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We study the nonlinear dynamics of a surprising phenomenon arising in large networks of excitable
elements in response to noise: while at low noise, solutions remain in the vicinity of the resting state and
large-noise solutions show asynchronous activity, the network displays orderly, perfectly synchronized
periodic responses at intermediate levels of noise. This noise-induced synchronization, distinct from
classical stochastic resonance, is fundamentally collective in nature. Indeed, we show that, for noise and
coupling within specific ranges, an asymmetry in the transition rates between a resting and an excited
regime progressively builds up, leading to an increase in the fraction of excited neurons eventually
triggering a chain reaction associated with a macroscopic synchronized excursion and a collective return to
rest where this process starts afresh, thus yielding the observed periodic synchronized oscillations. We
further uncover a novel antiresonance phenomenon in this regime: noise-induced synchronized oscillations
disappear when the system is driven by periodic stimulation with frequency within a specific range (high
relative to the spontaneous activity). In that antiresonance regime, the system is optimal for measures of
information transmission. This observation provides a new hypothesis accounting for the efficiency of
high-frequency stimulation therapies, known as deep brain stimulation, in Parkinson’s disease, a
neurodegenerative disease characterized by an increased synchronization of brain motor circuits. We
further discuss the universality of these phenomena in the class of stochastic networks of excitable elements
with specific coupling and illustrate this universality by analyzing various classical models of neuronal
networks. Altogether, these results uncover some universal mechanisms supporting a regularizing impact
of noise in excitable systems, reveal a novel antiresonance phenomenon in these systems, and propose a
new hypothesis for the efficiency of high-frequency stimulation in Parkinson’s disease.
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I. INTRODUCTION

Coupled systems of excitable elements subject to noise
are commonly used to model natural and physical phenom-
ena. They describe, in particular, laser emission [1],
chemical reactions where noise reportedly supports trav-
eling waves [2], climate dynamics [3], cardiac tissue and
other physiological processes [4], gene networks where
excitability in the presence of noise was suggested as a
possible mechanism for transient cellular differentiation

[5], and neurons and ion channels [6] (see Ref. [7] for a
review).
Excitable systems have in common the existence of a

rest state, a globally attractive fixed point when the system
is unperturbed, and two typical responses to perturbations:
small perturbations result in small amplitude responses,
while sufficiently strong perturbations (bringing the system
to cross a quasiseparatrix) lead to a long excursion
(a spike) through an excited state, followed by a return
to rest after a refractory period during which the system
essentially cannot be excited. Single excitable elements
subject to noise have been widely studied theoretically
and experimentally, and various noise-induced phenomena
such as coherence resonance or self-induced stochastic
resonance (SISR) were identified [7]. The latter phenome-
non is associated with maximally coherent responses of a
single excitable unit in response to small noise, as reported
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and thoroughly described for the FitzHugh-Nagumo model
in Refs. [8–10]. A distinct type of stochastic resonance was
reported in systems driven by oscillatory signals, whereby
addition of a certain amount of noise enhances the
coherence of the response [11]. This type of resonance
has been evoked in various natural phenomena particularly
in neural systems [12–14]. How these phenomena scale up
in large networks of excitable elements and with larger
noise levels compatible with typical fluctuations in natural
systems remains a largely open problem.
Synchronized oscillations constitute a significant macro-

scopic state in networks of excitable systems. In brain, for
instance, rhythmic macroscopic activity (a hallmark of
collective neuronal synchronization) was observed in a
variety of species, in various brain areas, and across a wide
range of frequencies [15], and, in mammals, is reportedly
related to various cognitive processes such as memory,
attention, and sleep [16]. Impairments in synchronous
activity are also observed in several pathologies: abnor-
mally high synchrony is reported in epilepsy or Parkinson’s
disease, low synchrony in Alzheimer’s disease, and altered
oscillatory patterns in schizophrenia [17]. These regular
behaviors emerge despite the presence of multifarious
noisy fluctuations (see, e.g., Ref. [18] for a review of
sources of noise in the brain) that often have a significant
impact on the dynamics. Important progress has been made
to understand the synchronization of oscillators (dynamical
systems that oscillate intrinsically), in particular, in the
frame of the Kuramoto model. An abundant literature has
characterized how these oscillators can generate coherent
behaviors in the presence of noise, heterogeneity in
the intrinsic frequencies, graph structure of interactions
[19–21], and even, particularly relevant in the present
context, how noise and periodic input can shape synchro-
nization of nonidentical oscillators [22]. Excitable systems,
such as some neurons, are not intrinsic oscillators: in the
absence of input, they stabilize at a fixed point, and thus
synchronization of excitable elements likely relies on
mechanisms in large part distinct from those of coupled
oscillators.
This paper investigates a surprising and somewhat

paradoxical regularizing impact of noise in large-scale
networks of excitable elements: as noise is progressively
increased, the network shows a sudden transition from
stationary, low-amplitude fluctuations around the rest state
(clamped regime) to a massive synchronization of neurons
yielding coherent, high-amplitude, and periodic macro-
scopic oscillations (noise-induced oscillations regime) that
progressively desynchronize as noise is further increased
until an aynchronous regime is reached where randomness
overwhelms collective and nonlinear effects. This phe-
nomenon was observed quite early in the study of co-
operative excitable systems described as active rotators
[23,24]. Based on numerical simulations, it was shown
that these systems can support stationary or time-periodic

regimes for appropriate levels of noise and coupling
strength, and that phase transitions between these regimes
arise as a function of coupling strength and noise level: for
too large noise or too strong coupling, stationary dynamics
arise, yet within an appropriate range of coupling and noise
levels, periodic regimes emerge, potentially where the
noiseless system shows nonperiodic dynamics [23]. As
pointed out later by Pham et al. [25], noise in these systems
acts in two antagonistic ways, first making oscillations
more regular at sufficiently low levels, and then deterio-
rating this regularity for stronger amplitudes. Going further,
Shinomoto and Kuramoto [23] described, in coupled active
rotators, the presence of two distinct transitions delineating
the region of noise-induced synchrony: for small noise, a
progressive increase in oscillation frequency, and, when
oscillations disappear for larger noise, a sudden, discon-
tinuous frequency drop, that the authors associate to the
presence of saddle-node or Hopf transitions, later eluci-
dated more finely by studying the dynamics of the first two
Fourier modes of the phases distribution [24]. In the
domain of probability theory, the possibility of the emer-
gence of oscillations due to noise in abstract diffusion
models with Gaussian solutions [26,27] or in a specific
neuronal network model [28] was demonstrated through
the study of the associated moment equations. Recently, the
question of noise-induced oscillations has been the topic of
renewed interest in applied mathematics [29,30] or physics
[31,32], and different theoretical techniques on the limit
equations were used to characterize these oscillations,
including, in particular, slow-fast analysis, invariant mani-
folds, or Hopf-Cole transforms. Among numerous other
important works in the domain, we shall highlight the work
of Zaks and collaborators on the dynamics of coupled
FitzHugh-Nagumo neurons in small noise and high excita-
bility regimes (resting state lying in the vicinity of the
excitability quasiseparatrix). Using a moment expansion
and closure based on the assumption that solutions are
approximately Gaussian [7,33], the authors showed how
noise was indeed controlling the existence of periodic
solutions, along similar lines as the study of Kurrer and
Schulten on active rotators [34]. In that paper, using also a
Gaussian approximation of solutions, the authors derived
expressions for noise levels associated with a collective
escape from a stationary point, key for the generation of
oscillations. Similar to what was observed in Refs. [23,24],
they further showed that low- and high-noise transitions
around the periodic solutions regime were of distinct
nature. However, Gaussian approximations generally do
not extend beyond small noise; as noise is increased, the
Gaussian approximation breaks down, and we will exhibit
the emergence of a bimodal distribution crucial in the
generation of noise-induced oscillations for larger noise
levels. Beyond neuronal models and active rotators, similar
phenomena were exhibited in hair bundles coupled with
elastic forces [35] or more abstract cellular automata [36].
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In the latter model, coupled elements can sit in one of three
states (akin to rest, excited, and recovering) with exponen-
tial transitions from rest to excited (depending on the state
of the system) and nonexponential transitions between the
other states (transitions taking a fixed typical time), high-
lighting an important role of the asymmetry in transitions
from rest to the excited state (stochastic and memoryless)
compared to the reciprocal (delayed) transition.
Altogether, despite this ample literature, little remains

known about the microscopic (i.e., single-elements)
dynamics supporting noise-induced oscillations in excit-
able systems, and progress in numerical or mathematical
analyses of mean-field equations will not allow for
addressing those mechanisms. We develop here a fine
scale analysis of individual trajectories, in a stochastic
electrically coupled FitzHugh-Nagumo network, to unravel
the microscopic mechanisms at play. Electrical coupling
was indeed shown to favor the emergence of synchronized
activity in biological neural networks [37–41]; it is also a
particularly simple mathematical model allowing an in-
depth study. This analysis will highlight the respective roles
of coupling levels, noise intensity, and excitability in the
emergence of oscillations due to noise. Going further, the
identification of these mechanisms will lead us to uncover a
novel phenomenon of coupled excitable systems in the
noise-induced synchronization regime. We will show that
periodic forcing of the system at high frequency (relative
to the spontaneous noise-induced oscillation frequency)
can prevent synchronization, and set the system in a regime
where it is able to maximize information transmission
capabilities. Our analysis of the mechanisms leading to
synchronization in turn will allow us to identify the critical
requirements underlying these behaviors, highlight their
universality for excitable networks with confining inter-
actions, and conjecture the type of transition to synchrony
occurring as noise or connectivity is varied.
These phenomena may have multiple applications. We

particularly explore here their implications in the context of
Parkinson’s disease and its treatment, and will use vocabu-
lary and concepts from neuroscience throughout the paper.
Parkinson’s disease is a neurodegenerative disorder classi-
cally associated with dramatic motor and cognitive symp-
toms, and with a pathological modification of patterns of
oscillations in the basal ganglia or motor cortex [43,44].
Among the variety of factors contributing to these oscil-
lations, studies invoked an elevated excitability of neurons
[45–47] and increased electrical coupling [48,49], two
elements that we will see are important in the emergence
of noise-induced oscillations in our models. Deep brain
stimulation (DBS), an efficient symptomatic treatment of
Parkinson’s disease, consists of stimulating periodically at
a high frequency (130 Hz) the subthalamic nucleus in the
basal ganglia [50–54], and leads to a remarkable reduction
of motor symptoms and abnormal synchronization. Yet the
mechanisms of action of DBS have remained elusive, and

stimulation parameters are largely tuned heuristically and
sometimes need to be readjusted following a subsequent
emergence of neuropsychological symptoms [55–57].
Computational models speculated two possible mecha-
nisms of action of DBS [58]: by increasing inhibitory
currents and altering inhibitory firing pattern [59] or by
depolarization blockade [60,61]. Here, we demonstrate that
antiresonance in excitable networks could also serve as a
hypothetical mechanism which, devoid of increased inhib-
ition or excitation blockade, leaves the network highly
responsive to stimuli and thus allows restoring cognitive
processes. We will show that indeed, in the antiresonance
regime, the system displays optimal information trans-
mission capabilities, potentially joining clinical observa-
tions of DBS reportedly restoring motor and cognitive
function in parkinsonian patients.
The paper is organized as follows. Section II introduces

our reference neural network model, the electrically cou-
pled FitzHugh-Nagumo network, and describes numeri-
cally the emergence of the noise-induced synchronization
in this model. Section III is devoted to deciphering the
dynamical mechanisms underpinning this synchronization,
while Sec. IV unravels and analyzes the antiresonance
phenomenon and the associated information transmission
capabilities. We discuss the universality of these pheno-
mena in Sec. V.

II. MODEL AND NOISE-INDUCED
SYNCHRONIZATION

The electrically coupled network of FitzHugh-Nagumo
neurons [6,62] describes the dynamics of n neurons
through the equations:

dvit ¼
�
fðvitÞ − wi

t þ
J
n

Xn
j¼1

ðvjt − vitÞ þ IðtÞ
�
dtþ σdWi

t;

dwi
t ¼ εðbvit − wi

tÞdt; ð1Þ

where i ∈ f1;…; ng denotes the neuron index, vi the
associated voltage, and wi the associated recovery variable.
The function f is a cubic nonlinearity modeling the
excitability of the cells, classically considered as

fðvÞ ¼ vð1 − vÞðv − aÞ;

where a > 0 controls the excitability, J > 0 quantifies the
coupling level, IðtÞ is an input current, σ is the level of
noise, ðWi

tÞ are independent Brownian motions, the time-
scale ratio ε > 0 of the recovery variable compared to
voltage is generally assumed small, and b > 0 governs the
coupling between voltage and recovery variable. Each
neuron isolated, satisfying the FitzHugh-Nagumo equa-
tions, is thus classically an excitable system.
Coupling and noise have opposite effects on the collec-

tive dynamics: the former promotes coherence by pulling
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the voltage of each cell toward the average voltage the
network generates, while noise reduces coherence by
inducing random independent fluctuations of the voltage
of each cell. Two regimes therefore arise for extremal
values of coupling and noise (see Fig. 1 and Movie M.1 in
Supplemental Material [63]).
Asynchrony.—For coupling sufficiently low relative to a

fixed noise level, interactions become too weak to induce
macroscopically organized dynamics, and neurons fire at
random times as they cross the quasiseparatrix [Fig. 1(a),
bottom]. As a result, asynchronous trajectories emerge, and
the system reaches a stationary distribution. That distribu-
tion displays a bimodal shape, with a majority of neurons
around the resting potential, and a macroscopic fraction
in the spiking regime or in the course of firing [Fig. 1(b),
bottom] [64].
Similarly, when noise is sufficiently large relative to a

fixed coupling strength [66], neurons will fire asynchro-
nously [Fig. 1(a), right]: intrinsic noisy fluctuations in those
regimes overwhelm the dynamics and coupling terms,
allowing neurons to spike independently of the state of
other neurons. A broad stationary distribution ensues,
covering both resting and excited parts of the phase plane,
which has essentially a unimodal shape skewed toward the
spiking region [Fig. 1(b), right].
Common to both asynchronous regimes, the distribution

of neuron variables reaches a stationary state covering rest

and excited regimes; the absence of rhythmic activity is
visible in the low maximal amplitude of the Fourier
transform of the average voltage or recovery variables
[Fig. 1(c)].
Clamping.—For coupling sufficiently large (relative to

a given noise level), or noise sufficiently small (relative
to a coupling level), transitions to the excited regime
are very rare, and the distribution of neurons remains
clamped around the resting state [Fig. 1(a), top and left].
Heuristically, for coupling large, the interaction term
becomes prominent compared to the intrinsic dynamics
and dominates noisy fluctuations; this term forces each
neuron to remain in the vicinity of the empirical average of
the voltage, preventing noise from leading neurons into
individual excursions [67]. For low noise, it is the rarity of
transitions to the excited state that leaves the system
passively “clamped” in the vicinity of the resting state.
Common to both clamped regimes, the empirical dis-

