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Using quantum gas microscopy, we study the late-time effective hydrodynamics of an isolated cold-atom
Fermi-Hubbard system subject to an external linear potential (a “tilt”). The tilt is along one of the principal
directions of the two-dimensional square lattice and couples mass transport to local heating through energy
conservation. Because of this coupling, the system quickly heats up to near infinite temperature in the
lowest band of the lattice. We study the high-temperature transport and thermalization in our system by
observing the decay of prepared initial density waves as a function of wavelength λ and tilt strength and
find that the associated decay time τ crosses over as the tilt strength is increased from characteristically
diffusive to subdiffusive with τ ∝ λ4. In order to explain the underlying physics and emphasize its universal
nature, we develop a hydrodynamic model that exhibits this crossover. For strong tilts, the subdiffusive
transport rate is set by a thermal diffusivity, which we are thus able to measure as a function of tilt in this
regime. We further support our understanding by probing the local inverse temperature of the system at
strong tilts, finding good agreement with our theoretical predictions. Finally, we discuss the relation of the
strongly tilted limit of our system to recently studied 1D models that may exhibit nonergodic dynamics.
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I. INTRODUCTION

While noninteracting particles in a tilted lattice potential
have been studied for almost a century [1–4], the dynamics
of strongly tilted and isolated many-body systems with
strong interactions have been relatively unexplored.
Characterizing the late-time behavior of such closed
quantum many-body systems away from equilibrium is a
topic of fundamental interest. In a series of recent papers
[5–11], it was shown how irreversible dissipative dynamics
can emerge from the unitary evolution of closed quantum
systems. Thus, generically, we expect the transport of
conserved quantities in such systems to behave hydrody-
namically at late times as long as the system thermalizes.
On the experimental front, advances in quantum simulation
with cold atoms and other platforms have allowed for
unprecedented control of quantum many-body systems,
and for the controlled study of their dynamics [12–18].

For example, in a recent study, diffusive charge transport
was observed in an isolated, strongly interacting, 2D Fermi-
Hubbard system [18]. Here, we follow that work by
observing the dynamics of the same cold-atom Fermi-
Hubbard system subject to a strong external linear poten-
tial, or “tilt,” and find a crossover to qualitatively different
subdiffusive behavior at strong tilts.
The dynamics of a weakly tilted 2D Fermi-Hubbard

model were studied in Ref. [19] using semiclassical
methods. That work formulated an understanding of the
long-time dynamics in which regions with positive local
temperature (lower energy and lower entropy than infinite
temperature) heat up and transport charge “up” the tilt, and
regions with negative local temperature [20,21] (higher
energy and lower entropy than infinite temperature) trans-
port charge “down” the tilt as the system approaches an
infinite-temperature equilibrium. This infinite-temperature
equilibrium of many fermions hopping in a single band has
a spatially uniform density and zero expectation value of
the hopping energy. In contrast, recent theoretical works
[22,23] explored the prospect of a transition to a localized
phase in strongly tilted interacting 1D systems. While some
evidence for this transition was found, it was suggested that
it was the result of energetically imposed, local kinetic
constraints that conserve the center of mass (c.m.)—a
phenomenon later referred to as “Hilbert space fragmenta-
tion” [24,25]. This mechanism for nonergodicity at strong
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tilts depends on factors such as the range of interactions, the
dimensionality of the system, and the direction of the tilt. In
what follows, we explore a system that does not exhibit
such nonergodicity. Thus, this work is most directly related
to Refs. [18,19], although initial motivation for this study
was derived from Refs. [22,23], and investigating any
nonergodic aspects of tilted systems is an interesting
avenue for future work.
In this work, we study the effect of an external tilt on the

late-time, high-temperature, emergent hydrodynamics of a
2D cold-atom system. This study is performed by varying
the tilt strength and observing the relaxation of prepared
initial density waves of various wavelengths λ. We observe
a crossover from a diffusive regime at weak tilts, where the
relaxation time τ scales like τ ∝ λ2, to a subdiffusive regime
at stronger tilts, where τ ∝ λ4. We then construct a hydro-
dynamic model that exhibits the same universal crossover
and discuss the underlying physics that leads to the
subdiffusive transport. Using the hydrodynamic model,
we extract the infinite-temperature, tilt-dependent, thermal
diffusivity of this system. We further verify our under-
standing of the underlying physics by measuring the local
inverse temperature profile of the system, thus confirming a
prediction of our theoretical model that this profile should
correspond to local equilibrium and be displaced by a
quarter wavelength relative to the density profile.

