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The discovery of massless Dirac electrons in graphene and topological Dirac-Weyl materials has
prompted a broad search for bosonic analogues of such Dirac particles. Recent experiments have found
evidence for Dirac magnons above an Ising-like ferromagnetic ground state in a two-dimensional (2D)
kagome lattice magnet and in the van der Waals layered honeycomb crystal CrI3, and in a 3D Heisenberg
magnet Cu3TeO6. Here, we report our inelastic neutron scattering investigation on a large single crystal of a
stacked honeycomb lattice magnet CoTiO3, which is part of a broad family of ilmenite materials. The
magnetically ordered ground state of CoTiO3 features ferromagnetic layers of Co2þ, stacked antiferro-
magnetically along the c axis. The magnon dispersion relation is described very well with a simple
magnetic Hamiltonian with strong easy-plane exchange anisotropy. Importantly, a magnon Dirac cone is
found along the edge of the 3D Brillouin zone. Our results establish CoTiO3 as a model pseudospin-1=2
material to study interacting Dirac bosons in a 3D quantum XY magnet.
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I. INTRODUCTION

The discoveries of graphene and topological insulators
have led to significant advances in our understanding of the
properties of electrons in solids described by the Dirac
equation. In particular, the fruitful analogy between
fundamental massless Weyl-Dirac fermions in nature
and electrons in graphene or topological semimetals
has allowed physicists to simulate theories of particle
physics using tabletop experiments [1–6]. Remarkably,
the concept of Dirac particles is not limited to electrons
or other fermionic quasiparticles, prompting a search for
analogues in bosonic systems, such as photonic crystals
[7,8], acoustic metamaterials [9], phonons in noncentro-
symmetric crystals [10,11], and magnons in quantum
magnets [12–15]. In particular, Dirac magnons, or more
broadly defined topological magnons [16–21], have
attracted much attention as platforms to investigate the
effect of interparticle interaction or external perturbations

on Dirac bosons, and they are of potential interest in
spintronic applications.
In contrast to light and sound, the symmetry-broken

states and emergent bosonic excitations of quantum mag-
nets depend crucially on dimensionality and spin sym-
metry, which provides a fertile playground for examining
the physics of topological bosons. To date, gapped topo-
logical magnons in Ising-like ferromagnets have been
reported in a kagome lattice material Cu(1,3-bdc) [18]
and in a layered honeycomb magnet CrI3 [19]. On the other
hand, magnons exhibiting symmetry-protected band cross-
ings have been found only in a single material, a three-
dimensional (3D) Heisenberg antiferromagnet Cu3TeO6

[20,22]. It is thus desirable to explore new test beds with
distinct spin symmetries to expand our understanding of the
physics of Dirac magnons.
In this paper, we propose that CoTiO3 with a simple

ilmenite structure is a new candidate for realizing a Dirac
magnon in a 3D quantum XY magnet. The magnetic lattice
of Co2þ ions in CoTiO3 is a stacked honeycomb lattice,
exactly the same as in ABC stacked graphene. Below
TN ¼ 38 K, this material exhibits magnetic order with
ferromagnetic planes stacked antiferromagnetically along
the c axis. Our inelastic neutron scattering (INS) experi-
ments reveal crystal field excitations and sharp low-energy
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dispersive spin waves. Although Co2þ is a spin S ¼ 3=2
ion, resulting in a large magnetic signal, our analysis of
the observed low-energy crystal field levels provides
evidence for strong, easy-plane, single-ion anisotropy
leading to a pseudospin S̃ ¼ 1

2
doublet ground state. The

low-energy spin wave reveals magnon modes crossing
along a Dirac nodal line (DNL) of the 3D Brillouin zone
(BZ), near which the magnon dispersion takes the form of a
Dirac cone. In contrast with earlier examples of Ising-like
and Heisenberg magnets, a simple model with dominant
nearest-neighbor XY ferromagnetic (FM) exchange and
antiferromagnetic interlayer second-neighbor exchange
provides a good description of the magnon dispersion
in CoTiO3.
Unlike all other topological magnon candidates, large,

pristine, single-crystal samples of this material, suitable for
neutron scattering and other experiments, can be grown
using the conventional floating zone method. The avail-
ability of large single crystals enables one to systematically
investigate the impact of doping and external perturbations
—pressure, strain, or magnetic field—on Dirac magnons,
which has been extensively studied for Dirac fermions in
graphene [23–29]. Moreover, we find that simple DNL
geometry in CoTiO3 gives rise to surface states only on
particular surfaces. Large single crystals that can be cut
along different surfaces thus also offer the unique potential
for a direct observation of the surface magnons in this
material.

II. CRYSTAL STRUCTURE, CRYSTAL
FIELD LEVELS

As shown in Fig. 1(a), CoTiO3 crystallizes in an ilmenite
structure (R3̄) that consists of alternating layers of edge-
sharing CoO6 or TiO6 octahedra [30]. Details of the
synthesis (and other experimental details) are provided

in the Supplemental Material [31]. The magnetic properties
of CoTiO3 are determined by the Co2þ ions that reside in
slightly buckled honeycomb layers; see Fig. 1(b). These
layers are ABC stacked along the c direction, with
neighboring honeycomb planes displaced diagonally by
a third of the unit cell.
Atomically, each Co2þ in a high spin state is surrounded

by a trigonally distorted oxygen environment, which is
depicted in the inset of Fig. 2(b). Local electronic states in
Co2þ are determined by a combination of trigonal dis-
tortion Δtrig and spin-orbit coupling λ. To elucidate the
magnetic ground state of each Co2þ ion, we measure the
crystal field excitations using high-energy inelastic neutron

FIG. 1. (a) Structure of CoTiO3. A nonprimitive hexagonal unit
cell, which is used to describe our data, is indicated by solid black
lines. (b) Magnetic structure of the Co2þ sublattice. The Co2þ
magnetic moments (shown by green arrows) order ferromagneti-
cally within each honeycomb plane and antiferromagnetically
along the c axis. Red arrows labeled 1, 20, and 200 are the magnetic
couplings considered in the spin-wave calculation.