tribution of neurons concentrates at a stationary solution
centered at the resting state [Fig. 1(b), left and top], and the
low amplitude of the Fourier transform of the average
voltage or recovery variables underlines the absence of
rhythmic behavior [Fig. 1(c)].
While the above-described regimes can be readily

understood heuristically, the transition between these two
regimes is much more surprising, and is associated with
noise-induced synchronization.
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FIG. 1. Noise-induced synchronization in the FitzHugh-Nagumo model, with n ¼ 4000 neurons [n ¼ 10 000 for histograms in (b)],
a ¼ 4, b ¼ 4, ε ¼ 0.01, and I ¼ 0, for various values of the coupling strength J and noise level σ. (a) Individual trajectories for 20
randomly chosen neurons in the network (dark blue, voltage; magenta, recovery variable), together with the average voltage (light blue)
and recovery (pink). The system shows perfect collective synchrony at intermediate values of J and σ (here, J ¼ 1.5 and σ ¼ 1.5,
center); small coupling (bottom, J ¼ 0.5) or large noise (right, σ ¼ 3) leads to asynchrony, high coupling (top, J ¼ 3) or low noise (left,
σ ¼ 0.5) to clamping. (b) Distribution of the voltage variable in each regime and at different times: clamped regimes show a tight
unimodal stationary distribution (no dependence in time), asynchronous regimes show either a broad (large noise, right) or a bimodal
(low coupling, right) stationary distribution. In the noise-induced regime, the distribution is periodic; starting, e.g., around the resting
state (T ¼ 250, blue), it progressively widens and moves toward the excited regime, developing a bimodal shape as pioneers accumulate
(yellow, T ¼ 290), until the whole distribution moves to the spiking region (purple, T ¼ 300) and comes back to rest (green, T ¼ 320).
(c) Maximal amplitude (top) of the Fourier transform of the average recovery and associated period (bottom) highlighting a wide region
of synchronized oscillations.
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Noise-induced synchronization.—For intermediate val-
ues of coupling and noise, the dynamics are no longer
stationary: the trajectories display sharp, perfectly periodic,
and synchronized macroscopic oscillations formed by all
neurons firing synchronously within a small time interval
[Fig. 1(a), center]. In this regime, high-amplitude oscil-
lations of the distribution arise, as evidenced by the
very peaked Fourier transform typical of periodic signals
[Fig. 1(c)]. This nonstationarity is also visible in the
distribution of the voltage at various times [Fig. 1(b),
center].
The evolution of the distribution highlights the micro-

scopic mechanisms supporting this phenomenon, and will
be described in more detail in the following sections.
Consider, for instance, an initial state centered in the
vicinity of the resting state [blue curve in Fig. 1(b), center].
For noise sufficiently large and coupling sufficiently low,
single neurons can overcome their attraction to the resting
state, cross the quasiseparatrix, and reach the excited state
(neurons performing these transitions will be called pio-
neers hereafter). These transitions do not lead to full spikes
but partial deflections of the voltages that can lead to either
a spike or a return to rest. Yet, as more neurons perform
such transition, the voltage distribution progressively
broadens and develops a peak in the excited region,
gradually shifting the voltage of resting neurons closer
to the quasiseparatrix, making transitions to pioneers more
likely and thus the peak of the voltage distribution in the
excited regime more prominent [yellow curve in Fig. 1(b),
center] [68]. This progressive buildup is followed by a very
rapid transition where all neurons eventually switch to the
excited state, and, synchronized with the other neurons,
perform a full collective spike (a macroscopic spike),
associated with a very fast transition of the distribution
to a unimodal one centered at the excited state. From that
state, the distribution progressively returns to the vicinity of
the resting state, where the process starts afresh.
The regime of noise-induced synchronization is not a

singular transition between clamping and asynchrony: a
relatively wide, eye-shaped region in the plane (J; σ)
corresponds to such oscillations [Fig. 1(c)], arising through
a sharp transition from clamping (high-amplitude strongly
periodic oscillations with very low frequency arise from
clamping regimes) and smoothly transitioning to asyn-
chrony. This suggests, similar to other observations in
noise-induced oscillations [23,24], a transition via a Hopf
bifurcation on the high-noise side and a homoclinic
bifurcation on the low-noise side that will be shown to
be a general observation in systems of coupled excitable
elements in Sec. V.

III. MICROSCOPIC PHENOMENA SUPPORTING
NOISE-INDUCED SYNCHRONIZATION

Noise-induced synchronization is thus associated with
two remarkable phenomena: the buildup of a bimodal

voltage distribution with spontaneous variations of the
relative amplitude of the two peaks, as well as a sharp
and sudden transition of all neurons to the excited regime
where a macroscopic spike is emitted. We analyze here how
the dynamics of each neuron contributes to the emergence
of noise-induced synchronization.
In Sec. III A, we show that in the absence of noise, there

exists a critical proportion of pioneers α ¼ αc below which
pioneers return to rest without firing a spike, and above
which a chain reaction is triggered inducing a macroscopic
spike. This leads us to conjecture that noise-induced
oscillations arise when stochastic dynamics naturally lead
the system to exceed this critical fraction. We thus study in
Sec. III B the transition between resting and pioneer states,
allowing us to account for the dynamics of the bimodal
distribution and to delineate regimes where the network
spontaneously reaches the critical fraction of pioneers
needed to synchronize (thus, enters the noise-induced
oscillations regime) or remains below that threshold (lead-
ing to stationary solutions).

A. Nonlinear dynamics of macroscopic spikes

Macroscopic spikes stand out as sudden, sharp, and
dramatic events affecting all neurons, and arising as the
fraction of neurons in the excited state progressively
increases. We show here that this sudden switch can be
associated with a nonlinear change of the stability of the
resting state as the number of pioneers increases, inde-
pendently of the stochastic fluctuations.
To this purpose, we investigate the behavior of a set of

n neurons satisfying Eq. (1) in the absence of noise as the
initial fraction of neurons in the pioneer state α is varied.
For α sufficiently small, we indeed observed no macro-
scopic spike generated (Fig. 2): the maximal value of the
average voltage remains bounded below the spike level
[Fig. 2(a)], and trajectories of the system show a direct
return of all neurons to rest [Fig. 2(b)]. However, a sudden
and sharp transition occurs at a critical fraction of
pioneers αc: the presence of a sufficient number of
pioneers produces a strong attraction toward the excited
state, leading to a chain reaction during which all
remaining resting neurons transition to pioneers, followed
by a macroscopic spike. For these initial levels of
pioneers, the maximal value of the average voltage jumps
to the spiking level [Fig 2(a)] and the average trajectory in
the phase plane [Fig. 2(b)] displays a spike and return
to rest.
To determine analytically αc and quantify precisely its

dependence upon J, we consider the nonlinear evolution of
the average voltage of resting (v1) and pioneer (v2) neurons
assuming that the transition occurs in a timescale faster than
the recovery variable (i.e., recovery variable considered fixed
equal to some value w0), a relevant approximation here
owing to the slow evolution of the recovery variable during
the transition [69]. For a given proportion of pioneers α, the

NOISE-INDUCED SYNCHRONIZATION AND ANTI-RESONANCE … PHYS. REV. X 10, 011073 (2020)

011073-5



0

1

2

3

4

0 0.1 0.2 0.3 0.4

y

w
0 =1

(b) Bifurcation diagram

y

y
y

(c6) (c7)

Cusp

Rest

Chain reaction

Mixed states SN1

SN2

(c4)

(c5)

(c4)

(c1)

(c1)

(c3)

(c3)

(c6)

(c7)

0

1

2

3

4

0 0.1 0.2 0.3 4.0 5.0

4

2

0

0

4

2

0

0

42

42

0 42 0 42 0 42

0 42

0 42

4

2

0

4

2

0

4

2

0

4

2

0

4

2

0

(c2) - SN1

(c5) - SN2

(c2)

(a) Existence of a critical fraction of pioneers

FIG. 2. Chain reaction. (a) Left: Maximal value of the average voltage for network [Eq. (1)] in the absence of noise (σ ¼ 0) as a
function of the initial proportion of pioneers α (n ¼ 1000, a ¼ 4, ε ¼ 0.01, b ¼ 4, J ¼ 1.5, I ¼ 0) shows a sudden discontinuity at a
critical value αc, where (right) trajectories in the phase plane (yellow, v nullcline; purple, w nullcline) switch from rapid returns to
rest for α < αc (light blue, α ¼ 0.05; blue, α ¼ 0.19; lighter two shades of red circles in the right-hand diagram) to long collective
spiking excursions for α > αc (pink, α ¼ 0.21; red, α ¼ 0.25; darker two shades of red circles in the right-hand panel). Initial
condition (averaged) is depicted by a colored circle. Gray line, w0, depends on the level of noise; the values vr, vu, and vp are
intersections of the line w ¼ w0 and the cubic nullcline. (B) Critical fraction of pioneers associated with the chain reaction as a
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rest, as in (c)]. Arrows represent the direction of the flow. The dark red curve represents the trajectory starting from v1 ¼ vr and
v2 ¼ vp. (c1) α ¼ 0.2 and J ¼ 1, (c2) α ¼ 0.2 and J ¼ 1.4 near SN1, (c3) α ¼ 0.2 and J ¼ 2, (c4) α ¼ 0.1 and J ¼ 3, (c5) α ¼ 0.1
and J ¼ 2.73 near SN2, (c6) J ¼ 4 and α ¼ 0.15, (c7) J ¼ 4 and α ¼ 0.25.
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evolution of v1 and v2 is thus approximated by the two-
dimensional ordinary differential equation (ODE):

v01¼fðv1Þ−w0þJαðv2−v1Þ; v1ð0Þ¼vr;

v02¼fðv2Þ−w0−Jð1−αÞðv2−v1Þ; v2ð0Þ¼vp: ð2Þ

where w0 corresponds to a recovery variable value such that
the dynamics of a single particle (uncoupled system).

v0 ¼ fðvÞ − w0; ð3Þ

display three equilibria: a resting state vr on the leftmost
branch of the cubic function f, a pioneer state vp on the
rightmost branch [values appearing as initial conditions in
Eq. (2)], and an unstable fixed point vu on the middle branch
splitting the attraction basins of the two equilibria [70]. We
are interested in solutions of these equations with v1 ≤ v2.
The dynamical system (2) features at least three fixed

points with identical voltage, v1 ¼ v2 ∈ fvr; vu; vpg
[Fig. 2(b)]. These fixed points have the same stability as
the associated voltage in the one-dimensional uncoupled
FitzHugh-Nagumo system (3). Indeed, the Jacobian matrix
of the system (2) at an arbitrary point ðv�1; v�2Þ reads:

�
f0ðv�1Þ − Jα Jα

Jð1 − αÞ f0ðv�2Þ − Jð1 − αÞ
�
.

For v�1 ¼ v�2 ¼ vr or vp [the two stable fixed points of
Eq. (3)], the trace of the Jacobian matrix is strictly negative
and its determinant f0ðv�Þ2 − Jf0ðv�Þ is strictly positive
[since f0ðv�Þ < 0 for a stable fixed point], implying
stability of the fixed points ðvr; vrÞ and ðvp; vpÞ for the
two-dimensional system. If v�1 ¼ v�2 ¼ vu, the unstable
fixed point of Eq. (3), the trace reads 2f0ðvuÞ − J and
the determinant f0ðv�Þ½f0ðv�Þ − J�. The determinant is non-
negative when f0ðv�Þ > J, in which case the trace is
positive. The fixed point ðvu; vuÞ is thus always unstable
for system (2): it is a saddle when f0ðv�Þ < J and an
unstable node for f0ðv�Þ > J.
The equilibria with identical voltage correspond to a

synchronization of the network: ðvr; vrÞ corresponds to all
pioneers returning to rest, and ðvp; vpÞ to all resting
neurons reaching the excited state. In addition to these
attractors, mixed equilibria (i.e., with v1 < v2) may also
exist, when the system is able to support a mixture of a
fraction α of pioneers and (1 − α) of resting neurons
(e.g., in the asynchrony regime). A chain reaction occurs
if, starting from the initial condition [v1ð0Þ ¼ vr,
v2ð0Þ ¼ vp], the system reaches the fixed point ðvp; vpÞ,
or in other words, ðvr; vpÞ belongs to the attraction basin of
ðvp; vpÞ. We thus analyzed the geometry of the phase plane
of system (2), and found that, as parameters are varied, the
initial condition ðvr; vpÞ could suddenly switch attraction
basins, either associated with smooth changes in the shape

of these basins or organized by the stable manifold of a
saddle mixed equilibrium [Fig. 2(c)].
To characterize these transitions, we first computed the

two-parameter bifurcation diagram of Eq. (2) as a function
of the coupling strength J and the proportion of pioneers α.
This diagram displays two branches of saddle-node bifur-
cations (black curves) merging at a cusp bifurcation. These
saddle-node curves delineate the region where mixed
equilibria exist. We found that these bifurcations coincide
exactly with transitions in the eventual state of the system
starting from the initial condition ðvr; vpÞ (dashed blue
and red curves, obtained by extensive simulations of the
system). Moreover, we recover precisely the value αc
corresponding to the transition found for the full system
(1) at J ¼ 1.5 and with σ ¼ 0 [Fig. 2(a)]. More generally,
when J is varied, we found an excellent agreement between
the critical fraction αc and the evaluations obtained with the
simplified system (2) (blue curve in Fig. 2).
The coincidence between saddle-node bifurcations and

switches in the attractor to which solutions of system (2)
converge can be inferred analyzing the geometry of
vector field of Eq. (2). Attraction basins in this two-
dimensional system are governed by the stable and unstable
manifolds of the saddle fixed points, depicted in green in
Figs. 2(c1)–2(c7). We observe that whether or not the initial
condition belongs to the attraction basin of rest or pioneer
strongly depends on the presence of mixed saddles (rather
than the specific shape of those manifolds), accounting for
the perfect agreement between saddle-node bifurcations
and switches in the fixed point toward which the system
converges. Mixed equilibria do not exist for J larger than
the value associated with the cusp. For such parameters,
ðvu; vuÞ is a saddle, and its stable manifold splits the phase
space into the attraction basins of ðvr; vrÞ and ðvp; vpÞ.
Smooth changes in the shape of that manifold lead to a
switch between resting and pioneer, and the associated
value of α associated with the transition is represented as a
dotted line in Fig. 2 and closely agrees with the chain
reaction separatrix (blue curve) computed for the full
system.
Clamping at high coupling strength may be associated

with the incapacity of the system to support a mixture of
pioneer and resting neurons for J larger than the value
associated with a cusp (the full system returning to rest
either directly of after one spike depending on the initial α).
In sharp contrast, coupling values J small enough [below
the dashed line in Fig. 2(c)] allow the existence of mixed
equilibria for any initial proportion of pioneers α: coupling
is not sufficient to promote a collectively coherent behav-
ior, leading to asynchronous behaviors.
The bifurcations and transitions found depend on the

value of w0, which, in the original model with noise (1),
depends both on σ and J. To appreciate how w0 alters the
transitions found in the system, we computed the two-
parameter bifurcation diagram of system (2) as a function

NOISE-INDUCED SYNCHRONIZATION AND ANTI-RESONANCE … PHYS. REV. X 10, 011073 (2020)

011073-7



of α and J for a distinct value of w0 [Fig. 2(c), gray curve,
w0 ¼ 1], and found a qualitatively similar bifurcation
diagram as originally obtained for w0 ¼ 0, but essentially
shifted to larger values of α. Heuristically, a larger w0

would correspond to larger noise (or weaker coupling), and
the system would necessitate a larger fraction of pioneers
to display the chain reaction. The absence of qualitative
dependence in w0 was confirmed in Fig. 13 representing the
two-parameter bifurcation diagram of system (2) as a
function of α and w0 for distinct values of J. We found
monotonically increasing bifurcation lines and no codi-
mension-two bifurcation, showing that the qualitative
features outlined above persist for various values of w0.
We thus conclude that a chain reaction may arise when

the population is composed of a sufficiently large fraction
of pioneers. We now relax our assumption of considering
fixed values of α, and turn our attention to the stochastic
transitions between resting and pioneer that govern the
evolution of α.

