes (blue), interrupted by 3-nm-thick alternating layers of cytoplasm (green)
and surrounding glycerin solution (yellow), yielding a myelin sheath composed of 43 thin layers. The refractive indices are 1.35 for the
axon or cytoplasm (green), 1.37 for the glycerin solution (yellow), and 1.47 for the myelin layers (blue). A motivation of the myelin
sheath model and the corresponding refractive indices is shown in Fig. 15. (c) Normalized transmittance images, corresponding mean
values IT;N , and transmittance profiles on the right (middle image pixels evaluated along the y axis; see the white dashed lines) obtained
from 3D-PLI simulations with different numbers L of myelin layers and Yee mesh sizes defined in (b). The simulations are performed
for normally incident light with 550 nm wavelength and simulation parameters specified in Table II. The profiles with nonitalic labels
belong to the displayed transmittance images. (d) Relative differences between the transmittance images with different numbers L of
myelin layers and different mesh sizes Δ (relative to the glycerin layer thickness tg) and the transmittance image with a realistic myelin
sheath. The values for ARDM (blue) and RMAD (orange) are computed using Eqs. (H1) and (H2); the values surrounded in red belong
to fibers with double myelin layers (L ¼ 2) and 25 nm mesh size, which are used for the simulation studies in Secs. III and IV.
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The transmittance curves for different wavelengths and
for diffusive light (obtained from simulation runs with
different angles of incidence) look all very similar. The
maximum difference between the normalized transmittance
values is less than 0.03. In addition, the simulations with a
smaller mesh size (black crosses) yield similar results as the
simulations with a larger mesh size (curves); the maximum
difference between the normalized transmittance values is
only about 0.005. Thus, the transmittance curves for the
bundle of densely grown fibers are not sensitive to small
changes in the wavelength, angle of incidence, or mesh
size, which demonstrates the validity of the simulation
results.
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