FIG. 2. (a) Neutron scattering intensity plot on a log scale as a
function of energy (in meV) and momentum transfer (in Å−1)
for an incident neutron energy of Ei ¼ 250 meV. The data were
collected at T ¼ 5 K. Since there is no directional dependence
of the crystal field excitations, the scattering intensity is
averaged over all orientations, and only the magnitude of
momentum transfer is shown. (b) Momentum integrated in-
tensity for 1.0 Å−1 < jQj < 6.0 Å−1 plotted as a function of
energy transfer. The inset shows trigonally distorted oxygen
octahedra around each Co2þ ion. Horizontal and vertical arrows
in panels (a) and (b), respectively, mark the positions of
observed crystal field excitations. (c) Schematic crystal field
levels for Co2þ (three t2g holes, with total Leff ¼ 1 and
S ¼ 3=2) in the regimes λ ≪ Δtrig (left) and Δtrig ≪ λ (right),
where λ is the SOC and Δtrig is the trigonal distortion. Vertical
arrows correspond to the sharp transitions seen in panels (a) and
(b). The numbers in the square brackets denote degeneracies of
the states. (See Supplemental Material [31] for a further
description of the figure.)
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scattering (INS). The results shown in Figs. 2(a) and 2(b)
clearly reveal three transitions at 29(2) meV, 58 (7) meV,
and 132(3) meV, together with a broad continuum between
60 meV and 120 meV. Their intensities decrease with
increasing momentum transfers as shown in Fig. 2(a),
which confirms their magnetic origin.
We model the crystal field levels using a single-ion

Hamiltonian Hion ¼ λL⃗ · S⃗þ ΔtrigL2
z , where Hund’s cou-

pling favors total spin S ¼ 3=2 and total orbital angular
momentum Leff ¼ 1, and ẑkc. We find that λ ¼ 28ð1Þ meV
and Δtrig ¼ 45ð6Þ meV provide a good description of
the observed crystal field transitions (see Supplemental
Material [31] for details), leading to transitions at (29, 59,
110, 119, 132) meV. The obtained value of λ is in good
agreement with previously reported values for other cobal-
tates [32,33]. The full electronic-level diagram of a single
Co2þ ion determined using these parameters is shown in
Fig. 2(c). The three sharp transitions observed in Figs. 2(a)
and 2(b) are indicated by vertical arrows; the other two
expected transitions could not be identified unambiguously
in the data but seem to be buried in the broad continuum
intensity.
When Δtrig ≫ λ, the orbital angular momentum is

quenched, Lz ¼ 0, leading to a pure spin S ¼ 3=2
moment. The excited states at an energy Δtrig have Lz ¼
�1 as shown in the Δtrig ≫ λ limit of the crystal field
levels in Fig. 2(c). SOC splits this S ¼ 3

2
quartet via an

effective single-ion term Heff
ion ¼ ΔS2z with Δ > 0, leading

to a ground doublet with Sz ¼ �1=2. In the opposite
regime, Δtrig ≪ λ, SOC will lead to a ground Jeff ¼ 1=2
doublet and excited Jeff ¼ 3=2; 5=2 levels [34,35]. Weak
Δtrig splits the excited levels and mixes different Jeff wave
functions. With increasing Δtrig, the ground Jeff ¼ 1=2
doublet smoothly connects with the Sz ¼ �1=2 doublet in
the first scenario. Magnetic properties of CoTiO3 are
determined by the ground-state doublet, which acts like
an S̃ ¼ 1=2 pseudospin. For the fitted values of (λ, Δtrig),
the ratio between g factors parallel (gk) and perpendicular
(g⊥) to the honeycomb plane is gk=g⊥ ≈ 1.6 for the
pseudospin, leading to a large anisotropy proportional
to ðgk=g⊥Þ2 in the magnetic susceptibility, qualitatively
consistent with the experiment in Ref. [36] (see also
Supplemental Material [31]). Upon projection to the
ground-state doublet, even a simple Heisenberg model
for the original S ¼ 3=2 spins leads to a strong easy-plane
exchange anisotropy between effective low-energy S̃ ¼
1=2 pseudospins.

III. ORDERED STATE AND MAGNON
DISPERSION

Below the Neel temperature TN ¼ 38 K, Co2þ mag-
netic moments confined within the ab plane are ordered
ferromagnetically within each honeycomb layer and

antiferromagnetically along the c direction, giving rise to
the ordered structure shown in Fig. 1(b) [30]. Energy- and
momentum-resolved magnon spectra of CoTiO3 are
obtained by inelastic neutron scattering with an incident
energy, Ei ¼ 50 meV. In Fig. 3, we show magnon spectra
along (H;�H) [Figs. 3(a) and 3(b)] and (H,H) [Figs. 3(c)
and 3(d)], which lie within the honeycomb plane at fixed
L ¼ 0.5 as well as along L at (1, 1, L) [Fig. 3(e)]. The
directions of these momentum transfers are denoted by
thick blue lines in the 2D reciprocal space map in Fig. 3(l).
Strongly dispersive magnon modes extending up to about
12 meV are observed in all directions, which indicates
the presence of significant intraplane and interplane cou-
plings in CoTiO3. The magnetic Bragg peaks are located at
(1, 0, 0.5) in Fig. 3(a) and (1, 1, �1.5) in Fig. 3(e) and are
consistent with earlier neutron diffraction results [30].
Acoustic magnon modes are found to emanate from these
Bragg peaks.
Our data show linear crossings of magnon bands at