B. Reaching the critical proportion of pioneers

The question that arises is thus whether the critical
fraction of pioneers αc is reached spontaneously by the
stochastic system. In the presence of noise, neurons at rest
may indeed transition to pioneer, and reciprocally Eq. (1);
the fraction of pioneers will thus vary in time according to
the rates of transitions. To describe this evolution, we now
quantify the rates at which resting neurons transition to
pioneers and reciprocally. Figure 12 in Supplemenal
Material represents the evolution of the fraction of pioneers
in various situations [63].

1. Stochastic transitions between pioneer
and resting states

Characterizing the rate of transition of a stochastic
particle in a multiwell potential is a classical and widely
studied question in the domain of stochastic analysis
[71,72]. Most results are derived in the small noise limit
and for Hamiltonian systems. The problem of noise-induced
synchronization we are studying here challenges classical
theory in many ways. In particular, noise-induced oscil-
lations arise for nonvanishing noise, the dynamics are not
Hamiltonian, noise modifies the dynamics (potential and
equilibria in a Hamiltonian analogy), and the transitions are
collective; i.e., transition rates depend on the positions of all
other particles through the coupling term. In Sec. A 1 of
Supplemental Material, we discuss in more detail these
questions, highlight the difficulty to define a double-well
potential for the system and how that putative potential
depends on noise and on the distribution of neuron voltages
(chiefly through α), and how theoretical estimates may
deviate from the effective rates of transitions [63].
To numerically evaluate the transition rates from rest to

pioneer and reciprocally, we again reduced the system to a
one-dimensional equation on the voltage only, assuming a

fixed value of the recovery variable w ¼ w0 during the
transition phase. Under this hypothesis, and between two
transitions, each neuron satisfies the equation:

dvt ¼ ffðvtÞ − w0 þ J½ð1 − αÞvr þ αvp − vt�gdtþ σdWt:

ð4Þ

where α is the current fraction of pioneers (fixed between
two consecutive transitions) and vp and vr are the pioneer
and resting voltage, approximated as the largest and
smallest solution of

fðvÞ ¼ w0:

The first step of this program thus consists in evaluating
w0 numerically as a function of those parameters. To this
end, we simulated the full system Eq. (1) and computed the
median value of the recovery variable at transitions from
rest to pioneer [see Fig. 3(b)] [73]. Using this estimate, we
next systematically evaluated, for various pairs of (J; σ),
the distribution of transition times for a particle satisfying
Eq. (4) for multiple (typically, 15 000) realizations of the
process with independent noise and independent random
initial condition within the pioneer or resting regime of the
uncoupled system [74].
A particle is considered to switch attractors if, starting on

one side of the quasiseparatrix (embodied by the unstable
fixed point vu), it ends up dwelling on the other side. To
avoid considering transient passages of a particle through
the quasiseparatrix not corresponding to actual transitions,
we used a confidence interval to determine transition times:
a pioneer [rest] neuron was considered to have switched to
rest [pioneer] if its voltage exceeds γvr þ ð1 − γÞvu [goes
below γvp þ ð1 − γÞvu] with γ ¼ 0.1 [75]. We observed
that the transition times are exponentially distributed with a
rate that depends upon the proportion of pioneers [see
Fig. 3(a)]. We confirmed that the data are indeed sta-
tistically consistent with an exponential distribution fitting
a rate using the maximum likelihood estimator and a
Kolmogorov-Smirnov test. For α ¼ 0.2 [Fig. 3(a)], we
found a rate of transition from pioneer to rest (rest to
pioneer) equal to λ ¼ 0.20 (λ ¼ 0.17), with a goodness of
fit (Kolmogorov-Smirnov) 0.013 (0.0153) and a p value
p < 0.015 (p ¼ 0.017) (see Ref. [76] for details on the
statistical test and code), confirming that the data are
perfectly consistent with an exponential.
Finding an exponential distribution opens the way to an

important simplification of the system. Indeed, because
exponential transitions are memoryless, the evolution of the
proportion of pioneers can now be modeled as a continu-
ous-time finite-state Markov process. In detail, assuming
that the distinct neurons have independent and identically
distributed transition times (the property that finite subsets
of neurons are independent and identically distributed in
this system was demonstrated mathematically in Ref. [65],
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a property referred to as the propagation of chaos property
in mathematics), the number of pioneers ðPtÞt≥0 forms a
birth-and-death Markov process on the finite-state space
f0;…; ng with transitions

x → xþ 1 with rate ðn − xÞKRP

�
x
n

�
; for any x < n;

x → x − 1 with rate xKPR

�
x
n

�
; for any x > 0;

where KRP and KPR are the transition rates from rest to
pioneer and reciprocally. Therefore, for n large, using the
Kolmogorov equation for that Markov chain, we find that
the proportion of pioneers at time t, αðtÞ ¼ Pt=n, satisfies
the ordinary differential equation:

dα
dt

¼ ð1 − αÞKRPðαÞ − αKPRðαÞ: ð5Þ

The fixed points of that one-dimensional equation,
representing the steady-state proportions of pioneers, are
given by the implicit equation

α⋆ ¼ KRPðα⋆Þ
KRPðα⋆Þ þ KPRðα⋆Þ

;

and these are stable equilibria when

ð1−α⋆ÞK0
RPðα⋆Þ−α⋆K0

PRðα⋆Þ− ½KRPðα⋆ÞþKPRðα⋆Þ�<0:

To determine equilibrium proportions of pioneers and
their stability as a function of the parameters, we system-
atically evaluated the distribution of transition times for
various values of α and fitted an exponential distribution
using the maximum likelihood estimator (15 000 samples
for each condition). We observed, as expected, that the rate
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FIG. 3. Stochastic transitions between resting and pioneer states. (a) Histogram of the transition time from pioneer to rest (left) and rest
to pioneer (right), in semilogarithmic scale (inset: linear scale) for α ¼ 0.2 (blue) or α ¼ 0.4 (yellow). The corresponding maximum
likelihood fit with an exponential distribution shows an excellent match (solid lines, red, α ¼ 0.2; purple, α ¼ 0.4). Parameters as in
Fig. 1 with J ¼ 1.5, σ ¼ 1.5, and α ¼ 0.2; a sample 15 000 independent simulations of Eq. (4) was used. (b) Variation of w0 as a
function of σ and J, computed as the median value of recovery variable at the transition for the original system with n ¼ 4000 neurons.
(c) Transition rates obtained from the maximum likelihood estimator with the exponential distribution as a function of α [blue, pioneer to
rest; red, rest to pioneer; 15 000 simulations of Eq. (4) for the five situations considered in Fig. 1(a)]. (d) Flow of the fraction of pioneers
[right-hand side of Eq. (5), blue curve versus 0 in red].
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of transition from rest to pioneer increases with α while the
rate of the reciprocal transition decreases [see Fig. 3(c)].
Indeed, the larger α, the faster resting neurons reach the
pioneer state, while pioneer states are stabilized for α large
and transitions to rest rarer. From these transition curves,
we computed the flow of α [Eq. (5)] as a function of
coupling J, noise σ, and proportion of pioneers α. We
observe clear transitions in the shape of the flow, associated
with the transitions from clamping to synchrony and then
asynchrony, as visible in Fig. 3(d) for the values of J and σ
highlighted in Fig. 1 [see also Fig. 4(b) for a more
exhaustive representation of the flow, corrected by the
spontaneous spike rate of pioneers introduced in
Sec. III B 2].

Although our numerical estimations neglect the transi-
tions from pioneers to rest subsequent to a spike (intro-
duced in the next section), it already accounts for three of
the five regimes observed in Fig. 1.

(i) In the synchronized regime [central regime in
Fig. 1(a)], the flow is uniformly positive, indicating
that α is strictly increasing regardless of the initial
condition. Therefore, neurons accumulate rapidly
within the pioneer region, reach the critical propor-
tion αc, undergo the chain reaction through a macro-
scopic spike, and return to α ¼ 0 where the process
starts afresh. Because the typical time for one given
transition is significantly smaller than the time
of a spike (see Sec. III B 2), the model accurately

(a)

(c) (d)

(b)

Time

FIG. 4. Stochastic and spiking transitions. Combining stochastic transitions and spiking recovers qualitatively and quantitatively
the phenomenology of the stochastic FitzHugh-Nagumo network of Fig. 1. (a) Numerical evaluation of the inverse spike duration
[Eq. (6)] as a function of σ and J. (b) Flow of the fraction of pioneers [right-hand side of Eq. (7)] as a function of σ, J, and α (four-
dimensional representation using PCOLOR3 MATLAB routine [77]). The system recovers the clamping fixed point with 0 pioneers in
the low-noise or high-coupling regimes, nontrivial fixed points for large-noise or low-coupling regimes, and a uniformly positive
flow (chain reaction and noise-induced synchronization) for intermediate values (red spherelike surface). For legibility, the flow was
smoothed and thresholded through the function ϕ∶x ↦ ½1þ tanhð4xÞ�=2. (c) Flow of the fraction of pioneer α in the five situations
considered in Fig. 1(a), recovers the appropriate dynamics in all cases qualitatively. (d) Number of pioneers in (red) the simplified
model (7) taking into spiking, the simplified model neglecting spiking (blue), and the stochastic network (yellow). Good agreement
is found with the simplified model when taking into account spiking, deviating significantly from the model neglecting spikes
especially at low coupling or low noise. When it exists, the critical fraction of pioneers αc associated with the chain reaction is
depicted as a black dashed line.
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accounts for the observations on the full system.
Moreover, we note that the time for the proportion
of pioneers to reach αc is deterministic [it is the
crossing time of αc of the solution of Eq. (5) starting
from α ¼ 0], accounting for the regularity of the
periodic behavior observed in Fig. 1.

(ii) In the clamped regime for large J [top, Fig. 3(d)], we
observe that the fraction of pioneers shows bistable
dynamics, with a stable fixed point at α ¼ 0
(clamped state), a stable fixed point at α ¼ 1 (chain
reaction regime), and a third unstable fixed point
separating the attraction basins of both equilibria
near the chain reaction threshold [for large J, w0 is
close to 0 and the chain reaction threshold is slightly
below 0.2, see Fig. 2(d)].
Depending on the initial α, either all neurons

return to rest, or all neurons reach the pioneer state,
fire a macroscopic spike, and return to the clamped
regime near equilibrium. The computed curves seem
to indicate that this transition occurs through a
saddle-node bifurcation in the rate equation (2),
as the quadratic behavior of the flow for small α
progressively shifts up and becomes tangent to the 0
line. As the system approaches the transition, the
time taken by the system to trigger a spike decays to
zero, accounting for the notable slowing down of the
oscillations near this transition (see Fig. 1).

(iii) Eventually, for large σ, the transition rate from
pioneer to rest and back again shows a less sensitive
dependence in α: noise becomes sufficient to induce
transitions in both directions for any value of α and
starts dominating the interaction terms. The fraction
of pioneers α thus rapidly converges to the unique
stable fixed point of the associated system, close to
0.2 here. At this value of α, the number of resting
neurons transitioning to pioneer is balanced by the
number of pioneers returning to rest, and a stationary
asynchronous firing regime ensues.

In all these three cases, the rates of transitions are
relatively large compared to the duration of a spike, and
therefore the accumulation of pioneers and transient var-
iations of α occurs prior to any neuron firing a spike. This is
not the case of low-noise clamping or low-coupling
asynchronous regimes. In the low-noise regime, both rates
of transitions are very low. In the low-coupling case, rates
of transitions are no more low, but the transition from rest to
pioneers is compensated by the reciprocal transition arising
at a similar rate. In both cases, the very slow evolution of
the fraction of pioneers ensuing allows neurons that have
transitioned early to pioneers to spike and return to rest
before accumulation of neurons in the pioneer state. This
phenomenon shall be crucial when the typical time for
reaching critical value αc is larger than the typical spike
duration (or when it is infinite, i.e., when αc is never
reached).

