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Flexible mechanical metamaterials possess repeating structural motifs that imbue them with novel,
exciting properties including programmability, anomalous elastic moduli, and nonlinear and robust
response. We address such structures via micromorphic continuum elasticity, which allows highly
nonuniform deformations (missed in conventional elasticity) within unit cells that nevertheless vary
smoothly between cells. We show that the bulk microstructure gives rise to boundary elastic terms. Discrete
lattice theories have shown that critically coordinated structures possess a topological invariant that
determines the placement of low-energy modes on edges of such a system. We show that in continuum
systems, a new topological invariant emerges, which relates the difference in the number of such modes
between two opposing edges. Guided by the continuum limit of the lattice structures, we identify
macroscopic experimental observables for these topological properties that may be observed independently
on a new length scale above that of the microstructure.
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I. INTRODUCTION

Mechanical metamaterials, defined as structures such as
origami sheets or spring networks with repeating patterns of
elements, possess properties not found in uniform slabs of
material, such as superior strength-to-mass ratios and van-
ishing (pentamode) [1–3] or even negative (auxetic) [4–7]
elastic moduli or Poisson ratios. Of particular interest are
flexible mechanical metamaterials, which possess low-
energy deformation modes that can be used to achieve
shape-changing, programmed response, and strong non-
linearities [8]. Some of these properties are now being
demonstrated at microscopic length scales, via kirigami
(cut) graphene ribbons [9], self-assembled patchy colloids
[10], nanolithography [11], and DNA “origami” [12,13].
These cutting-edge techniques raise the question of what
happens when such systems are manipulated on scales much
larger than the unit cell. This case is precisely the limit of
conventional solid mechanics, which occurs well above
atomic scales. However, conventional elastic theory assumes
a smoothly varying strain field, so it cannot capture short-
distance flexible rearrangements. This result is reflected in
the physics of disordered structures such as jammedpackings
[14,15], rigidity percolation networks [16], and fibrous

materials [17], which see the emergence of newmacroscopic
length scales at a critical coordination number.
To address the implications of short-distance flexible

rearrangements in otherwise uniform structures, we
develop a novel micromorphic continuum elastic theory.
While conventional Cauchy elasticity depends only on the
strain of an infinitesimal region, micromorphic elasticity
considers regions with additional relevant structure [18].
While this is unnecessary for conventional atomic solids, it
can lead to much richer mechanical response, somewhat as
liquid-crystalline order modifies conventional fluid dynam-
ics. We consider two situations in which such a theory
arises: as the long-wavelength limit of microscopic lattice
theories, and as an intrinsically continuum theory based
solely on macroscopic observables without recourse to a
particular microstructure. In either case, the repeating
spatial structure gives rise to an energetic term based on
the gradient of the elastic strain, which can be integrated to
yield a surface term in the elastic energy.
Our particular focus is on topologically protected boun-

dary modes in the mechanical continuum. While topologi-
cal modes typically occur in crystalline structures (with or
without particular crystallographic point groups), recent
work has demonstrated topological protection in quasi-
crystals [19,20] even in amorphous structures [21] and in
nonorientable ribbons [22].
In the lattice theory, it has been shown that a topological

invariant derived from the bulk structure controls the number
of zero-energy modes on a given surface of mechanically
critical lattices (having equal numbers of degrees of freedom
(d.o.f.) and constraints, also called “Maxwell” or “isostatic”)
and is determined by an integer-valued topological invariant
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derived from the bulk structure [23,24] and leading to a wide
variety of physical implications [25–29]. This result is derived
from an integral around the topologically nontrivial Brillouin
zone, which is not present in the continuum limit. Instead, we
present an analysis resulting in a new invariant, which instead
measures the difference between the numbers of zero modes
on twoopposing edges, analogous to the system’s polarization
rather than its surface charges. Because these systems are only
marginally mechanically stable, it becomes important to
consider how mechanical constraints generate energy costs
based not only on strain but also on strain gradients, and these
latter terms break spatial inversion symmetry, which is
necessary for the type of polarization we consider. Our work
reveals howmarginal stability andmicroscopic spatial pattern-
ing give rise in continuum systems very generally to topo-
logically protected deformation modes, raising the possibility
of realizing this result in engineered systems or even observing
it in biological ones.
The remainder of the paper is organized as follows. In

Sec. II, we show how a model class of microstructures
generates mechanical constraints that couple both to macro-
scopic strains and to microscopic d.o.f. In Sec. III, we show
how this generates surface terms complementing bulk ones.
In Sec. IV, we illustrate the general physics via a one-
dimensional example. In Sec. V, we show how a simple
linear-algebraic procedure based on the self-stresses (stressed
states of equilibrium) captures the equilibration of the system
and generates an effective theory in terms of smooth strain
fields only. In Sec. VI, we introduce the topological invariant
and relate it to the surface modes, relying on the continuum
theory rather than a particular microstructure. In Sec. VII, we
characterize the length and energy scales associated with the
boundary modes and show how they can be experimentally
observed. We conclude in Sec. VIII.

II. EFFECTS OF SMOOTH STRAIN FIELD
ON MICROSTRUCTURE

Here, we introduce the class of mechanical systems
whose energy is stored in discrete, springlike bonds and
consider how these couple to external strain fields. Let uðrÞ
denote the displacements that sites undergo at position r in
the undeformed reference space. Consider a particular
spring in a periodic crystal cell structure, and let r be
the position of its cell, p the position of the center of the
bond relative to the cell, and b the vector from one end of
the bond to the other, as shown in Fig. 1. The extension of
the spring is, for sufficiently smooth displacement fields
(repeated lower indices implying summation):

e ¼ 1

jbjb · ½uðrþ pþ b=2Þ − uðrþ p − b=2Þ�; ð1aÞ

≈
bibj
jbj ½1þ pk∂k�∂iuj; ð1bÞ

¼ bibj
jbj ½1þ pk∂k�ϵij: ð1cÞ

In the preceding lines, we conduct an expansion that
assumes that the displacement field is varying smoothly
over the length scale of a bond, such that the relative
displacements of the ends of the bond remain small. We
retain a gradient in strain that will play a crucial role in
distinguishing between zero- and finite-energy modes,
but the smoothness of the fields ensures that the omitted
higher gradients are smaller still. Because of the rotational
invariance of the problem (reflected in the symmetric bibj
prefactor), not even nonuniform rotations extend the spring,
and instead we obtain a result purely in terms of the
symmetrized strain ϵij ≡ ð1=2Þð∂iuj þ ∂juiÞ and its gra-
dients. The strain gradient terms are usually ignored in the
elasticity of rigid bodies, for which they are small for
smooth strain fields. However, it is important in systems
near the isostatic point, for which the contributions to the
elastic energy of the conventional terms can vanish. Note
also that this expression is evaluated at the position of the
cell, not the bond, such that our object of interest is
the strain field within the cell and the characteristics of
the individual bond are encoded in p, b.
Notably, given that bonds repeat periodically throughout

the structure, there is an ambiguity in which cell to assign
which bond, the so-called discrete gauge symmetry of the
lattice theory [23]. Choosing a different such assignment
would shift p by some combination of lattice primitive
vectors but would shift the point at which the strain is
evaluated by an equal and opposite amount, such that
the physical observable of the bond extension at a particular
point in space (as opposed to a particular cell) is
unchanged. Keeping this in mind, we may use the above

r
p

b

u1

u2

FIG. 1. A periodic spring network has a periodic microstructure
consisting of bonds connecting sites, as in the generalized
kagome lattice shown here. A solid bond is located at p relative
to the center r of the cell in which it lies. The bond connects two
sites with relative position b, undergoing displacements
u1ðrÞ;u2ðrÞ that cause extension or compression of the bond.
For continuum fields, the displacements may differ greatly for
each site within the repeating cell but vary smoothly across
the cells.
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relationship to construct a tensor that relates the extensions
emðrÞ indexed by m to the strain field:

emðrÞ ¼ R0
m;ijϵijðrÞ; ð2Þ

R0
m;ij ≡

bmi b
m
j

jbmj ½1þ pm
k ∂k�: ð3Þ

Here, we introduce the initial rigidity map R0, which
determines the spring extensions resulting from a given set
of strains. Although it is the continuum analog of the
rigidity (or compatibility) matrix used in lattice theories
[23,30,31], we term it “initial” here because it generally
results in unbalanced forces on the sites connected via the
bonds, a limitation that we resolve below. Note that since
this object maps from dimensionless strains to spring
extensions, its elements have units of length. An alternate
approach would be to calculate the fractional extensions of
the springs, such that the elements of the map were rescaled
by spring lengths and thus mapped from the strain of the
embedding space to the strains of the springs.