Dirac points whose positions in reciprocal space are
marked with circles in Fig. 3(l). These Dirac crossings
occur at an energy ℏω⋆ ∼ 8.5 meV, as highlighted by the
arrows in Figs. 3(b) and 3(c). The linear dispersions of
magnon modes away from these points are well resolved in
our data. Figures 4(a)–4(c) show a more detailed view of
the magnon dispersion relation around the Dirac point,
depicted by a red circle with a solid line in Fig. 3(l), along
three different directions: (I) ðξ − 1

3
; 2
3
Þ, (II) ðη − 1

3
; ηþ 2

3
Þ,

and (III) ð2ϵ− 1
3
;−ϵþ 2

3
Þ. These momentum space slices

all pass through K0 as shown in Fig. 4(d). From
Figs. 4(a)–4(c), the magnon dispersions are found to
cross at K0 along all three directions. To show this more
clearly, intensity versus energy plots at different fixed
momenta are shown in Figs. 4(e)–4(g) (the plots at
different momenta have been vertically offset for clarity).
For instance, in Fig. 4(e), all cuts except at ξ ¼ 0 show
two peaks corresponding to the two magnon branches in
Fig. 4(a). On the other hand, only a single peak is visible
at ξ ¼ 0, suggesting the presence of a magnon crossing
within instrumental resolution. Similar magnon crossing
behavior is shown in Figs. 4(f) and 4(g). Figure 4(d)
schematically illustrates that having the magnon mode
crossing at a single point K0 along all three directions is
consistent with a Dirac conelike dispersion centered
at K0.
In Fig. 5, we show constant energy slices through the

magnon dispersion in the (H;K) plane at the energy
transfers of ℏω⋆ and ℏω⋆ � 1 meV. A generic constant
energy slice through a 2D magnon dispersion (with fixed
L) should yield high intensity along closed contours in the
(H;K) plane. However, the constant energy slice at ℏω⋆ in
Fig. 5(c) shows intensity maxima at only discrete spots
located at the Dirac points. The observation of such discrete
high-intensity momentum spots in a constant energy slice
is highly unusual and is again a direct consequence of
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the above-discussed conical dispersion near a Dirac mag-
non crossing point.
Below and above ℏω⋆, a constant energy slice through a

Dirac cone dispersion should show closed contours in
momentum space, as illustrated by the red loops in the
theory plot in Fig. 5(b) (which we discuss further in the
next section). However, the finite energy resolution, and
the highly momentum-dependent dynamical structure fac-
tor (as these contours traverse different BZs), leads to
strong intensity suppression along parts of the contour. This
intensity asymmetry at fixed energy is already visible in

Figs. 4(a)–4(c). This asymmetry is most dramatic for
magnon spectra along ðH þ 2

3
;−H þ 2

3
; 0.5Þ [Fig. 3(b)]

and (H;H,0.5) [Fig. 3(d)]. These two orthogonal directions
intersect at the Dirac point K00 marked by a green circle in
Fig. 5(d) [and Fig. 3(l)]. Away from K00 (highlighted by a
green arrow), Fig. 3(b) shows two magnon modes along
ðHþ 2

3
;−Hþ 2

3
;0.5Þ. Strikingly, only one of them is visible

along the perpendicular direction shown in Fig. 3(d), while
the intensity of the other mode is suppressed due to the
small dynamical structure factor. However, the existence of
two magnon modes along this direction is evident from

FIG. 3. (a)–(e) Momentum- and energy-resolved neutron scattering intensity map of magnons in CoTiO3. The data were obtained at
T ¼ 5 K, with an incident neutron energy Ei ¼ 50 meV at SEQUOIA at the Spallation Neutron Source (SNS). A pseudocolor intensity
scale, where red (blue) denotes large (small) scattering intensity, is used to plot the data. Panels (a)–(d) show magnon excitations along
(H;�H) and (H;H) within the honeycomb plane at fixed L ¼ 0.5, while panel (e) shows excitations along L for fixed in-plane
momentum (1,1). (f)–(j) Calculated magnon spectra using Jk;1 ¼ −4.41 meV, J⊥;1 ¼ 0 meV, and Jk;20¼200 ¼ J⊥;20¼200 ¼ 0.57 meV after
convolving with the experimental energy resolution of 1 meV using spinW [37]. (k) Schematics of the 3D BZ and (l) projection of 3D
reciprocal space onto the 2D honeycomb plane. The L ¼ 0.5 plane has been shaded in blue in panel (k). Directions of momentum
transfers within the L ¼ 0.5 plane in panels (a) to (d) are denoted by thick blue lines in panel (l). Circles in panel (l) indicate positions of
the Dirac point where magnon bands cross, which are denoted by arrows in panels (b)–(d). Circles and arrows of the same line style and
color are used for the same Dirac point.
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FIG. 4. (a)–(c) Magnon spectra close to K0 ¼ ð− 1
3
; 2
3
Þ along different momentum cuts indicated in panel (d), which lie in the (H;K)

plane (with L ¼ 0.5): (I) ðξ − 1
3
; 2
3
Þ, (II) ðη − 1

3
; ηþ 2

3
Þ, and (III) ð2ϵ − 1

3
;−ϵþ 2

3
Þ. (d) BZ in the (H;K) plane, with the directions of I–III

indicated by thick blue bars. The Dirac point K0 is denoted by a red circle [same as in Fig. 3(l)]. The Dirac cone near K0 is shown
schematically in the inset. Cuts through different directions, which all pass through the Dirac point, should show an X-shaped dispersion
(black solid line) where the magnon modes cross only at the Dirac point. (e)–(g) Measured intensity versus energy at fixed momentum
along I–III, extracted from the magnon spectra in panels (a)–(c), respectively. The plots at different momenta in the same panel have
been offset for clarity. Each cut is fit to two Gaussians with the same widths on top of a fixed constant background. Peak positions
obtained from the fit are indicated by blue arrows.