2. Modeling returns to rest after spiking

To account for this phenomenon, we added a corrective
term to Eq. (5) considering the rate at which pioneers return
to rest after spiking. To this end, we computed the typical
time for a pioneer to fire a spike. The spike is composed of
three main phases: an upstroke where the voltage climbs up
the rightmost branch of the stable part of the cubic nullcline
from w ¼ w0 up to a value w1 where typical trajectories
leave that branch (much like w0, the value of w1 depends on
noise and coupling), a rapid jump to the leftmost branch
of the cubic at w ¼ w1, and then a downstroke where the
trajectory decays along the right branch of the cubic down
to w ¼ w0. Neglecting the rapid switching time between the
upstroke and downstroke phase, we can express analyti-
cally the spike duration as

Ts ¼
1

ε

�Z
w1

w0

dw
bvpðwÞ − w

þ
Z

w0

w1

dw
bvrðwÞ − w

�
; ð6Þ

where vp and vr, as defined above, are the right and left
solutions of the cubic polynomial equation,

fðvÞ − wþ I ¼ 0:

The above formula highlights the fact that the spike
duration is of order ε−1, much longer compared to the
stochastic fluctuations, but not necessarily longer than the
time needed to accumulate neurons in the pioneer state. We
thus used the above formula and the classical analytical
expressions of vr and vp (we chose the trigonometric form
for vr and vp due to François Viète) and a numerical
evaluation of w1 (similar methodology as used for w0) to
compute the spiking time.
We used this estimate of the typical spike duration, and

the fact that n is considered large, to model the fraction of
pioneers returning to rest after a spike as a ceaseless leak of
the density of pioneers to rest at a rate T−1

s :

dα
dt

¼ ð1 − αÞKRPðαÞ − α½KPRðαÞ þ T−1
s �: ð7Þ

We confirmed that this correction is essentially negli-
gible in the case of noise-induced oscillations, large-noise
asynchrony, or large-coupling clamping, but has important
qualitative implications in the low-noise or small-coupling
regimes, as visible in Fig. 4. Indeed, we observe that for
small noise, very small values of α are stabilized, owing to
the rarity of transitions at low σ. More generally, in the
clamping regime the system stabilizes to a fraction of
pioneers α at which transitions from rest to the excited state
are compensated by stochastic and firing returns: small
perturbations of this equilibrium toward smaller α will
progressively be compensated by noise, and a slight
deviation toward a higher α below the chain reaction will
be damped as neurons fire a spike and return to rest. In this
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regime, however, the dynamics are relatively sensitive, as
the flow converges, when σ → 0, to a discontinuous flow
(with a discontinuity at the critical α ¼ αc associated with
the chain reaction). This sharpness is visible in our
simulations (Fig. 4).
When coupling is small, the corrected system taking into

account the return of pioneers to rest through a spike also
recovers the observed behavior of the emergence of a stable
fixed point. In this regime, collective behaviors are less likely
to arise as each cell is mostly driven by its own noise and
excitable dynamics, essentially dominating the coupling
term. Because of low coupling, while rates of transition
remain of the same order of magnitude, the absence of a
strong influence of network dynamics implies that the rates
essentially compensate. We indeed observe that transition
times are of the same order of magnitude of the duration of a
spike [notice the maximal rate of transition on the order of
15 × 10−3 in Fig. 3(c)]. Therefore, adding the return to rest
term associated with spikes has a highly nontrivial impact,
and yields the emergence of a stable fixed point for α below
the critical value, indicating the emergence of a stationary
probability to be in the pioneer state. In other words, because
neurons are asynchronous, the fraction of neurons in the
pioneer or rest regime is the stationary mass of the
distribution of a single neuron within those sets.
We confirmed that the model precisely accounts for the

evolution of the number of pioneers as a function of time,
starting from α ¼ 0. We depict in Fig. 4(d) the fraction of
pioneers computed in the stochastic FitzHugh-Nagumo
network Eq. (1) together with the simple one-dimensional
differential equation (7), and observe that our model, despite
its simplicity, finely accounts quantitatively for the number
of pioneers. For instance, in the noise-induced oscillations
regime, the model reflects the slow transitions arising in the
system until the system reaches the critical proportion of
pioneers αc, at which time a very sharp increase of α arises.
In Fig. 4(b), we provide an extensive view of the dyna-

mics of α as a function of J and σ in a four-dimensional
representation [color represents the righthand side of
Eq. (7)]. This representation recovers the eye-shaped
noise-induced synchronization regime, corresponding to
the parameter values associated with a uniformly positive
value for intermediate values of noise and coupling.

C. Conclusion: A subtle interplay of noise,
connectivity, and excitability

This analysis of the trajectories provides a novel
dynamical view of synchronization of stochastic particles.
By finely dissecting the mechanisms of noise-induced
synchronization in the FitzHugh-Nagumo network, we
identified three distinct regimes of dynamics: synchrony
for intermediate noise and coupling, flanked by asynchrony
(large noise or low coupling), and clamping (low noise
or high coupling). The analysis of the dynamics of single
neurons during these oscillations highlighted two key

phenomena: (1) an asymmetry in the transition from rest
to pioneer and reciprocally, leading to a spontaneous
increase in the steady proportion of neurons in the excited
state, in turn triggering (2) a chain reaction leading all
neurons to the excited state provided that the system
reaches a sufficient proportion of neurons in that state.
These elements are not specific to the FitzHugh-Nagumo

model, but arise in a wide class of excitable systems with
noise; we discuss in Sec. V their universality, illustrate the
same property in distinct excitable systems, and further
discuss the type of transition arising around the synchron-
ized regime.

IV. OSCILLATIONS-INDUCED
DESYNCHRONIZATION AND

PARKINSON’S DISEASE

Studying the response of networks of excitable cells in the
regime of spontaneous noise-induced oscillations is particu-
larly relevant in the context of Parkinson’s disease. Indeed,
in Parkinson’s disease, spontaneous oscillations emerge in
the basal ganglia and motor cortex, and these arise while
neurons show an increased excitability [47,78], together with
enhanced electrical transmission [49,79]. Some 30 years
ago, it was observed that high-frequency stimulation
(∼130 Hz) in the basal ganglia relay nucleus, the subtha-
lamic nucleus, had a remarkable effect of alleviating
Parkinson’s disease symptoms [50,54,57,78,80].
Clinically, the impact of DBS strongly depends on stimu-
lation amplitude and frequency [81]: too-high stimulation
frequencies (>180 Hz) were reported to be therapeutically
ineffective [50,82], while too low stimulation frequencies
have a still debated impact. Indeed, some studies showed that
low-frequency stimulation could worsen some parkinsonian
symptoms such as tremors and rigidity [83], possibly by
imposing another oscillatory rhythm onto the basal ganglia
network, while others showed a beneficial impact of low-
frequency stimulation for gait control and cognitive func-
tions [84]. A comparable dependence on amplitude was
reported in patients [85], with too-low stimulations abolish-
ing the improvement of symptoms, sometimes with sudden,
thresholdlike loss of efficiency [86]. This observation led to
us investigate in more detail the impact of high-frequency
stimulation on noise-induced oscillations and the impact of
the stimulation parameters.
As shown in Sec. III, the origin of those oscillations is

fundamentally stochastic (associated with random transi-
tions between pioneer and resting regimes) and collective
(chain reaction), and as such they are distinct in nature from
more classical periodic systems. Periodically forced oscil-
lators have a long history in the study of nonlinear
dynamical systems, and the complex phenomena associ-
ated have been well described: they include phase locking
with the stimulus, resonances, phase skipping, and chaos,
often associated with the presence of intricate dependencies
in amplitude and frequency of the forcing, as the classical
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Arnold tongues (see, e.g., Ref. [87]). Periodic forcing of
noise-induced oscillations will induce a distinct phenom-
enology that we analyze below.

A. Periodic forcing in the noise-induced
oscillations regime

To emulate the impact of DBS on basal ganglia oscil-
lations, we used balanced biphasic waves, typical DBS
stimulation profiles advocated by Lilly in the 1960s [88]
and widely used clinically. Such stimulations correspond to
square waves of positive followed by negative currents with
a zero mean:

IðtÞ ¼ AH

�
t
T

�
; ð8Þ

where A is the amplitude of the signal, T is the stimulation
period, and H is a periodic profile square wave of period 1
[we will typically use the sign of cosð2πtÞ]. The network
equations with DBS stimulation thus read:

dvit ¼
�
fðviÞ − wi þ J

n

Xn
j¼1

ðvj − viÞ þ IðtÞ
�
dtþ σdWi

t;

dwi
t ¼ εðbvi − wiÞ:

Extreme regimes of stimulation frequency lead to two
expected outcomes: very rapid periodic forcing has almost
no impact on the spontaneous oscillations [Fig. 5(a), left],
while very slow forcing locks network activity to the
periodic signal [Fig. 5(a), right].
Strikingly, for an intermediate value of periodic forcing

frequency, the noise-induced oscillations are abolished (at a
frequency relatively high compared to the spontaneous
noise-induced oscillations frequency). In that antiresonance
regime, despite small amplitude oscillations of the voltage
and recovery variables in response to the DBS input, we
observe a complete absence of collective dynamics or
spiking [see Fig. 5(a), center].
Stimulation amplitude also has an important impact: a

too-low amplitude A barely affects the spontaneous activity
(Fig. 5, bottom). While it could be expected that increasing
A would lead the responses of the network to lock to the
stimulation, we observed that, at the frequency tested,
increasing amplitude did not alter the absence of oscil-
lations for the parameters chosen.
To quantify precisely the DBS amplitude and frequency

associated with antiresonance, we computed both the
maximal value of the average voltage and recovery vari-
ables [Fig. 5(b)] and the maximal value of the Fourier
transform of these variables [Fig. 5(c)]. We observed a
significant drop both in the amplitude of the average
voltage and recovery variable, indicating the absence of
collective spiking dynamics in the system, coinciding with
a significant drop in the power-spectrum amplitude and

frequency, highlighting the loss of synchrony at the
network level. This loss of synchrony arises in a relatively
wide range of parameter values and for a bounded band
of frequency, within a region of parameters (A;ω) elon-
gated along the amplitude axis. This shows that there
exists an optimal stimulation frequency for desynchroni-
zation, as soon as the stimulation amplitude exceeds a
threshold [89].

B. Microscopic phenomena supporting
oscillations-induced desynchronization

We now discuss the microscopic dynamics supporting
this antiresonance phenomenon. To this purpose, we extend
the approach proposed for characterizing noise-induced
synchronization and describe how the fraction of pioneers
α is affected by periodic forcing. The application of a
periodic input sweeps neurons back and forth from pioneer
to rest and reciprocally, dynamically balancing two oppo-
site phenomena.

(i) During the excitation phase [times for which
IðtÞ > 0], the rate of transition from rest to pioneer
increases and the reciprocal rate decreases, neurons
become more excitable (the resting state, if it persists
under stimulation, gets closer to the quasiseparatrix),
and αc decreases. Consequently, neurons accumu-
late faster within the pioneer regime, and may trigger
a spike faster than in the unperturbed system.

(ii) During the inhibition phase [times for which
IðtÞ < 0], pioneers are rapidly brought back near
the rest state.

Because of these dynamical fluctuations of transition
rates, the period of stimulation T is crucial for antireso-
nance. While a long inhibition phase would indeed prevent
neurons from firing, the biphasic balanced stimulations
profile will in turn present a long (or large amplitude)
excitation phase during which one or multiple spikes may
be fired. In contrast, a too rapid signal will not allow
enough time during the inhibition phase to drive the
pioneers back to rest, leading to a progressive accumulation
of neurons in the pioneer state and eventually to a macro-
scopic spike, with the largest frequencies having no impact
on the period. At intermediate frequencies, the two phe-
nomena may balance and jam the system below the chain
reaction threshold. For this to occur, the period of the
stimulation should be smaller than the time it takes for
the system to reach the chain reaction threshold when the
input is þA, but not much smaller so as to allow a proper
compensation during the inhibition phase. A stimulation
frequency higher than the spontaneous oscillation fre-
quency is needed to prevent the emergence of synchrony,
in line with DBS in Parkinson’s disease.
Quantitatively characterizing the antiresonance phe-

nomenon requires keeping track of neurons continuously
switching from rest to pioneer. We thus extended the simple
resting-pioneer model to include transitioning neurons:
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instead of instantaneous transitions from rest to pioneer,
neurons that cross the quasiseparatrix enter a transitioning
state, before gradually turning into pioneers in a time
evaluated as the typical time of transition [see Fig. 6(a)].
Stochastic transitions from rest to transitioning neuron and
from pioneer to rest occur as characterized in the previous
section, and the rates now depend on time following the
fluctuations of the input IðtÞ. In addition to these stochastic
transitions, deterministic transitions from pioneer to rest

through spiking, and from transitioning neurons to pioneers
according to the flow, occur at typical times respectively
denoted Ts and τ.
In the periodically forced system, the resting, transition-

ing, and pioneer states are relative to the value of the input.
Moreover, in the stochastic network system, the population
of neurons do not have homogeneous voltages (in particu-
lar because of noise and continuity of the trajectories). This
variation in voltage can no longer be neglected for the
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FIG. 5. Desynchronization induced by high-frequency periodic stimulation of the Fitzhugh-Nagumo network equation (with same
parameters used in Fig. 1 and with J ¼ 1.5 and σ ¼ 1.5) for various values of the amplitude A and period T of the stimulation current.
(a) Trajectories and desynchronization. Dynamics of the average voltage (blue) and recovery variable (red). The system becomes
desynchronized for relatively high-frequency stimulation (T ¼ 5), once the amplitude of the stimulation becomes strong enough to
perturb the system. Increasing further the stimulation frequency leads to the return of intrinsic oscillations (T ¼ 1), while slow periodic
forcing induces a phase locking with the stimulation (T ¼ 40). (b) Top: The maximal value of the average voltage clearly delineates a
region of desynchronization (in blue), corresponding to a dip in the maximal average as visible for fixed amplitude (bottom graph,
corresponding to the red slice in the upper diagram). (c) Preferred frequency and maximal power of the Fourier transform of the average
recovery variable delimitates regions of synchronization (yellow), desynchronization (dark blue), and period skipping, with sections at
fixed amplitude (red slices in the heat maps and right-hand panels).
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antiresonance phenomenon. For instance, when the input
switches fromþA to−A, a fraction of transitioning neurons
(including in particular those that have just switched from
rest) will have low voltages within the resting range of the
system with I ¼ −A, and a fraction of neurons from the
pioneer population will belong to the transitioning range
of voltage. The longer a transitioning neuron has been in
the transitioning state (with, say, I ¼ þA), the larger its
voltage, and thus the less likely it will become a resting
neuron when the input switches to −A. Similarly, when the
input switches from −A to þA, some resting neurons
become transitioning and some transitioning neurons
become pioneers.
We developed a simple toy model recapitulating these

phenomena in a two-dimensional equation, describing the
fractions of (i) resting neurons, that did not start their
transition, (ii) transitioning neurons, that initiated a tran-
sition to pioneers, and (iii) pioneers. Respective proportions
in each state are denoted αRðtÞ, αTðtÞ, αPðtÞ [with, for all
times, αRðtÞ þ αTðtÞ þ αPðtÞ ¼ 1], and evolve according to
the following dynamics [see Fig. 6(a)].

(i) A resting neuron becomes a transitioning neuron
with rate KRP½IðtÞ; αPðtÞ� [transition rate with mak-
ing explicit the dependence in I, solid pink arrow in
Fig. 6(a)].

(ii) A transitioning neuron becomes pioneer at rate 1=τ
[solid blue arrow in Fig. 6(a)].

(iii) A pioneer neuron returns to rest due to noise with
rate KPR½IðtÞ; αPðtÞ�, and after spiking with a rate
1=Ts [orange arrow in Fig. 6(a)].

(iv) When the input switches from I ¼ þA to −A, a
proportion SþðT=τÞ of transitioning (pioneer) neu-
rons become resting (transitioning) neurons, with Sþ
a decreasing sigmoid with Sþð0Þ ¼ 1 and Sþ → 0
at infinity [dotted orange and purple arrows in
Fig. 6(a)].

(v) When the input switches from I ¼ −A to þA, a
proportion 1 − S−ðT=τÞ of transitioning (resting)
neurons become pioneer (transitioning) neurons,
with S− a decreasing sigmoid with S−ð0Þ ¼ 1 and
S− → 0 at infinity [dot-dashed pink and blue arrows
in Fig. 6(a)].