III. BULK AND SURFACE ENERGIES

In the preceding section, we described a purely struc-
tural, geometrical relationship between strain fields and
mechanical constraints. Here, we relate the violations of
these constraints (in particular, the stretching of springs) to
elastic energy. For simplicity, we consider a system with
bonds of a single spring constant and choose units such that
this constant (per unit volume) is unity. The resultant
energy comes from the sum of the squared spring exten-
sions, integrated across the bulk of the system:

E ¼ 1

2

Z
ddremðrÞemðrÞ: ð4Þ

Given the dependence of the spring extensions on both
strains and gradients [Eq. (1a)], each spring results in four
energetic terms. Following a number of manipulations (see
the Appendix C), the two terms that break spatial inversion
symmetry may be expressed as a total divergence term and
hence reduced purely to a surface contribution Es to the
energy expressed in terms of the outward-facing surface
normal n̂:

Es ¼
1

2

Z
surface

dd−1rn̂αBα
ijklϵijϵkl; ð5aÞ

Bα
ijkl ≡

X
m

bmi b
m
j b

m
k b

m
l

jbmj2 pα
m: ð5bÞ

Therefore, these terms do not affect the bulk physics, but
they do modify the response of boundaries and interfaces,
analogous to total gradient terms, which are not present
in nematics but do occur in cholesteric liquid crystals [32].

In addition to this surface term, we have spatial inversion
symmetric terms due to the conventional strains and their
gradients:

Eb ¼
1

2

Z
ddrAijklϵijϵkl þDαβ

ijklð∂αϵijÞð∂βϵklÞ; ð6aÞ

Aijkl ≡
X
m

bmi b
m
j b

m
k b

m
l

jbmj2 ; ð6bÞ

Dαβ
ijkl ≡

X
m

bmi b
m
j b

m
k b

m
l

jbmj2 pα
mp

β
m: ð6cÞ

We recognize that the energy consists of three types of
terms: conventional bulk strain energies leading to elas-
ticities of the sort described in Ref. [30], surface strain
terms, and higher-order bulk terms consisting of strain
gradients. Expanding the initial rigidity map further would
generate higher-order bulk and surface terms. The bulk
terms are even under spatial inversion and the boundary
terms are odd. Because of this, the surface energies may
be either positive or negative, depending on the spatial

(a)

(b)

FIG. 2. (a) On a periodic system, we apply a particular strain
ϵijðrÞ ¼ ðϵxx; ϵyyÞeiðq·rÞ. This strain causes bonds to stretch
(green) or compress (red). (b) The system then relaxes by
projecting onto the space of self-stresses that mostly capture
particles displacing over short distances but reducing the energy
cost overall.
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distribution of the strain field, hinting at how zero-energy
modes may manifest in a Maxwell lattice despite their
necessarily positive bulk energies.
As discussed in Ref. [33], Maxwell lattices in 2D

necessarily have a Guest mode, a zero-energy linear
deformation that also extends nonlinearly. The nonlinear
deformation is beyond the scope of the present work, but
the linear zero-energy deformation necessarily appears as a
combination of strains that is a zero-energy eigenmode of
the elasticity tensor. Because of this nonlinear instability, a
Maxwell lattice necessarily has multiple zero-energy con-
figurations; the bond and position vectors of the preceding
equations are associated with one particular configuration.
Indeed, as shown in Ref. [34], altering the configuration
can change the lattice topological polarization.
Note that we have not yet made any assumptions about

either mechanical equilibrium or mechanical criticality. As
such, even when the conventional elastic force balance is
achieved (i.e., the divergence of the stress vanishes in the
bulk), there are unbalanced forces on the individual d.o.f.
shown in Fig. 2(a). Before we rectify this, let us illustrate the
bulk and boundary energies with a minimal example, occur-
ring in one dimension and with a single strain component.

IV. EQUILIBRIUM IN ONE-DIMENSIONAL
SYSTEMS

To illustrate the essential components of our strain
gradient theory without the complications of several
d.o.f. and higher dimensions, in this section, we derive a
minimal gradient elastic limit of a one-dimensional discrete
system analogous to the rotor chain of Ref. [23], with the
additional feature of elastic systems that uniform trans-
lations do not violate constraints. The simplest linear
relationship between a constraint en and the displacements
fung is then

en ¼ aunþ1 − ðaþ bÞun þ bun−1: ð7Þ

A direct solution would indicate that the zero-energy modes
consist of a uniform translation and an exponentially
localized “strain” unþ1 − un ¼ ðb=aÞn. The long-wave-
length limit is valid when all modes, including this one,
are smooth over the length l of the unit cell, requiring that
log jb=aj ≪ 1. In this limit, we can Taylor expand the
displacement as un�1 ¼ un � lu0n þ ð1=2Þl2u00n, resulting
in an energy functional

E ¼ l
2

Z
dx½ða − bÞu0ðxÞ þ l=2ðaþ bÞu00ðxÞ�2; ð8aÞ

¼ k
2

Z
dx½u0ðxÞ − αu00ðxÞ�2; ð8bÞ

¼ k
2

�
−αðu0Þ2jd=2−d=2 þ

Z
dxðu0ðxÞ2 þ α2u00ðxÞ2Þ

�
; ð8cÞ

where we have defined, in terms of our microscopic
parameters a, b, two macroscopic parameters: k ¼
lða − bÞ2, which sets the energy scale, and a (signed)
length scale α ¼ ðl=2Þðaþ bÞ=ðb − aÞ. This case is the
linear limit of the nonlinear edge mode that was found to
extend into a soliton in Ref. [35], with strain playing the
role of the rotor angle. By performing a functional
derivative with respect to the displacement field uðxÞ,
we can obtain the conditions for force balance in the bulk,
namely, that ðα2∂2 − 1Þu00ðxÞ ¼ 0, resulting in a general
equilibrium profile consisting of two boundary modes, a
uniform strain and a trivial translation:

uðxÞ ¼ c−e−ðxþd=2Þ=α þ cþeðx−d=2Þ=α þ ϵ0xþ u0; ð9Þ

where definitions are chosen such that for α > 0 the first
mode is exponentially localized to the left edge, x ¼ −d=2,
with an amplitude there of c−, and the second is exponen-
tially localized to the right edge, x ¼ d=2, with an
amplitude there of cþ. The energy functional of Eq. (8)
may then be expressed as