FIG. 5. (a,c,e) Constant energy slices of the CoTiO3 magnon spectra in the (H;K) plane. The constant energy of each slice is chosen to
be at the Dirac point crossing with ℏω⋆ ∼ 8.5 meV (c), 1 meV below ℏω⋆ (a), and 1 meV above ℏω⋆ (e). Since magnon spectra in
CoTiO3 have almost no L dependence at energies close to ℏω⋆, all spectra have been integrated over all L measured to improve
statistics. (b,d,f) Calculated intensity maps using the same parameters as in Fig. 3. The calculated spectra are convolved with an energy
resolution of 1 meV. An energy integration range of 0.5 meV has been used for both the experimental data and calculation. White dashed
lines in panels (c) and (d) denote the boundaries of 2D BZs. Red triangles in panel (b) are loops in a constant energy slice of the magnon
dispersion below the Dirac points. As in Fig. 3(l), the green circle in panel (d) indicates the position of the Dirac point K00.
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Fig. 3(c), which is completely equivalent to Fig. 3(d) up to
an integer reciprocal lattice vector.
As we show next, the observed anisotropic distribution

of magnon intensity is well reproduced by our calculations.
Remarkably, our data suggest that the Dirac points in the
(H;K) plane at different L appear to merge into a nodal line
in the full 3D BZ [Fig. 6(a)], with no discernible dispersion
along L [Fig. 6(b)].

IV. MODEL HAMILTONIAN

To understand the magnetic excitations in CoTiO3, we
carry out linear spin-wave calculations using a minimal
model containing only nearest-neighbor (NN) intraplane
and next-nearest-neighbor (NNN) interplane coupling
labeled as 1, 20, and 200 in Fig. 1(b). The magnitudes of
interactions along 20 and 200 are set to be the same due to
similar exchange-path geometries. Using Δtrig and λ deter-
mined for CoTiO3, the magnetic interactions between the S̃
pseudospins are expected to have strong easy-plane
anisotropy (see Supplemental Material [31]). Interactions
between the pseudospins are therefore taken to be of the
XXZ type, given by JkðS̃x;iS̃x;j þ S̃y;iS̃y;jÞ þ J⊥S̃z;iS̃z;j.
The neutron data shown in Figs. 3 and 5 are described

very well by this simple model Hamiltonian with just two
parameters: a ferromagnetic XY exchange coupling along
bond 1 shown in Fig. 1(b) [Jk;1 ¼ −4.4ð9Þ meV and J⊥;1 ¼
0 meV] and a Heisenberg antiferromagnetic exchange
interaction on bonds 20 and 200 [Jk;20¼200 ¼ J⊥;20¼200 ¼
0.6ð1Þ meV]. We note that the fitting results are not
changed by adding a small NN interplane coupling
(≲1 meV), which connects two Co2þ directly on top of

each other along the c axis. The effect of such a NN
interplane coupling on the magnon dispersion is likely to be
negligible compared to the 20 and 200 interactions because
each spin has only one out-of-plane NN but nine NNN’s.
To compare our calculation directly with the data, we
calculate the magnetic inelastic intensity using the expres-
sion IðQ;ωÞ ∝ 1

2
g2kSk þ g2⊥S⊥, where Sk (S⊥) denotes the

in-plane (out-of-plane) fluctuations of pseudospins. (See
Supplemental Material [31] for the derivation of this
expression and further fitting details). The calculated
magnon spectra are shown in Figs. 3(f)–3(j). Our results
give four magnon modes due to the presence of four spins
in a primitive unit cell. The scattering intensity of CoTiO3

mostly comes from the two modes contributing to Sk
because of the larger gk, as well as stronger in-plane spin
fluctuations. As shown in Fig. 3(j), the dominant Sk
contribution in our strongly XY model follows an L ¼ 3
periodicity along L. A much weaker S⊥ is displaced by
L ¼ 1.5 with respect to Sk. This result is entirely consistent
with our data shown in Fig. 3(e) and allows us to rule out a
simple Heisenberg model (see Supplemental Material
[31]). The weak magnon intensity due to S⊥ can also be
identified in the data in Fig. 3(a), in further support of our
effective spin model. Since the relative intensity of two
transverse fluctuations Sk and S⊥ is directly related to the
exchange anisotropy J⊥=Jk, this ratio could be determined
more precisely in future polarized inelastic neutron scatter-
ing experiments that can separately resolve the in-plane and
out-of-plane spin fluctuations.
The calculated magnon spectra in Figs. 3(g) and 3(h)

clearly show crossings of magnon modes at the Dirac
points, which is consistent with results shown in Figs. 3(b)
and 3(c). Constant energy slices, in the vicinity of ℏω⋆, are
determined from our model [Figs. 5(b), 5(d), and 5(f)].
These results are in good agreement with Figs. 5(a), 5(c),
and 5(e), taking into account finite energy resolution, in
addition to the magnon dynamical structure factor. In
particular, the triangular loops in the constant energy slice
below ℏω⋆ resemble two lines connecting bigger rings
[Fig. 5(b)], in excellent agreement with our data in
Fig. 5(a).
Moreover, our model reproduces the observed merging

of the 2D Dirac magnons at fixed L, seen at the 2D BZ
corners in the (H;K) plane, into a full Dirac nodal line
(DNL) along the L direction in the 3D BZ. The nodal line
observed in CoTiO3 is a magnon analogue of the DNL in
3D semimetals [6] or the symmetry-protected line degen-
eracy of 3D electronic bands. Similar to DNLs in 3D
electronic materials without SOC, the XXZ spin model for
CoTiO3 features a topological Berry phase winding, which
ensures its stability as observed in our data even when
perturbations such as small changes of the exchange
anisotropy, J⊥=Jk, or weak further-neighbor interactions
are included (see Supplemental Material [31] for further

FIG. 6. (a) Slice of CoTiO3 magnon spectra in the ðHþ2
3
;−Hþ

2
3
;LÞ plane at the Dirac energy ℏω⋆. (b) Magnon dispersion along
L with fixed H ¼ K ¼ 2