Therefore, during periods of constant input, the fractions
of pioneers, resting, and transitioning neurons satisfy the
equations:

_αP ¼ −αPKPR½IðtÞ; αPðtÞ� þ
αT
τ
−
αP
Ts

;

_αT ¼ αRKRP½IðtÞ;αPðtÞ� −
αT
τ
;

αR ¼ 1 − αP − αT;

together with the jumps when the input switches,

ðI∶ − A → þAÞ
8<
:

αP ¼ αP þ Sþ
�
T
τ

�
αT;

αT ¼ Sþ
�
T
τ

�
αR þ

h
1 − Sþ

�
T
τ

�i
αT

;

ðI∶þ A → −AÞ
8<
:

αP ¼ S−
�
T
τ

�
αP;

αT ¼ S−
�
T
τ

�
αT þ

h
1 − S−

�
T
τ

�i
αP:

We numerically simulated this simple system of ODEs
with jumps using the rates of transitions and spike duration

1

0
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0 15 30 0 15 30 0 15 30

(a) Simplified model

(b) Simulations of the different regimes

Resting
Transitioning
Pioneer

T = 0.1 T = 1 T = 5

0 0

FIG. 6. Principle of the model of oscillations-induced desynch-
ronization. (a) Phase plane of the toy model, with nullclines for
I ¼ A (solid line) or I ¼ −A (dotted line), together with the three
populations of cells: resting (orange), transitioning (pink to violet
according to the value of v), and pioneer (blue), together with the
transitions at fixed input (solid lines) and at switching times from
þA to −A (dashed lines) or from −A to þA (dot-dashed lines).
(b) Simulation of the proportion of pioneers in the rest-pioneer
model (blue) and in the three-population model (red) as a func-
tion of time for increasing stimulation period. No qualitative
change is observed in the rest-pioneer model (blue lines): for any
frequency, a chain reaction is predicted. In the three-population
rest-transitioning-pioneer model, we recover the phenomenon of
Fig. 5. Left: For rapid oscillations, compensation of the pioneers
does not occur, and the system eventually exceeds αc (yellow
line). Middle: Optimal oscillation frequency. The system stabil-
izes around the critical value with a mean below that value
preventing spiking. Right: Slow oscillations synchronize the
system to the input. In that model, KRPð�A; ·Þ and KPRð�A; ·Þ
were computed numerically as in the previous section, with
A ¼ 2, τ ¼ 2 and the probability to switch is a sigmoidal (tanh)
function of ðτωÞ−1 with slope 4 and threshold 0.2, and the periods
of stimulation chosen are, from left to right, T ¼ 0.1, 1, 5.
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computed in Sec. III and found that it accurately captures
all observations associated with the oscillations-induced
desynchronization [Fig. 6(b)]. In particular, we recover the
nonmonotonic dependence in stimulation frequency. At
high frequency, the input plays a minor role: resting
neurons progressively transition to pioneer, and neurons
end up firing collectively, since the too brief inhibition
phase is insufficient to counterbalance the accelerated
transition of resting neurons to the pioneer state
[Fig. 6(b), left]. At low frequency, macroscopic spikes
are fired, as visible in the pioneer fraction exceeding the
critical fraction [Fig. 6(b), right]. However, intermediate
frequencies can finely balance the transitions to the pioneer
state and stabilize the fraction of pioneers below the critical
fraction αc. In that case, a majority of neurons end up
fluctuating within the transitioning regime, and the fraction
of pioneers does not reach the critical fraction associated
with the chain reaction [Fig. 6(b), middle].
This model allows a deeper understanding of some

features of the oscillation-induced desynchronization.
Starting from a regime of noise-induced synchronization,
it is clear that to prevent any firing, a necessary condition is
that the input is large enough for the system with input −A
to be clamped to rest. Indeed, our three-variable model
alternates tracking the high and low equilibria of αP,
denoted αþ and α− as I switches from A to −A. At low
stimulation amplitude, αþ and α− are close to the equilib-
rium value of α in the absence of input, and therefore both
fractions will be above αc for sufficiently low amplitude. In
that case, no desynchronization will occur, as was observed
in the full stochastic system [Fig. 5(b)]. Moreover, a
decreasing relationship between A and ω was observed
in the regime of desynchronization. From the simplified
model viewpoint, this relationship can be interpreted noting
that, for larger input amplitudes, the proportion of pioneers
will more quickly increase above αc, requiring faster
switches to stabilize below αc.

C. Information transmission

Stochastic excitable systems thus reproduce the alter-
ation of spontaneous oscillations in the presence of high-
frequency stimulation as observed in Parkinson’s disease.
Taking the parallel with Parkinson’s disease one step
further and the oscillation-induced desynchronization
regime analogy with the therapeutic effect of DBS, we
investigated the possible impact of periodic stimulation
on the transmission of information of the network.
Indeed, DBS has been associated with the restoration
of normal activity patterns in the basal ganglia and a
decrease in motor symptoms in parkinsonian patients, as
discussed above.
In the stochastic system, when oscillations abolish

collective noise-induced desynchronization, the system is
maintained in a dynamical state balancing the natural
tendency of the system to fire in the noise-induced

oscillations regime and keeping the system on the verge
of a chain reaction. Remaining within a highly reactive
state, the stochastic network may thus be able to respond
rapidly and precisely to external stimulations. This is
indeed what we can visually observe in Fig. 7(a), showing
a strong modification of the response of the network to a
white noise stimulus for the parameters associated with the
interruption of oscillations (center) in the average voltage
traces in the desynchronized regime and a reduced depend-
ence on the periodic DBS forcing pattern. This situation
contrasts with the regimes in which intrinsic or forced
high-amplitude oscillations dominate even in the presence
of the stimulus.
To test this hypothesis, we estimated the capability of the

periodically forced FitzHugh-Nagumo stochastic network
to transmit information from a current injected to all
neurons in the network. Computing information in a
spiking network is a complex task, particularly when
considering that information is contained in the times of
the spikes, that are discrete events [90]. Here, for simplicity,
we computed the information contained in the averaged
voltage. In detail, we computed the Pearson’s correlation
coefficient between the averaged voltage of the network
and the stimulus. This quantity, formally defined as the
covariance of the averaged voltage and the input divided by
the product of their standard deviations (thus, belonging
to the interval ½−1; 1�) provides a linear estimate of the
relationship between input and the averaged output. A
larger Pearson’s correlation coefficient indicates that the
two variables are linearly correlated; i.e., they have a
tendency to fluctuate simultaneously, in the same direction.
Figure 7(b) reports the result of the correlation analysis for
4 distinct stimuli, arranged from least to most regular: a
white noise, an Ornstein-Uhlenbeck process, an Ornstein-
Uhlenbeck centered at a cosine, and a pure cosine. While
the amplitude of the Pearson’s correlation coefficient is
very distinct between all 4 cases (it increases with the
regularity of the input), a similar profile tends to emerge
with a peak arising in the region of DBS parameters
associated with an abolition of oscillations. This is visible
in Fig. 7(d), where we plotted relevant level sets for
Pearson’s coefficients for each stimulus versus a level
set associated with the abolition of oscillations [maximal
average voltage, as in Fig. 5(b)]. Moreover, we computed
the correlation coefficient between the Pearson’s correla-
tion coefficient map (our estimate of the information,
peaking in regions of efficient information transmission)
and the maximal voltage amplitude of variation (dropping
when oscillations are abolished). We found strong anti-
correlations between the two variables, showing clearly
that information peaks when oscillations disappear (white
noise, −61.9%; Ornstein-Uhlenbeck, −62.3%; Ornstein-
Uhlenbeck centered at a cosine, −62.9%; cosine, −56.7%),
meaning that the peak in information transmission corre-
sponds to parameters associated with low-amplitude
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responses, i.e., with the absence of oscillations. Moreover,
we observed that while the amplitude of correlations
differed significantly between stimuli, the relative variation
(computed as the Peason’s coefficient divided by the
maximal value for a given DBS amplitude) yielded almost
identical profiles of dependence upon DBS frequency for
all stimuli tested, arguing for the fact that these responses
are properties of the network rather than stimulus specific
[Fig. 7(c)].
We confirmed these results in Appendix using mutual

information, an alternative statistical measure quantifying
the amount of information one can obtain from the stimulus
by observing the network output in response to that
stimulation. These analyses precisely confirmed the con-
clusions drawn from the correlation analyses. Overall,
these results suggest that highly stable intrinsic or forced

oscillations limit stimulus information encoding, while
their destabilization through high-frequency stimulation
endows the system with more computational capabilities,
and that the gain in the efficiency of information trans-
mission is maximized for appropriate stimulation ampli-
tude and frequency. This disruption in information
transmission depending on frequency of external signals
is also evocative of recent theoretical observations reporting
how specific frequencies can disrupt persistent states in
working memory [91].

V. UNIVERSALITY

We now study the universality of the noise-induced
synchronization and antiresonance in a class of interacting
excitable elements, as well as the existence of universal
transitions by which synchrony emerges from clamping or
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asynchrony. We give further evidence of this universality
by presenting numerical simulation of three other stochastic
neural network models and bifurcation analyses.

A. How do noise-induced oscillations
emerge and disappear?

1. Noise-induced oscillations

Section III has shown, in the FitzHugh-Nagumo model,
that noise-induced oscillations were the result of the buildup
of an imbalance in the stochastic transition rates of neurons
between the resting state and an excited state eventually
leading to a chain reaction, and that this phenomenon could
be described by a simple one-dimensional birth-and-death
Markov chain (or its ODE counterpart) tracking the fraction
of cells in each state. This phenomenon relies on the
following few crucial elements: (1) excitability, accounting
for the transitions between rest and an excited state, and
(2) confininglike interactions (e.g., diffusive coupling),
preserving the coherence of the elements.
For excitable systems with such interactions, we con-

jecture that one will recover both elements leading to noise-
induced oscillations. In particular, for such systems, the
existence of a critical fraction of excited neurons above
which a synchronized spike occurs will be ensured pro-
vided that the coupling strength is sufficiently large to
prevent individual spikes. Indeed, given a particle near the
resting state, the presence of a large fraction of excited
neurons and confining interactions will act as a driving
force counterbalancing the stability of the resting state, and,
for coupling or α large enough, will lead to a destabilization
of the resting state. Moreover, in such systems, a proper
amount of noise will naturally lead the system to exceed
that critical fraction of excited neurons. Indeed, the
transition rates from rest to the excited state and recipro-
cally are generally asymmetric in excitable systems. This
asymmetry could be associated to the fact the excited state
is not a stable equilibrium of the dynamical system, but a
transient state preceding a large excursion away from the
resting state, while the dynamics near the resting state are
stationary. In other words, excited elements are driven to a
remote state and less likely to return to rest than elements
near rest that have a vanishing vector field. This should
naturally lead to an imbalance in the rates of transition:
once a neuron has transitioned to the excited state, it will
likely have a smaller rate of transition to rest than the
reciprocal rate. Moreover, confining interactions will nat-
urally amplify this imbalance. For this collective phenome-
non to build up, a sufficiently strong coupling is necessary
to provide coherence to the set of neurons, but a too large
coupling will limit the transitions, clamping the system at
rest. Therefore, we conclude that stochastic networks of
excitable systems should present noise-induced oscillations
for a limited range of coupling strengths allowing sufficient
coherence to the set of elements, yet sufficient flexibility to
allow the buildup of the chain reaction. Noise levels should

also be limited, as observed in the FitzHugh-Nagumo
network: (1) too little noise leads to rare transitions, and
because of the natural return of each element to rest, the
critical proportion of excited elements is never reached, and
(2) too much noise, making the transition rates from rest to
pioneer and reciprocally more symmetric and breaking the
excitable structure of the intrinsic dynamics, will prevent
any significant increase in the fraction of excited elements.
These phenomena are thus not specific to the FitzHugh-

Nagumo network, and should be valid in a broad class of
excitable systems with synchronizing coupling.

2. Transitions to and from noise-induced oscillations

As observed in the FitzHugh-Nagumo network for a
given coupling level, three regimes arise as noise is
increased: clamping near the resting state, oscillations,
and asynchrony. The nature of the transitions to and from
the oscillatory regime can also be inferred from the analysis
of each neurons’ dynamics, and will thus share the same
universality properties.
At low noise, the rarity of transitions between rest and

excited states prevents the system from reaching the critical
proportion of excited elements, and thus, in the long run,
the system reaches a steady proportion of excited elements
below that critical threshold. As noise is increased, tran-
sition rates from rest to pioneer and reciprocally will
increase asymmetrically, leading to a progressive increase
in the steady proportion of pioneers, until that proportion
reaches the critical fraction associated with the chain
reaction. In the vicinity of this transition and within the
clamping regime, the proportion of pioneers asymptotically
tangents a level slightly below the critical fraction, and as
the transition is crossed, it takes an arbitrary long time to
trigger a synchronization event; moreover, this event will
be massively synchronized because of the relatively low
level of noise. Therefore, as noise is slowly increased from
the clamped regime, the collective dynamics suddenly
transitions from a stationary to arbitrary slow, large
amplitude, highly synchronized oscillations. This type of
dynamics is evocative of homoclinic bifurcations, and we
conjecture that excitable networks displaying noise-
induced transitions switch to these oscillations through a
collective homocliniclike bifurcation.
When noise is further increased, oscillations will reach

a finite frequency associated with the deterministic time
needed for the population of excitable elements to reach the
chain reaction threshold, while losing progressively coher-
ence due to an increased influence of independent fluctua-
tions. This loss of coherence will lead to a decrease in the
average voltage oscillation amplitude, while the period of
the oscillations remains lower bounded by the typical time
of an excursion. Therefore, as noise is increased, oscil-
lations will progressively disappear through a desynchro-
nization evocative of a supercritical Hopf bifurcation.
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This explanation, perfectly in line with the numerical
evaluation of the mean and period of the oscillation in the
FitzHugh-Nagumo network in Fig. 1, will be confirmed in
several excitable systems in Sec. V B. Moreover, we will
verify the presence of the conjectured transitions in the two
simple models (theta neuron and Wilson-Cowan models)
for which one can access the bifurcation diagram of the
probability distribution.

3. Oscillations-induced desynchronization

In the class of excitable systems showing noise-induced
oscillations, we further tested the impact of high-frequency
periodic forcing and found again that the phenomenon
enjoys a relatively broad universality. The microscopic
dynamics supporting the phenomenon uncovered in the
FitzHugh-Nagumo network in the previous section indeed
calls upon relatively general mechanisms resulting in
neurons remaining dynamically within a transitioning
regime whereby neurons are neither at rest nor fully in
the excited regime: positive phases of the input, while they
may accelerate the emergence of a chain reaction, are
quickly compensated by the negative phases of the input.
This general phenomenon requires, however, a relatively
slow transition from rest to pioneer, which is not always
found in simple models. We will recover this desynchro-
nization in other models in Sec. V B.

B. Exploring the universality class

To confirm the universality of both transitions, we
simulated three other networks of excitable elements with
noise, in the large n limit, as coupling and noise are varied.

