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Generalized hydrodynamics is a recent theory that describes large-scale transport properties of one-
dimensional integrable models. It is built on the (typically infinitely many) local conservation laws present
in these systems and leads to a generalized Euler-type hydrodynamic equation. Despite the successes of the
theory, one of its cornerstones, namely, a conjectured expression for the currents of the conserved charges
in local equilibrium, has not yet been proven for interacting lattice models. Here, we fill this gap and
compute an exact result for the mean values of current operators in Bethe ansatz solvable systems valid in
arbitrary finite volume. Our exact formula has a simple semiclassical interpretation: The currents can be
computed by summing over the charge eigenvalues carried by the individual bare particles, multiplied with
an effective velocity describing their propagation in the presence of the other particles. Remarkably, the
semiclassical formula remains exact in the interacting quantum theory for any finite number of particles and
also in the thermodynamic limit. Our proof is built on a form-factor expansion, and it is applicable to a large
class of quantum integrable models.

DOI: 10.1103/PhysRevX.10.011054 Subject Areas: Quantum Physics, Statistical Physics

I. INTRODUCTION

The description of the collective motion in many-body
quantum systems is one of the most challenging problems
in theoretical physics. There are different possible levels
for a theoretical treatment, ranging from the microscopic
laws to various effective theories describing mesoscopic
or macroscopic physics. For large enough systems, one
expects that classical behavior will emerge, at least for
certain observables. It is thus important to understand how
and under what circumstances the various classical theories
can be derived from an underlying quantum-mechanical
motion [1].
One such classical theory is hydrodynamics: It is known

that many quantum systems admit some kind of hydro-
dynamic description on the mesoscopic and/or macroscopic
scales [1,2]. Examples include Bose-Einstein condensates
[3] or the quark gluon plasma [4]. Superfluidity is a famous
exotic phenomenon, where frictionless flow is realized
due to the constraints for the decay of excitations into
lower energy modes. Superfluidity has been observed not

only for liquid helium but also in ultracold bosonic and
fermionic gases [5].
Another class of systems with exotic hydrodynamic

behavior is comprised of the one-dimensional integrable
models. In these models, there exist independent con-
servation laws that constrain the dynamical processes,
the number of which grows at least linearly with the
volume. As an effect, these models do not thermalize to
standard statistical physical ensembles. Instead, the
emerging long-time steady states can be described by a
generalized Gibbs ensemble (GGE) that involves all
higher conserved charges of the model [6,7]. The con-
servation laws prevent the decay of quasiparticle excita-
tions, and this leads to dissipationless and factorized
scattering, which was already demonstrated by experi-
ments [8]. Dissipationless propagation of the collective
modes leads to the emergence of ballistic transport and
nonzero Drude weights (dc conductivity) [9].
Generalized hydrodynamics (GHD) is a recent theory

describing large-scale nonequilibrium behavior in inte-
grable models [10,11] (see also Refs. [12–15]). The theory
is built on the local continuity equations following the
conservation laws, which lead to a generalized Euler-type
equation describing the ballistic transport. The GHD
provides exact results for the Drude weights [16,17].
Diffusive corrections to the ballistic transport were also
considered in Refs. [18,19], including an exact com-
putation of the diffusion coefficients. Remarkably, the
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predictions of the GHD have already been confirmed in a
concrete experimental setup [20].
Despite the successes of the GHD, one of the corner-

stones of the theory has not yet been proven. The works
[10,11] conjectured an expression for the expectation
values of the current operators in local equilibrium, which
is central to the derivation of the main equations of motion.
Regarding integrable quantum field theories, a proof was
provided in Refs. [10,21], whereas for the spin current of
the XXZ model, it was proven in Ref. [22]. Nevertheless,
for arbitrary current operators in interacting lattice models
or nonrelativistic gases (the models most relevant to
experiments), it was completely missing up to now. It is
the goal of this paper to provide a proof of the conjecture
valid for a wide class of Bethe ansatz solvable models.
The problem of the current mean values is also interest-

ing from a purely theoretical perspective, without the
immediate application to GHD. A large body of literature
has already addressed equilibrium correlation functions in
Bethe ansatz solvable models [23–32], with particular
interest devoted to the asymptotics of two-point functions
(for a review, see Ref. [33]) and to equilibrium mean values
of arbitrary short-range operators of the Heisenberg spin
chains (for a review, see Ref. [34]). In contrast, the current
operators are very specific short-range objects, and as we
show, their finite-volume mean values take a remarkably
simple form. This result has not yet been noticed in the
Bethe ansatz literature, and we believe that it deserves a
study in its own right.
In the following subsection, we describe the conjecture

of Refs. [10,11] for the current mean values and explain its
role in the GHD, while omitting many technical details.
This brief introduction motivates our finite-volume inves-
tigations. After that, the remainder of this paper is com-
posed as follows: In Sec. II, we specify the problem and
present our main new results, with a semiclassical inter-
pretation given in Sec. III. Section IV includes our model-
independent proof based on a finite-volume form-factor
expansion. Section V includes known generalities about the
charge and current operators in integrable lattice models;
also, it gives a short summary of the algebraic Bethe ansatz.
The proof of our form-factor expansion for the XXZ and
XXX spin chains is presented in Sec. VI. In Sec. VII, we
point out a connection to the theory of factorized corre-
lation functions. Finally, we conclude in Sec. VIII.

A. Foundations of the GHD

Isolated integrable models equilibrate to steady states
described by generalized GGEs. Each GGE can be char-
acterized by a set of parameters (generalized temperatures),
or alternatively, by the mean values of all local and
quasilocal conserved charges in the model [7,35,36].
The timescales of equilibration to the GGE are set by the

microscopic laws. It follows that in mesoscopic or macro-
scopic dynamical processes, local equilibration happens

much sooner than the characteristic times of the transport
processes. This separation of timescales leads to the
hydrodynamic description: GHD assumes the existence
of fluid cells (regions in space much larger than the
interparticle distance and much smaller than the variation
of the physical observables) such that the state of each fluid
cell can be described by a local GGE. The parameters of
these local GGEs are then space and time dependent.
The generalized eigenstate thermalization hypothesis

(GETH) [37] states that in local equilibrium the local
observables depend only on the mean values of the
conserved charges and not on any other particular detail
of the states. Thus, in order to describe the dynamical
processes, it is enough to establish flow equations for the
conserved charges, which will then determine all other
physical observables on the hydrodynamic scales.
For simplicity, let us consider here a continuum model

in the thermodynamic limit. Let the complete set of local
and/or quasilocal conserved charges be Qα¼

R∞
−∞dxQαðxÞ,

with α being an index or a multi-index, andQαðxÞ being the
charge-density operators. Conservation of the charges
implies that there exist current operators JαðxÞ satisfying
the equation of motion in the Heisenberg picture:

∂tQαðx; tÞ þ ∂xJαðx; tÞ ¼ 0: ð1:1Þ

GHD concerns the mean values of these relations:

∂thQαðx; tÞi þ ∂xhJαðx; tÞi ¼ 0: ð1:2Þ

A closed set of flow equations can be obtained if the
currents are expressed using only local information about
the charges. In hydrodynamics, this task is performed
through a derivative expansion:

hJαðx; tÞi ¼ fα½fQβðx; tÞ; ∂xQβðx; tÞ;…gβ¼1;2;…�: ð1:3Þ

In the first approximation, we neglect the spatial variations
and express the currents in the fluid cells using the mean
values hQβðx; tÞi in that specific fluid cell only. This
approximation describes the ballistic part of the transport.
The diffusive part of the transport can also be treated by
considering the derivatives ∂xhQβðx; tÞi [19], but this is not
considered here.
The ballistic flow equations then follow from Eq. (1.2),

given that one can compute the exact mean values of the
currents in the local equilibrium states as a function of the
charges or using any alternative description of the local
GGEs. We consider this problem in the present paper.
A large class of integrable models is solvable by the

Bethe ansatz [38]; prominent examples include the
Heisenberg spin chains or the 1D Bose gas with pointlike
interaction. In these models, the local equilibria in the
thermodynamic limit can be characterized by the root
densities ϱnðλÞ of the interacting quasiparticles, where n
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stands for a particle type, and λ is the so-called rapidity
parameter. The root densities can be understood as gener-
alizations of momentum-dependent occupation numbers
in free theory. Dissipationless scattering implies that these
densities are well-defined concepts even in the presence of
interactions. The construction of the GGE is equivalent to
specifying all the root densities ϱnðλÞ because they carry all
the information about the local equilibria. This equivalence
is the ultimate form of the GETH, and it was understood in
Refs. [36,39] following the earlier works [40–45].
In GHD, we thus need to specify the Bethe root densities

for each fluid cell; therefore, they will depend also on
the x, t coordinates of the cell. It is a very fruitful idea of the
GHD that instead of concentrating on Eq. (1.2) for the
charges, one should derive flow equations for the rapidity
distribution functions. This can be achieved starting from
Eq. (1.2) by expressing both mean values in the continuity
equations using the densities ϱnðλÞ only.
The mean values of the charges can be computed

additively. In local equilibrium, we have

hQαi ¼
Z

dλ ϱðλÞqαðλÞ; ð1:4Þ

where qαðλÞ is the single-particle eigenvalue of the charges,
and here we assume only one particle species for simplicity.
In GHD, Eq. (1.4) is assumed to hold for each fluid cell
separately.
For the currents, it was conjectured in Refs. [10,11] that

the mean values can be computed using a semiclassical
expression, namely, by integrating over the carried charge
multiplied by an effective propagation speed:

hJαi ¼
Z

dλ ϱðλÞveffðλÞqαðλÞ: ð1:5Þ

Here, the effective speed veffðλÞ is a generalization of the
one-particle group velocity, which also takes into account
the interactions between the particles. It has a physical
explanation using a semiclassical argument: The one-
particle wave packets suffer time delays due to the
scattering on the other particles, and these time delays
accumulate along the orbit, eventually modifying the
propagation speed. The resulting effective speed veffðλÞ
is a collective property of the local GGE because for each λ
it also depends on the particle density ϱðλ0Þ for all other λ0.
For a precise definition of veffðλÞ, we refer to Refs. [10,11].
Equation (1.5) has not yet been proven in the Bethe

ansatz. It is our goal to fill this gap and to prove Eq. (1.5)
starting from a rigorous finite-volume computation.
Regarding the interpretation of Eq. (1.5), it was

explained in Ref. [46] that the GHD can be simulated
by the so-called “flea gas” model, which describes 1D
motion of purely classical particles subject to time delays
(displacements) as an effect of interparticle collisions. Thus,

one observes a complete quantum-classical correspondence
on the hydrodynamic scale.
In this work, we show that the functional form of the

mean values is the same in finite and infinite volume;
therefore, the quantum-classical correspondence holds with
an arbitrary finite number of particles.

II. CURRENT MEAN VALUES

A. Elements of integrability

We consider integrable many-body quantum models,
including both lattice and continuum theories [23]. In this
work, we limit ourselves to those theories where particle
number is conserved and which can be solved by the
traditional (“non-nested”) Bethe ansatz. The main exam-
ples are given by the Heisenberg spin chains, the 1D Bose
gas, and also certain integrable QFTs [23]. Regarding other
types of integrable models, we give a few comments in the
Conclusions.
In this section, we present formulas pertaining to lattice

models. We consider an integrable Hamiltonian H in a
finite-volume L:

H ¼
XL
x¼1

hðxÞ: ð2:1Þ

Here, hðxÞ is the Hamiltonian density. In the most relevant
cases, hðxÞ is a two-site operator, but we do not necessarily
need this restriction. For simplicity, we require periodic
boundary conditions.
In integrable models, there exists a family of conserved

operators Qα, where α is an index or multi-index. They
mutually commute,

½Qα; Qβ� ¼ 0; ð2:2Þ

and the Hamiltonian is a member of the series.
We concentrate on the strictly local operators, which are

given as

Qα ¼
XL
x¼1

QαðxÞ; ð2:3Þ

where QαðxÞ is a short-range operator identified as the
charge density. It is important that in a finite volume, Qα is
well defined for volumes larger than the range of QαðxÞ,
and then the density QαðxÞ does not depend further on L.
Details on the canonical construction of the charges and a
few concrete examples are given in Sec. V.
The Hamiltonian is a member of the series; thus, the

global operator Qα is conserved:

d
dt

Qα ¼ i½H;Qα� ¼ 0: ð2:4Þ
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We are interested in nonequilibrium processes and a hydro-
dynamic description; therefore, we investigate the time
evolution of the charge contained in a finite section. This
problem leads to a continuity relation in operator form:

d
dt

Xx2
x¼x1

QαðxÞ ¼ i

�
H;

Xx2
x¼x1

QαðxÞ
�
¼ Jαðx1Þ − Jαðx2 þ 1Þ:

ð2:5Þ
This relation defines the current operator JαðxÞ associated
with QαðxÞ under the time evolution of H. The existence
of JαðxÞ follows simply from Eq. (2.4) and locality
arguments.
The relations (2.3) and (2.5) do not define the QαðxÞ and

JαðxÞ operators uniquely; certain subtleties are discussed
in Sec. V. We just put forward that the additive normali-
zation of the current operators is chosen by the physical
requirement that

h0jJαðxÞj0i ¼ 0; ð2:6Þ
where j0i is the vacuum or reference state with no particles.
Our goal is to determine the mean values

hnjJαðxÞjni; ð2:7Þ
where jni is an arbitrary excited state of the finite-volume
Hamiltonian. In the thermodynamic limit, these mean
values will enter the flow equations (1.2).
In the models in question, the exact eigenstates are found

using the Bethe ansatz [23,38]. The states are characterized
by a set of lattice momenta fp1;…; pNg that describes the
interacting spin waves.
The unnormalized Bethe wave function can be written

for x1 < x2 < … < xN as [38]

Ψðx1; x2;…; xNÞ ¼
X
σ∈SN

�
exp

�
i
XN
j¼1

pσjxj

�Y
j<k

σj>σk

Sðpj; pkÞ
�
:

ð2:8Þ
Here, each term in the sum represents free wave propaga-
tion with a given spatial ordering of the particles. The
amplitude Sðpj; pkÞ ¼ eiδðpj;pkÞ is a relative phase between
terms with different particle ordering, and it can be
interpreted as the two-particle scattering amplitude. It
depends on the model in question and can be determined
from the two-particle problem. The wave function is two-
particle reducible: Any multiparticle interaction is explic-
itly factorized into a succession of two-particle scatterings.
These wave functions describe eigenstates if they are

periodic, from which we obtain the Bethe equations:

eipjL
Y
k≠j

Sðpj; pkÞ ¼ 1; j ¼ 1;…; N: ð2:9Þ

It is useful to introduce the rapidity parametrization
p ¼ pðλÞ, where λ is the additive parameter for the
scattering phase:

Sðpj; pkÞ ¼ S½pðλjÞ; pðλkÞ� ¼ Sðλj − λkÞ: ð2:10Þ

The Bethe equations can then be written as

eipðλjÞL
Y
k≠j

Sðλj − λkÞ ¼ 1; j ¼ 1;…; N: ð2:11Þ

In the following, the normalized N-particle Bethe states
with rapidities fλgN ¼ fλ1;…; λNg are denoted as jfλgNi.
The total energy and lattice momentum can be computed

additively:

E ¼
XN
j¼1

eðλjÞ;

P ¼
XN
j¼1

pðλjÞ mod 2π; ð2:12Þ

where the single-particle energy eðλÞ is a further character-
istic function of the model.
Similarly, the eigenvalues of the conserved charges are

Qαjλ1;…; λNi ¼
�XN
j¼1

qαðλjÞ
�
jλ1;…; λNi; ð2:13Þ

where qαðλÞ are the one-particle eigenvalues.
For later use, let us write the Bethe equations in the

logarithmic form:

pðλjÞLþ
X
k≠j

δðλj − λkÞ ¼ 2πIj; j ¼ 1;…; N: ð2:14Þ

Here, Ij ∈ Z are the momentum quantum numbers, which
can be used to parametrize the states.
In our derivation, an important role is played by the

so-called Gaudin matrix G, which is defined as

Gjk ¼
∂
∂λk ð2πIjÞ; j; k ¼ 1;…; N; ð2:15Þ

where now the Ij are regarded as functions of the rapidities.
Explicitly, we have

Gjk¼δjk

�
p0ðλjÞLþ

XN
l¼1

φðλj−λlÞ
�
−φðλj−λkÞ; ð2:16Þ

where

φðλÞ ¼ −i
∂
∂λ log½SðλÞ�: ð2:17Þ
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There are two interpretations of the Gaudin matrix. First,
detG describes the density of states in rapidity space. This
follows from the fact that in the space of the quantum
numbers, the states are evenly distributed, and G is defined
as the Jacobian of the mapping from λj to Ij. Second, the
Gaudin determinant also describes the norm of the Bethe
ansatz wave function in many integrable models (see
Sec. V and Refs. [47,48]).

B. Main result

Our main result for the normalized mean values of the
current operators is the following:

hfλgN jJαðxÞjfλgNi ¼ e0 ·G−1 · qα: ð2:18Þ

Here, the quantities e0 and qα are N-dimensional vectors
with elements

ðe0Þj ¼
∂eðλjÞ
∂λ ; ðqαÞj ¼ qαðλjÞ; ð2:19Þ

and G−1 is the inverse of the Gaudin matrix.
In the simplest case of N ¼ 1, the Gaudin matrix has a

single element G11 ¼ Lp0ðλÞ, and Eq. (2.18) gives the
anticipated classical result

hλjJαðxÞjλi ¼
e0ðλÞqαðλÞ
Lp0ðλÞ ¼ vðλÞqαðλÞ

L
; ð2:20Þ

where we introduce the bare group velocity vðλÞ ¼
e0ðλÞ=p0ðλÞ ¼ ∂e=∂p.
A similar semiclassical interpretation can be given

also for higher particle numbers. Using the definition
(2.15) and the additive formula (2.12), we find the alter-
native expression

hfλgN jJðxÞjfλgNi ¼
1

L

XN
j¼1

veffðλjÞqαðλjÞ; ð2:21Þ

where we define the quantities

veffðλjÞ ¼
L
2π

∂E
∂Ij : ð2:22Þ

In Sec. III, it is explained that the veff can be understood in a
simple semiclassical picture as effective velocities describ-
ing the propagation of the individual bare particles in the
presence of the others.
It is remarkable that the exact result and the functional

form of the effective velocity are so simple in the finite-
volume situation. In the thermodynamic limit, the papers
[10,11] conjectured the formula (1.5) with the effective
speed given by

veffðλÞ ¼
∂εðλÞ
∂PðλÞ ; ð2:23Þ

where εðλÞ and PðλÞ are the so-called “dressed energy” and
“dressed momentum.” These are computed as the energy
and momentum differences as we add a particle with
rapidity λ into a sea of particles. The “dressing” takes into
account the backflow of the other particles, which can be
computed from the Bethe equations (2.14).
The correspondence between Eq. (2.23) and our

Eq. (2.22) is evident: Small changes in the dressed
momentum and dressed energy can be traced back to small
changes in the momentum quantum numbers and the
overall finite-volume energy, respectively,

δεðλjÞ ∼ δE; δPðλjÞ ∼ δ

�
2πIj
L

�
: ð2:24Þ

This correspondence implies that Eq. (2.23) is indeed the
thermodynamic limit of our Eq. (2.22). Furthermore, our
Eq. (2.21) can be seen as the finite-volume origin of the
thermodynamic formula (1.5).
Equation (2.18) is exact in those cases when the Bethe

wave function is exact; this holds for integrable spin chains
or the 1D Bose gas. On the other hand, in integrable QFT
(IQFT) in finite volume, the Bethe wave function is only
an approximation, and in IQFT, Eq. (2.18) holds up to
exponentially small corrections in the volume.
Depending on the model, the bare particles of the Bethe

ansatz can form bound states. These bound states are
described by the so-called string solutions of the Bethe
equations [49]. It is important that our formula (2.18) is
exact on the level of the individual Bethe rapidities, even in
the presence of strings. An effective description involving
the string centers (describing the rapidities of the composite
particles) can be given afterward using well-established
methods [50].
The main result (2.18) concerns the physical current

operators that describe the flow under time evolution by
the physical Hamiltonian. However, it is also useful to
consider certain generalized current operators that describe
the flow of a given charge under time evolution generated
by some other charge; such operators were already studied
in Ref. [12].
We thus consider two local chargesQα andQβ belonging

to the same integrable hierarchy, implying that all three
operators H;Qα; Qβ commute with each other. We define

Jβα to be the current of the charge Qα under unitary time
evolution dictated by Qβ:

i

�
Qβ;

Xx2
x¼x1

QαðxÞ
�
¼ Jβαðx1Þ − Jβαðx2 þ 1Þ: ð2:25Þ

Locality of the charge densities Qα;βðxÞ and the
global relation ½Qα; Qβ� ¼ 0 implies that the operator
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equation (2.25) can always be solved with some short-
range JβαðxÞ.
For the mean values of these generalized current oper-

ators, we have the following result:

hfλgN jJβαðxÞjfλgNi ¼ q0
β ·G

−1 · qα: ð2:26Þ

Here, q0
β is an N-element vector with components q0βðλjÞ,

where qβðλÞ is the one-particle eigenvalue of the charge Qβ

and the prime denotes differentiation. The analogy between
Eqs. (2.26) and (2.18) is evident: Only the one-particle
eigenvalues of the time-evolution operator are replaced.
A special case and certain symmetry properties of this
general statement are treated in the Appendixes A and B.
In the following section, we describe a semiclassical

interpretation of these results, whereas the full quantum-
mechanical proof is provided in Sec. IV.

III. THE SEMICLASSICAL INTERPRETATION

Here we present a semiclassical computation, which also
gives a simple physical interpretation for the main result
(2.18). Our arguments are very similar to those presented in
Ref. [46], with the main difference being that we consider
finite systems: We are looking at the motion of N particles
on a finite ring of volume L (see Fig. 1). For convenience,
we consider here continuum models and a strictly pointlike
interaction.
Instead of solving the time-dependent Schrödinger

equation, we employ a semiclassical picture; namely, we
assume that the particles can be assigned well-defined
straight orbits as long as they do not interact with each
other. In this picture, a particle with rapidity λ is represented
by a wave packet, which travels with the group velocity

vðλÞ ¼ de
dp

¼ e0ðλÞ
p0ðλÞ : ð3:1Þ

In a typical situation, all speeds are different and particles
meet as they travel around the volume. The scattering
events are taken into account by using an exact quantum-
mechanical solution of the two-body problem. For pure
Fourier modes, this method implies that for the scattering of
particle j on k the wave function has to be multiplied by the

phase Sðλj − λkÞ; this phase factor is also reflected by the
Bethe ansatz wave function (2.8). This momentum-depen-
dent phase results in displacements of the center of the
wave packets [51–53]. Such time delays are also present in
classical integrable models, including models supporting
solitons [54] or the hard rod gas [55].
After a displacement process, the particles continue their

path with their own bare speeds until a further scattering
event occurs. The time delays suffered in each of these
events accumulate, and this alters the actual propagation
speed of the wave packets, leading to the emergence of
effective velocities veffðλjÞ. It is important that due to the
higher conservation laws, the multiparticle scattering
events always factorize into a succession of two-particle
scatterings [56], which also implies that the particle
rapidities never change during time evolution.
In this semiclassical picture, the current mean values are

evaluated simply as

Jα;cl ¼
1

L

XN
j¼1

veffðλjÞqαðλjÞ: ð3:2Þ

Our goal is to find the emerging effective velocities.
We consider long times such that each pair of particles

has scattered on each other many times. In this limit, the
particular order of the individual scattering events (which
depends on the initial positions of the particles) becomes
irrelevant.
The spatial displacement of particle j caused by the

scattering on the particle k (j < k) is given by the
derivative [51–53]

Δsjk ¼
∂δðpj; pkÞ

∂pj
¼ φðλj − λkÞ

p0ðλjÞ
; ð3:3Þ

where we use the rapidity parametrization, and φðuÞ is
defined in Eq. (2.17). This formula is valid when particle
j overtakes particle k from the left, i.e., when vj > vk. We
can formally extend it as

Δsjk ¼ σjk
φðλj − λkÞ
p0ðλjÞ

; ð3:4Þ

where

σjk ¼
�þ1 if veffðλjÞ > veffðλkÞ;
−1 if veffðλjÞ < veffðλkÞ:

ð3:5Þ

The time elapsed between the two scattering events of
the same two particles j and k can be expressed as

Tjk ¼
L

jveffðλjÞ − veffðλkÞj
: ð3:6Þ

FIG. 1. The semiclassical picture for the effective velocities.
There are N particles moving on a circle of circumference L. The
only effect of the interaction is the time delays after the scattering
events. These delays accumulate and lead to well-defined
effective speeds in the long time limit.
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For asymptotically long times t, the accumulated displace-
ment that particle j suffers is given by

ΔsjðtÞ ¼
XN
k¼1
k≠j

Δsjk ·
t
Tjk

: ð3:7Þ

This displacement causes the difference between the
effective and bare velocities:

ΔsjðtÞ ¼ ðvðλjÞ − veffðλjÞÞt: ð3:8Þ

Putting everything together, we obtain the self-consistent
relation

vðλjÞ ¼ veffðλjÞ þ
1

L

XN
k¼1
k≠j

ΔsjkjveffðλjÞ − veffðλkÞj: ð3:9Þ

As an effect of the extra sign σjk in Eq. (3.4), it can be
written as

vðλjÞ¼veffðλjÞþ
1

L

XN
k¼1
k≠j

φjk

p0ðλjÞ
½veffðλjÞ−veffðλkÞ�: ð3:10Þ

Multiplying by Lp0ðλjÞ and using the definition of the bare
group velocity, we get

e0ðλjÞL ¼ Lp0ðλjÞveffðλjÞ þ
XN
k¼1
k≠j

φjk½veffðλjÞ − veffðλkÞ�:

ð3:11Þ

On the rhs, we can recognize the action of the Gaudin
matrix (2.16), and we can thus write

Le0 ¼ G · veff : ð3:12Þ

Multiplying by G−1 and substituting the veffðλjÞ into
Eq. (3.2) leads to

Jα;cl ¼ e0 · G−1 · qα; ð3:13Þ

which is identical to the full quantum-mechanical result
(2.18). We thus demonstrate a complete quantum-classical
correspondence with a finite number of particles.
In our derivation, we assume that veffðλjÞ > veffðλkÞ

whenever vðλjÞ > vðλkÞ. However, as natural as this require-
ment may seem, there can be situations where it does not
hold [57]. In those cases, the quantum result remains valid,
but the semiclassical picture cannot be applied.