3
. (c) Schematic plot of Dirac nodal lines

in the 3D BZ winding near the corners with additional nearest-
neighbor interplane antiferromagnetic couplings Jk;3 > 0 and
J⊥;3 < Jk;3. Arrows depict the vorticity associated with the
nontrivial Berry phase winding characterizing the nodal lines
(positive is shown in blue; negative is shown in red). See text and
Supplemental Material [31] for details.
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discussion). In the presence of significant nearest-neighbor
interplane XXZ exchange (denoted by J3), the DNL is no
longer pinned at K for an arbitrary L but starts to spiral
around it [see Fig. 6(c)]. Within our momentum resolution,
we could not resolve any deviation of the DNL away from
the K points, which justifies the assumption of ignoring
further-neighbor interactions in our theoretical model.
Furthermore, given the in-plane magnetic order, the impact
of the SOC-induced Dzyaloshinskii-Moriya interaction
also vanishes at this high symmetry point by virtue of
C3 symmetry. Since relative magnitudes between magnetic
interactions can be tuned by changing the lattice structure,
one might be able to drive a systematic movement of the
DNL in CoTiO3 with pressure. Such DNLs may also be
found in other ilmenite magnets, e.g., FeTiO3 [38]; how-
ever, the location of DNLs might vary depending on their
anisotropies [39].
The nontrivial topological Berry phase carried by the

DNLs in CoTiO3 also implies the existence of symmetry-
protected surface states [14,40,41]. In CoTiO3, the DNLs
form simple straight lines along L. This simple geometry of
the DNLs guarantees that the surface magnons are found on
side surfaces containing zigzag edges. This result is
confirmed by our calculation of the magnon density of
states (DOS), shown in Fig. 7(a), where we compare the
DOS for periodic boundary conditions (PBC, red) with the
DOS for open boundary conditions, which generates such a
surface (OBC, black). In both plots, the overall V-shaped
DOS with a dip near E ≈ 8.5 meV is a clear indication

of a bulk DNL. However, the difference DOS, plotted in
Fig. 7(b), exhibits a clear peak, with an excess DOS at
precisely the Dirac node energy. From Fig. 7(c), we
correlate this peak in the difference DOS with the presence
of surface magnons in this geometry, by examining the
magnon dispersion along the ky direction in the surface BZ,
where we find an extra surface magnon band running
between two Dirac points for OBC, which is absent for
PBC. Such surface magnon modes are not found on the
surface containing the armchair edge or on the honeycomb
surfaces (see Supplemental Material [31]). The observation
that this excess DOS is only found on specific surface
terminations, as well as the ability of obtaining large
CoTiO3 single crystals, which could be cut along different
surfaces, makes it a unique example whose surface DOS
can be directly measured by comparing the response from
different surfaces. For instance, Raman scattering, which is
more surface sensitive than neutron scattering, could be
used to test for these surface states. Raman scattering,
which creates magnon pairs with opposite momenta
ðq;−qÞ, can effectively probe the two-magnon DOS at
the zone center NðEÞ ¼ P

q δðωðqÞ þ ωð−qÞ − EÞ.
However, since ωðqÞ ¼ ωð−qÞ due to the inversion sym-
metry of CoTiO3, this will be proportional to the single
magnon DOS at energy E=2 as determined from Fig. 7. With
improved energy resolution, resonant inelastic x-ray scatter-
ing (RIXS) could also be used to detect these surface
magnons.Todifferentiate betweenbulk and surfacemagnons,
scattering geometry in the RIXS experiment could be varied
between grazing and normal incidence, which are more
sensitive to scattering by the surface and bulk, respectively.
In addition, since the excess DOS is found exclusively on a
zigzag edge in CoTiO3, Raman or RIXS spectra on the
honeycomb or armchair surfaces can be used as a bulk signal
background and subtracted from that of a zigzag surface to
isolate the contribution due to surface magnons.

V. BEYOND THE XXZ MODEL

One important observation that is not captured by our
XXZ model is the existence of a small magnetic
anisotropy within the honeycomb plane. This anisotropy
is inferred from the highly nonlinear magnetization at T ¼
5 K for in-plane fields 1–4 Tesla, with a peak suscep-
tibility at about 2 Tesla, which is likely a result of rotation
of magnetic domains [42]. An in-plane anisotropy also
implies the existence of a small gap at the magnetic zone
center in the magnon dispersion. Although our experi-
mental resolution does not allow us to determine the gap
size directly, extrapolation of the magnon dispersion in
Fig. 3(a) suggests a gap of order about 1 meV (see
Supplemental Material [31]). Such a gap in the Goldstone
mode can arise from bond-anisotropic exchange cou-
plings, like the Kitaev interaction, due to quantum order
by disorder, which pins the order parameter to the crystal
axes. A phenomenological way to account for this is via a

FIG. 7. (a) Calculated magnon density of states (DOS) for open
boundary conditions (OBC, black) and periodic boundary con-
ditions (PBC, red). The open boundary terminates on a surface
with a zigzag edge. The DOS in both cases exhibits a V-shaped
wedge arising from the bulk Dirac nodal lines. For OBC, the DOS
is a sum of the surface and bulk magnon contributions. (b) The
excess DOS, denoted ΔDOS, corresponds to the difference DOS
(OBC)-DOS(PBC), and it arises from surface magnons appearing
at the Dirac line node energy. The geometry of the zigzag edge of
an ABC stacked honeycomb lattice is shown in the inset.
(c) Magnon spectra along a cut parallel to the zigzag edge, ky.
Edge states can be seen connecting the bulk Dirac nodes at the
Dirac energy E ≃ 8.5 meV. These states are responsible for the
excess ΔDOS in panel (b). These surface magon states are not
found for a surface along the armchair edge (see Supplemental
Material [31]).
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pinning field ð−1ÞzgkμBhS̃x, staggered from layer to layer,
deep in the ordered phase. We find that incorporating a
pinning field of about 2 Tesla, based on the magnetization
data, leads to a zone center gap of about 1 meV in the
magnon dispersion, consistent with the above INS esti-
mate. Remarkably, the Hamiltonian including such a
pinning field continues to support a DNL near the K
points. A complete theoretical study of such weak bond-
anisotropic exchanges will be discussed in a separate
publication [43].