1. Morris-Lecar model

We start considering the stochastic, electrically coupled
network of Morris-Lecar neurons [92], a classical biophysi-
cally realistic neuron model particularly interesting for its
relative simplicity yet direct relationship with electrophysi-
ology and with the Hodgkin-Huxley model. In this model,
the state of neuron i ∈ f1;…; ng is described by a voltage
variable vi and a recovery wi whose dynamics are governed
by the equations:

dvit ¼
1

c
½I − gCaðvi − vCaÞm∞ðviÞ − gKðvi − vKÞw

− gLðv − vLÞ þ I þ Jðhvi − viÞ�dtþ σdWi
t;

dwi
t ¼

ϕ

τwðvitÞ
½w∞ðvitÞ − wi

t�;

with hviðtÞ ¼ ð1=nÞPn
j¼1 v

j
t . In that model, c denotes the

membrane capacitance, I is a current, gL; gK; gCa are
the leak, Kþ and Ca2þ conductances through membrane
channels, vl; vK; vCa their reversal potentials, m∞ðvÞ
accounts for an instantaneous calcium current, ϕ is a
reference frequency, τw the timescale of recovery w, and

w∞ is the quasisteady-state value of w. We refer to
Chap. 3.2 of Ref. [6] for the specific sigmoidal shapes
of τw, m∞, and w∞ as well as for basic parameter values.
The above equation incorporates noisy currents driven by
independent Brownian motions ðWi

tÞ and diffusive cou-
pling modeling electrical synapses.
It is well known that this system is excitable within a

wide range of parameter values [6]. We thus analyzed the
impact of noise and electrical coupling within this excita-
bility regime, and recovered the noise-induced oscillation
transition, similar in many ways to the observations made
in the FitzHugh-Nagumo network [see Fig. 8(a)]. In
particular, at high coupling or low noise, the system is
clamped in the vicinity of the resting state [left and top
diagrams in Fig. 8(a1)], while at low coupling or large
noise, asynchronous dynamics take over [bottom and right
diagrams in Fig. 8(a1)]. Between these two regimes, noise
induces perfectly periodic synchronized oscillations. The
type of transitions is also clearly recovered: for a fixed level
of coupling, sharp and large amplitude, arbitrarily slow
oscillations appear suddenly as noise is progressively
increased, again evocative of a homoclinic transition,
and, as noise is further increased, these oscillations pro-
gressively lose synchrony, as visible in the gradual decrease
in the amplitude of the average voltage at reaching the
asynchronous regime. These observations are also visible
in the Fourier analysis associated.
Furthermore, the noise-induced oscillations were found

to disappear under application of a biphasic Lilly pulse
IðtÞ ¼ AHðt=TÞ [Eq. (8)] for periods and amplitudes within
specific bounds: too rapid oscillations do not affect the
spontaneous oscillatory dynamics [Fig. 8(a2), left], too slow
oscillations lock the system to the stimulus [Fig. 8(a2),
right], and appropriate frequency and amplitude abolish the
synchronization [Fig. 8(a2), center], a phenomenon arising
in a relatively broad range of stimulation periods and
amplitudes as shown in the Fourier analysis presented in
the lower left-hand panel of Fig. 8(a2).

2. Electrically coupled theta neuron network

The theta neuron constitutes a canonical example of
excitable system [6]. The stochastic electrically coupled
theta neuron system describes the phase of neuron i in
an n-neurons network as a variable θi ∈ S2π (the one-
dimensional torus R=2πZ) through the equations:

dθit ¼
�
1 − cosðθitÞ þ ½1þ cosðθitÞ�

�
−a − σ2 sinðθitÞ

þ J
n

Xn
j¼1

½qðθjtÞ − qðθitÞ�
	�

dtþ σ½1þ cosðθitÞ�dWi
t;

with qðθÞ ¼ ½sinðθÞ=1þ cosðθÞ þ ε� for ε small (in our
numerical simulations, ε ¼ 0.001). Classical theory of
mean-field limits ensures that, for n → ∞, the probability

NOISE-INDUCED SYNCHRONIZATION AND ANTI-RESONANCE … PHYS. REV. X 10, 011073 (2020)

011073-19



distribution pðt; θÞ of any given neuron in the network to
be at phase θ at time t converges to the solution of the
nonlocal equation:

∂tp ¼ −∂θ

�
p

�
1 − cosðθÞ þ ½1þ cosðθÞ�

�
−a − σ2 sinðθÞ

þ J

�Z
2π

0

qðθ0Þpðt; θ0Þdθ0 − qðθÞ
�	��

þ σ2

2
∂2
θfpðt; θÞ½1þ cosðθÞ�2g: ð9Þ

Numerical simulations of the stochastic network equation
as well as the mean-field Fokker-Planck equation recover
the emergence of synchronized oscillations for appropriate
coupling and noise levels. Here, instead of presenting
numerical simulations of the network equation, we com-
puted the bifurcations of the mean-field equation (9), thus
finding the precise boundaries of the synchronization
regime.
To this end, we discretized this equation for θ ∈ fθk ¼

ðk2π=NgridÞ; k ¼ 0;…; Ngrid − 1g with Ngrid ¼ 100, thus
replacing the nonlocal partial differential equation into an
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FIG. 8. Universality of the transitions. (a) Morris-Lecar model. Noise-induced transition and oscillations-induced desynchronization;
parameters as in Table 3.1 of Ref. [6] (SNLC), with ϕ ¼ 0.02, V1 ¼ −1.3, V4 ¼ 10, and basic applied current I ¼ 35. (a1) shows the
noise-induced synchronization phenomenon as a function of coupling strength J and noise σ. Trajectories, 20 sample voltage traces
(dark blue) and mean (bold cyan); heat maps, statistics of the synchronization via Fourier transform peak period (top) and amplitude
(bottom) as a function of coupling strength and noise. (a2) Responses of the system within the noise-induced oscillations regime
(J ¼ 1.5, σ ¼ 3) to a Lilly pulse Eq. (8) for various frequencies and amplitudes; at appropriate frequency and amplitude, oscillations
disappear (center). Trajectories, 20 sample recovery variable traces (red) and mean (bold black); heat map, amplitude of the Fourier
transform as a function of period and amplitude of the stimulation. (b) The theta neuron with a ¼ 0.04. Two-parameter bifurcation
diagram of the Fokker-Planck equation of the theta neurons as a function of coupling strength and noise shows a saddle-node bifurcation
manifold (blue) and a Hopf bifurcation manifold (red), together with two codimension-two cusp and two Bogdanov-Takens (BT)
bifurcations, associated with a branch of saddle-homoclinic bifurcation (yellow). The Hopf and homoclinic bifurcation curves delineate
an eye-shaped noise-induced synchronization regime (sky blue region). (c) The excitatory-inhibitory Wilson-Cowan mean-field system
with gee ¼ 15, gei ¼ −12, gie ¼ 16, gee ¼ −5, Ie ¼ 0, Ii ¼ −3, SðxÞ ¼ erfð3xÞ. The system exhibits an intrinsic excitable structure
(left) with a single stable fixed point (black circle) and a saddle fixed point (black star) whose stable (blue) and unstable (yellow)
manifolds organize the excitability. Green and red curves are the nullclines of the system. Right: Two-parameter bifurcation diagram of
the excitatory-inhibitory Wilson-Cowan system features a Hopf (red solid line, supercritical; red dashed line, subcritical; red circle,
codimension-two Bautin bifurcation) and a saddle-node (blue) bifurcation colliding at a Bogdanov-Takens bifurcation (green circle),
from which point emerges a homoclinic bifurcation (green line). Near the BT point, the saddle-node bifurcation shows a cusp (not
visible in the diagram). The homoclinic and Hopf bifurcations delineate a region of noise-induced oscillations (blue) that extends
slightly beyond the Hopf curve between the two Bautin bifurcations and disappear through a fold of limit cycles (not shown). As noise
is increased, oscillations emerge from clamped regimes through the homoclinic bifurcation and disappear through the Hopf bifurcation
(or the fold of limit cycles) into an asynchronous state.
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Ngrid-dimensional ordinary differential equation descri-
bing the probabilities pkðtÞ ¼ pðt; θkÞ, similar to the
system written above, with the operator ∂θðfÞ (f is
here a dummy variable) discretized as a centered finite
difference ½fðθkþ1Þ − fðθk−1Þ�=2δ, the operator ∂2

θðfÞ by
½fðθkþ1Þ þ fðθk−1Þ − 2fðθkÞ�=δ2, and the integral termR
2π
0 fðθ0Þdθ0 by PNgrid−1

k¼0 fðθkÞδ, with δ ¼ 2π=Ngrid.
The two-parameter bifurcation diagram of this equation

as a function of the coupling strength and noise are depicted
in Fig. 8(b). The bifurcation diagram is organized around
two codimension-two Bogdanov-Takens bifurcations, shar-
ing the same Hopf, homoclinic, and saddle-node bifurca-
tion manifolds (two cusp bifurcations were also found and
have no impact on the noise-induced oscillations phenome-
non). We recover, as in the FitzHugh-Nagumo or the
Morris-Lecar system, an eye-shaped region of noise-
induced oscillations for intermediate values of noise and
coupling, splitting the parameter space between clamping
and asynchronous regimes.
We emphasize that the possibility to access the bifur-

cation diagram for the probability distribution of the
mean-field Fokker-Planck equation allows supporting
the conjecture related to the type of bifurcations surround-
ing the noise-induced oscillations regime. We indeed find
that the homoclinic bifurcation arises for lower values
of noise than the Hopf bifurcation, consistently, for all
coupling strengths. For a fixed value of coupling allowing
noise-induced oscillations, the oscillations will emerge
from the clamped regime, as noise is increased, through
the homoclinic bifurcation, and disappear through a Hopf
bifurcation leading to the asynchrony regime.

3. Noise-induced oscillations in a two-populations
Wilson-Cowan equation

We conclude our analysis of universality with the study
of a firing-rate model shown to exhibit noise-induced
oscillations [28], and for which one can rigorously access
the bifurcation diagram for the mean-field solutions. This
model describes the activity of an excitatory (E) and an
inhibitory (I) neuron population of size ne and ni:

dxit¼
�
−xiþJee

ne

Xne
j¼1

SðxjÞþJei
ni

Xni
j¼1

SðyjÞþIe

�
dtþσdWi

t;

dyit¼
�
−yiþJie

ne

Xne
j¼1

SðxjÞþJii
ni

Xni
j¼1

SðyjÞþIi

�
dtþσdW̃i

t;

where Ie (Ii) is the deterministic level of current received
by excitatory (inhibitory) cells and Wi (W̃i) are indepen-
dent Brownian motions accounting for current fluctuations.
Cells are coupled through the product of a nonlinear
sigmoidal (smooth) transform of each neuron’s activity
multiplied by a coupling coefficient Jαβ for α; β ∈ fe; ig
representing the typical coupling strength of neurons of

population β onto neurons of population α; these coef-
ficients are assumed to be equal to Jαβ ¼ Jgαβ for a
fixed connectivity matrix G ¼ ðgαβÞαβ and where J acts
as a scaling coefficient as in the previous cases. As shown
in Ref. [28], this system converges to the mean-field
equations:

dxt ¼ f−xt þ JeeE½SðxtÞ� þ JeiE½SðytÞ�gdtþ σdWt;

dyt ¼ f−yt þ JieE½SðxtÞ� þ JiiE½SðytÞ�gdtþ σdW̃t;

which are implicit stochastic differential equations with
dynamics coupled to the mean of the solution. These are
generally complex mathematical equations to handle, but
this particular case enjoys a massive simplification. Indeed,
the coupling terms in this limit are deterministic expect-
ations, and thus because of the Gaussian nature of the noise
and linearity of the intrinsic dynamics, solutions to these
stochastic equations are asymptotically Gaussian (or
Gaussian for all times if the initial condition is), and its
moments satisfy the ODE:

_μe ¼ −μe þ Jeefðμe; vÞ þ Jeifðμi; vÞ;
_μi ¼ −μi þ Jiefðμe; vÞ þ Jiifðμi; vÞ;
_v ¼ −2vþ σ2;

with fðμ; vÞ ¼ R
R SðxÞe−ðx−μÞ2=2v= ffiffiffiffiffiffiffiffi

2πv
p

dx. This function
has the closed form fðμ; vÞ ¼ erfðgμþ θ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2v

p
Þ

when SðxÞ ¼ erfðgxþ θÞ with erf the error function (the
repartition function of the Gaussian (see Appendix A of
Ref. [28]). This simplification thus allows addressing the
existence of transitions in the collective dynamics using
classical bifurcation theory for ODEs.
This system is not expressed as an excitable system and

does not have an explicit slow-fast structure. However,
the geometry of its phase plane endows it with excitable
properties. Indeed, a single pair of excitatory-inhibitory
neurons in the absence of noise features a single stable
fixed point, a saddle, and an unstable spiral [see Fig. 8(c1)].
The unstable manifold of the saddle describes a large loop
around the unstable fixed point (a heteroclinic orbit), and its
stable manifold acts as an excitability threshold: perturba-
tions of the fixed point across this manifold lead to a long
excursion back to the stable fixed point along the unstable
manifold heteroclinic orbit. We thus expect to find a similar
transition to synchrony due to noise, provided that con-
nections are synchronizing. Here, the excitatory-inhibitory
nature of the system plays this role and maintains a
cohesion in the system (although more indirectly than
the electrical coupling). Indeed, when many excitatory
neurons are activated, they will activate more excitatory
cells, and when a majority is silent, other neurons tend to
remain silent: therefore, excitatory neurons may act as the
excitable voltage in the FitzHugh-Nagumo or Morris-Lecar
model, and inhibition may act as the recovery variable.
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The mechanisms described in this paper thus account for
the noise-induced oscillations observed in Ref. [28]: for
small noise, the system thus remains in the vicinity of the
fixed point, but as noise increases, excursions through the
stable manifold of the saddle will be more frequent, raising
the number of excited neurons, and eventually leading to a
collective spike. Transitions as a function of noise and a
global connectivity parameter J scaling all connectivity
coefficients are provided in Fig. 8(c2), and confirm again
the conjecture of the appearance of noise-induced oscil-
lations through a homoclinic bifurcation at σ small and their
disappearance through a Hopf bifurcation for σ large.

C. Beyond identical cells and all-to-all coupling

Realistic networks in the brain are heterogeneous. Cells
may differ in the way they process the input, and show
variable connectivity patterns, generally sparse. Ample
evidence indicates variability in cell properties [93–96]
and brain connectivity (see, e.g., Ref. [97], and references
therein). Much theoretical work has also shown how
variability in cell properties or network architectures impact
collective dynamics and synchronization (see Ref. [98] for
a review). The model we studied throughout the paper was
composed of identical cells coupled to all other cells with
the same amplitude, yet the mechanisms we uncovered in
this simplified model are more general. To outline the
universality of these observations beyond identical cells
and all-to-all coupling, we present multiple situations in

which the mechanisms persist and discuss some settings
where the proposed mechanisms break down.