E¼ k
2

�
2c2−
α

ð1− e−2d=αÞ− 4c−ϵ0ð1− e−d=αÞ þ dϵ20

�
; ð10Þ

where the terms proportionate to powers of expð−d=αÞ
vanish in the limit of large system size (for α > 0). Note
that the energy depends only on the bulk strain ϵ0 and the
c− mode. As can be seen by direct substitution into the
energy functional, cþ is a zero-energy mode that does not
violate any of the microscopic constraints. However, c�
appear, respectively, on the right and left sides when α > 0
and are reversed for α < 0. Hence, the surface term of
Eq. (8c) determines that there is a zero mode (cþ), and its
sign determines on which surface the mode appears. In
general, though, a non-Maxwell continuum theory (such as
would arise, e.g., when there were two microscopic
constraints for each d.o.f.) could have a surface term but
no zero modes. This case also illustrates the general
principle that this surface term, and hence the zero-energy
modes, cannot be derived from the bulk energetics, which
are invariant under spatial inversion. Therefore, in the
following sections, we return to a general form of the
bulk constraints in order to consider the effects of mechani-
cal equilibrium, mechanical criticality, and topological
protection.
Given the four modes of the general form of the

displacement field, Eq. (9), four boundary conditions must
be specified. The natural choice is to enforce the displace-
ment and strain on both boundaries, uð�d=2Þ ¼ u�;
u0ð�d=2Þ ¼ u0�. The resulting energy functional is, in
the large-system-size limit,

E ¼ k
2

�ðuþ − u−Þ2
d

þ 2αðu0�Þ2
�
; ð11Þ
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reflecting the bulk contribution from the average strain
ðuþ − u−Þ=d and the local strain at whichever boundary
hosts the nonzero mode (u0− when α > 0 and the nonzero-
energy mode is on the left, u0þ when α < 0).

V. MECHANICAL RELAXATION AND
EQUILIBRIUM IN THE MICROSTRUCTURE

From the energy functional of Eq. (4), we may obtain the
stress tensor σijðrÞ ¼ δE=δϵijðrÞ [36] with the details of the
functional differentiation described in Appendix A. Just as
each bond extension is obtained as a linear operator on the
strain, now the stress is obtained as a linear operator on the
bond extensions, which we denote as the initial equilibrium
map Q0

ij;m, again in analogy to the equilibrium matrix of
lattice theories:

σijðrÞ ¼ Q0
ij;memðrÞ; ð12Þ

Q0
ij;m ≡ bmi b

m
j

jbj ½1 − pk∂k�: ð13Þ

The above equations describe the elastic relationships
between stress, strain, bond extensions, and energy. Note
that these results mirror those of the lattice theories [30]. In
particular, if we consider modes with spatial variation
expðiq · rÞ, the equilibrium map is simply the transpose
of the rigidity map at the opposing wave vector:

Q0
ij;mðqÞ ¼ R0

m;ijð−qÞ: ð14Þ

However, the smooth strain fields assumed here are
unrealistic for isostatic systems, which undergo short-
wavelength nonaffine relaxation events to dramatically
lower their energy in response to unbalanced forces within
the unit cell.
Consider, as we have above, the extensions of bonds that

occur when a strain field is imposed externally. These
extensions generate tensions, which in turn generate
unbalanced forces on the sites. These forces result in
additional displacements of the sites, achieving force
balance and energy minimization. These displacements
may of course be obtained by solving whatever micro-
scopic force-balance equations are appropriate to a given
microstructure, but a more elegant and efficient method
exists for systems close to the isostatic point. For such
systems, there are only a few states of self-stress [23,31],
which are sets of tensions that generate no force on any site.
As has been shown [24], the postrelaxation bond extensions
e are precisely the projection of the pre-relaxation bond
extensions e0 into the space spanned by an orthonormal set
of states of self-stress, fsig.
For Maxwell lattices, which have equal numbers of site

d.o.f. and bond constraints, this technique has proven
useful to obtain the uniform elastic response. Such a lattice

has d modes of translation that result, via the Maxwell-
Calladine index theorem, in d states of self-stress. The
dðdþ 1Þ=2 components of the elasticity tensor are all
obtained from these modes, implying that dðd − 1Þ=2
strains cost zero energy. These modes are known as
Guest modes [33]. This method, which naturally accounts
for the large intracell relaxation, yields the correct moduli,
whereas assuming a uniform strain field overestimates them
substantially.
In the present analysis, we consider external fields that

are applied over length scales that are large compared to the
unit cell, such that displacement fields necessarily vary
smoothly over these scales. At the same time, the fields
may vary dramatically within the cell, such as when, e.g., a
rigid triangular unit undergoes a rotation. To that end, we
consider the behavior of structures such that the center of
mass of each cell is coupled to external fields (such as those
induced by smooth, rigid mechanical barriers), while the
other, internal d.o.f. (rotations and shears) are allowed to
relax and achieve mechanical equilibrium. In this way, we
retain a theory expressing the energetics in terms of the
slowly varying strain field across the periodic structure
while still permitting deformations that relax energy within
the crystal cell.
Thus, we identify the smooth displacement (alternately,

strain) fields uðrÞ ¼ u exp ðiq · rÞ. These are the fields we
wish to retain, while the short-range relaxations within the
unit cell are allowed to occur to lower the system energy.
Note that although u has only d components, it captures all
of the allowed strains. For q ≠ 0, there exist dðd − 1Þ=2
mechanical compatibility conditions [33] that are satisfied
by the dðdþ 1Þ=2 components of the strain, such that they
do indeed derive from a valid displacement field defined by
d components.
How, then, do we allow relaxation of the remaining

d.o.f.? Previously, we required that all the components of
the force f ¼ Qe on the sites resulting from the extensions
must vanish. Now, though, we allow forces on the smooth
strain fields to remain unbalanced. For example, if we
consider a set of strain fields that generates a force on the
center of mass of a cell and a torque on one of its rigid
elements, we would allow the cell to relax to alleviate the
torque while retaining the center-of-mass force. In other
words, if fjviig are the set of externally imposed center-of-
mass displacements on the cells, we allow no center-of-
mass forces, such that we allow hvijfi ≠ 0 but require that
the other components of the forces vanish. To that end, our
self-stresses are now defined as an orthonormal basis for
the null space of the equilibrium matrix with these modes
projected out:

fjsjig ¼ Nullð1 − jviihvijÞQ: ð15Þ

For the periodic systems currently under considera-
tion, modes at different wave vectors are orthogonal.
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Consequently, we can consider rigidity and equilibrium
maps at a particular wave vector, such that ∂j → iqj and a
strain at a given wave vector results in spring extensions
only at the same wave vector. Consequently, there are only
d modes at any given wave vector that need be projected
out in Eq. (15). Each such mode consists of displacements
of sites along one of the Cartesian directions, with spatial
dependence expðiq · rÞ. The result is d states of self-stress.
We thus obtain the primary object under consideration in

the present work, the rigidity map Rm;ij, which describes
the extensions that result from a smooth strain field
following the short-distance relaxations within the unit
cell. From this result, the equilibrium map may be derived
in precisely the same way as the initial equilibrium map
was derived from the initial rigidity map. In terms of the
initial rigidity map of Eq. (3) and sm;n, the nth component
of the mth state of self-stress is as follows:

Rm;ijðqÞ ¼ s�m;nR0
n;ijðqÞ; ð16Þ

Qij;mðqÞ ¼ Q0
ij;nðqÞsm;n: ð17Þ

The above analysis implies that, if we think of the
rigidity map as a matrix acting on the d independent
components of the strain, it similarly results in d indepen-
dent self-stresses and is thus a square matrix. This is
precisely the Maxwell condition for lattice theories: that the
energetic constraints and the d.o.f. are equal in number.
Thus, we arrive at a natural condition to extend the
Maxwell condition to theories of continuum fields: that
the configuration spaces and constraints be equal in
number.
A final property proves crucial to the low-energy

response of the lattice. The aforementioned Guest modes
ensure that the rigidity maps have zero modes at low wave
vectors. In other words, generically, the eigenvalues of the
rigidity map would have Oðq0Þ components, yet for the
Guest mode the leading contribution would be Oðq1Þ.