VI. CONCLUSION

We have carried out inelastic neutron scattering on
quantum antiferromagnet CoTiO3 with an ilmenite struc-
ture. The magnetic excitations in CoTiO3 are well
described using a simple model with dominant XY inter-
actions. Our data show evidence for magnon crossings
along a one-dimensional DNL in this material. In the
vicinity of the DNL, magnons have a Dirac cone
dispersion, which is analogous to ABC stacked graphene.
This case is to be contrasted with the only other Dirac
magnon candidate, Cu3TeO6 [20,22], which shows mag-
non crossing at (zero-dimensional) Dirac points. We
showed that the simple magnon Hamiltonian of CoTiO3

gives rise to magnon surface states only on certain surfaces.
Such surface states can be readily probed in future experi-
ments because two types of surface cut along different
crystallographic orientations could be prepared easily with
large single crystals of CoTiO3.
Our findings also establish CoTiO3 as a candidate model

system for studying transitions into other topological
phases such as 3D Weyl magnons [44] and magnon
topological insulators [13] under external perturbations.
The ease of chemical substitution on both Co and Ti sites
and the ability to grow large high-quality CoTiO3 single
crystals with high mechanical strength make it an ideal
material for future studies of the impact of doping, hydro-
static pressure, strain, and magnetic fields, on gapless Dirac
magnons. In addition, ilmenites can be grown as epitaxial
thin films using conventional oxide film growth methods
[45], which enables one to study surface states under
epitaxial strain or to incorporate them into spintronics
devices.
The close resemblance between CoTiO3 and graphene

allows a direct comparison between bosonic and fermionic
responses to external perturbations. For example, the Dirac
magnons in CoTiO3 serve as an ideal model system for
studying emergent gauge fields through strain engineering
[24] or renormalization of the magnon bands resulting from
the interparticle interaction between Dirac bosons [14,46].
Finally, unlike a simple Heisenberg ferromagnet, for which
the electronic analogue is a simple tight-binding hopping
Hamiltonian, the full model Hamiltonian for CoTiO3

contains pairing terms analogous to the Bogoliubov–
de Gennes Hamiltonian [6] of a superconductor. Such

unconventional superconducting phases on the layered
honeycomb lattice have begun to garner great attention
due to the recent discovery of superconductivity in “magic
angle” twisted bilayer graphene [47], providing further
impetus to explore such remarkable analogies between
electronic quasiparticles and bosonic magnons.

ACKNOWLEDGMENTS

Work at the University of Toronto was supported by the
Natural Science and Engineering Research Council
(NSERC) of Canada. F. C. C. acknowledges funding sup-
port from the Ministry of Science and Technology (MOST)
in Taiwan under Projects No. 106-2119-M-002-035-MY3
and No. 108-2622-8-002-016, AI-MAT Project
No. 108L900903 from the Ministry of Education in
Taiwan, and Academia Sinica (AS-iMATE-108-11).
G. J. S. acknowledges the support provided by MOST-
Taiwan under Project No. 108-2112-M-027-002-MY3.
This research used resources at the Spallation Neutron
Source, a DOE Office of Science User Facility operated by
the Oak Ridge National Laboratory. Use of the MAD
beamline at the McMaster Nuclear Reactor is supported by
McMaster University and the Canada Foundation for
Innovation.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A.
Firsov, Two-Dimensional Gas of Massless Dirac Fermions
in Graphene, Nature (London) 438, 197 (2005).

[2] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Exper-
imental Observation of the Quantum Hall Effect and Berry’s
Phase in Graphene, Nature (London) 438, 201 (2005).

[3] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral
Tunnelling and the Klein Paradox in Graphene, Nat. Phys.
2, 620 (2006).

[4] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, The Electronic Properties of Graphene,
Rev. Mod. Phys. 81, 109 (2009).

[5] T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky,
Dirac Materials, Adv. Phys. 63, 1 (2014).

[6] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu,
Classification of Topological Quantum Matter with
Symmetries, Rev. Mod. Phys. 88, 035005 (2016).

[7] L. Lu, J. D. Joannopoulos, and M. Soljacic, Topological
Photonics, Nat. Photonics 8, 821 (2014).

[8] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L.
Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg,
and I. Carusotto, Topological Photonics, Rev. Mod. Phys.
91, 015006 (2019).

[9] Y. Jin, R. Wang, and H. Xu, Recipe for Dirac Phonon States
with a Quantized Valley Berry Phase in Two-Dimensional
Hexagonal Lattices, Nano Lett. 18, 7755 (2018).

[10] T. Zhang, Z. Song, A. Alexandradinata, H. Weng, C. Fang,
L. Lu, and Z. Fang, Double-Weyl Phonons in Transition-
Metal Monosilicides, Phys. Rev. Lett. 120, 016401 (2018).

BO YUAN et al. PHYS. REV. X 10, 011062 (2020)

011062-8

https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys384
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1021/acs.nanolett.8b03492
https://doi.org/10.1103/PhysRevLett.120.016401


[11] H. Miao, T. T. Zhang, L. Wang, D. Meyers, A. H. Said, Y. L.
Wang, Y. G. Shi, H. M. Weng, Z. Fang, and M. P. M. Dean,
Observation of Double Weyl Phonons in Parity-Breaking
FeSi, Phys. Rev. Lett. 121, 035302 (2018).

[12] J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky,
Magnon Dirac Materials, Phys. Rev. B 94, 075401
(2016).