1. Randomly connected networks

Mean-field theory ensures that the results reported for
our network persist when the connectivity coefficient
between neurons i and j, denoted Jij, are independent
random variables with finite mean and variance. The
generalized network equations now read:

dvit ¼
�
fðvitÞ − wi

t þ
1

n

Xn
j¼1

Jijðvjt − vitÞ
�
dtþ σdWi

t;

dwi
t ¼ εðbvit − wi

tÞdt; ð10Þ

Theoretically, the asymptotic dynamics of this system is
identical to that of system (1) with J the average value of
the Jij. Let us for instance discuss the biologically realistic
case of sparsely connected networks. Instead of the case
where neurons communicate with all other neurons, we
assume that the probability for a synapse to exist between
any two neurons is fixed equal to p. For simplicity, we
assume that when a connection is present, the synaptic
weight is deterministic and equal to J=p (random synaptic
weights amplitudes with mean J=p should provide the
same result). In this setting, Jij are independent random
variables equal to J=p with probability p and to 0
otherwise. Figure 9(a) represents the dynamics of this
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FIG. 9. Noise-induced synchronization in heterogeneous FitzHugh-Nagumo networks model, with n ¼ 4000 neurons [n ¼ 2000 for
spatial networks in (b)], a ¼ 4, b ¼ 4, ε ¼ 0.01, and I ¼ 0, for various values of the coupling strength J and noise level σ. (a) Sparsely
connected networks with probability of connection p ¼ 0.6, and connectivity amplitude J=p. Same color code as in Fig. 1. The graphs
represent 10 randomly chosen trajectories of voltage and recovery variable as well as their statistical mean. The system shows an almost
identical phenomenology as in the homogeneous network. (b) Spatially extended network with local exponential coupling, i.e., with a
probability of connection between two neurons at a distanceD given by e−D=δ with δ ¼ 0.02 (see upper left inset for a sketch of the local
coupling) and a weight of connection equal to J=p̄, where p̄ is the average connectivity level of a given neuron. Initial condition was set
up with an average excited region of 5% of the network (100 cells upon 2000). We observe that the phenomenology persists and that a
local theory of pioneers and resting neurons seems at play in the emergence of patterns of synchrony for J ¼ 1.5 and σ ¼ 1.5.
(c) Heterogeneous elements. Neurons have heterogeneous excitability levels ai ¼ aþ σaξ

a;i
t and heterogeneous inputs Ii ¼ I þ σIξ

I;i
t ,

where ξx;i for x ¼ a, I are white noise, i.e., independent and identically distributed normal centered variables, σa ¼ 0.5 and σI ¼ 1.
While the dispersion of neurons voltage and recovery variable seems now broader, the phenomena are exactly recovered.
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network for n ¼ 2000 neurons in each of the five special
cases studied throughout the paper, and confirms that this
sparsely connected network behaves exactly as the homo-
geneous case and shows identical transitions.
The emergence of oscillations can be accounted for in the

same framework. First, we can readily extend the definition
of pioneers and resting neurons to this case, and when n is
large, the critical fraction of pioneers can be evaluated using
Eq. (2), precisely as in the homogeneous case. Indeed, since
the interaction term used in these equations is an averaged
force, then on average, the sparsely connected case induces
identical forces as in the homogeneous case. Moreover, and
for the same reasons, transitions from rest to pioneer and
pioneer to rest occur at rates identical to the homogeneous
all-to-all network. Therefore, sparsely connected networks
(with the proper renormalization of the connectivity
weight) display the same phenomenology as homogeneous
networks. For small noise or large average coupling
coefficient J, transitions from the resting state will be rare,
because of the rarity of transitions from rest to pioneer
preventing their accumulation, and for coupling too low
or noise too high, asynchronous dynamics shall arise, while
for appropriate noise and coupling, in the exact same range
as evaluated for the homogeneous case, the network will
oscillate in synchrony.
Other cases of random connectivity for which identical

phenomenology arises are cases of independent random
connections Jij with mean connection J and a variance
growing slower than n1−κ for some κ ∈ ð0; 1Þ, as in all these
cases the fluctuations associated with random connections
will vanish in the limit. This picture breaks down, however,
when randomness becomes too strong, for instance, for
synaptic weights with variance proportional to the network
size. In that case, the fluctuations associated with variable
synaptic weights become prominent and can change the
phenomenology, as was observed, for instance, in the
celebrated work of Sompolinsky et al. [99]. We for instance
showed, both in the case of the electrically coupled
FitzHugh-Nagumo equations as well as in a Wilson-
Cowan network similar to the one studied here, that when
the variance of the synaptic coefficient is proportional to the
network size, transitions due to the variance of the synaptic
weight do occur [100]. We note that the phenomena leading
to the synchronization due to heterogeneous connections in
these systems likely do not rely on similar phenomena, and it
remains an open question to characterize the microscopic
phenomena at play leading to heterogeneity-induced oscil-
lations. Besides networks with connectivity having diverging
variances, cases that are not covered by the theory are
ultrasparse networks where the probability of connection pn
go to 0 as n → ∞, such as networks where neurons can
communicate only with a finite number of other cells. In that
case, it would indeed not be possible to maintain a nontrivial
level of connectivity (as we did when pn was constant by
rescaling the coefficient), and other scalings may be used.

2. Spatial networks and excitable media

Although connectivity was nonhomogeneous in the
network considered in Sec. V C 1, these networks are
composed of exchangeable elements, in the sense that
the coefficients Jij were considered independent and
identically distributed, and all elements had identical
dynamics. This type of connectivity neglects spatial effects.
In many applications, excitable elements are organized
spatially, forming excitable media. This is the case of
nerve cables (axons), a piece of cortex, or the Belousov-
Zhabotinsky reaction. An abundant literature deals with the
dynamics of excitable media and the impact of noise on
these systems [7,101]. It is well known that such media can
support global oscillations and traveling waves, in particu-
lar. We expect that similar phenomena may be at play in the
emergence of such patterns in response to noise, and that
these could rely on similar microscopic mechanisms as
described in this paper. In detail, a theory of how micro-
scopic phenomena support the emergence of traveling
waves or global oscillations could indeed be developed
along the lines of the present work, but relying on a local
notion for the fraction of pioneers. We illustrate this
phenomenon in Fig. 9(b) on a ring network, where each
neuron has a random location on the circle S1 and
randomly connects to other neurons with a probability
decreasing with the distance. For definiteness, we chose a
coupling probability decaying as an exponential according
to the distance between neurons. In detail, the probability
for neuron i at location ri to communicate with neuron j at
location rj is given by Jij ¼ Je−kri−rkk=δ, where δ is the
typical connectivity distance. We set up the initial condition
near the rest state, except for a small region of the medium
for which the system is composed of pioneers (initial
condition in the excitable region). Locally, these pioneers
will have the ability to excite other cells at the appropriate
amount of noise and connectivity, much like a local
homogeneous network, thus propagating a wave of exci-
tation for such parameters, followed by a return to rest and
then a progressive return to the excited regime. Figure 9(b)
indeed highlights this phenomenon and recovers noise-
induced pattern formation in this system, with a structured
propagation of the excited initial state only for specific
values of noise and coupling, and a consistent evolution of
local pioneers. Beyond showing this numerical evidence,
the development of a detailed microscopic theory of pattern
formation in excitable media is beyond the scope of the
present paper.

3. Heterogeneous elements

We close our discussion on the universality of the
mechanisms by mentioning how the theory may extend
to networks composed of heterogeneous excitable ele-
ments. To this end, we considered a network equation
with neurons of heterogeneous excitability. In detail, we
considered the system
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dvit¼
�
vitð1−vitÞðvit−aiÞ−wi

tþ
1

n

Xn
j¼1

Jijðvjt −vitÞþIi
�
dt

þσdWi
t;

dwi
t¼ εðbvit−wi

tÞdt; ð11Þ

where ai and Ii are no more constant but fluctuate across
neurons. For definiteness we chose these parameters to be
independent Gaussian random variables centered at the
values of reference a ¼ 4 and I ¼ 0 used throughout the
paper, and with standard deviation 0.5 and 1 [102]. Both
parameters control the excitability of the neurons, and thus
while the averaged excitability is similar to the homo-
geneous network, the network Eq. (11) is composed of
elements with varying excitability levels. While we expect
that a theory based on following fractions of pioneers and
determining critical fractions leading to a chain reaction
shall allow accounting for these dynamics, such a theory
would need specific care in defining pioneers and transition
rates. Indeed, in such a heterogeneous system, neurons will
transition from rest to pioneer and pioneer to rest at distinct
rates, as the most excitable neurons can be driven to the
pioneer state in response to smaller input. Similarly,
heterogeneity will impact each individual neuron’s critical
fraction, since for instance less excitable cells will need a
higher proportion of pioneers to be drawn to transition to
the pioneer state. However, we conjecture that the mech-
anisms described in this paper should persist statistically.
Figure 9(c) shows indeed that such networks closely
recover the phenomenology of the homogeneous network,
although more fluctuations in the individual trajectories
may arise.

VI. DISCUSSION

Noise is a prominent feature in natural or physical
systems, arising from multiple sources including electrical
fluctuations, thermal agitation of molecules or electrons,
and synaptic activity, to cite a few. In nonlinear systems,
noise can have multiple effects, such as attractor switching
in multistable systems, stochastic resonances in excitable
systems [7], or inverse resonances near folds of limit cycles
[103,104]. These phenomena have been largely studied for
finite-dimensional stochastic systems. The role of noise in
large-scale nonlinear interacting particle systems is signifi-
cantly less well understood. A variety of articles have
revealed the complex phenomenology noise may have in
these systems, and particularly, a regularizing effect leading
to the stabilization of stationary solutions or the emergence
of periodic solutions [7,26,27,29,30,33]. Despite increasing
evidence and abstract mathematical proofs in the mean-
field limit regime, the origins of these surprising regular-
izing effects of noise have remained elusive.
In the first part of this paper, we thoroughly investigated

this collective phenomenon of robust emergence of

synchronized oscillations. Two essential microscopic mech-
anisms were highlighted underlying this behavior: asym-
metric transitions from rest to an excited state and vice versa,
leading to an increase in the fraction of excited neurons, and
a subsequent chain reaction recruiting all neurons into a
collective excursion. Contrasting with other classical mean-
field behaviors, these dynamics are therefore not driven by
an influence of the ensemble average itself, but rather by the
random and independent fluctuations of each neuron’s
activity, enabling the buildup of a macroscopic fraction of
neurons in the excited state. In a sense, and contrasting with
stochastic resonance for single elements, coupling and noise
conspire here to yield a collective resonance phenomenon,
which ends up yielding exactly periodic responses. These
phenomena are not specific to the FitzHugh-Nagumomodel,
but are universal to stochastic networks of excitable ele-
ments with confining interactions, as we confirmed in three
other classical neural networks.
The emergence of oscillations at unison arising in

response to independent stochastic fluctuations of each
element may seem surprising: one may have expected
stronger correlations in the average activity in response to
correlated inputs, or small noise. It is however an opposite
effect that takes over: regular macroscopic trajectories
emerge actually in response to having independent noise,
making each neuron independent in the large network size
limit, and thus the time to reach the critical fraction of
excited neurons deterministic, much like an empirical
average of independent variables, converges to a determin-
istic value in the law of large numbers. Independent noise at
the level of each neuron is a relatively realistic assumption
in the brain when accounting for the ongoing bombardment
of synaptic inputs and channel fluctuations, and was
supported by recent data [105,106] and general properties
of large-scale stochastic networks.
This phenomenon shares a number of commonalities

with brain activity disruptions occurring in Parkinson’s
disease. Indeed, in this disease, abnormal oscillations
emerge and are associated with an increased excitability
of cells [47,78] and enhanced electrical transmission [79].
Motivated by this analogy, we next investigated the
possible impact of high-frequency stimulation on the net-
work, emulating DBS therapies. We observed that such a
periodic forcing could prevent the emergence of synchrony.
For this desynchronization to occur, stimulation shall have
high frequency relative to the frequency of intrinsic
oscillations, but not too high. Low-frequency stimulations
forced the system to lock to the stimulus, very high
frequency stimulations had no impact on the spontaneous
oscillations. Between these two regimes, the system, poised
near the chain reaction threshold, maximized the correla-
tion between the input and output and other measures of
information transmission (e.g., mutual information).
Undoubtedly, our model does not constitute a realistic

neural population architecture and connectivity appropriate
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to reproduce closely the phenomena arising in Parkinson’s
disease. Despite this simplification, several parallels can be
drawn between our model and clinical observations of
parkinsonian patients [54,57,80,107]. In particular, the fact
that DBS efficiency depends on the frequency of stimula-
tion and that optimal outcomes on motor symptoms and on
the abolishment of beta oscillations (10–30 Hz) arise for
high-frequency stimulations (typically, around 130 Hz); the
ratio between this effective stimulation frequency and the
frequency of the intrinsic oscillatory rhythm is similar to
what we observe in our model, both for the emergence of
the desynchronized regime and maximal information trans-
mission capability (Pearson’s coefficients or mutual infor-
mation). Moreover, the amplitude of stimulation pulses
can be optimized: our model indicates that a robust increase
in information transmission capabilities can be found
for relatively low-amplitude stimulation, as soon as the
desynchronization occurs. Therapeutically, low-amplitude
stimulation could seem beneficial since it avoids imposing
high-amplitude currents that may be detrimental to network
activity and may prevent the network from responding with
a high signal-to-noise ratio to natural stimuli. In our simple
model with a single electrically coupled neuronal popula-
tion, the mechanisms by which periodic forcing can abolish
oscillations relies on a sequence of excitations compensated
by inhibition, and is thus valid only for biphasic stimula-
tions such as the Lilly pulse. In the FitzHugh-Nagumo
model, monophasic excitatory input would not interrupt
oscillations, as excitation alone will only hasten macro-
scopic spikes. In constrast, a monophasic inhibitory input
would abolish oscillations, but this effect would be mon-
otonic in frequency, and therefore would not recover the
two opposite effects observed for too-low or too-high
frequencies both in the model under biphasic stimulation
and clinically. The model, however, does not suggest that
biphasic pulses should be more beneficial clinically than
monophasic pulses. Testing this hypothesis would require
studying a significantly more realistic model including
other types of interactions distinct from electrical coupling,
and multiple neuronal populations, in particular inhibitory
cells that may play a crucial role in desynchronization; see,
e.g., Ref. [108]. This stresses the importance of studying
the dynamics of more realistic networks, made of multiple
populations and including the presence of chemical-like
pulse coupling, in particular under the various frameworks
available in the literature [109,110].
In contrast to more realistic models of cortico-basal

ganglia loops aiming at explaining the detailed mechanisms
underlying the emergence of oscillations and the therapeu-
tic effect of DBS [59,111–113], we propose a more abstract
line of thought linking macroscopic level to microscopic
dynamics. In particular, our model proposes an alternative
view to the “information lesion” hypothesis [114], sug-
gesting that instead of producing highly regular output
patterns, DBS endows the network with highly variable

spontaneous activity, without any strong coherent activa-
tion of individual neurons, and thus high information
transmission. The type of loss of synchrony evidenced
here is quite distinct from the mechanisms suggested in
more realistic models. In particular, the work of Rubin and
Terman [59] relies on detailed modeling of the interaction
between the multiple populations composing the basal
ganglia. This model specifically allows studying how
DBS modifies the patterns of spikes of inhibitory popula-
tions (particularly, the internal segment of the globus
palidus), whose spiking pattern turns from rhythmic burst-
ing to a stronger, but tonic firing. Moreover, the effect being
present only in a given window of frequency distinguishes
our model from those relying on patterns of increased
inhibition, blockade, or stochastic phase resetting [112]. It
is also distinct from the stochastic phase resetting theory
elegantly proposed by Tass [115] extendingWinfree’s work
on oscillators responses to pulses [116] to populations of
oscillators, in that our mechanism does not rely on neurons
being oscillators but, instead, excitable elements synchro-
nizing in response to noise. We further emphasize that the
stochastic phase resetting theory opened the way to a
current line of theoretical and clinical research on adaptive
DBS stimulation protocols, either in closed-loop settings
responding to brain’s activity [112,113,117–119] or aiming
at providing the stimulation on demand, mostly in the
context of obsessive-compulsive disorder treatment [120].
Our study suggests that accumulation of pioneers is an
early indicator of collective spikes and could be used to
refine electrical stimulations in a closed-loop system in a
similar manner as proposed in these detailed modeling and
clinical works. Moreover, the arguments we provided
accounting for the loss of synchronization are, again, not
specific to the particular model studied, and we argue that
this phenomenon should arise also in more realistic
situations. In particular, the same type of protocols and
background was used in a more realistic model of the
cortico-striatal loop in normal and parkinsonian conditions
[108], and this work opens up a promising avenue for a
better understanding of Parkinson’s disease and its treat-
ment. The study also highlights a number of open problems
in mathematics: most phenomena described indeed chal-
lenge a well-developed theory of noise in nonlinear
dynamics and call for extending these results beyond small
noise and single elements.
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APPENDIX A: TRANSITION RATES AND
KRAMERS’ THEORY