IV. PROOF USING A FORM-FACTOR EXPANSION

Here we present a model-independent proof of our main
result for the current mean values. Our technique relies on a
finite-volume form-factor expansion theorem. The proof of
this expansion theorem can depend on the particular model,
but the computations of this section are quite general.
For the most part, we concentrate only on the physical

currents Jα. The generalized currents defined in Eq. (2.25)
are considered in Sec. IV C.
The starting point is to use the definition of the current

operators (2.5) and to consider matrix elements of this
operator relation. We intend to compute the mean values
of the currents, but taking the mean values of Eq. (2.5)
automatically gives zero on both sides due to the Bethe
states being translationally invariant and eigenstates of H.
Instead, it is useful to take the off-diagonal matrix elements
between two Bethe states with a nonequal total lattice
momentum:

i

�XN
j¼1

eðλjÞ − eðμjÞ
�
hfλgN jQαðxÞjfμgNi

¼
�
1 −

YN
j¼1

ei½pðμjÞ−pðλjÞ�
�
hfλgN jJαðxÞjfμgNi: ð4:1Þ

In integrable models, generic off-diagonal finite-volume
matrix elements of local operators can be expressed as

hfλgN jOð0ÞjfμgMi ¼
FOðfλgN jfμgMÞ
detGμ detGλ

; ð4:2Þ

where the function FOðfλgN jfμgMÞ is the so-called form
factor, and detGλ and detGμ describe the norm of the Bethe
ansatz wave function, or alternatively, the density of Bethe
states in rapidity space. They are N × N and M ×M
Gaudin determinants computed from the sets of rapidities
fλgN and fμgM.
The form factors describe the transition-matrix element

for the unnormalized Bethe wave functions (7.5). They are
meromorphic functions, and they are completely indepen-
dent from the volume. The volume dependence of the
physical matrix elements comes only through the solution
of the Bethe equations and the normalization factors.
The properties of the form factors have been investigated
both in QFT [58] and using the algebraic Bethe ansatz
(ABA) [23]. A derivation of the analytic properties in the
Lieb-Liniger model was also given using the coordinate
Bethe ansatz in Ref. [59]. The statement [60] is well known
in the literature dealing with integrable lattice models
[23], and for integrable QFT, it was first written down
in Ref. [60].
As opposed to the transition-matrix elements, the mean

values of local operators in Bethe states cannot be
expressed directly using the infinite-volume form factors.
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The reason is the appearance of the so-called disconnected
terms: On a mathematical level, they arise from the
kinematical poles of the form factors, whereas their
physical interpretation is that they describe processes when
a subset of the particles does not interact with the local
operator. On the other hand, those processes when some of
the particles do interact with the operator are described by
certain diagonal limits of the form-factor functions.
In order to describe the finite-volume mean values, let us

define the so-called symmetric evaluation of the diagonal
form factors as

FO
s ðfλgNÞ ¼ lim

ε→0
FOðλ1 þ ε;…; λN þ εjλN;…; λ1Þ: ð4:3Þ

There is another often used diagonal limit called the
connected form factors, but they are not used in this work,
and for a thorough discussion, we refer to Ref. [61].
It is useful to define the functions ρNðλ1;…; λNÞ as the

N × N Gaudin determinants evaluated at the set of rap-
idities fλ1;…; λNg. In the notations, we suppress the index
N and write simply

ρðfλgNÞ ¼ detGλ: ð4:4Þ

We remind that the Gaudin determinants describe the
norms of Bethe wave functions for eigenstates, i.e., for
sets of rapidities satisfying the Bethe equations. On the
other hand, the functions ρðfλgNÞ are defined for arbitrary
sets of rapidities.
It is useful to write down the first two ρðfλgNÞ functions.

For N ¼ 1, we have simply

ρðλÞ ¼ Lp0ðλÞ: ð4:5Þ

For N ¼ 2, the Gaudin matrix is

G ¼
�
p0ðλ1ÞLþ φ12 −φ12

−φ12 p0ðλ2ÞLþ φ12

�
; ð4:6Þ

and its determinant is

ρðλ1;λ2Þ¼L2p0ðλ1Þp0ðλ2ÞþL½p0ðλ1Þþp0ðλ2Þ�φ12; ð4:7Þ

where φ12 ¼ φðλ1 − λ2Þ.
Our proof for the current mean values is based on the

following expansion theorem.
Theorem 1 The finite-volume mean values of local

operators can be computed through the expansion

hfλgN jOð0ÞjfλgNi¼
P

fλþg∪fλ−gFO
s ðfλþgÞρðfλ−gÞ

ρðfλgÞ ; ð4:8Þ

where the summation runs over all partitionings of the
set of the rapidities into fλþg ∪ fλ−g. The partitionings
include those cases where either subset is the empty set, and

in these cases, it is understood that ρð∅Þ ¼ 1, and
FO
s ð∅Þ ¼ hOi is the VEV. The relation [61] is exact when

the Bethe ansatz wave functions are exact eigenstates of
the model.
This theorem was first formulated in Ref. [61] for

integrable QFT, where the Bethe ansatz for the finite-
volume eigenstates is not exact due to the presence of
virtual particles. Therefore, in IQFT the theorem holds up
to corrections exponentially small in volume. On the other
hand, it is an exact relation in nonrelativistic models
including the 1D Bose gas and the Heisenberg spin chains.
Similar theorems had been known for particular cases in the
ABA literature [23]. Moreover, after our work was finished,
we were informed that a proof of this theorem applicable to
spin chains was already given in Ref. [62]; see Sec. VII
there. Nevertheless, we present our own proof in Sec. VI,
which uses different methods.
In Ref. [63], it was shown that the LeClair-Mussardo

(LM) formula (an integral series developed for thermal
mean values) can be considered a thermodynamic limit of
this expansion theorem, whereas in Ref. [64], it was shown
that alternatively Eq. [61] can be derived from the LM
formula using certain analytic continuations. In Ref. [65], it
was also shown that in IQFT it can be derived directly using
the off-diagonal relation [60]. Regarding the continuum
gas models, the expansion was proven for certain local
operators in the Lieb-Liniger models in Ref. [66].
We note that there is an alternative expansion theorem

using the connected form factors [61], but we do not use
it here.
The continuity relations yield a connection between the

symmetric form factors of the charge and current operators.
Introducing the shorthand notations

QαðfλgNÞ≡ FQαð0Þ
s ðfλgNÞ;

J αðfλgNÞ≡ FJαð0Þ
s ðfλgNÞ; ð4:9Þ

we get from Eq. (4.1),

�XN
j¼1

e0ðλjÞ
�
QαðfλgNÞ ¼

�XN
j¼1

p0ðλjÞ
�
J αðfλgNÞ:

ð4:10Þ

We remark that Eq. (4.1) is defined only for the finitely
many eigenstates of a finite-volume chain, whereas
Eq. (4.10) holds for arbitrary rapidities, i.e., not only for
the solutions to the Bethe equations. The reason lies in the
fact that the form factors are physical amplitudes which are
independent of the volume; in spin chains they are rational
functions of the rapidities [23]. The relation (4.1) holds
in any volume; thus, the Bethe states eventually sample
Eq. (4.10) at infinitely many points, and this information is
enough to obtain the equality of the rational functions.
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Similar arguments can be made even in QFT situations
based on the analyticity properties of the form factors.
Alternatively, Eq. (4.10) can be obtained directly in infinite
volume using the methods of Ref. [59], but we do not
pursue this direction here.
Now our strategy is the following: First we find the

symmetric form factors of the charge densities by compar-
ing the formula of the expansion Theorem 1 to the known
mean values (2.13). Next, we use the above relation to find
theJ α. Finally, we use Theorem 1 for the current operators:
We sum up the resulting expansion to obtain Eq. (2.18).
Essentially, the same strategy has already been applied in
Refs. [10,21] directly in the thermodynamic limit using the
LeClair-Mussardo series. The novelty of our approach is
that we perform these steps in finite volume and that we
also provide the proof of our expansion theorem for the
XXX and XXZ spin chains (see Sec. VI).

A. The form factors of the charge densities

We consider Eq. [61] in the case of the charge-density
operator Qαð0Þ and write it as

ρðfλgÞ
L

XN
j¼1

qαðλjÞ ¼
X

fλþg∪fλ−g
QαðfλþgÞρðfλ−gÞ: ð4:11Þ

These equations are algebraic relations that hold for any
particle number N and any finite volume L. The symmetric
diagonal form factors can be extracted using a recursive
procedure: We consider the above algebraic relations
for N ¼ 1; 2;…, and at each N we compute the N-particle
form factor by subtracting the terms with allQαðfλþgÞwith
a lower number of particles obtained earlier.
At N ¼ 1, the relation immediately gives

QαðλÞ ¼ p0ðλÞqαðλÞ; ð4:12Þ

where we use Eq. (4.5) and substitute hQαð0Þi ¼ 0.
At N ¼ 2, we use Eqs. (4.5)–(4.7). Substituting them

into Eq. (4.11), and using also Eq. (4.12) we observe the
cancellation of some terms, leading eventually to

Qαðλ1; λ2Þ ¼ ½qαðλ1Þ þ qαðλ2Þ�½p0ðλ1Þ þ p0ðλ2Þ�φ12:

ð4:13Þ

This procedure does, in principle, yield all higher
symmetric form factors. However, the direct recursive
subtractions for N ≥ 3 become more involved, and it is
advantageous to use an alternative method. For the com-
putation of the Gaudin determinants, we apply a graph
theoretical matrix-tree theorem, which has already proven
to be useful for different problems [21,67,68].
Let us introduce the following definitions. Given a graph

Γ, a directed graph F is a directed spanning forest of Γ if
it satisfies the following:

(i) F includes all vertices of Γ.
(ii) F does not include any circles.
(iii) Each vertex has at most one incoming edge.

The nodes without incoming edges are called roots. Each
spanning forest can be decomposed as a union of spanning
trees, which are the connected components of the forest. It
can be seen from the above definitions that each spanning
tree has exactly one root.
Theorem 2 Let G be an N × N matrix obtained as the

difference G ¼ D − K, where D is diagonal and K satisfies
the property

XN
k¼1

Kjk ¼ 0; j ¼ 1;…; N: ð4:14Þ

In this case, the determinant ofG can be expressed as a sum
over the directed spanning forests of the complete graph
with N nodes. For each spanning forest F , let RðF Þ denote
the set of the roots, and let ljk denote the edges of F
pointing from node j to k. Then we have

detG ¼
X
F

Y
j∈RðF Þ

Djj

Y
ljk∈F

Kjk: ð4:15Þ

For a proof, see, e.g., Ref. [69].
The Gaudin determinant given by Eq, (2.16) satisfies

the requirements of this theorem with Djj ¼ p0ðλjÞL and
Kjk ¼ φðλj − λkÞ. The main idea to obtain the form factors
from Eq. (4.11) is to consider the formal L → 0 limit of this
relation. To do this, we need to observe the L → 0 limit of
the various Gaudin determinants. Each term in Eq. (4.15)
carries a factor of Lr where r ≥ 1 is the number of roots for
the particular spanning forest F . On the rhs of Eq. (4.11)
we have

lim
L→0

ρðfλ−gÞ ¼ 0 ð4:16Þ

for every nonempty set of fλ−g. Thus, the only term on
the rhs which survives the L → 0 limit is the one where
fλ−g ¼ ∅ yieldingQαðfλgÞ. On the other hand, on the lhs,
we need to keep the OðLÞ term in ρðfλgÞ, which according
to the above theorem, gives an expansion over all directed
spanning trees F 0:

lim
L→0

ρðfλgNÞ
L

¼
X
F 0

�
p0ðλrÞ

Y
ljk∈F 0

φjk

�
; ð4:17Þ

where for each spanning tree F 0 the index r denotes its root
vertex, and we use the abbreviation φjk ¼ φðλj − λkÞ.
Each directed spanning tree can be obtained uniquely

from a nondirected spanning tree by selecting the single-
root vertex and choosing the directions of the edges
accordingly. In our case, the function φ is symmetric;
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thus, the direction of the edges does not influence the
factors of φðλu − λvÞ. Each vertex has to be chosen exactly
one time as a root, thus, we obtain

lim
L→0

ρðfλgNÞ
L

¼
�XN
j¼1

p0ðλjÞ
�X

T

Y
ljk∈T

φjk; ð4:18Þ

where the summation runs over the nondirected spanning
trees T .
Finally,

QαðfλgNÞ ¼
�XN
j¼1

p0ðλjÞ
��XN

j¼1

qαðλjÞ
�X

T

Y
ljk∈T

φjk:

ð4:19Þ

B. Summation for the current operators

Equations (4.19) and (4.10) yield the symmetric diagonal
form factors of the current operators:

J αðfλgNÞ ¼
�XN
j¼1

e0ðλjÞ
��XN

j¼1

qαðλjÞ
�X

T

Y
ljk∈T

φjk:

ð4:20Þ

Our task is to sum up the expansion for the currents

hfλgN jJαð0ÞjfλgNi ¼
P

fλþg∪fλ−gJ αðfλþgÞρðλ−Þ
ρðfλgÞ : ð4:21Þ

Once again, it is instructive to consider the first few cases.
At N ¼ 1, we have

J αðλÞ ¼ e0ðλÞqαðλÞ: ð4:22Þ

Using hJαð0Þi0 ¼ 0 and Eq. (4.5) gives immediately

hλjJαð0Þjλi ¼
1

L
e0ðλÞ
p0ðλÞ qαðλÞ; ð4:23Þ

as anticipated.
At N ¼ 2, there are three nonzero terms in the

summation:

J αðλ1; λ2Þ þ J αðλ1Þρðλ2Þ þ J αðλ2Þρðλ1Þ
ρðλ1; λ2Þ

: ð4:24Þ

The two-particle symmetric form factor is

J αðλ1;λ2Þ¼ ½e0ðλ1Þþe0ðλ2Þ�½qαðλ1Þþqαðλ2Þ�φ12: ð4:25Þ

Substituting this equation and also Eqs. (4.22) and (4.5) into
Eq. (4.24), we can express themeanvalue in the product form

ðe0ðλ1Þ e0ðλ2ÞÞ
�
p0ðλ2Þþφ12 φ12

φ12 p0ðλ1Þþφ12

��
qαðλ1Þ
qαðλ2Þ

�

ρðλ1;λ2Þ
:

ð4:26Þ

We can recognize the inverse of the two-particle Gaudin
matrix (4.6). Thus, in this case we obtain

hλ1; λ2jJαð0Þjλ1; λ2i ¼ ðe0ðλ1Þe0ðλ2ÞÞG−1
�
qαðλ1Þ
qαðλ2Þ

�
;

ð4:27Þ

as we state in our main result (2.18).
The summation for N ≥ 3 is considerably more

involved. From the structure of the form factors and the
Gaudin determinants, we can see that for each pair jk of
particles there will be various contributions including the
factors e0ðλjÞqαðλkÞ stemming from different terms in
Eq. (4.21). Our main result (2.18) states that the sum of
these terms will reproduce the jk element of the matrix
G−1. For this inverse matrix, we can use the formula

G−1 ¼ adjðGÞ
detG

; ð4:28Þ

where adjðGÞ is the so-called adjugate matrix of G. The
Gaudin determinant is present in the denominator of
Eq. (4.21); thus, Eq. (2.18) holds if in the nominator the
sum of the terms with e0ðλjÞqαðλkÞ reproduce the jk
components of adjðGÞ. The proof of this statement is
not trivial, and it is presented in Appendix C.