[13] S. Owerre, A First Theoretical Realization of Honeycomb
Topological Magnon Insulator, J. Phys. Condens. Matter
28, 386001 (2016).

[14] S. S. Pershoguba, S. Banerjee, J. C. Lashley, J. Park,
H. Ågren, G. Aeppli, and A. V. Balatsky, Dirac Magnons
in Honeycomb Ferromagnets, Phys. Rev. X 8, 011010
(2018).

[15] D. Boyko, A. V. Balatsky, and J. T. Haraldsen, Evolution of
Magnetic Dirac Bosons in a Honeycomb Lattice, Phys. Rev.
B 97, 014433 (2018).

[16] L. Zhang, J. Ren, J.-S. Wang, and B. Li, Topological
Magnon Insulator in Insulating Ferromagnet, Phys. Rev.
B 87, 144101 (2013).

[17] A. Mook, J. Henk, and I. Mertig, Edge States in
Topological Magnon Insulators, Phys. Rev. B 90,
024412 (2014).

[18] R. Chisnell, J. S. Helton, D. E. Freedman, D. K. Singh, R. I.
Bewley, D. G. Nocera, and Y. S. Lee, Topological Magnon
Bands in a Kagome Lattice Ferromagnet, Phys. Rev. Lett.
115, 147201 (2015).

[19] L. Chen, J.-H. Chung, B. Gao, T. Chen, M. B. Stone, A. I.
Kolesnikov, Q. Huang, and P. Dai, Topological Spin
Excitations in Honeycomb Ferromagnet CrI3, Phys. Rev.
X 8, 041028 (2018).

[20] W. Yao, C. Li, L. Wang, S. Xue, Y. Dan, K. Iida, K.
Kamazawa, K. Li, C. Fang, and Y. Li, Topological Spin
Excitations in a Three-Dimensional Antiferromagnet, Nat.
Phys. 14, 1011 (2018).

[21] F. Lu and Y.-M. Lu, Magnon Band Topology in Spin-
Orbital Coupled Magnets: Classification and Application to
α − RuCl3, arXiv:1807.05232.

[22] S. Bao, J. Wang, W. Wang, . Cai, S. Li, Z. Ma, D.
Wang, K. Ran, Z.-Y. Dong, D. L. Abernathy, S.-L. Yu,
X. Wan, J.-X. Li, and J. Wen, Discovery of Coexisting
Dirac and Triply Degenerate Magnons in a Three-
Dimensional Antiferromagnet, Nat. Commun. 9, 2591
(2018).

[23] V. M. Pereira, J. M. B. L. dos Santos, and A. H. C. Neto,
Modeling Disorder in Graphene, Phys. Rev. B 77, 115109
(2008).

[24] F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy Gaps
and a Zero-Field Quantum Hall Effect in Graphene by
Strain Engineering, Nat. Phys. 6, 30 (2010).

[25] V. M. Pereira and A. H. C. Neto, Strain Engineering of
Graphene’s Electronic Structure, Phys. Rev. Lett. 103,
046801 (2009).

[26] S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A.
de Heer, D.-H. Lee, F. Guinea, A. H. C. Neto, and A.
Lanzara, Substrate-Induced Bandgap Opening in Epitaxial
Graphene, Nat. Mater. 6, 770 (2007).

[27] S. Y. Zhou, D. A. Siegel, A. V. Fedorov, and A. Lanzara,
Metal to Insulator Transition in Epitaxial Graphene

Induced by Molecular Doping, Phys. Rev. Lett. 101,
086402 (2008).

[28] J.-H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. D.
Williams, Defect Scattering in Graphene, Phys. Rev. Lett.
102, 236805 (2009).

[29] M. O. Goerbig, Electronic Properties of Graphene in a
Strong Magnetic Field, Rev. Mod. Phys. 83, 1193 (2011).

[30] R. E. Newnham, J. H. Fang, and R. P. Santoro, Crystal
Structure and Magnetic Properties of CoTiO3, Acta Cryst.
17, 240 (1964).

[31] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.10.011062 for details of
experimental methods, theoretical modelling, and Supple-
mental figures.

[32] K. A. Ross, J. M. Brown, R. J. Cava, J. W. Krizan, S. E.
Nagler, J. A. Rodriguez-Rivera, and M. B. Stone, Single-Ion
Properties of the Seff ¼ 1

2
XY Antiferromagnetic Pyro-

chlores NaA0Co2F7 (A0 ¼ Ca2þ, Sr2þ), Phys. Rev. B 95,
144414 (2017).

[33] W. J. L. Buyers, T. M. Holden, E. C. Svensson, R. A.
Cowley, and M. T. Hutchings, Excitations in KCoF3. II.
Theoretical, J. Phys. C 4, 2139 (1971).

[34] H. Liu and G. Khaliullin, Pseudospin Exchange
Interactions in d7 Cobalt Compounds: Possible Realization
of the Kitaev Model, Phys. Rev. B 97, 014407 (2018).

[35] R. Sano, Y. Kato, and Y. Motome, Kitaev-Heisenberg
Hamiltonian for High-Spin d7 Mott Insulators, Phys.
Rev. B 97, 014408 (2018).

[36] H. Watanabe, H. Yamauchi, and H. Takei, Magnetic
Anisotropies in MTiO3 (M ¼ Co, Ni), J. Magn. Magn.
Mater. 15–18, 549 (1980).

[37] S. Toth and B. Lake, Linear Spin Wave Theory for Single-Q
Incommensurate Magnetic Structures, J. Phys. Condens.
Matter 27, 166002 (2015).

[38] H. Kato, Y. Yamaguchi, M. Yamada, S. Funahashi, Y.
Nakagawa, and H. Takei, Neutron Scattering Study of
Magnetic Excitations in Oblique Easy-Axis Antiferromagnet
FeTiO3, J. Phys. C 19, 6993 (1986).