VI. TOPOLOGICAL POLARIZATION IN THE
CONTINUUM

We have now generated a continuum map that describes
the relationship between local strain d.o.f. and a like
number of energetic constraints, retaining the Maxwell
criterion of the lattice theories. However, it is not a priori
clear that this formulation captures the phenomena of the
lattice theory, including topological protection of modes at
interfaces, edges, and defects. Such modes are generated
and protected by topological invariants defined by the
homotopy class of loops across the Brillouin zone, which
no longer exists in our continuum formulation. Do the zero
modes have continuum descriptions, and do they retain
topological protection? We answer these questions in the
affirmative.

Since we mean to include edge modes, we allow q to be
complex, with the imaginary part representing the rate
at which the mode decays away from the edge. In
particular, suppose we have an edge in the second spatial
direction, on the line ð0; ryÞ, with the system extending to
its right, with rx > 0. A mode extending along and
exponentially localized to this edge would have ImðqyÞ ¼
0 real and ImðqxÞ > 0, while one on the opposite edge
would have ImðqxÞ < 0.
Because any extensions of bonds cost energy, zero-

energy modes are precisely those that lie in the null space of
the rigidity map of Eq. (16). Note that the use of this map
means that we are allowing the local structure to relax to
minimize energy—in this case, to zero. This linear map is a
square matrix, and hence the wave vectors at which it has
zero modes are precisely those at which its determinant
vanishes. We thus search for the zeros of this determinant,
which we write as det (RðqÞ). In this way, we acquire an
object dependent on wave vector only, which contains all
the information about the displacement field and con-
straints without using their indices. Because of the two
modes of translation, det (RðqÞ) has a double zero at q ¼ 0
and hence takes the following form:

RðqÞ ¼
�
R11ðqÞ R12ðqÞ
R21ðqÞ R22ðqÞ

�
ð18aÞ

⇒ det (RðqÞ) ¼ A2;0q2x þ A1;1qxqy þ A0;2q2y

þ iA3;0q3x þ iA2;1q2xqy þ…; ð18bÞ

with An1n2 real coefficients set by the microstructure.
Because our rigidity map has units, Aijq

n1
x qn2y has units

of the volume of d-dimensional space (two, here).
Terminating the expansion to order n in q indicates the
presence of n zero modes. Of these modes, two take the
form

qx ¼ α�qy þ iβ�q2y; ð19Þ

while the others are short-wavelength modes of order q0y.
Note that α is determined by the coefficients of order
Oðq2Þ, while the signed inverse decay length κ� ≡ β�q2y
depends on the second and third order terms of Eq. (18b).
While a lattice may have short-wavelength modes, our
continuum formulation deliberately excludes them, and
hence the short-wavelength modes here are nonphysical
and dictated by the order at which we terminate our
expansion. Our long-wavelength zero edge modes are then
restricted to wave vectors obeying the above equation. The
trivial state is the one in which κ� take opposing signs,
whereas in a polarized state, both κ� would take the same
sign. Thus, to capture the edge-mode polarization, a
topological invariant must count the numbers of positive
and/or negative κ�.
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Because the loss of periodicity destroys the Brillouin
zone, a natural approach would be to perform an integral
instead over all real values of qy. This method could lead,
via the extended real number line, to a noncontractible loop
such as in the periodic case, analogous to an approach that
was applied in Refs. [37,38] to determine Chern numbers
on the surfaces of spheres rather than tori. However, this
procedure would not be appropriate here since it would
include the fictitious short-wavelength modes.
Instead, to capture the long-wavelength behavior, we

introduce jl1j, the length of the first lattice primitive vector,
and consider edge modes for which the transverse compo-
nent of the wave vector is small: qyjl1j ≪ 1. In selecting
modes over which to integrate, one must consider values of
the remaining component of the wave vector that extend far
beyond those while also ignoring fictitious short-wave-
length modes. In other words, we consider values of qx that
satisfy qyjl1j ≪ qxjl1j ≪ 1. Then, we choose for ϵ≡ qyjl1j
to integrate over values of qxjl1j extending to ϵ1=2. Per the
detailed analysis and derivation in Appendix D, there are
alternate methods that may capture the transition more
sharply. The resulting topological invariant describing the
numbers of modes on the left and right edges is

NL − NR ¼ 1

π
lim
ϵ→0þ

Z ffiffi
ϵ

p
=jl1j

−
ffiffi
ϵ

p
=jl1j

dqx

× ∂qx arg det (Rðqx; qy ¼ ϵÞ): ð20Þ

Intuitively, this equation states that for topological
reasons, the way in which the relationship between strains
and microscopic constraints [encoded in det (RðqÞ)] varies
with the wavelength of bulk modes is determined by the
difference in the numbers of modes on the edges that satisfy
these constraints. Mathematically, this relationship follows
from the contour in the complex plane shown in Fig. 3. In
that figure, we search for a relationship between the
behavior of the bulk modes, shown on the real axis, and
the zero-energy surface modes, represented as black points.
Applying the argument principle means that the long-
wavelength modes will cause the phase of the determinant
of the rigidity map to wind by �2π for modes on the left
(right) edges. However, just as the zero modes themselves,
the curved portions of the contour have imaginary compo-
nents of the wave vector and hence are boundary modes
that cannot be considered in establishing a bulk-boundary
correspondence, a key signature of topological protection.
However, while the contributions of the curved portions are
never small, their difference does vanish in the given limit.
As such, we may determine the presence of zero modes
solely through the portions of the contour corresponding
to bulk modes (solid lines). In this way, the topological
invariant becomes quantized (integer) precisely in the long-
wavelength limit, as shown in detail in Appendix D.
Indeed, this notion of the topological invariant emerging

in the long-wavelength limit is implicit in other continuum
treatments, insofar as they likewise consider length scales
over which atomic details may be neglected. This con-
tinuum object in fact bears a closer relationship to conven-
tional polarization than the discrete analog, which counts
the number of zero modes on a particular edge rather than
the difference between the two edges.
To demonstrate that nonzero topological polarizations

occur, we consider a class of generalized kagome lattices,
consisting of a periodic cell with three sites in two
dimensions, joined by three intracellular and three inter-
cellular bonds as shown in Fig. 4. In that figure, we
consider a 1D family of such lattices that undergoes a
topological transition at which deformation of the lattice
shifts a boundary mode from one edge to the opposing
edge, polarizing the system. As shown in Fig. 4(a), our
numerical technique generates noticeable error, as
described in Appendix D, very close to the transition
point, which can also be identified by direct geometri-
cal means.