C. Mean values of the generalized currents

It is straightforward to repeat the previous calculations
for the case of the generalized currents Jβα defined in
Eq. (2.25). For the symmetric diagonal form factors, we use
the notation J β

αðfλgNÞ. The local continuity equation then
leads to

�XN
j¼1

q0βðλjÞ
�
QαðfλgNÞ ¼

�XN
j¼1

p0ðλjÞ
�
J β

αðfλgNÞ;

ð4:29Þ

from which

J β
αðfλgNÞ ¼

�XN
j¼1

q0βðλjÞ
��XN

j¼1

qαðλjÞ
�X

T

Y
ljk∈T

φjk:

ð4:30Þ

These form factors are needed to sum up the expansion
theorem [61]. All of the previous computations can be
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applied by exchanging the function e0ðλÞ with q0βðλÞ. This
change has a simple interpretation: For the general currents,
the time evolution is dictated by Qβ instead of the physical
Hamiltonian. Performing all the previous steps, we obtain
our result (2.26).

V. CURRENT OPERATORS AND ALGEBRAIC
BETHE ANSATZ IN INTEGRABLE

LATTICE MODELS

Here we review the canonical construction of the
conserved charge and associated current operators; we also
sketch the standard method of the algebraic Bethe ansatz to
find the eigenstates. We concentrate on lattice models that
are obtained from integrable Lax operators. The treatment
below is rather general, with concrete examples given later
in Sec. V B.
Let H ¼ V1 ⊗ V2 ⊗ … ⊗ VL denote the Hilbert space

of the model, with Vj ≈ CD with someD ¼ 2; 3;…, and let

Va ≈ CD̃ with some D̃ denote the so-called auxiliary space.
In our main examples, D̃ ¼ D, but this is not necessary. Let
LðuÞ denote the so-called Lax operator acting on Vj ⊗ Va.
Here, u ∈ C is the spectral parameter.
The monodromy matrix TðuÞ acting on Va ⊗ H is

defined as

TðuÞ ¼ L1;aðuÞ;…;LL;aðuÞ: ð5:1Þ

The transfer matrix is given by the trace in auxiliary
space, which corresponds to enforcing periodic boundary
conditions:

tðuÞ ¼ TraTðuÞ: ð5:2Þ

The local Lax operators satisfy the exchange property

L1aðuÞL1bðvÞRabðv − uÞ ¼ Rabðv − uÞL1bðvÞL1aðuÞ;
ð5:3Þ

where we introduce two auxiliary spaces Va;b, and RðuÞ is
the so-called R matrix acting on Va ⊗ Vb. It satisfies the
Yang-Baxter relation

R12ðu1 − u2ÞR13ðu1 − u3ÞR23ðu2 − u3Þ
¼ R23ðu2 − u3ÞR13ðu1 − u3ÞR12ðu1 − u2Þ; ð5:4Þ

which is a relation of operators acting on the triple product
V1 ⊗ V2 ⊗ V3 of auxiliary spaces.
As an effect of these relations, the transfer matrices form

a commuting family of operators [23]:

½tðuÞ; tðvÞ� ¼ 0: ð5:5Þ

The transfer matrix encodes the hierarchy of the conserved
charges, which are obtained by expanding tðuÞ around
certain special points.
We consider models where the dimensions of the

physical and auxiliary spaces are equal, and the local
Lax operator can be chosen to be identical to the R matrix:
LðuÞ ¼ RðuÞ. Furthermore, we consider cases where the R
matrix satisfies the initial condition Rð0Þ ¼ P with P being
the permutation operator, such that the transfer matrix
satisfies

tð0Þ ¼ U; ð5:6Þ

where U is the translation operator by one site.
For any α ∈ N, α ≥ 2, we then define

Qα ¼ i

� ∂
∂u

�
α−1

log½tðuÞ�
����
u¼0

: ð5:7Þ

These charges will be extensive, and they can be written as
a sum over the charge-density operators [70]:

Qα ¼
XL
j¼1

QαðxÞ: ð5:8Þ

With this definition, QαðxÞ spans α sites, and for α ¼ 2
we have

Q2 ¼ κH; ð5:9Þ

with H being the physical Hamiltonian and κ being an
L-independent factor, which depends on the particular
conventions that are used. If the spectral parameter is
chosen appropriately, then the canonical Qα defined above
are all Hermitian.
We consider models with particle number conservation.

In these cases, there is a reference state j0i with zero
particles present. We require that the overall normalization
of the transfer matrix satisfies

h0jtðuÞj0i ¼ 1; ð5:10Þ

leading to

h0jQαj0i ¼ 0: ð5:11Þ

Additional multiplicative factors in tðuÞ will alter the
additive normalization of the charges.
Having found the charge densities, the continuity rela-

tions (2.5) and (2.25) uniquely define the current and
generalized current operators Jα and Jβα. It follows from
Eq. (5.9) that for β ¼ 2 we can identify J2α ¼ κJα.
We note that the relations (5.7) and (5.8) do not define

QαðxÞ unambiguously: For any choiceQαðxÞ, we can take a
local operator DðxÞ and define an alternative density
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Q0
αðxÞ ¼ QαðxÞ þDðxþ 1Þ −DðxÞ; ð5:12Þ

which leads to the same integrated charge. This trans-
formation can be considered as a “gauge freedom” for the
definition of the charge densities, and it is discussed in
detail in Ref. [19]. This “gauge choice” does not alter the
charge mean values, but it changes the definition of the
current operators as

Jβ
0

α ðxÞ ¼ JβαðxÞ − i½Qβ; DðxÞ�: ð5:13Þ

The additional terms do not affect the mean values ofQαðxÞ
and JβαðxÞ.
An alternativeway of constructing the charges is with the

help of the boost operator [71–74], which is defined on the
infinite chain as the formal expression

B ¼
X∞
x¼−∞

xQ2ðxÞ; ð5:14Þ

where the density of the charge Q2 is simply

Q2ðxÞ ¼ iPx;xþ1

dRx;xþ1ðλÞ
dλ

����
λ¼0

: ð5:15Þ

A formal manipulation shows that [73,74]

dt∞ðλÞ
dλ

¼ i½B; t∞ðλÞ� þ const; ð5:16Þ

where t∞ðλÞ is the transfer matrix of an infinite chain. It
follows that

Qαþ1 ¼ i½B;Qα� þ const: ð5:17Þ

The additional constant parts are not fixed by the formal
computations and need to be adjusted afterward. Defining a
recursion as Q̃αþ1 ¼ i½B;Qα� and using Eq. (5.11), we get
the correct normalization

Qαþ1 ¼ Q̃αþ1 − h0jQ̃αþ1j0i: ð5:18Þ

It is also possible to compute the current operators JβαðxÞ
using a generalization of the boost operator. A formal
application of Eq. (2.25) gives

i½Qβ;
X
x

xQαðxÞ� ¼
X
x

JβαðxÞ: ð5:19Þ

This relation can be used to obtain JβαðxÞ, but depending
on the situation the direct application of Eq. (2.25) might be
more efficient.

A. The Bethe ansatz solution

Let us now focus on the case of D ¼ D̄ ¼ 2.
Furthermore, we consider models with Uð1Þ symmetry
where the fundamental R matrix is of the form

RðuÞ ¼

0
BBB@

1 0 0 0

0 bðuÞ cðuÞ 0

0 cðuÞ bðuÞ 0

0 0 0 1

1
CCCA: ð5:20Þ

Specific examples are given later in Sec. V B.
The monodromy matrix defined in Eq. (5.1) is usually

written in the block form

TðuÞ ¼
�
AðuÞ BðuÞ
CðuÞ DðuÞ

�
; ð5:21Þ

where the blocks correspond to the degrees of freedom in
auxiliary space, and AðuÞ, BðuÞ, CðuÞ, DðuÞ are operators
acting on the spin chain.
It follows from the local relation (5.3) that the mono-

dromy matrix satisfies

TaðuÞTbðvÞRabðv − uÞ ¼ Rabðv − uÞTbðvÞTaðuÞ; ð5:22Þ

where a, b refer to two different auxiliary spaces.
Commutation relations between the A, B, C, D operators
can be derived from Eq. (5.22); they are listed in
Appendix D.
In our models possessing Uð1Þ symmetry, there exists a

reference state j0i which is annihilated by all CðuÞ for
all u. Typically, j0i is chosen as the state with all spins up.
Then, the Bethe states can be created in an algebraic Bethe
ansatz as

jλ1;…; λNi ¼
YN
j¼1

Bðλj − σÞj0i: ð5:23Þ

Here, σ is a constant which is chosen later such that the
rapidity parametrization becomes exactly the same as in the
coordinate Bethe ansatz.
These states are eigenstates of the spin chain Hamiltonian

if the rapidities satisfy the Bethe equations

aðλj − σÞ
dðλj − σÞ

Y
k≠j

fðλk; λjÞ
fðλj; λkÞ

¼ 1; ð5:24Þ

where we introduce the function

fðu; vÞ ¼ 1

bðu − vÞ ; ð5:25Þ

and the vacuum eigenvalues aðuÞ, dðuÞ defined as
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AðuÞj0i ¼ aðuÞj0i; DðuÞj0i ¼ dðuÞj0i: ð5:26Þ

For R matrices of the form (5.20), we have

aðuÞ ¼ 1; dðuÞ ¼ ½bðuÞ�L: ð5:27Þ

Dual eigenstates are created as

hλ1;…; λN j ¼ h0j
YN
j¼1

Cðλj − σÞ: ð5:28Þ

For on-shell states of the physical chain, these states are the
adjoints of the states (5.23) (for a detailed proof, see
Ref. [23]), but in the more general case, including certain
inhomogeneity parameters (leading to non-Hermitian
Hamiltonians), they are only dual vectors.
For eigenvectors, the norm of the Bethe states is

h0j
YN
j¼1

CðλjÞ
YN
j¼1

BðλjÞj0i

¼ ðκ̃ÞN
�Y

j≠k
fðλj; λkÞ

�
detGλ; ð5:29Þ

where κ̃ is a model-dependent constant. This statement was
proven in Ref. [48] based on the singularity properties of
general overlaps.
Finally, the eigenvalues of the transfer matrix are

tðuÞ¼aðuÞ
YN
j¼1

fðλj−σ;uÞþdðuÞ
YN
j¼1

fðu;λj−σÞ: ð5:30Þ

B. Main examples

The SUð2Þ-invariant XXX Heisenberg spin chain is
given by the Hamiltonian

H ¼
XL
j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1 þ σzjσ

z
jþ1 − 1Þ; ð5:31Þ

where σaj , a ¼ x, y, z are the Pauli matrices acting on site j.
This integrable model can be obtained from the Rmatrix of
the form (5.20) with

bðuÞ ¼ u
uþ i

; cðuÞ ¼ i
uþ i

; ð5:32Þ

where the shift parameter is σ ¼ i=2 and κ̃ ¼ 1.
The canonical definition (5.7) of the charges gives

Q2 ¼ H=2 [23]; the additive normalization is such that
Eq. (5.11) is satisfied.
The eigenstates of the model organize themselves into

SUð2Þ multiplets, and the Bethe ansatz gives the highest

weight vectors. The wave functions are of the form (2.8)
with the rapidity parametrization given by

eipðλÞ ¼ λ − i=2
λþ i=2

;

eiδðλÞ ¼ λþ i
λ − i

: ð5:33Þ

The one-particle energy eigenvalue is eðλÞ ¼ 2q2ðλÞ with

q2ðλÞ ¼ −p0ðλÞ ¼ −
1

λ2 þ 1=4
: ð5:34Þ

The rapidity parameters take values in the whole complex
plane. The solutions of the Bethe equations organize
themselves into strings, which describe bound states
of spin waves [49]. These bound states can be regarded
as different particle types in the thermodynamic limit.
However, we perform our finite-volume analysis on the
level of the individual Bethe roots; therefore, we do not
treat the string solutions separately.
In this model, the canonical charges Qα defined by

Eq. (5.7) can be computed explicitly [75]. For the sake of
completeness, we present the explicit formulas up to Q4 in
Appendix B; more explicit results are found in Ref. [75].
Regarding the one-particle eigenvalues of the charges, it

follows directly from Eq. (5.30) that

qαðλÞ ¼
� ∂
∂x

�
α−2

q2ðλ − xÞ
����
x¼0

: ð5:35Þ

The transfer matrix commutes with the global SUð2Þ
transformations; therefore, the Qα with α ≥ 2 are all
SUð2Þ-invariant operators. The global spin operators are
additional conserved quantities, and the traditional choice
is to addQ1 ¼ Sz into the commuting family. If the vacuum
is chosen as the reference state with all spins up, then the
one-particle eigenvalues of Q1 are simply q1ðλÞ ¼ −1.
Explicit real-space formulas for the current operators

of the XXX model are not available. Based on Ref. [75], it
seems plausible that closed-form results can be computed,
but we do not pursue this direction. Nevertheless, we
compute the first few currents and generalized currents; the
results are presented in Sec. B.
Our second example is the XXZ model, which is given

by the Hamiltonian

H ¼
XL
j¼1

½σxjσxjþ1 þ σyjσ
y
jþ1 þ Δðσzjσzjþ1 − 1Þ�: ð5:36Þ

This model can be obtained from an R matrix of the
form (5.20) with
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bðuÞ ¼ sinðuÞ
sinðuþ iηÞ ; cðuÞ ¼ sinðiηÞ

sinðuþ iηÞ ; ð5:37Þ

where Δ ¼ coshðηÞ. In this normalization, we have Q2 ¼
H=ð2 sinh ηÞ. The shift parameter is iη=2, and κ̃ ¼ sinhðηÞ.
For simplicity, we focus on the regime Δ > 1, where

the rapidity parameters take values in the strip ℜðλÞ ∈
½−π=2; π=2�, and the momentum and scattering amplitudes
are

eipðλÞ ¼ sinðλ − iη=2Þ
sinðλþ iη=2Þ ;

eiδðλÞ ¼ sinðλþ iηÞ
sinðλ − iηÞ ; ð5:38Þ

with the one-particle energy being eðλÞ ¼ 2 sinhðηÞq2ðλÞ,
where now

q2ðλÞ ¼
sinhðηÞ

2½cosð2λÞ − coshðηÞ� : ð5:39Þ

The one-particle eigenvalues of the canonical charges Qα

are again given by Eq. (5.35) with the q2ðλÞ function above.
The real-space representation of the Qα is treated in detail
in Ref. [74], but we do not use those results here. The Uð1Þ
invariance of the model leads to the independent conserved
charge Q1 ¼ Sz with one-particle eigenvalues q1ðλÞ ¼ −1.