[39] J. B. Goodenough and J. J. Stickler, Theory of the Magnetic
Properties of the Ilmenites MTiO3, Phys. Rev. 164, 768
(1967).

[40] T. Hyart, R. Ojajärvi, and T. T. Heikkilä, Two Topologically
Distinct Dirac-Line Semimetal Phases and Topological
Phase Transitions in Rhombohedrally Stacked Honey-
comb Lattices, J. Low Temp. Phys. 191, 35 (2018).

[41] Q. Xie, J. Li, M. Liu, L. Wang, D. Li, Y. Li, and X.-Q.
Chen, Phononic Weyl Nodal Straight Lines in High-
Temperature Superconductor MgB2, Phys. Rev. B 101,
045403 (2020).

[42] A. M. Balbashov, A. A. Mukhin, V. Yu. Ivanov, L. D.
Iskhakova, and M. E. Voronchikhina, Electric and Magnetic
Properties of Titanium-Cobalt-Oxide Single Crystals Pro-
duced by Floating Zone Melting with Light Heating, Low
Temp. Phys. 43, 965 (2017).

[43] I. Khait, B. Yuan, Y.-J. Kim, and A. Paramekanti (to be
published).

[44] F.-Y. Li, Y.-D. Li, Y. B. Kim, L. Balents, Y. Yu, and G.
Chen, Weyl Magnons in Breathing Pyrochlore Antiferro-
magnets, Nat. Commun. 7, 12691 (2016).

DIRAC MAGNONS IN A HONEYCOMB LATTICE QUANTUM XY … PHYS. REV. X 10, 011062 (2020)

011062-9

https://doi.org/10.1103/PhysRevLett.121.035302
https://doi.org/10.1103/PhysRevB.94.075401
https://doi.org/10.1103/PhysRevB.94.075401
https://doi.org/10.1088/0953-8984/28/38/386001
https://doi.org/10.1088/0953-8984/28/38/386001
https://doi.org/10.1103/PhysRevX.8.011010
https://doi.org/10.1103/PhysRevX.8.011010
https://doi.org/10.1103/PhysRevB.97.014433
https://doi.org/10.1103/PhysRevB.97.014433
https://doi.org/10.1103/PhysRevB.87.144101
https://doi.org/10.1103/PhysRevB.87.144101
https://doi.org/10.1103/PhysRevB.90.024412
https://doi.org/10.1103/PhysRevB.90.024412
https://doi.org/10.1103/PhysRevLett.115.147201
https://doi.org/10.1103/PhysRevLett.115.147201
https://doi.org/10.1103/PhysRevX.8.041028
https://doi.org/10.1103/PhysRevX.8.041028
https://doi.org/10.1038/s41567-018-0213-x
https://doi.org/10.1038/s41567-018-0213-x
https://arXiv.org/abs/1807.05232
https://doi.org/10.1038/s41467-018-05054-2
https://doi.org/10.1038/s41467-018-05054-2
https://doi.org/10.1103/PhysRevB.77.115109
https://doi.org/10.1103/PhysRevB.77.115109
https://doi.org/10.1038/nphys1420
https://doi.org/10.1103/PhysRevLett.103.046801
https://doi.org/10.1103/PhysRevLett.103.046801
https://doi.org/10.1038/nmat2003
https://doi.org/10.1103/PhysRevLett.101.086402
https://doi.org/10.1103/PhysRevLett.101.086402
https://doi.org/10.1103/PhysRevLett.102.236805
https://doi.org/10.1103/PhysRevLett.102.236805
https://doi.org/10.1103/RevModPhys.83.1193
https://doi.org/10.1107/S0365110X64000615
https://doi.org/10.1107/S0365110X64000615
http://link.aps.org/supplemental/10.1103/PhysRevX.10.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.10.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.10.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.10.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.10.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.10.011062
http://link.aps.org/supplemental/10.1103/PhysRevX.10.011062
https://doi.org/10.1103/PhysRevB.95.144414
https://doi.org/10.1103/PhysRevB.95.144414
https://doi.org/10.1088/0022-3719/4/14/028
https://doi.org/10.1103/PhysRevB.97.014407
https://doi.org/10.1103/PhysRevB.97.014408
https://doi.org/10.1103/PhysRevB.97.014408
https://doi.org/10.1016/0304-8853(80)90658-7
https://doi.org/10.1016/0304-8853(80)90658-7
https://doi.org/10.1088/0953-8984/27/16/166002
https://doi.org/10.1088/0953-8984/27/16/166002
https://doi.org/10.1088/0022-3719/19/35/013
https://doi.org/10.1103/PhysRev.164.768
https://doi.org/10.1103/PhysRev.164.768
https://doi.org/10.1007/s10909-017-1846-3
https://doi.org/10.1103/PhysRevB.101.045403
https://doi.org/10.1103/PhysRevB.101.045403
https://doi.org/10.1063/1.5001297
https://doi.org/10.1063/1.5001297
https://doi.org/10.1038/ncomms12691


[45] T. Varga, T. C. Droubay, M. E. Bowden, P. Nachimuthu,
V. Shutthanandan, T. B. Bolin, W. A. Shelton, and
S. A. Chambers, Epitaxial Growth of NiTiO3 with a Dis-
torted Ilmenite Structure, Thin Solid Films 520, 5534 (2012).

[46] W. B. Yelon and R. Silberglitt, Renormalization of Large-
Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by

Inelastic Neutron Scattering: Spin-Wave Correlation
Effects, Phys. Rev. B 4, 2280 (1971).

[47] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. J. Herrero, Unconventional Supercon-
ductivity in Magic-Angle Graphene Superlattices, Nature
(London) 556, 43 (2018).

BO YUAN et al. PHYS. REV. X 10, 011062 (2020)

011062-10

https://doi.org/10.1016/j.tsf.2012.04.060
https://doi.org/10.1103/PhysRevB.4.2280
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160