A. Topological polarization as a vector

In the continuum, it becomes natural to ask about the
polarization, not only at a certain interface—for now, we
focus on a vertical interface, with decay along the hori-
zontal direction (x direction)—but for every possible
interface. Specifically, we look for ΔNðθnÞ—the difference
between the number of zero modes on the “left” and “right”
edges when the vector pointing from the left to the right

Re[qx]

Im[qx]

FIG. 3. The contour used to establish the relationship between
the bulk structure and the locations of the zero modes. Via
complex analysis, the full contour counts the difference in
numbers of long-wavelength zero modes on the left and right
edges while remaining insensitive to the short-wavelength modes.
As described in the text, for this particular contour, the dashed
portions may be neglected, such that the locations of the zero
modes are determined solely by the bulk physics captured in the
solid lines.
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edge is q̂nðθnÞ≡ cos θnx̂þ sin θnŷ. In this way, we can
recast the wave vector in terms of the components along
this normal direction, qn ≡ q̂n · q, and the component qt
along the tangent direction, q̂tðθnÞ≡ − sin θnx̂þ cos θnŷ.
This method allows us to rewrite the determinant in the new
ðqn; qtÞ basis and find the long-wavelength modes of
present interest:

det (RðqÞ) ¼ detðqx ¼ cos θqn − sin θqt;

qy ¼ sin θqn þ cos θqtÞ
¼ A0

2;0q
2
n þ A0

1;1qnqt þ A0
0;2q

2
t þ iA0

3;0q
3
n þ…

ð21Þ

⇒ qn ¼ α�ðθÞqt þ iκ�ðθÞq2t ; ð22Þ

where, once again, the sign of κ�ðθnÞ≡ βðθnÞq2t deter-
mines the topology in a particular r̂nðθnÞ direction. This
new expression allows us to describe how the topological
polarization changes at different angles. What we observe
is that the modes flip from one side to the other as the
direction r̂nðθnÞ crosses a particular set of directions
(indicated by orange lines in Fig. 5). Those regions are
called soft directions, and we address their nature in the
following section.

N
-
+

0. 0.2 0.4 0.6 0.8 1.

–2

–1

0

1

2

Parameter space x

N

Topological
transition

(a)

rn

rn

(b)

(c)

FIG. 4. (a) Topological transition as we deform the kagome
lattice. The geometry of the system is parametrized as
gðxÞ ¼ xg1 þ ð1 − xÞg2, where g1, g2 are geometric configura-
tions of two kagome systems with respective topological polar-
izations 0 and 2 along the r̂n direction. Note that κ� are the signed
inverse decay lengths, such that, when one vanishes, the
associated mode lies in the bulk and, when both have the same
sign, the system is polarized. (b) The system in the g1 configu-
ration with trivial polarization: There is a zero mode on the left
side of the considered orientation r̂n and one on the opposite side.
(c) The system in nontrivial polarization (ΔN ¼ 2): This time, the
two modes are on the left side of the direction. In all three figures,
the purple dashed lines represent the shape of the system at the
topological transition (when x ¼ 0.7).

N ( )

- ( )

+( )

– –2 /3 – /3 0 /3 2 /3

–2

–1

0

1

2
N

(
)

(a)

rn

(b)

FIG. 5. (a) For a fixed system, we numerically compute the
signed inverse decay lengths of each mode [κ−ðθnÞ; κþðθnÞ] and
the topological polarization ΔNðθnÞ as a function of the normal
direction r̂nðθnÞ. (b) The polarization changes as the considered
direction crosses either soft direction (orange lines). One can then
find the regions of the lattice where the þ or − edge modes are
located (blue or red arcs).
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B. Soft directions

Focusing on the long-wavelength zero modes established
in Eq. (19), we find the existence of soft directions
[indicated by orange lines in Fig. 5(b)], characteristic of
the lattice [39] and determined by the value of the α�
coefficients:

qx ¼ α�qy ⇒ q̂� ¼ ðα�; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α�

p : ð23Þ

We can then rewrite the determinant of a generic wave
vector q in this new basis, q ¼ qþq̂þ þ q−q̂−:

det (RðqÞ) ¼ A00
1;1qþq− þ iA00

3;0q
3þ þ iA00

2;1q
2þq− þ…;

ð24Þ

so if a wave vector lies exactly on either soft direction (i.e.,
q ¼ qþq̂þ or ¼ q−q̂−), it is, by definition, a zero of our
rigidity map, at least to second order.

VII. EXPERIMENTAL LENGTH
AND ENERGY SCALES

The triumph of conventional elasticity is its ability to
capture mechanical response at length scales extending to
the system size, far beyond those of the underlying,
unobserved atomic interactions. It is not clear a priori
whether the boundary modes that we consider extend to

macroscale systems or whether they are valid only on the
“atomic” length scales of the unit cell, those already
captured by the lattice theory. Indeed, the dramatic change
in edge stiffness predicted by simple central-force models
[34] has resulted in relatively modest differential stiffnesses
in 3D-printed systems [40]. In fact, as we show here, the
boundary modes extend to wavelengths that are intermedi-
ate between the unit cell and the system size, establishing
new criteria for experimentally realizing strong topological
effects.
Let us consider, in particular, the imposition of a

distortion on a boundary with wave number qt on an
interface with tangent direction r̂tðθnÞ. In order to minimize
energy, the system will undergo a distortion associated with
one (or both) of the two soft directions described in the
preceding section. We thus search the space of zero modes
described in Eq. (24) for a zero mode with the appropriate
component along the surface tangent direction, resulting in
a wave vector of the form

q� ¼ qt
q̂� · q̂t

q̂þ � iq2t
A00
3;0ð0;3Þ
A00
1;1

jq̂þ; q̂−j
ðq̂� · q̂tÞ3

q̂n; ð25Þ

where jq̂þ; q̂−j denotes the determinant of the matrix of the
given columns. Expressed in terms of the angles θ�, θn of
the soft directions and the normal direction, we get

q� ¼ qt
sinðθ� − θnÞ

q̂� � iq2t
A00
3;0ð0;3Þ
A00
1;1

sinðθþ − θ−Þ
sin3ðθn − θ�Þ

q̂n:

ð26Þ

We note that the decay part of this expression includes
parameters of the systems that come from the determinant
of our rigidity mapping—i.e., the A00 terms of Eq. (26)—
and hence cannot be measured by the bulk response.
We now express this relationship in terms of unitless

ratios (in brackets) between the quantities with units of the
lattice length scale, the decay length, and the wavelength of
the surface distortion, λ ¼ 2π=qt:

�
ζ�
jl1j

�
¼ � 1

ð2πÞ2
�
λ

jl1j
�
2
�jl1jA00

1;1

A00
3;0ð0;3Þ

�
sin3ðθn − θ�Þ
sinðθþ − θ−Þ

: ð27Þ

From the above expression, we see that the number of cells
over which the topological mode decays is generically on
the order of the square of the number of cells over which it
extends on the surface, as shown in Fig. 6. For example, if
the wavelength extends over thousands of unit cells, the
boundary mode generically decays on the scale of millions
of cells. Hence, the surface theory extends from micro-
scopic wavelengths up to the order of the geometric mean
of the system size and unit cell size. However, this
geometric relationship is strongly modified by the direction
of the interface. When the soft direction is nearly aligned

FIG. 6. Shape of the edge modes in a system with polarization
ΔN ¼ 2. We impose a mode with wavelength λ ¼ 15.6jl1j on the
boundary r̂t (where l1 is the first lattice primitive vector). This
mode then propagates through the bulk and decays along the
direction r̂n. Each mode (red or blue) varies sinusoidally along its
corresponding soft direction; therefore, it also varies along the
boundary with a longer wavelength. The modes decay into the
bulk over length scales much longer than this wavelength.
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with the normal direction, the wavelength of the modes in
the bulk becomes much smaller than that on the boundary,
and the decay length is correspondingly reduced, meaning
that the effect may be observed in smaller systems.
Beyond these concerns regarding the length scale, the

surface theory also relies on appropriate energy scales.
While a full energetic analysis is beyond the scope of the
present work, consideration of microscopic interactions and
length scales permits us to estimate additional criteria to
observe continuum topological polarization. Real systems
contain additional constraints beyond those included in the
Maxwell rigidity map. In a 3D-printed frame, in addition to
strong energetic costs to central-force compressions and
extensions, beams possess finite bending stiffness not
found in central-force springs. In our topological modes,
these bending costs are imposed on a length scale propor-
tional to the square of the wavelength, whereas a conven-
tional Rayleigh-type surface mode would impose greater
central-force energy costs over a smaller volume, extending
to a depth proportional only to wavelength. Hence, the
topological surface modes should only be strictly observ-
able on wavelengths sufficiently short that they lie below
the conventional modes in energy.
Finally, we note that our use of strain gradients also

imposes limits on the amplitudes of the strains. For small
strains, the nonlinear contributions, the largest of which are
proportional to the square of strain, are necessarily small
compared to the linear effect, which is proportional to strain.
However, the contribution of the strain gradient is small as
well. For the strain gradient term to dominate over the
nonlinearities, the dimensionless ratio of lattice length scale
jl1j to the length scale of deformation, λ, while small, must
nevertheless be large compared to the infinitesimal strain for
our results to be quantitatively valid: 1 ≫ jl1j=λ ≫ ϵ.