VI. PROOF OF THE EXPANSION THEOREM:
THE XXZ CHAIN

Here we prove Theorem 1 using standard methods of the
ABA [23]. In fact, our proof can be considered a gener-
alization of the proof given by Korepin for the norms of the
Bethe ansatz wave functions [48]. Similar ideas have
been worked out by one of the authors in the work [63],
which considered certain local correlators of the continuum
1D Bose gas. Here we restrict ourselves to the case of the
XXZ spin chain, with the R matrix given by conventions
(5.20)–(5.37). The case of the XXX chain can be treated
similarly.
For the proof, it is useful to define renormalized

operators

BðuÞ ¼ BðuÞ
dðuÞ ; CðuÞ ¼ CðuÞ

dðuÞ : ð6:1Þ

In order to shorten the notations, in this section we do not
use the rapidity shift −iη=2 that appears in Eq. (5.23).
Our aim is to derive the form-factor expansion for the

normalized mean values

h0jQN
j¼1 CðλjÞO

Q
N
j¼1 BðλjÞj0i

h0jQN
j¼1 CðλjÞ

Q
N
j¼1 BðλjÞj0i

; ð6:2Þ

where O is any operator of the finite spin chain. Quite
interestingly, for this proof we do not require any locality
property from the operator. In fact, locality of an operator is
not even a well-defined concept in a finite chain. Thus, we
do not impose any restriction on the range of the oper-
ator O.
To be precise, let us consider the elementary matrices

Eab, a, b ¼ 1, 2 and let EabðxÞ stand for operator which
acts as Eab on site x ¼ 1;…; L and with the identity
elsewhere. We perform the proof for an arbitrary product

O ¼
YL
x¼1

EaxbxðxÞ: ð6:3Þ

Each operator of the finite chain is a linear combination of
these products. Short-range operators are obtained by
taking traces in some subset of the indices ax, bx.
In order to compute these mean values, we need to

embed the operators (6.3) in the Yang-Baxter algebra. This
procedure is called the “quantum-inverse-scattering prob-
lem” and was solved in Refs. [76–78].
In the case of the homogeneous chain, we have

Y1
x¼L

EaxbxðxÞ ¼
Y1
x¼L

Taxbxð0Þ: ð6:4Þ

Our strategy is that we prove the theorem for an arbitrary
product

O ¼ XðμLÞ;…; Xðμ2ÞXðμ1Þ; ð6:5Þ

where XðμÞ may represent one of the four operators A, B,
C, D evaluated at spectral parameter μ. Afterward, we take
the μj → 0 limit, and by continuity we obtain the statement
for Eq. (6.4).
Our proof is based on the singularity properties of

the matrix elements of operators. We follow closely the
proof of Korepin for the norms of Bethe states [48]; in fact,
our proof can be considered a slight generalization of
the methods of Korepin. For an earlier similar proof,
see Ref. [63].
We introduce the following notation for a matrix element

of the arbitrary operator O between two states (not
necessarily eigenstates) described by the rapidity sets
fλBgN and fλCgN ,

MO
NðfλCgN; fλBgN; flCgN; flBgNÞ

¼ h0j
YN
j¼1

CðλCj ÞO
YN
j¼1

BðλBj Þj0i: ð6:6Þ

These matrix elements depend on the rapidities and the
variables lðλÞ ¼ aðλÞ=dðλÞ, where aðλÞ and dðλÞ are the
vacuum expectation values of the operators AðλÞ and DðλÞ,
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respectively [23]. For what follows, it is important that we
can consider arbitrary functions for aðλÞ and dðλÞ, and
therefore, MO

N is the function of 4N independent variables.
It follows from the commutativity of the B and C operators
thatMO

N is invariant with respect to simultaneous exchanges
λBj ↔ λBk , l

B
j ↔ lBk , and similar for the rapidities on the left-

hand side.
The matrix elements have apparent singularities as two

rapidities from the two sides approach each other. These
apparent poles result from the commutation relations
between the B and C operators. We show that the structure
of these poles completely determines the mean values. For
simplicity, we focus on the singularities as λCN − λBN → 0;
the other cases follow simply from the permutation
symmetry.
Theorem 3. The matrix elements satisfy the following

singularity property:

MO
NðfλCgN; fλBgN; flCgN; flBgNÞ ⟶

λCN→λBN

→
i sinhðηÞ
λCN − λBN

ðlCN − lBNÞ
�YN−1

k¼1

fCkNf
B
kN

�

×MO
N−1ðfλCgN−1; fλBgN−1; flCmodgN−1; flBmodgN−1Þ;

ð6:7Þ

where in the third line the matrix element is calculated with
the modified vacuum expectation values

aj;mod ¼ ajfðλN; λjÞ; dj;mod ¼ djfðλj; λNÞ; ð6:8Þ

leading to

lj;mod ¼ lj
fðλN; λjÞ
fðλj; λNÞ

: ð6:9Þ

The proof is rather technical, and it is presented in
Appendix D.
In the physical case (when the lB;CN variables are not

independent), the prefactor in the previous equation
behaves as

i sinhðηÞ
λCN − λBN

ðlCN − lBNÞ ⟶
λCN→λBN

sinhðηÞlðλÞzðλÞ; ð6:10Þ

where zðλÞ ¼ i∂λ log lðλÞ. This observation is used to study
the diagonal limit.
The diagonal evaluation of the matrix element is

defined as

MO
N;dðfλgN; flgN; fzgNÞ
¼ lim

λCk→λBk

MO
NðfλCgN; fλBgN; flCgN; flBgNÞ; ð6:11Þ

where the limit is performed for every k ¼ 1;…; N. This
quantity depends on 3N independent variables fλgN , flgN ,
and fzgN . From Eq. (6.7), it follows that the dependence on
zN is linear, and the proportionality factor is

∂
∂zN MO

N;dðfλgN; flgN; fzgNÞ

¼ sinhðηÞlðλNÞ
�YN−1

k¼1

fCkNf
B
kN

�

×MO
N−1;dðfλgN−1; flmodgN−1; fzmodgN−1Þ; ð6:12Þ

where

zmodðλÞ ¼ zðλÞ þ φðλ − λNÞ: ð6:13Þ

To calculate the expectation values in the eigenstates of the
system, we have to take the rapidities to the solutions of
the Bethe equations. In practice, this means that for the l
parameters we substitute the ratios of S functions from the
Bethe equations (2.11):

hOiNðfλgN; fzgNÞ ¼ MO
N;dðfλgN; flgN; fzgNÞjflgNsubstituted:

ð6:14Þ

The dependence on zN is still linear:

∂hOiNðfλgN;fzgNÞ
∂zN

¼
�YN−1

k¼1

fkNfNk

�
×sinhðηÞhOiN−1ðfλgN−1;fzmodgN−1Þ:

ð6:15Þ

To continue the calculation, we need to introduce the form
factors FO

N and FO
N;s (these differ from the previously used

form factors only in an overall normalization)

FO
NðfλCgN;fλBgNÞ¼MO

NðfλCgN;fλBgN;flCgN;flBgNÞjBE;
ð6:16Þ

where it is understood that both sets of rapidities solve the
Bethe equations; i.e., we express the flCgN; flBgN using
the rapidities. From Eq. (6.7), it is obvious that this form
factor satisfies the following recursion relation:

FO
NðfλCgN; fλBgNÞ ⟶

λCN→λBN

→
i sinhðηÞ
λCN − λBN

�YN−1

k¼1

fCNkf
B
kN −

YN−1

k¼1

fCkNf
B
Nk

�

× FO
N−1ðfλCgN−1; fλBgN−1Þ: ð6:17Þ
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By taking the symmetric diagonal limit of this quantity, one
obtains the symmetric form factor

FO
N;sðfλgNÞ ¼ lim

ϵ→0
FO
Nðfλþ ϵgN; fλgNÞ: ð6:18Þ

Theorem 4. The symmetric form factor of the operator
O is equal to its expectation value in the case where every zj
is zero:

FO
N;sðfλgNÞ ¼ hOiNðfλgN; f0gNÞ: ð6:19Þ

Proof.—From Eq. (6.7), it is obvious that the z depend-
ence of the expectation value arises from the rapidity
dependence of the lðλÞ function. This means that the
z-independent irreducible part can be obtained by choosing
lðλCj Þ ¼ lðλBj Þ, where flBgN solves the Bethe equations:

hOiNðfλgN; f0gNÞ
¼ lim

ϵ→0
MO

NðfλB þ ϵgN; fλBgN; flBgN; flBgNÞ: ð6:20Þ

On the other hand, the symmetric form factor is by
definition

FO
N;sðfλgNÞ ¼ lim

ϵ→0
MO

NðfλB þ ϵgN; fλBgN; fl̃BgN; flBgNÞ;
ð6:21Þ

where both flBgN and fl̃BgN solve the Bethe equations.
But this means that the elements of flBgN and fl̃BgN are the
products of the appropriate S matrices, so

flBgN ¼ fl̃BgN: ð6:22Þ

This completes the proof. ▪
We define the S function for an arbitrary bipartition of

the set fλgN ¼ fλþgn ∪ fλ−gN−n in the following way:

SNðfλþgn; fλ−gN−n; fz−gN−nÞ

¼ ½sinhðηÞ�N−n ×

� Y
λj∈fλþg

Y
λk∈fλ−g

fþ−
jk f−þkj

�

×

� Y
1≤j<k≤n

f−−jk f
−−
kj

�
ρðfλ−gN−n; fz−gN−nÞ; ð6:23Þ

where fþ−
jk ¼ fðλþj ; λ−k Þ. This function depends on zN

only through the Gaudin determinant, and its dependence
can be calculated easily by expanding the determinant
with respect to its Nth row or column. Doing so, one
obtains that

1

sinhðηÞ
∂

∂zN SNðfλþgn; fλ−gN−n; fzgNÞ ¼
� ðQN−1

k¼1 fkNfNkÞSN−1ðfλþgn; fλ−gN−n−1; fz−modgN−n−1Þ λN ∈ fλ−g;
0 λN ∈ fλþg: ð6:24Þ

It is important to notice that if we take all the z’s in the
argument of S to zero, we get zero:

SNðfλþgn; fλ−gN−n; f0gN−nÞ ¼ 0: ð6:25Þ

This result follows from the fact that in this case the Gaudin
determinant is zero, which follows from Theorem 2.
With the help of the relations listed above, we are now in

the position to prove the following theorem:
Theorem 5 The unnormalized mean value of an arbi-

trary operator O in any eigenstate of the system can be
calculated in the following way:

hOiNðfλgNÞ ¼
X

fλþg∪fλ−g
FO
s ðfλþgÞSNðfλþg; fλ−g; fz−gÞ;

ð6:26Þ

where the summation goes over every bipartition of the set
of rapidities fλgN , and for simplicity we do not denote the
cardinality of the sets fλ�g separately.

Proof.—We use induction in the particle number N. Let
us consider both sides as the multilinear function of the zj
variables. Our goal is to show that both sides depend the
same way on every zj and that their z-independent parts are
also equal. We look at the first N for which the matrix
element defined by Eq. (6.6) is not zero, and we denote this
number by Nmin. In the case when N < Nmin, both sides of
Eq. (6.26) are zero; therefore, the equation is satisfied. If
N ¼ Nmin, there is only one nonzero term in the summation
on the rhs, namely, when fλþg ¼ fλgN . This means that on
the rhs, there is only FO

N;sðfλgNÞ, since Sðfλþg;∅;∅Þ ¼ 1;
therefore, it is z independent. The lhs is also independent
of z, which follows from Eq. (6.15), but the z-independent
parts are equal according to the previously proved theorem.
Now let us suppose that Eq. (6.26) is satisfied for every
N < M and examine theN ¼ M case. On the rhs, only those
terms depend on zj where zj ∈ fλ−g. By taking the partial
derivative of it with respect to zj, the initial summation is
getting modified to a new one, going over all the bipartitions
of the set fλgN−1 ¼ fλgNnfλjg [this statement follows from
Eq. (6.24)]. According to the induction assumption, this sum
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gives exactly hOiN−1ðfλgN−1; fzmodgN−1Þ multiplied by
sinhðηÞQk≠j fkjfjk. But using Eq. (6.15), this demonstrates
that the z dependence of the two sides is equal. To investigate
the part independent of the z variables, we have to take all of
them to zero. In this case, on the rhs only FO

N;sðfλgNÞ
remains. Since hOiNðfλgN; f0gNÞ ¼ FO

N;sðfλgNÞ, the two
sides are equal. This completes the proof. ▪
The previously introduced Eq. [61] is equivalent to

Eq. (6.26): One obtains the former equation after dividing
by the norm of the Bethe state given by Eq. (5.29).