In the main text, we derived numerically the transition
rates from pioneer to rest and reciprocally through numeri-
cal simulations. These rates are analogous to transition rates
of stochastic particles in multiwell potentials, and we
discuss here the limitations of using the well-developed
classical theory of attractor switching in multiwells poten-
tials to the problem at hand.
For a stochastic particle in a multiwell potential and in

the limit of small noise, it is well known that the particle
switches attractor at exponentially distributed times with
rates depending on the depth of the wells and the noise level
[71,72]. Here, the problem at hand challenges the standard
theory in many ways. One important difficulty stems from
the fact that noise-induced oscillations arise for nonvanish-
ing noise, a regime where little remains known about
transitions between multiple attractors and where large-
deviations estimates are ineffective. Moreover, each par-
ticle has an excitable dynamics instead of a multistable
Hamiltonian dynamics: while rest is indeed an equilibrium,
the pioneer state is a transient passage that does not
correspond to a stable fixed point.
One way around the latter difficulty is to reduce the

system to a one-dimensional equation with w a constant
during the time of a given transition, as done multiple
times in Sec. II. This allows deriving an effective poten-
tial to approximate system during the transition phase.
Unfortunately, the potential obtained would now depend on
the level of noise and of the distribution of the voltages of
neurons. Indeed, Eq. (4) corresponds to the dynamics of a
noisy particle in a one-dimensional potential U given by

UðvÞ ¼ −
Z

v

0

fðyÞdyþ J
v2

2
þ Av

¼ v4

4
−
ð1þ aÞv3

3
þ ðJ þ aÞv2

2
þ Av;

with A ¼ w0 − Jð1 − αÞvr þ αvp. This potential requires
assuming that the system, during one transition, conserves
a fixed value of w0, a fixed fraction α of neurons in the
vicinity of a pioneer state vp and the rest of neurons in the
vicinity of the resting potential vr. Both assumptions are
reasonable for the system at hand, but two difficulties arise
to obtain analytical results using this formula. First, the
potential depends on noise and coupling through w0.
Moreover, vr and vp are also not fully defined and depend
on w0 (thus on noise and J) and α. Indeed, vr and vp shall
correspond to the resting and pioneer state, two putative
minima of the potential. Computing these quantities thus
amounts to solving an implicit equation:

fðvÞ − Jvþ w0 − J½ð1 − αÞvr þ αvp� ¼ 0;

where vr is the smallest and vp is the largest actually
solution of the cubic equation, when that equation has three
solutions. These in particular only exist for a limited range
of values of ðα; σ; JÞ for whichU is a double-well potential.
The dependence in w0 of the potential highlights the
interplay between noise and nonlinearity in the system,
while the dependence in α shows the collective nature of
the problem, both being fundamental differences with the
classical attractor switching framework.
Despite these differences, we computed, when possible,

the effective potential of the system. To this purpose, we
derived the values of vr, vp using a fixed-point method. In
detail, fixing v0r and v0p as the smallest and largest solutions
of fðvÞ ¼ w0, we iteratively solved (when possible) the
equation

fðvnþ1Þ − Jvnþ1 þ w0 − J½ð1 − αÞvnr þ αvnp� ¼ 0

for n ≥ 0 and checked for convergence of the sequence
ðvnr ; vnpÞ. Convergence of that sequence ensured the fact
that the effective potential has indeed a double-well profile.
Denoting vu the voltage associated with the saddle (unsta-
ble fixed point), the Kramers-Freidlin-Wentzell theory of
attractor switching provides an asymptotic expansion of the
escape time depending on the shape of the potential U
when σ is small:

2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−U00ðvuÞU00ðv�Þp exp

�
UðvuÞ −Uðv�Þ

σ

�
; ðA1Þ

where v� is the voltage of one of the stable nodes of the
system (vp or vr).
Figure 10 compares the rates provided by the Kramers-

Freidlin-Wentzell theory with those obtained numerically
in Sec. III B. We found an excellent agreement of the rates
where it can be computed (presence of a double-well
potential) and when the wells are deep enough. In detail,
rest and pioneer states for the potential can be defined for a
finite interval of values α; for α too small, the pioneer state
is barely attractive to a particle starting from the resting
regime, and for α too large, the resting state becomes
progressively less stable and even disappears. In flat
regions of the potential, the analytical rate deviates from
the numerical rate computed and overestimates the time it
will take for a particle to cross the quasiseparatrix. Indeed, a
noisy particle in a potential whose depth is of the same
order of magnitude as typical amplitude of stochastic
excursions will have a larger transition rate than predicted
by the theoretical asymptotic escape rate in small noise.
The numerical method used in Sec. III B avoids these
difficulties and computes the effective transition times
regardless of the assumptions needed for applying the
Kramers-Freidlin-Wentzell theory.
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APPENDIX B: MUTUAL INFORMATION
MAXIMIZATION

In the main text, we showed that information trans-
mission is enhanced in the regime where a periodic
stimulus abolishes noise-induced oscillations. These results
were based on Pearson’s correlation coefficients between
the average voltage and an input signal. Here, we confirm
these results using an alternative methodology relying on
computing mutual information. While both correlations
and mutual information measure distances from independ-
ence between two random variables, correlations are
limited to evaluate linear relationships between random
variables while mutual information provides refined infor-
mation about the joint distribution of two random variables.
Technically, information is evaluated through the entropy
of the responses. Here, because of the emergence of
periodic responses for too slow or too fast DBS stimulation,
direct estimations of the entropy over the full trajectory will
underestimate the actual information content. To overcome
this limitation, we calculated how input modified response
patterns within a time window of size Δt evaluated
according to the spontaneous period of the network
responses in the absence of stimulus (period evaluated
through the Fourier transform of the solutions). Computing
entropies requires constructing the histogram of the
responses, which, for a given stimulus, shall require many
repetitions of the stimulus. Here, the propagation of chaos
property (demonstrated in Ref. [65]) ensures that, in the

limit n → ∞, the neurons are independent realizations of
the same mean-field process; we used this property to
approximate the distribution of the voltage of a given cell
by the histogram distribution of the voltage of all neurons.
Moreover, we combined data from 100 repetitions of the
same network for each stimulus considered.
We thus computed a stimulus-specific windowed

entropy Hs as an averaged entropy across time windows
½kΔt; ðkþ 1ÞΔtÞ by computing the probability distribution
of the voltage or recovery variables over all neurons within
a given window in response to a given stimulus. In detail,
we numerically computed the solution of the stochastic
FitzHugh-Nagumo equation ½viðtÞ; wiðtÞ� for t ∈ ½0; KΔt�,
with K ∈ Nnf0g and i ∈ f1;…; ng. Given a voltage or
recovery resolution ΔBv;w (chosen to be 0.025 in our
simulation), we define fixed partitions of the voltage and
recovery variables fv1;…; vM1

g (voltage partition) and
fw1;…; wM2

g, and computed a discretized empirical prob-
ability distribution p̂α

v;wðkÞ as the probability to find a
neuron in the network with a voltage (or recovery variable)
within the segment ½vα; vαþ1� (½wα; wαþ1�) during the time
interval ½kΔt; ðkþ 1ÞΔtÞ, with α ∈ f1;…;M1 − 1g and
k ∈ f0;…; K − 1g. The stimulus-specific entropy was
computed as the associated Shannon’s differential entropy:

Hv
s ¼

1

Z

XK−1
k¼0

XM1−1

α¼1

p̂α
vðkÞ log

�
p̂α
vðkÞ
ΔBv

�

(a similar expression is used for the recovery variable
entropy), where Z is a normalization constant (generally
KM1;2ΔBv;w) that acts as a simple scaling term with no
impact on the qualitative results.
Similarly, the averaged windowed entropy Hall was

calculated as the average of the stimulus-specific entropies
across all stimuli considered, and the mutual information
was then defined for each stimulus as

η ¼ Hall −Hs:

The stimulus set consisted of 100 stimuli for each of
three classes of signals: Gaussian white noise with distinct
standard deviations (uniformly distributed in [0, 5], sta-
tionary Ornstein-Uhlenbeck processes (with timescale uni-
formly chosen in [0.01, 0.05], average μ uniform in [0, 5],
and noise level uniform in [0, 5]) as well as Ornstein-
Uhlenbeck centered at a cosine (same parameters for as the
Ornstein-Uhlenbeck process, with amplitude of cosine
uniformly distributed in [0, 5] and frequency uniform in
[0, 20]). Entropies were computed based on the empirical
distributions on a fixed grid (step: 0.025, voltage from −3
to 6, recovery variable from 0 to 10). Simulations con-
firmed the significant increase in the mutual information,
spanning the entire band characteristic of the desynchron-
ized regime (here again, for all stimulus type, the corre-
lation between the presence of spontaneous oscillations and

FIG. 10. Comparison of numerical rates of transition from
pioneer to rest (yellow) or rest to pioneer (purple) with associated
Kramers escape rate formula (A1) (respectively, blue and red) for
J ¼ 1.5 and σ ¼ 1.5. A very good agreement arises when the
equilibria are sufficiently stable (potential wells ofU deep enough).
Escape rates are largely underestimatedwhen the potential becomes
too flat (conjectured breakdown arising when the depth becomes of
the same order of magnitude as the potential well depth), in which
case typical stochastic fluctuation dominates the escape rate
compared to the small-noise correction provided by the theory.
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the mutual information showed strong negative correlations
of about −60%), when quantified from both the voltage and
recovery variables. This significant elevation of the mutual
information in the desynchronized regime can be observed
for every stimulus considered, regardless of their nature or
their intensity [Fig. 11(c)]. In addition, the mutual infor-
mation and the amplitude of oscillations are correlated to
the stimulation frequency: indeed, the sharp decay of
oscillations as the frequency of the periodic forcing is
decreased parallels with a sharp rise of the mutual infor-
mation, while as the regime moves into periodically forced
oscillations, the mutual information decreases smoothly.
The mutual information between the stimuli and the
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FIG. 12. Dynamics of the fraction of pioneers α as a function of
time compared to the average voltage (blue). A smooth and rapid
increase of α from 0 to 1 arises in the noise-induced oscillations
case at the onset of a spike, while in all other cases α stabilizes.

FIG. 13. Two-parameter bifurcation diagram of the simplified
system [Eq. (2)] with respect to α and w0 for various values of the
coupling strength: J ¼ 2.5 (pink), J ¼ 1.5 (green), and J ¼ 0.5
(blue). RS, attraction to the resting state; MS, attraction to mixed
states; CR, chain reaction: attraction to the pioneer fixed point.
No codimension-two bifurcation is found, indicating no quali-
tative change in the dynamics as w0 is modified (e.g., when noise
is varied).

5

6

7

8

9

0 10 20 30 40 50

(b) Fixed amplitude MI

1

2

3

4

Voltage

Recovery

Stimulation period T

M
ut

ua
l i

nf
or

m
at

io
n

0 10 20 30 40 50

0

0

1

1

1.5

0.5

2

3

Set of stimuli

4

3

2

1

0
0

Stimulation period T

0.5

MI (voltage)

(a) Mutual information (MI)
Gaussian white noise

Ornstein-Uhlenbeck cosine

Stimulation period T

St
im

ul
at

io
n 

am
pl

itu
de

 A
St

im
ul

at
io

n 
am

pl
itu

de
 A

30 015 0

0.8

0 3015

Stimulation period T

Ornstein-Uhlenbeck

0 3015

4

3

2

1

0 0

0.8

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

44

3

2

1

0

Stimulation period T

0 3015

Level Sets

1 2 3 4 5 6 7 8 9
0

0.4

0.2

0.6

0.8

1

(c) Optimal amplitude

Maximal MI (recovery)

4

3

2

1

0

St
im

ul
at

io
n 

am
pl

itu
de

 A

0 0.5 1 1.5

Stimulus index

Normalized area under MI curve
4

3

2

1

0

FIG. 11. Mutual information estimation for the Fitzhugh-
Nagumo network model, parameters and setting as in
Fig. 7. (a) Mutual information (recovery variable) as a func-
tion of the amplitude and period of the periodic stimulation
for Gaussian white noise, Ornstein-Uhlenbeck, or Ornstein-
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coincides with the disappearance of oscillations (gray region, as in
Fig. 7). (b) Mutual information as a function of the period of the
periodic stimulus (amplitude A ¼ 2) for 9 sample stimuli high-
lighting the coincidence of their maxima, both for voltage and
recovery variables. (c) The amplitude and width of the peak vary
with input amplitude. Left: Maximal value of the mutual infor-
mation found for each stimulation amplitude: (Right) An optimal
amplitude stands out when considering the area under the mutual
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type highlighted in (b)], suggesting the existence of an optimal
stimulation amplitude.

TOUBOUL, PIETTE, VENANCE, and ERMENTROUT PHYS. REV. X 10, 011073 (2020)

011073-28



network responses under low-frequency stimulation also
tends to be close to the mutual information characteristic of
the intrinsically oscillating regime.
We note that both mutual information and correlation

levels vary with the amplitude of the periodic stimulation:
indeed, as the amplitude of the periodic stimulation
increases, there is an increase in the peak of the mutual
information or correlation [Fig. 11(d)], before saturating.
Yet, the width of this peak in mutual information has a
nonmonotonic relation with the stimulation amplitude:
low-amplitude stimulation yields a medium improvement
in stimulus encoding over a wide range of frequency, while
for high-amplitude stimulation, the increase in mutual
information occurs on an increasingly narrow frequency
band [as can be seen for two stimuli in Fig. 11(b)].
Therefore, for each stimulus, an optimal stimulation
amplitude can be defined, such that the area under the
mutual information curve in the desynchronized regime is
maximized [Fig. 11(d)]: this optimal amplitude is relatively
low, and consistent for all stimuli tested, indicating the
presence of an optimal forcing for information transmission
regardless of the stimulus type, suggesting the existence
of an optimal stimulation frequency for information
transmission.
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