VIII. CONCLUSIONS

We have presented a new method for describing the
energetic effects of imposed macroscopic strain fields and
their gradients on a microstructure that undergoes micro-
scopic relaxation. We arrive at separate expressions for bulk
and surface energies and establish, for critically coordi-
nated systems, an elastic bulk-boundary correspondence
between the bulk structure and topologically protected
zero-energy modes. The underlying topological invariant
establishes the relative numbers of zero modes on two
opposing boundaries, as either number separately would
rely on short-wavelength physics. This case establishes a
sort of mesoscale elasticity, with topological surface modes
existing on length scales far beyond the unit cell but
necessarily far below the system size. Notably, this elas-
ticity may lead to experimental demonstrations of topo-
logical polarization based on macroscale strains even when
microscopic structure remains unobserved.
While we have used a periodic lattice to derive a periodic

theory in order to connect with past work and demonstrate a

simple connection between the lattice and continuum
theories, nothing in the rigidity map of Eq. (18) requires
an underlying lattice. The essential requirements for topo-
logical winding numbers are the mechanical criticality and
the breaking of spatial inversion symmetry, which permit a
well-defined, nontrivial topological state. Mechanical criti-
cality can be achieved in large, nonlattice systems such as
jammed packings [14,15] and biopolymer networks [17].
Jammed packings typically have spatial inversion sym-
metry, but it may be possible to break this by using particles
that themselves lack this symmetry; certainly, it may be
broken by coupling to external fields (such as substrate
shape). In contrast, plausible candidates such as thin elastic
sheets are not expected to support topological polarization
since, while they are in some sense mechanically critical,
they are the continuum limit of triangulated origami sheets,
which were found not to polarize in Ref. [27].
These extensions of the lattice theory to the continuum

present several avenues for further study. Lattice theories have
considered bulk response [28], topological defects [25],
buckling failure [26], and fracture [29]. All of these phenom-
ena may extend to the continuum in intriguing ways.
Following the realization of topological states in kirigami
sheets [27], incorporating curvature into our continuummodel
may yield new physics. Examinations of finite-frequency
topological modes, which have examined the continuum
properties of the individual components [41,42], may be
extended to wavelengths beyond that of the microstructure.
Intriguingly, recent work has also shown that topological

boundary modes can arise even in amorphous systems due
to the mesoscale structure [21]. Similarly, our surface
theory relies on the short-length structure, suggesting that
it may extend even to nonperiodic systems, though topo-
logical polarization still relies on breaking spatial inversion
symmetry. If indeed such local structure can describe
directional response, it may underlie artificial structures
that program intricate mechanical responses [43–45],
which are themselves inspired by biological allostery.
Nonlinearities, too, may prove tractable in the general

continuum theory, such as when they lead to topologically
protected solitons in one-dimensional systems [35] and to
nonreciprocal mechanical response [46].
In the present work, which we encourage the reader to

compare with the illuminating Ref. [47] (which was posted
recently), we considered a critical balance between con-
straints and independent components of the strain field that
was derived by the critical coordination of the microscopic
system. It is an open question as to whether such theories
may emerge in the continuum without being present in the
microscopic system. Structures such as those consisting of
rigid square pieces joined at corners have a nonlinear zero-
energy dilation mode [4] and are well described by
continuum theories [48,49]. However, such systems rely
on symmetry to achieve their deformation mode and do not
have zero-energy boundary modes.
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APPENDIX A: DERIVING THE EQUILIBRIUM
MAP Qij;m FROM THE RIGIDITY MAP Rm;ij

We expect the components of the stress tensor to be
linear in the spring tensions em, and we define the
equilibrium map as

σijðrÞ ¼ Qij;memðrÞ: ðA1Þ

The following analysis can be made on either prerelaxation
or postrelaxation mappings. Given that the bonds’ exten-
sions are linear in the components of the strains,

emðrÞ ¼ Rm;ijϵijðrÞ; ðA2Þ

the total energy of the system is

E ¼ 1

2

Z
dre2mðrÞ ¼

1

2

Z
dr(Rm;ijϵijðrÞ)2: ðA3Þ

Given this result, we obtain

σijðrÞ ¼
δE

δϵijðrÞ
ðA4aÞ

¼ δ

δϵijðrÞ
1

2

Z
dr(Rm;ijϵijðrÞ)2 ðA4bÞ

¼ Rm;ijRm;ijϵijðrÞ ðA4cÞ

⇒ σijðrÞ ¼ Rm;ijemðrÞ; ðA4dÞ

where in the final line we used the linear relationship of
Eq. (A2). From Eq. (A1), we recognize here the equilib-
rium mapping Qij;m, meaning

Qij;m ¼ Rm;ij: ðA5Þ

We now consider how the stress field defined in Eq. (A1)
relates to the conventional stress of Cauchy elasticity. In
particular, what are the conditions on the stress field for
equilibrium on the boundary and on the bulk? To find these
conditions, we invoke the chain rule of functional deriv-
atives, which we quickly rederive here. Consider a scalar
function f that is a function of a vector with components
fgig, each of which is a function of variables fxjg. Then,
with an implied sum over a repeated index,

∂f
∂xj ¼

∂f
∂gi

∂gi
∂xj : ðA6Þ

If we now treat the indices i, j as continuous (and
vectorial) variables r; r0, then this becomes a functional
relationship:

δf
δxðrÞ ¼

Z
dr0

δf
δgðr0Þ

δgðr0Þ
δxðrÞ ; ðA7Þ

where the sum over index i has become an integral over r0
in the continuum limit. This result is relevant to the
equilibrium problem because the energy functional is
dependent on displacement only through the strains and
their gradients. Furthermore, we can readily evaluate the
functional derivative:

δϵijðr0Þ
δukðrÞ

¼ 1

2
ðδjk∂i þ δik∂jÞδðr0 − rÞ: ðA8Þ

We are now able to evaluate the force that the system
exerts on material at r due to a particular displacement
field:

fkðrÞ ¼ −
δE

δukðrÞ
ðA9aÞ

¼ −
Z

dr0
δE

δϵijðr0Þ
δϵijðr0Þ
δukðrÞ

ðA9bÞ

¼−ð1=2Þ
Z

dr0ðδjk∂iþδik∂jÞδðr0−rÞ δE
δϵijðr0Þ

ðA9cÞ

¼ ð1=2Þ
�
∂i

δE
δϵikðrÞ

þ ∂j
δE

δϵkjðrÞ
�

ðA9dÞ

⇒ fkðrÞ ¼ ∂i
δE

δϵikðrÞ
: ðA9eÞ

Hence, we see that given our definition of stress as the
functional derivative of the energy functional with respect
to strain, we recover the standard bulk equilibrium con-
dition that the stress tensor’s gradient vanish: ∂iσij ¼ 0.
What about the equations of equilibrium at the boun-

dary? Let us suppose that there are no body forces and that
forces are exerted only in a narrow range on the boundary.
In particular, let us approximate forces as being applied
over a boundary layer of infinitesimal thickness w. Then,
by integrating the general equilibrium condition in the
presence of spatially varying forces, ∂iσij þ fj, across the
boundary, we acquire the usual condition on the stress in
terms of the components ni of the surface normal and the
force per area on the boundary fbj :
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niσij ¼ fbj : ðA10Þ

Additionally, we would then have, within the boundary
layer itself,

∂iσij ¼ fbj =w: ðA11Þ
In this way, the force and the depth over which it is

supplied may be used to impose boundary conditions on
both the stress tensor and its first gradients.