VII. CONNECTION TO THE THEORY OF
FACTORIZED CORRELATION FUNCTIONS

In the case of the XXZ and XXX spin chains, our results
for the current mean values are directly related to certain
objects in the theory of factorized correlation functions. In
the following, we describe this connection.
Factorization of correlation functions concerns the equi-

librium mean values of local operators (for a review, see
Ref. [34]). Factorization means that any multipoint corre-
lator can be expressed as sums of products of simple
building blocks, which are derived from the two-site
density matrix in an inhomogeneous spin chain. On a
practical level, the theory consists of two parts: the
algebraic part and the physical part. The algebraic part
deals with the factorization on the level of the operators,
and it is independent of the actual physical situation. On the
other hand, the information about the concrete situation is
supplied by the physical part of the computation.
The theory was worked out first for the cases of thermal

equilibrium in infinite volume and for the ground states in
finite volume [79–82]. In Ref. [83], a conjecture was
formulated for the physical part in any excited equilibrium
state in infinite volume; these formulas have been used to
compute the steady-state properties after global quenches.
Finally, it was argued in Ref. [84] that the known results
for the finite-volume ground states [82] can be extended
naturally to all finite-volume excited states, and this leads to
the proof of the formulas of Ref. [83] in the thermody-
namic limit.
In the following, we summarize the main statements in

the case of the XXX chain.
The Bethe vectors are highest weight vectors with

respect to the SUð2Þ symmetry. Let us consider a Bethe
state with hSzi ¼ 0, thus, N ¼ L=2. All such states are
SUð2Þ singlets.
The theory of factorized correlations states [82,84] that

in the SUð2Þ singlet states, any multipoint correlation
function can be expressed using only a single generating
function Ψðx1; x2Þ that depends on the excited state in
question. Defining the coefficients

Ψn;m ¼ ∂n
x1∂m

x2Ψðx1; x2Þjx1;x2¼0; ð7:1Þ

it can be shown that all correlators can be expressed as
finite combinations of the quantities Ψn;m. The algebraic
part of the computation expresses the correlators in terms of
Ψn;m, whereas the physical part supplies their actual values,
depending on the Bethe state in question.
For example, the simplest z − z correlators can be

expressed as

hσz1σz2i ¼
1

3
ð1 − Ψ0;0Þ; ð7:2Þ

hσz1σz3i ¼
1

3

�
1 − 4Ψ0;0 þ Ψ1;1 −

1

2
Ψ2;0

�
; ð7:3Þ

hσz1σz4i ¼
1

108
½36þ 288Ψ1;1 − 15Ψ2;2 þ 10Ψ3;1

þΨ2;0ð−156þ 12Ψ1;1 − 6Ψ2;0Þ
þ 2Ψ0;0ð−162 − 42Ψ1;1 þ 3Ψ2;2 − 2Ψ3;1Þ
þΨ1;0ð84Ψ1;0 − 12Ψ2;1 þ 4Ψ3;0Þ�: ð7:4Þ

It was shown in Ref. [84] that for the Bethe state jfλgNi,
the generating function reads

Ψðx1; x2Þ ¼ 2qðx1Þ ·G−1 · qðx2Þ; ð7:5Þ
where qðx1Þ is a parameter-dependent vector of length N
with elements qjðxÞ¼qðλj−xÞ with qðλÞ ¼ 1=ðλ2 þ 1=4Þ.
Furthermore, G is the Gaudin matrix, which now takes
the form

Gjk ¼ δjk

�
L

1

u2j þ 1=4
þ
XN
l¼1

φðujlÞ
�
− φðujkÞ; ð7:6Þ

with

φðuÞ ¼ −
2

u2 þ 1
: ð7:7Þ

The factor of 2 is included in Eq. (7.5) to conform with
earlier conventions; see Ref. [84].
It follows that the Ψn;m coefficients can be expressed as

Ψn;m ¼ 2qnþ2 · G−1 · qmþ2: ð7:8Þ

The shifts in the indices are due to our conventions, namely,
that the first member of the series of the charges is
called Q2.
Comparing to Eq. (2.26), we see that the current mean

values are

hfλgN jJβαðxÞjfλgNi ¼
1

2
Ψβ−1;α−2: ð7:9Þ

This equality gives a new interpretation for the generalized
currents: They are special operators that are represented by
a single Ψn;m.
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In the case of nonsinglet states, the situation is more
involved, and the correlators also involve the so-called
moments (see Refs. [84,85]). Nevertheless, the mean values
of SUð2Þ-invariant operators are still described by theΨn;m,
and this is in accordance with the fact that in the XXX
model, the charges Qα and their currents are also SUð2Þ
invariant.
In the case of the XXZ model, spin-flip-invariant local

correlations are described by two generating functions
[traditionally denoted as ωðx; yÞ and ω0ðx; yÞ; see
Refs. [79–82]. [It was shown in Ref. [84] that for the
finite-volume excited states, the function ωðx; yÞ has a form
analogous to Eq. (7.5); thus, the Taylor coefficients of this
function describe the generalized current operators in the
XXZ model.
At present, we do not have an explanation for the

observed coincidences between the factorization and the
current mean values. Understanding this connection might
lead to an independent proof of our results, at least in the
XXZ and XXX models.

VIII. CONCLUSIONS AND DISCUSSION

We compute an exact finite-volume formula for the
current mean values in Bethe ansatz solvable systems. The
main results are Eqs. (2.18) and (2.26). We do not treat
the direct thermodynamic limit of these results, but their
functional form implies that they reproduce the previously
conjectured infinite-volume formulas [see Eq. (2.21) and
the discussion there]. We thus supply a rigorous foundation
for the treatment of ballistic transport in generalized
hydrodynamics.
The task of actually deriving the thermodynamic limit

of our formula will be a subject of a separate work. The
present result needs to be worked out for the string
solutions of the Bethe equations, and it needs to be shown
that the semiclassical interpretation carries over to the
strings. They describe bound states of spin waves, so they
should be treated as separate particles. Afterward, the
thermodynamic limit can be taken with standard steps;
we will return to this issue in a separate publication.
Perhaps the most interesting finding of this work is that

the semiclassical result for the currents remains exact in the
interacting quantum theory, even with a finite number of
particles. Ultimately, this phenomenon boils down to the
two-particle reducibility of the Bethe ansatz wave function
[see Eq. (2.8)], which also enables the applicability of the
flea gas model to simulate the dynamics [46].
Our rigorous proof is rather general, and it relies on a

model-independent form-factor expansion (Theorem 1).
However, the expansion itself has to be proven separately,
and the techniques to be applied might vary. Here we
provide a proof for the case of the Heisenberg spin chains.
Whereas we do not treat the Lieb-Liniger model (1D Bose
gas) here, the expansion theorem can be worked out with
essentially the same techniques (see, e.g., Ref. [63]), at least

for those local charges and currents which have well-
defined real-space representations [86]. For integrable QFT,
the expansion was proven earlier in Ref. [65].
It would be highly desirable to develop an alternative,

more transparent proof for the current mean values. For
special cases, this can indeed be achieved; for example, the
spin current of the XXZ model can be computed using
form-factor perturbation theory [87] using similar ideas to
those of Ref. [22]. Nevertheless, a simple and general proof
is not available. In the special case of the XXZ and XXX
models, the connection to the factorized correlation func-
tions might lead to a more transparent derivation.
In this work, we restrict ourselves to local charges on the

lattice. However, it is known that there exist quasilocal
charges that are essential for the GGE and thus for GHD
[35,36]. For quasilocal charges, our results hold asymp-
totically, and the finite-volume formulas (2.18)–(2.26)
receive exponentially small corrections. These corrections
are due to the long-range contributions to the operators with
exponentially decreasing amplitudes.
It would be interesting to extend our results to multi-

component models solvable by the nested Bethe ansatz. In
these systems, much less is known about local correlations,
and the current operators are good candidates to obtain
exact analytic results. In turn, these results will give a
rigorous foundation for the hydrodynamic treatment of
these models [88]. Also, it would be interesting to consider
models without the Uð1Þ symmetry responsible for particle
conservation. The integrable XYZ spin chain is such a
model, where the canonical family of conserved charges
[74] does not include the Sz operator. Nevertheless, there
might exist simple exact results for the current operators,
and thus also for GHD. We plan to return to these questions
in future research.
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APPENDIX A: THE ENERGY
CURRENT OPERATOR

Here we investigate a special case of the main formu-
las (2.18)–(2.26): We consider the energy current JH,
which is itself a conserved operator in integrable lattice
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models, In fact, it is proportional to the canonical charge
Q3. For completeness, we rederive this correspondence and
show that Eq. (2.18) reproduces the mean values of Q3.
The continuity equation for the energy flow is

½H; hðxÞ� ¼ i½JHðxþ 1Þ − JHðxÞ�; ðA1Þ

where hðxÞ is the Hamiltonian density. It follows that

JHðxþ 1Þ ¼ −i½hðxþ 1Þ; hðxÞ�: ðA2Þ

Using the definition of the boost operator (5.14) and
the proportionality relation (5.9), we compute the canonical
Q3 as

Q3 ¼ i½B;Q2� ¼ iκ2
�X

x

xhðxÞ;
X
y

hðyÞ
�

¼ iκ2
X
x

½hðxþ 1Þ; hðxÞ�: ðA3Þ

Therefore, we can identify

Q3ðxÞ ¼ −κ2JHðxÞ: ðA4Þ

The proportionality factor −κ2 originates simply in our
conventions.
The one-particle eigenvalues ofQ3 are obtained from the

transfer-matrix construction: Eqs. (5.35) and (5.34) give

q3ðλÞ ¼ q02ðλÞ ¼ κe0ðλÞ: ðA5Þ

For JH, Eq. (2.18) takes the form

hfλgN jJHðxÞjfλgNi ¼ e0 ·G−1 · e: ðA6Þ

We show that after rescaling, this formula gives the
expected mean value of Q3.
Let us take an N-dimensional vector u whose elements

are equal to 1. It follows from the definition of the Gaudin
matrix (2.16) that

Gu ¼ Lp0: ðA7Þ

Multiplying by the inverse and using eðλÞ ¼ q2ðλÞ=κ ¼
−p0ðλÞ=κ, we get

e0 · G−1 · e ¼ −
1

κL
e0 · u ¼ −

1

κ2L

XN
j¼1

q3ðλjÞ: ðA8Þ

With this results, we indeed obtain

hfλgN jQ3ðxÞjfλgNi ¼ −κ2hfλgN jJHðxÞjfλgNi; ðA9Þ

as expected from Eq. (A4).

Equation (A9) is a special case of a more general
symmetry relation. It follows from Eq. (5.35) and the
symmetry of the Gaudin matrix that the following mean
values are equal:

hfλgN jJβαðxÞjfλgNi ¼ hfλgN jJα−1βþ1ðxÞjfλgNi: ðA10Þ

This interesting relation was already observed in GHD in
Ref. [12], but a more direct explanation is not yet known.
We stress that the relation above does not mean that the

operators JβαðxÞ and Jα−1βþ1ðxÞ are equal; they might differ in
total derivatives. The concrete form of the current operators
depends on the choice of the charge density representing
the global charge operator, and the gauge freedom (5.12)
leaves room for redefinitions. It would be interesting to see
whether there is a gauge choice which would guarantee that
the above relation holds on the level of the operators.

APPENDIX B: EXPLICIT FORMULAS FOR
CHARGES AND CURRENTS IN THE XXX CHAIN

In the XXX Heisenberg chain, the canonical Q2

operator (5.7) is

Q2 ¼
1

2

XL
x¼1

ðσx · σxþ1 − 1Þ: ðB1Þ

Here we use the shorthand notation that σx is a vector
of operators ðσx; σy; σzÞ acting on site x. Note that Q2 is
one-half of the Hamiltonian.
Further charges can be computed easily using the boost

operator (5.14). After explicit computations, we find

Q3 ¼
XL
x¼1

�
−
1

2

�
ðσx × σxþ1Þ · σxþ2; ðB2Þ

Q4 ¼
XL
x¼1

ð½ðσx × σxþ1Þ × σxþ2� · σxþ3 − 2σx · σxþ1

þ σx · σxþ2 þ 1Þ; ðB3Þ

where the cross denotes the vectorial cross product. Further
examples and a closed-form result for all Qα can be found
in Ref. [75].
Let us define the generalized current operators Jβα

according to the definition (2.25), with the charge densities
as given above. Then, the real-space representations for the
first few currents are

J22ðxÞ ¼
1

2
ðσx−1 × σxÞ · σxþ1; ðB4Þ

J23ðxÞ ¼ −½ðσx−1 × σxÞ × σxþ1� · σxþ2 − σx · σxþ1 þ 1;

ðB5Þ
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J32ðxÞ ¼ −
1

2
ð½ðσx−2 × σx−1Þ × σx� · σxþ1

þ ½ðσx−1 × σxÞ × σxþ1� · σxþ2Þ
þ σx · σxþ1 þ σx−1 · σx − σx−1 · σxþ1 − 1: ðB6Þ

We can observe the equality J22ðxÞ ¼ −Q3ðxÞ, in accor-
dance with the previous section. Similarly, we find the
interesting relation

Q4 ¼ −
XL
x¼1

J32ðxÞ; ðB7Þ

which is an analogous identity that follows from Eq. (A10);
the minus sign is simply a matter of convention.

APPENDIX C: THE SUMMATION OF THE
FORM-FACTOR EXPANSION

In order to sum up the expansion for the current mean
values, we write the rhs of Eq. (4.21) in a slightly different
way, X

fλþg∪fλ−g
J αðfλþgÞρðλ−Þ ¼ e0 · A · qα; ðC1Þ

where J αðfλgÞ are the symmetric diagonal form factors of
the currents, and we define

Ajk ¼
X

fλþg∪fλ−g
λj;k∈fλþg

�X
T

Y
lpq∈T

φpq

�
ρðλ−Þ: ðC2Þ

Here the summation runs over T , the nondirected spanning
trees of fλþg. Using this notation, our task is to show
that

P
N
l¼1GjlAlk ¼ δjk · detG.

This matrix product can be written out explicitly using
the matrix-tree theorem for the Gaudin determinant

XN
l¼1

��
δjl

�
p0
jLþ

XN
s¼1

φjs

�
−φjl

�

×
X

fλþg∪fλ−g
λk;l∈fλþg

�X
T

Y
lpq∈T

φpq

��X
F

Y
n∈RðF Þ

p0
nL

Y
luv∈F

φuv

��
;

ðC3Þ

where F denotes the directed spanning forests of fλ−g.
First, we show that the diagonal elements of this matrix
product give detG. To do this, we consider the j ¼ k case
in Eq. (C3), and we split the outer summation over l into
two parts: to the l ¼ j and l ≠ j cases.
In the case of l ¼ j, the sum of the φ terms from the

Gaudin matrix appears, multiplying the appropriate terms
in A. These terms can be written in the following way:

�XN
s¼1
s≠j

φjs

� X
fλþg∪fλ−g
λj∈fλþg

�X
T

Y
lpq∈T

φpq

��X
F

Y
n∈RðF Þ

p0
nL

Y
luv∈F

φuv

�
¼

X
s¼1
s≠j

2
64φjs

X
fλþg∪fλ−g
λj;s∈fλþg

ð…Þð…Þ þ φjs

X
fλþg∪fλ−g
λj∈fλþg
λs∈fλ−g

ð…Þð…Þ
3
75: ðC4Þ

Here in the second line, we denote the terms inside the summation with ð…Þ for brevity. Using this equation and renaming
the summation variable l to s in Eq. (C3), we finally arrive at the following expression for the diagonal elements of the
matrix product (C3):

p0
jL

X
fλþg∪fλ−g
λj∈fλþg

�X
T

Y
lpq∈T

φpq

��X
F

Y
n∈RðF Þ

p0
nL

Y
luv∈F

φuv

�
þ
XN
s¼1
s≠j

2
64φjs

X
fλþg∪fλ−g
λj∈fλþg
λs∈fλ−g

�X
T

Y
lpq∈T

φpq

��X
F

Y
n∈RðF Þ

p0
nL

Y
luv∈F

φuv

�3
75:

ðC5Þ

Looking at this expression from the graph theoretical point
of view and using the matrix-tree theorem, it can be shown
that this sum is indeed detG: In the first term for every
bipartition, the summation over T (together with the p0

jL
factor) gives the contribution of every such directed
spanning tree of fλþg in which λj is the root. Together
with the summation over F , which is just the contribution

from every directed spanning forest of fλ−g, the first term
contains all such directed spanning forests of fλg in which
λj is one of the roots. On the other hand, in the second term
the summation over T gives the contributions from the free
(rootless) spanning trees of fλþg. These terms are “con-
nected” to one of the spanning trees in the spanning forests
of fλ−g by the factor φjs. Since fλþg and fλ−g are disjoint
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sets, this connection cannot create circles, so the result is
still a spanning tree. Furthermore, since we sum over s, this
connection is realized in every possible way, which means
that the second term gives the contribution of every
spanning forest of fλg in which λj is not among the roots.
Altogether, the two terms contain the contribution from all
of the directed spanning forests of fλg, which is just detG
according to the matrix-tree theorem.
For the off-diagonal elements of the matrix product (C3),

the same steps can be performed. To show that in this case
the result is zero, it is convenient to investigate those terms
that contain p0

j, and afterward, those that do not. The ones
that contain p0

j are

p0
jL

X
fλþg∪fλ−g
λj;k∈fλþg

�X
T

Y
lpq∈T

φpq

��X
F

Y
n∈RðF Þ

p0
nL

Y
luv∈F

φuv

�

−
XN
s¼1
s≠j

�
φjs

X
fλþg∪fλ−g
λk;s∈fλþg
λj∈fλ−g

�X
T

Y
lpq∈T

φpq

�

×

�X
F

Y
n∈RðF Þ
j∈RðF Þ

p0
nL

Y
luv∈F

φuv

��
: ðC6Þ

In the second line, j ∈ RðF Þ denotes that here we
consider only those spanning trees of fλ−g in which λj
is one of the roots. Because of this, we can pull out a p0

jL
factor from it. Similar to the previous argument, it can be
shown that this whole expression is zero: In the second line,
for every partition the spanning tree in F that originates
from λj is connected to a spanning tree in T by φjs, and
the result of this connection is still a spanning tree. Since
there is a summation over s, all possible connections are
included. This means that the second line contains all such
spanning trees that include λj and λk in addition to all the
spanning forests of fλ−g. But the first line is exactly the
same, so their difference is zero. The terms that do not
contain p0

j are

XN
s¼1
s≠j

2
64φjs

X
fλþg∪fλ−g
λj;k∈fλþg
λs∈fλ−g

�X
T

Y
lpq∈T

φpq

��X
F

Y
n∈RðF Þ

p0
nL

Y
luv∈F

φuv

�

− φjs

X
fλþg∪fλ−g
λk;s∈fλþg
λj∈fλ−g

�X
T

Y
lpq∈T

φpq

�

×

�X
F

Y
n∈RðF Þ
j=∈RðF Þ

ðF Þp0
nL

Y
luv∈F

φuv

�375: ðC7Þ

Here in the first line, λj ∈ fλþg and λs ∈ fλ−g, and they
are connected by φjs, while in the second line they are
reversed. Since we sum up for every s and every bipartition
(and since λj cannot be a root in the second line), the
difference is zero. This completes the summation of the
expansion.

APPENDIX D: PROOF OF THE
SINGULARITY PROPERTIES

Here we present the proof of the singularity property
(6.7), focusing on the case of the XXZ chain. Following the
reasoning in Sec. VI, it is sufficient to show that Eq. (6.7)
holds for an operator which is the product of the elements
of the monodromy matrix:

O ¼ Xðμ1Þ;…; XðμMÞ; ðD1Þ

where XðμÞ represents one of the four operators: A, B, C,
D. In order to prove Eq. (6.7), we are using the commu-
tation relations of the operators A, B, C, D, and the
following singularity property of the scalar products (see
Sec. IX. 3. of Ref. [23])

h0j
YN
j¼1

CðλCj Þ
YN
j¼1

BðλBj Þj0i

⟶
λCN→λBN i sinhðηÞ

λCN − λBN
ðlCN − lBNÞ

YN−1

k¼1

fCNkf
B
Nkh0j

×
YN−1

j¼1

CðλCj Þ
YN−1

j¼1

BðλBj Þj0imod: ðD2Þ

Here the elements of the sets fλCg and fλBg do not
necessarily satisfy the Bethe equations, and the himod

notation means that the scalar product is calculated with
the modified vacuum expectation values amod and dmod

defined in Eq. (6.8).
We stress an important technical detail already at this

point: Whereas for the Bethe states we use the renormalized
creation operators BðλÞ and CðλÞ because these are con-
venient to study the norms and mean values, for the local
operator O we use the original operators AðλÞ, BðλÞ, CðλÞ,
DðλÞ because these are needed for the solution of the
inverse problem.
For the sake of completeness, we also present here the

commutation relations resulting from the fundamental
equation (5.22):
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AðμÞBðλÞ ¼ fðλ; μÞBðλÞAðμÞ þ gðμ; λÞBðμÞAðλÞ;
BðμÞAðλÞ ¼ fðλ; μÞAðλÞBðμÞ þ gðμ; λÞAðμÞBðλÞ;
DðλÞBðμÞ ¼ fðλ; μÞBðμÞDðλÞ þ gðμ; λÞBðλÞDðμÞ;
BðλÞDðμÞ ¼ fðλ; μÞDðμÞBðλÞ þ gðμ; λÞDðλÞBðμÞ;
AðλÞCðμÞ ¼ fðλ; μÞCðμÞAðλÞ þ gðμ; λÞCðλÞAðμÞ;
CðλÞAðμÞ ¼ fðλ; μÞAðμÞCðλÞ þ gðμ; λÞCðμÞAðλÞ;
DðμÞCðλÞ ¼ fðλ; μÞCðλÞDðμÞ þ gðμ; λÞCðμÞDðλÞ;
CðμÞDðλÞ ¼ fðλ; μÞDðλÞCðμÞ þ gðμ; λÞDðμÞCðλÞ;

½AðλÞ; DðμÞ� ¼ gðλ; μÞfCðμÞBðλÞ − CðλÞBðμÞg;
½DðλÞ; AðμÞ� ¼ gðλ; μÞfBðμÞCðλÞ − BðλÞCðμÞg;
½BðλÞ; CðμÞ� ¼ gðλ; μÞfDðμÞAðλÞ −DðλÞAðμÞg;
½CðλÞ; BðμÞ� ¼ gðλ; μÞfAðμÞDðλÞ − AðλÞDðμÞg;
½AðλÞ; AðμÞ� ¼ ½BðλÞ; BðμÞ� ¼ ½CðλÞ; CðμÞ�

¼ ½DðλÞ; DðμÞ� ¼ 0; ðD3Þ

where

fðu; vÞ ¼ sinðu − vþ iηÞ
sinðu − vÞ ; gðu; vÞ ¼ i sinhðηÞ

sinðu − vÞ : ðD4Þ

Instead of considering an arbitrary product in Eq. (D1), it
is useful to require a specific ordering of the X ¼ A, B, C,
D operators. It follows from the commutation relations
above that any operator of the form Xðμ1Þ;…; XðμMÞ can
be written as a linear combination of operators in which the
order of the A, B, C, and D operators is fixed in the
following way:

Xðμ1Þ;…; XðμMÞ ¼
X

GðfμgÞCC;…; CDD;…;

DAA;…; ABB;…; B; ðD5Þ

where the GðfμgÞ are the coefficients of the individual
terms, which include combinations of the fðuÞ and gðuÞ
functions. Because of the linearity of the scalar product, all
we need to show is that Eq. (6.7) holds for a single term in
this summation.
We first consider products of the form O ¼ Dðμ1Þ

Dðμ2Þ;…; DðμmÞAðμmþ1Þ;…; AðμMÞ. The possible pres-
ence of additional C and B operators is treated later.
First, let us consider only one A operator:

h0j
YN
k¼1

CðλCk ÞAðμÞ
YN
k¼1

BðλBk Þj0i ¼ aðμÞ
YN
k¼1

fðλBk ; μÞh0j
YN
k¼1

CðλCk Þ
YN
k¼1

BðλBk Þj0i

þ
XN
n¼1

aðλBn Þgðμ; λBn Þ
YN
k¼1
k≠n

fðλBk ; λBn Þ
dðμÞ
dðλBn Þ

h0j
YN
k¼1

CðλCk ÞBðμÞ
YN
k¼1
k≠n

BðλBk Þj0i: ðD6Þ

Here we use only the commutation relation between the operators A and B. Taking the λCN → λBN limit and using Eq. (D2),
we arrive at the expected expression:

h0j
YN
k¼1

CðλCk ÞAðμÞ
YN
k¼1

BðλBk Þj0i ⟶
λCN→λBN i sinhðηÞ

λCN − λBN
ðlCN − lBNÞ

YN−1

k¼1

fCNkf
B
Nkh0j

YN−1

j¼1

CðλCj ÞAðμÞ
YN−1

j¼1

BðλBj Þj0imod: ðD7Þ

The computation goes similarly for the D operator. Now let us consider the case when O ¼ Q
M
k¼1 AðμkÞ. To calculate the

matrix element of this operator, first we have to compute the effect of it on an arbitrary state:

YM
l¼1

AðμlÞ
YN
k¼1

BðλkÞj0i: ðD8Þ

It is obvious that the result is the linear combination of states with particle number N. The rapidities of the particles are
coming from the set fμgM ∪ fλgN . The result can be arranged into a sum, depending on the number of rapidities coming
from fμgM. In every term in this summation, we have to take into consideration every possible way that a certain amount of
rapidities can be substituted from fμgM. We can thus write the result in the following way,

YM
l¼1

AðμlÞ
YN
k¼1

BðλkÞj0i ¼
XmaxðN;MÞ

K¼0

X
K

Gn1;n2;…;nK
l1;l2;…;lK

ðfλgN jfμgMÞ
YK
q¼1

BðμlqÞ
YN
k¼1

k≠n1 ;…;nK

BðλkÞj0i; ðD9Þ
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where
P

K goes over every such subset of fλgN ∪ fμgM
that has the following two properties: The number of its
elements is N, and it has exactly K elements coming from
fμgM. If μl1 ; μl2 ;…; μlK denotes these elements and
λn1 ; λn2 ;…; λnK fλgN those that are not present in the
subset,

P
K can be written out explicitly:

X
K

¼
XM
l1¼1

XM
l2¼1
l2≠l1

…
XM
lK¼1

lK≠l1 ;…;lK−1

XN
n1¼1

XN
n2¼1
n2≠n1

…
XN
nK¼1

nK≠n1 ;…;nK−1

: ðD10Þ

The G coefficients can be calculated using only the
commutation relations. For example, in the case K ¼ 0
none of the rapidities are coming from fμgM and we have

G0
0ðfλgN jfμgMÞ ¼

YM
l¼1

�
aðμlÞ

YN
k¼1

fðλk; μlÞ
�
: ðD11Þ

Let us calculate now a general coefficient, where K
rapidities are coming from fμgM. To do this, we have to
keep in mind that every time we exchange the arguments of
the operators AðμÞ and BðλÞ during commutation, there will

appear a factor gðμ; λÞdðμÞ=dðλÞ, while if we do not
exchange them, the corresponding factor will be fðλ; μÞ.
Let μl1 be the first substituted rapidity and λn1 the one

which is replaced. In this case, there will be a
gðμl1 ; λn1Þdðμl1Þ=dðλn1Þ factor coming from the commuta-
tion relation of Aðμl1Þ and Bðλn1Þ describing the replace-
ment. The commutation of Aðλn1Þ and the other B operators
will give the factor

Q
k¼1
k≠n1

fðλk; λn1Þ. Finally, the effect of

Aðλn1Þ on the pseudovacuum will result in the factor aðλn1Þ.
In the case of the next substituted rapidity (μl2 replacing
λn2), the same factors will appear, expect that now it has to
be taken into consideration that one of the commutations
will be with Bðμl1Þ and not with Bðλn1Þ.
The rest of the substitutions go the same way. The

remaining A operators with the nonsubstituted rapidities
commute through the B operators without exchanging the
arguments. To take into consideration all possible cases, we
have to sum over every n and l. But since both the A and B
operators commute with each other, the answer does not
depend on which λ is replaced by which μ. Therefore, to
obtain the right result we have to divide by K!. These steps
lead to the following result for a generic coefficient:

Gn1;n2;…;nK
l1;l2;…;lK

ðfλgN jfμgMÞ ¼
1

K!
aðλn1Þgðμl1 ; λn1Þ

dðμl1Þ
dðλn1Þ

�YN
k¼1
k≠n1

fðλk; λn1Þ
�
aðλn2Þgðμl2 ; λn2Þ

dðμl2Þ
dðλn2Þ

×

� YN
k¼1

k≠n1 ;n2

fðλk; λn2Þ
�
fðμl1 ; λn2Þ;…; aðλnK ÞgðμlK ; λnK Þ

dðμlK Þ
dðλnK Þ

� YN
k¼1

k≠n1 ;…;nK−1

fðλk; λnK Þ
�

×

�YK−1
p

fðμlp ; λnK Þ
� YM

r¼1
r≠l1 ;…;lK

�
aðμrÞ

YN
k¼1

k≠n1 ;…;nK

fðλk; μrÞ
Y

q∈fl1;…;lKg
fðμq; μrÞ

�
: ðD12Þ

Multiplying Eq. (D9) from the left with h0jQN
k¼1 CðλCk Þ and

taking the λCN → λBN limit, on the rhs only those terms will
give a contribution to the pole, in which λBN is still among
the arguments of the B operators. All these terms will get
multiplied by ½i sinhðηÞ=λCN − λBN �ðlCN − lBNÞ

Q
N−1
k¼1 f

C
Nkf

B
Nk

according to Eq. (D2), and the modified scalar products
will appear with N − 1 particles. Since in every such
GðfλgN jfμgMÞ coefficient where N ∉ fn1;…; nKg there
is an fðλBN; ξÞ factor next to every vacuum expectation value
aðξÞ, it is true that

Gn1;n2;…;nK
l1;l2;…;lK

ðfλgN jfμgMÞ ¼ Gn1;n2;…;nK
l1;l2;…;lK

ðfλgN−1jfμgMÞmod;

ðN ∉ fn1;…; nKgÞ;
ðD13Þ

which means that Eq. (6.7) holds for O ¼ Q
M
k¼1 AðμkÞ.

This computation goes the same way for the product
of D operators (only the order of the arguments of the g

and f functions are reversed). But because of the linearity
of the scalar product, this computation also proves that
Eq. (6.7) is true for an operator of the form O ¼
Dðμ1ÞDðμ2Þ;…; DðμmÞAðμmþ1Þ;…; AðμMÞ: The effect of
the products of the A operators on an arbitrary state is a
linear combination of states computed above. The effect of
the product of the D operators on each term in this linear
combination is another linear combination, with coeffi-
cients that can be similarly calculated. However, if the
original term (the one obtained after acting with the A
operators) does not contain λBN among the arguments of the
B operators, then it will not appear there after acting with
the D operators. If it is still an argument of a B operator in
the original term, then the appropriate f factor is present
next to the VEV, and it will appear also after acting with the
D operators. This means that in every term that contains
BðλBNÞ, the appropriate fðλN; ξÞ or fðξ; λNÞ factor will
appear next to the VEV aðξÞ or dðξÞ. Therefore, Eq. (6.7)
holds forO ¼ Dðμ1ÞDðμ2Þ;…; DðμmÞAðμmþ1Þ;…; AðμMÞ.
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To complete the proof, we consider now the case
where there are additional C and B operators. Since they
are on the left- and right-hand sides, respectively, they
can be considered as additional creation operators in the
states. Their presence does not alter the singularity

property (6.7) we intend to prove. To see this, let us
first consider the most simple case when O ¼
CðμCÞBðμBÞ. The singularities of the form factors of this
operator follow from Eq. (D2). First, we consider the
renormalized operators:

h0j
�YN

j¼1

CðλCj Þ
�
CðμCÞBðμBÞ

�YN
j¼1

BðλBj Þ
�
j0i ⟶

λCN⟶λBN i sinhðηÞ
λCN − λBN

ðlCN − lBNÞ
�YN−1

k¼1

fCNkf
B
Nk

�
fðλN; μCÞ

× fðλN; μBÞh0j
�YN−1

j¼1

CðλCj Þ
�
CðμCÞBðμBÞ

�YN−1

j¼1

BðλBj Þ
�
j0imod: ðD14Þ

Substituting the definition (6.1) and also using the modification rule (6.8) for the renormalization on the rhs, we get

h0j
�YN

j¼1

CðλCj Þ
�
CðμCÞBðμBÞ

�YN
j¼1

BðλBj Þ
�
j0i ⟶

λCN→λBN i sinhðηÞ
λCN − λBN

ðlCN − lBNÞ
�YN−1

k¼1

fCNkf
B
Nk

�

× h0j
�YN−1

j¼1

CðλCj Þ
�
CðμCÞBðμBÞ

�YN−1

j¼1

BðλBj Þ
�
j0imod; ðD15Þ

which has just the desired form. It can be argued similarly,
that the presence of the C and B operators does not alter the
singularity properties when there are D and A operators
present.
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1395 (2006).

[30] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov,
and V. Terras, Algebraic Bethe Ansatz Approach to the
Asymptotic Behavior of Correlation Functions, J. Stat.
Mech. (2009) P04003.

[31] M. Jimbo, T. Miwa, and F. Smirnov, Hidden Grassmann
Structure in the XXZ Model III: Introducing the Matsubara
Direction, J. Phys. A 42, 304018 (2009).

[32] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov,
and V. Terras, A Form Factor to the Asymptotic Behavior of
Correlation Functions in Critical Models, J. Stat. Mech.
(2011) P12010.

[33] K. K. Kozlowski, Asymptotic Analysis and Quantum Inte-
grable Models, arXiv:1508.06085.

[34] J. Sato, B.Aufgebauer, H.Boos, F. Göhmann,A.Klümper,M.
Takahashi, and C. Trippe, Computation of Static Heisenberg-
Chain Correlators: Control over Length and Temperature
Dependence, Phys. Rev. Lett. 106, 257201 (2011).

[35] E. Ilievski, M. Medenjak, T. Prosen, and L. Zadnik,
Quasilocal Charges in Integrable Lattice Systems, J. Stat.
Mech. (2016) 064008.

[36] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L.
Essler, and T. Prosen, Complete Generalized Gibbs Ensem-
bles in an Interacting Theory, Phys. Rev. Lett. 115, 157201
(2015).

[37] A. C. Cassidy, C. W. Clark, and M. Rigol, Generalized
Thermalization in an Integrable Lattice System, Phys. Rev.
Lett. 106, 140405 (2011).

[38] H. Bethe, Zur theorie der metalle, Z. Phys. A 71, 205
(1931).

[39] E. Ilievski, E. Quinn, and J.-S. Caux, From Interacting
Particles to Equilibrium Statistical Ensembles, Phys. Rev. B
95, 115128 (2017).

[40] B. Pozsgay, The Generalized Gibbs Ensemble for Heisen-
berg Spin Chains, J. Stat. Mech. (2013) P07003.

[41] M. Fagotti and F. H. L. Essler, Stationary Behaviour of
Observables after a Quantum Quench in the Spin-1=2
Heisenberg XXZ Chain, J. Stat. Mech. (2013) P07012.

[42] B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, M.
Rigol, and J.-S. Caux, Quenching the Anisotropic Heisen-
berg Chain: Exact Solution and Generalized Gibbs Ensem-
ble Predictions, Phys. Rev. Lett. 113, 117202 (2014).

[43] B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos, G.
Zaránd, and G. Takács, Correlations after Quantum
Quenches in theXXZ Spin Chain: Failure of the Generalized
Gibbs Ensemble, Phys. Rev. Lett. 113, 117203 (2014).

[44] G. Goldstein and N. Andrei, Failure of the GGE Hypothesis
for Integrable Models with Bound States, Phys. Rev. A 90,
043625 (2014).

[45] B. Pozsgay, Failure of the Generalized Eigenstate Thermal-
ization Hypothesis in Integrable Models with Multiple
Particle Species, J. Stat. Mech. (2014) P09026.

[46] B. Doyon, T. Yoshimura, and J.-S. Caux, Soliton Gases and
Generalized Hydrodynamics, Phys. Rev. Lett. 120, 045301
(2018).

[47] M. Gaudin, B. M. McCoy, and T. T. Wu, Normalization Sum
for the Bethe’s Hypothesis Wave Functions of the
Heisenberg-Ising Chain, Phys. Rev. D 23, 417 (1981).

[48] V. E. Korepin, Calculation of Norms of Bethe Wave Func-
tions, Commun. Math. Phys. 86, 391 (1982).

[49] M. Takahashi, Thermodynamics of One-Dimensional Solv-
able Models (Cambridge University Press, Cambridge,
England, 1999).

[50] A. N. Kirillov and V. E. Korepin, Norms of Bound States, J.
Sov. Math. 40, 13 (1988).

[51] L. Eisenbud, The Formal Properties of Nuclear Collisions,
1948 (to be published).

[52] E. P. Wigner, Lower Limit for the Energy Derivative of the
Scattering Phase Shift, Phys. Rev. 98, 145 (1955).

[53] R. Vlijm, M. Ganahl, D. Fioretto, M. Brockmann, M.
Haque, H. G. Evertz, and J. S. Caux, Quasi-Soliton
Scattering in Quantum Spin Chains, Phys. Rev. B 92,
214427 (2015).

[54] O. Babelon, D. Bernard, and M. Talon, Introduction to
Classical Integrable Systems, Cambridge Monographs on
Mathematical Physics (Cambridge University Press, Cam-
bridge, England, 2003).

[55] C. Boldrighini, R. L. Dobrushin, and Y. M. Sukhov, One-
Dimensional Hard Rod Caricature of Hydrodynamics, J.
Stat. Phys. 31, 577 (1983).

[56] G. Mussardo, Off Critical Statistical Models: Factorized
Scattering Theories and Bootstrap Program, Phys. Rep.
218, 215 (1992).

[57] M. Mestyán and V. Alba, Molecular Dynamics Simulation
of Entanglement Spreading in Generalized Hydrodynamics,
arXiv:1905.03206.

[58] F. A. Smirnov, Form-Factors in Completely Integrable
Models of Quantum Field Theory, Adv. Ser. Math. Phys.
14, 1 (1992).

[59] B. Pozsgay, W.-V. van Gerven Oei, and M. Kormos, On
Form Factors in Nested Bethe Ansatz Systems, J. Phys. A
45, 465007 (2012).

[60] B. Pozsgay and G. Takacs, Form Factors in Finite Volume I:
Form Factor Bootstrap and Truncated Conformal Space,
Nucl. Phys. B788, 167 (2008).

[61] B. Pozsgay and G. Takacs, Form Factors in Finite Volume II:
Disconnected Terms and Finite Temperature Correlators,
Nucl. Phys. B788, 209 (2008).

CURRENT OPERATORS IN BETHE ANSATZ AND GENERALIZED … PHYS. REV. X 10, 011054 (2020)

011054-25

https://doi.org/10.1016/S0550-3213(99)00619-7
https://doi.org/10.1088/0305-4470/37/31/001
https://doi.org/10.1016/j.nuclphysb.2005.01.050
https://doi.org/10.1016/j.nuclphysb.2005.08.046
https://doi.org/10.1007/s00023-006-0285-5
https://doi.org/10.1007/s00023-006-0285-5
https://doi.org/10.1007/s00023-006-0285-5
https://doi.org/10.1088/1742-5468/2009/04/P04003
https://doi.org/10.1088/1742-5468/2009/04/P04003
https://doi.org/10.1088/1751-8113/42/30/304018
https://doi.org/10.1088/1742-5468/2011/12/P12010
https://doi.org/10.1088/1742-5468/2011/12/P12010
https://arXiv.org/abs/1508.06085
https://doi.org/10.1103/PhysRevLett.106.257201
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1103/PhysRevLett.106.140405
https://doi.org/10.1103/PhysRevLett.106.140405
https://doi.org/10.1007/BF01341708
https://doi.org/10.1007/BF01341708
https://doi.org/10.1103/PhysRevB.95.115128
https://doi.org/10.1103/PhysRevB.95.115128
https://doi.org/10.1088/1742-5468/2013/07/P07003
https://doi.org/10.1088/1742-5468/2013/07/P07012
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.113.117203
https://doi.org/10.1103/PhysRevA.90.043625
https://doi.org/10.1103/PhysRevA.90.043625
https://doi.org/10.1088/1742-5468/2014/09/P09026
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevLett.120.045301
https://doi.org/10.1103/PhysRevD.23.417
https://doi.org/10.1007/BF01212176
https://doi.org/10.1007/BF01084936
https://doi.org/10.1007/BF01084936
https://doi.org/10.1103/PhysRev.98.145
https://doi.org/10.1103/PhysRevB.92.214427
https://doi.org/10.1103/PhysRevB.92.214427
https://doi.org/10.1007/BF01019499
https://doi.org/10.1007/BF01019499
https://doi.org/10.1016/0370-1573(92)90047-4
https://doi.org/10.1016/0370-1573(92)90047-4
https://arXiv.org/abs/1905.03206
https://doi.org/10.1142/9789812798312_0001
https://doi.org/10.1142/9789812798312_0001
https://doi.org/10.1088/1751-8113/45/46/465007
https://doi.org/10.1088/1751-8113/45/46/465007
https://doi.org/10.1016/j.nuclphysb.2007.06.027
https://doi.org/10.1016/j.nuclphysb.2007.07.008


[62] L. Hollo, Y. Jiang, and A. Petrovskii, Diagonal Form
Factors and Heavy-Heavy-Light Three-Point Functions at
Weak Coupling, J. High Energy Phys. 9 (2015) 125.

[63] B. Pozsgay, Mean Values of Local Operators in Highly
Excited Bethe States, J. Stat. Mech. (2011) P01011.
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