APPENDIX B: RELATING EQUILIBRIUM AND
RIGIDITY MAPS IN RECIPROCAL SPACE WITH

PERIODIC STRUCTURE

In this section, we incorporate periodic structure into
the relationships described in the previous section
(Appendix A). As we will see, the dependence on the
wave vector is reversed for the equilibrium and rigidity
maps—the key result first obtained for lattice structures,
which permits topological polarization. To that end, we first
consider more general, nonlocal classes of rigidity and
equilibrium maps than we have previously:

emðrÞ ¼
Z

dr0Rm;ijðr; r0; ∂ 0Þϵijðr0Þ; ðB1Þ

σijðrÞ ¼
Z

dr0Qij;mðr; r0; ∂ 0Þemðr0Þ; ðB2Þ

where the inclusion of “∂” indicates that the maps can
involve gradients. Repeating the process above, we again
obtain stresses from our energy functional. Now, though,
we apply the well-known result that such functional
differentiation flips the sign of the gradients. This case
may be seen by explicitly writing out gradients of the delta
functionals that are used in functional differentiation and
integrating by parts. The result, in this case, is that

Qij;mðr; r0; ∂ 0Þ ¼ δσijðrÞ
δemðr0Þ

ðB3aÞ

¼ δ2E
δϵijðrÞδemðr0Þ

: ðB3bÞ

¼ δ

δϵijðrÞ
�

δE
δemðr0Þ

�
ðB3cÞ

¼ δ

δϵijðrÞ
emðr0Þ ðB3dÞ

¼ δ

δϵijðrÞ
Z

dr00Rm;ijðr0;r00;∂ 00Þϵijðr00Þ ðB3eÞ

¼
Z

dr00Rm;ijðr0;r00;∂ 00Þδðr00−rÞ; ðB3fÞ

leading to the desired result in real space:

Qij;mðr; r0; ∂ 0Þ ¼ Rm;ijðr0; r;−∂Þ: ðB4Þ

We now return to incorporating our system’s trans-
lational invariance and (semi)local interactions, such that
Rm;ijðr; r0; ∂Þ → Rm;ijðr − r0; ∂Þ → δðr − r0ÞRm;ijð∂Þ. In
reciprocal space, such that ∂ → iq, we may then write
the relationship between equilibrium and rigidity maps as

Qij;mðqÞ ¼ Rm;ijð−qÞ: ðB5Þ

Our linear relationships then have the form

emðqÞ ¼ Rm;ijðqÞϵijðqÞ; ðB6Þ

σijðqÞ ¼ Qij;mðqÞemðqÞ: ðB7Þ

APPENDIX C: ENERGY AND SURFACE TERMS

In this section, we find how the total energy of our
system breaks down between surface and bulk terms, using
the expression of our rigidity map,

E ¼ 1

2

X
m

Z
ddremðrÞemðrÞ; ðC1aÞ

emðrÞ ¼
bmi b

m
j

jbmj ð1þ pm
k ∂kÞϵijðrÞ: ðC1bÞ

E ¼ 1

2

X
m

Z
ddr

bmi b
m
j b

m
k b

m
l

jbmj2 ½ð1þ pm
α ∂αÞϵijðrÞ�

× ½ð1þ pm
β ∂βÞϵklðrÞ� ðC2aÞ

¼ 1

2

X
m

bmi b
m
j b

m
k b

m
l

jbmj2
�Z

ddr½ϵijðrÞðpm ·∇ÞϵklðrÞ

þ ϵklðrÞðpm ·∇ÞϵijðrÞ�

þ
Z

ddr½ϵijðrÞϵklðrÞ þ ðpm ·∇ÞϵijðrÞðpm · ∇ÞϵklðrÞ�
�
:

ðC2bÞ

The second term of Eq. (C2b) is a bulk term, and it cannot
be simplified any further. However, the first term can be
nicely expressed on the surface only using the divergence
theorem:

Es ¼
1

2

X
m

bmi b
m
j b

m
k b

m
l

jbmj2 pm ·

�Z
ddr∇½ϵijðrÞϵklðrÞ�

�

ðC3aÞ
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¼ 1

2

X
m

Z
surface

dd−1rðpm · n̂Þ b
m
i b

m
j b

m
k b

m
l

jbmj2 ϵijðrÞϵklðrÞ:

ðC3bÞ

In Sec. III, we wrote the surface and bulk energies
separately, and in terms of strains, their gradients, and
the following elastic moduli:

Aijkl ¼
X
m

bmi b
m
j b

m
k b

m
l

jbmj2 ; ðC4aÞ

Bα
ijkl ¼

X
m

bmi b
m
j b

m
k b

m
l

jbmj2 pα
m; ðC4bÞ

Dαβ
ijkl ¼

X
m

bmi b
m
j b

m
k b

m
l

jbmj2 pα
mp

β
m; ðC4cÞ

such that the total energy has the expression

E ¼ Es þ Eb ðC5aÞ

¼ 1

2

Z
surface

dd−1rn̂αBα
ijklϵijϵkl

þ 1

2

Z
ddrAijklϵijϵkl þDαβ

ijklð∂αϵijÞð∂βϵklÞ; ðC5bÞ

with the elastic moduli invariant under permutations of
either their lower or their upper indices, as follows from
their definitions in Eq. (C4).
Considering the system studied in Fig. 2, and given that

our bonds and sites lie in the two-dimensional plane, the
total number of different coefficients is reduced to the
following:

ði; j; k; lÞ Aijkl ðBx
ijkl; B

y
ijklÞ ðDxx

ijkl; D
xy
ijkl; D

yy
ijklÞ

ðx; x; x; xÞ 3.21878 ð0.419412;−0.387303Þ ð0.358676;−0.0566132; 0.0893519Þ
ðx; x; x; yÞ −0.374777 ð−0.167225; 0.0139916Þ (0.110746, 0.00195441, 0.0193136)
ðx; x; y; yÞ 0.621217 ð−0.040412;−0.100059Þ (0.216224, 0.0786884, 0.0891775)
ðx; y; y; yÞ 0.274585 ð−0.607169;−0.25146Þ (0.312016, 0.377231, 0.178096)
ðy; y; y; yÞ 2.94237 ð−0.342389;−2.09884Þ (2.14663, 0.16367, 1.63641)

The continuum theory described in Sec. V involves
relaxation modes that alleviate unbalanced forces on
microscopic elements. This process substantially compli-
cates analytical expressions relating the gradient elasticity
theory to the microstructure, but it does not qualitatively
alter the phenomenology.

APPENDIX D: WINDING NUMBER

As described in the main text, the task of relating the
number of modes on edges of the systems to their bulk
systems reduces mathematically to counting the numbers of
zeros in the complex plane. Here, we supply mathematical
details and quantify the error associated with the long-
wavelength approximation. This section implicitly uses a
length scale so that we may treat physical quantities with
units of length as pure numbers.
Physically, the points in the complex plane correspond to

complex wave vectors. We draw a contour as shown in
Fig. 3 of the main text, which encloses all zeros close to the
origin [of order of the wave vector, which we term here
OðϵÞ] and avoids those far from the origin (of order 1). The
latter are nonphysical since our theory only describes the
long-wavelength limit. Because of the shape of the contour,
zeros in the upper half-plane, corresponding to modes on
the left edge, are enclosed in a positive orientation, while

those in the lower half-plane are enclosed in a negative one.
Note also that the contour in question allows a branch cut to
be defined stretching along the negative real axis, which is
important for evaluating the phase of complex numbers.
Were we to retain all components of the contour, the

residue theorem would ensure that we could exactly
evaluate the number of zeros enclosed by the contour
(we choose a gauge in which no poles are present).
However, in order to achieve bulk-boundary correspon-
dence, we must identify the complex zeros by only
considering the bulk modes, which lie on the real axis.
We thus neglect the curved components of the contour. We
now show that this approximation nevertheless recovers the
result given in the main text, up to a small, controlled error.
Without loss of generality, we may consider the phase

added to our contour integral from each zero separately. As
such, we wish to obtain the change in phase of a complex
function of the form

fðzÞ ¼ z − z0; ðD1Þ

as z winds along a contour reiθ, with θ going from 0 to
either π or −π. Here, we choose r to be much larger than
long-wavelength zeros [Oðϵ1Þ] but much smaller than the
short-wavelength ones [Oðϵ0Þ].
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Because the argument of the complex number is simply
the imaginary part of its logarithm, we immediately obtain
two results. First, the contribution of the straight sections of
the contour, which we retain, is the expression given in the
main text. Second, the contribution from the curved parts
that we neglect is

2Im log

				 rþ z0
r − z0

				: ðD2Þ

Note here that although the long-wavelength zeros have
a real part Oðϵ1Þ they also have an imaginary part Oðϵ2Þ;
hence, we find that for jrj ≫ jz0j, the error is of order
Oðϵ2=rÞ. In contrast, the error from the short-wavelength,
spurious modes is of orderOðrÞ, assuming that our original
contour actually encloses all of the long-wavelength zero
modes. However, if this condition is not met, the error in the
calculation of the change in phase increases abruptly to
Oð1Þ. To minimize the error, we should then select the
bounds of our contour to minimize their size while ensuring
that they capture the essential physics. In the main text, we
make the natural choice for r to lie intermediate between
the two regimes—r ¼ ϵ1=2 in units in which unit cell size is
of order one, generating error of Oðϵ1=2Þ. More aggressive
schemes, such as r ¼ ϵ3=4; ϵ0.99, could more closely char-
acterize the topological transition but would require greater
knowledge of the microscopic details or willingness to
tolerate occasional large errors.
As discussed above, the error from the true determinant

function may be obtained simply by summing over a few
cases of these zeros and is thus of the same order. Thus, we
have shown, using complex analysis, that in the long-
wavelength limit, the correspondence between the bulk
structure and the imbalance of topological edge modes
given in Eq. (20) of the main text,

NL − NR ¼ 1

π
lim
ϵ→0þ

Z ffiffi
ϵ

p
=jl1j

−
ffiffi
ϵ

p
=jl1j

dqx∂qx arg det (Rðqx; qy ¼ ϵÞ);

ðD3Þ

is mathematically justified. We emphasize here that this is
not because the bulk modes along the curved parts of the
contour are negligible but because the choice of contour
causes them to cancel out. Thus, bulk-boundary correspon-
dence in the long-wavelength limit links together two
boundaries at once, in contrast to the lattice theory.

APPENDIX E: SOFT DIRECTIONS,
LENGTH SCALES, AND CHOICE OF

MATHEMATICAL BASIS

In the main text, we introduce a number of different
bases for the wave vectors. First, we have a simple
Cartesian basis ðq̂x; q̂yÞ. Second, we present a rotated
version thereof, in order to accommodate boundaries with

varying orientations, in terms of the inward-facing normal
direction q̂n and the tangent direction q̂t. Finally, we
consider the two soft directions, along which there lie
modes that satisfy the structural constraints to linear order,
pointing along (nonorthogonal directions) ðq̂þ; q̂−Þ. We use
the symbols α�, α�ðθnÞ to relate these:

q̂� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2�

p ðα�q̂x þ q̂yÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2þðθnÞ

p ðαþðθnÞq̂n þ q̂tÞ: ðE1Þ

As discussed in the main text, the bulk structure requires
that zero modes occur at wave vectors satisfying the
following constraint:

qx ¼ α�qy þ iβ � q2y: ðE2Þ
We now consider a boundary mode that has the compo-

nent qt along the tangent direction and thus takes the form
qnq̂n þ qtq̂t. By requiring that this mode satisfies the above
constraints to second order, we obtain a result for the
coefficients α�ðθnÞ, which define the soft directions:

qn ¼ α�ðθnÞqt þ iβ�ðθnÞq2t : ðE3Þ
In the q̂n; q̂t basis, we know the expression of q. Let us

assume that q is a zero of our map; therefore, it has the
following form:

q ¼ qtðαþðθnÞq̂n þ q̂tÞ þ iκþðθnÞq2t q̂n: ðE4Þ
We recognize that the leading-order contribution to this

zero-energy edge mode is simply the bulk soft mode.
Expressing it in this form explicitly, we may write

q ¼ qt
q̂þ · q̂t

q̂þ þ iκþðθnÞq2t q̂n; ðE5aÞ

q ¼ qþq̂þ þ iκþðθnÞðq̂þ · q̂tÞ2q2þq̂n; ðE5bÞ

where qþ represents the value of the mode along the soft
direction, while qt is the value of the mode along the
transverse direction of the normal. Now, consider such a
mode that, say, lies to first order along the q̂þ direction. For
it to be a zero mode, it must contain a second-order
correction along the q̂− direction that satisfies the zero-
energy condition, which in this basis has a simplified
expression:

det (RðqÞ) ¼A00
1;1qþq− þ iðA00

3;0q
3þ þ A00

2;1q
2þq−

þ A00
1;2q−q

2þ þ A00
0;3q

3
−Þ ¼ 0: ðE6Þ

The term q̂n may be decomposed into contributions in
the q̂� directions, leading to an Oðq2þÞ contribution to q−
from the wave vector of Eq. (E5b). This result means that
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the Oðq2þÞ term of the determinant of Eq. (E6) vanishes
automatically. Requiring that the next leading term vanish
as well allows us to derive the leading decay factor in a zero
mode:

q ¼ qt
sinðθþ − θnÞ

q̂þ þ iq2t
A00
3;0

A00
1;1

sinðθþ − θ−Þ
sin3ðθn − θþÞ

q̂n; ðE7aÞ

q ¼ qþq̂þ þ iq2þ
A00
3;0

A00
1;1

sinðθþ − θ−Þ
sinðθn − θþÞ

q̂n: ðE7bÞ

Finally, as we explain in the main text, we find that some of
the system’s parameters are dependent of the size of the cell
jl1j, particularly that the quantity A00

3;0=ðA00
1;1jl1jÞ is dimen-

sionless. In addition to expressing the wave vector qt in
terms of its wavelength λ (qt ¼ 2π=λ), we can then derive
an expression for a zero mode as a function of the
properties on the boundary and the associated decay length
through the bulk ζþ:

q¼ 2π

λsinðθþ−θnÞ
q̂þþ i

�
2π

λ

�
2A00

3;0

A00
1;1

sinðθþ−θ−Þ
sin3ðθn−θþÞ

q̂n ðE8Þ

⇒

�
ζþ
jl1j

�
¼

�
λ

2πjl1j
�
2
�jl1jA00

1;1

A00
3;0

�
sin3ðθn − θþÞ
sinðθþ − θ−Þ

: ðE9Þ
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