II. SYSTEM

Our system is well described by the tilted Fermi-
Hubbard Hamiltonian Ĥ ¼ ĤFH − FN̂fx̂c:m:, where ĤFH

is the conventional Fermi-Hubbard Hamiltonian on a
square lattice, F is the tilt strength, N̂f is the total number
of fermions, and x̂c:m: is the x component of the c.m. The
repulsive on-site interaction energy is denoted by U, and
the single-particle hopping energy is denoted by th. We
emphasize that the system is tilted in only one of the lattice
directions, which we denote by x. Because of this align-
ment, transport along the y direction does not couple to the
tilt potential. Thus, each row of sites at each x position
forms a thermal bath along an equipotential of the tilt.
These local baths allow this closed system to thermalize.
This case is in contrast to the 1D case for which recent
works [22,23] have suggested the possibility of ergodicity
breaking in strongly tilted systems.
We realize our tilted 2D Fermi-Hubbard model by

loading a balanced mixture of two hyperfine ground states
of 6Li into an optical lattice [26]. The tilt is generated by an
off-centered 1064-nm Gaussian beam of waist about
180 μm, as depicted in Fig. 1(a). The gradient of the
resulting potential is uniform to within 10% across a region
of length 40 alatt (30 μm), where alatt is the spacing of the
optical lattice, and the strength of the potential gradient can
be tuned from 0 to about h × 5.5 kHz=alatt [27]. The beam
is oriented such that the gradient is aligned with one of the

two principal axes of the square lattice. A spatial light
modulator (SLM) is used to project sinusoidal potentials of
tunable wavelength along the direction of the gradient and
also to remove any harmonic confinement from trapping
potentials in the region of interest, similar to what was done
in Ref. [18]. This method allows us to prepare initial
density modulations of tunable wavelength. We also add
“hard walls” in the direction perpendicular to the gradient

FIG. 1. Experimental setup and measurements. (a) An off-
centered beam generates a potential at the atoms that is approx-
imately linear in x and independent of y. Blue-detuned light
projected through a spatial light modulator is used to prepare the
initial density waves of our experiments, with tunable wavelength
in the direction of the tilt and hard walls a distance of 35 alatt apart
in the perpendicular direction. The figure is a schematic intended
to portray the experimental setup and is not to scale. (b) Spin-up
(↑) component of density vs time, averaged over about 10
images. The dotted square denotes the region of interest (ROI)
in which our measurements were taken. (c) Evolution of the
y-averaged density in the ROI of panel (b) as a function of x. The
data correspond to a system with interaction energy U=th ¼
3.9ð1Þ, tilt strength Falatt=th ¼ 0.99ð3Þ, and an initial density
modulation of wavelength λ=alatt ¼ 11.46ð3Þ. The density profile
is shown at times 0 ms (0 ℏ=th), 0.5 ms (2.6 ℏ=th), and 15 ms (77
ℏ=th) from top to bottom.
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in order to contain the atoms in that direction and keep the
average density constant over the experimental runtime [see
Fig. 1(a)].
The atoms are adiabatically loaded into the lattice-plus-

SLM potential at zero gradient (no tilt). The sinusoidal
component of the SLM potential is chosen such that the
resulting atom-density wave varies spatially with 0.0≲
hn̂ii≲ 1.2 [see Figs. 1(b) and 1(c)], where n̂i ¼ n̂i;↑ þ n̂i;↓.
We also perform experiments with smaller-amplitude
density waves and find no qualitative difference in our
results [27]. Once the initial density wave is prepared, we
suddenly turn off the sinusoidal component of the potential
created by the SLM and turn on the tilt potential, thus
initiating the dynamics. We focus on a square region of
interest with a size of 35 × 35 lattice sites and measure only
the single spin component hn̂i;↑i using fluorescence imag-
ing [26] since in a spin-balanced system hn̂ii ¼ 2hn̂i;↑i.
We perform all experiments at an optical lattice depth of

7.4ð1ÞER, where ER=h ¼ 14.66 kHz is the recoil energy
and h is Planck’s constant. This method leads to a hopping
rate of th=h ¼ 820ð10Þ Hz. We work at a magnetic field of
595.29(4) G near a Feshbach resonance centered on 690 G.
This process leads to a scattering length of 472.0(9)
a0, where a0 is a Bohr radius, which translates to an
interaction energy of U=th ¼ 3.9ð1Þ in the Fermi-Hubbard
Hamiltonian. We tune the tilt strength F to values of up to
Falatt=th ≈ 6, which allows us to explore tilts well above
the crossover from diffusive to subdiffusive dynamics.
It is of note that we do not reach tilt strengths so strong

that it would be accurate to describe our system over the
experimental runtime using an effective Hamiltonian that
exactly conserves the c.m. Therefore, we emphasize that
this work does not focus on the physics of fractonlike
systems with a strictly conserved dipole moment, nor does
it explore the possible nonergodic dynamics in such
systems, although these topics are an interesting direction
for future research [22–25,28–30]. However, our tilted
system does show an emergent conservation of the c.m.
in the long-wavelength limit, where the potential energy of
the tilt dominates the conserved total energy, and we
believe this feature to be universal for tilted interacting
lattice systems with energy and charge conservation as long
as the particles are restricted to a limited set of bands.

III. RESULTS

Our experimental protocol consists of preparing initial
density waves of various wavelengths in a potential with tilt
F and imaging the system’s density profile after it has
evolved under its own unitary dynamics for some time t.
We analyze our data by averaging all measurements from a
certain wavelength, tilt, and time, and we also average
the density in the direction perpendicular to the tilt. This
process yields the averaged density profile along the tilted
direction as a function of time, as shown in Fig. 1(c). For

each wavelength, tilt, and time, we fit the density profile
to a sinusoid, nðx; tÞ ¼ n̄þ AðtÞ cos ½ϕðtÞ þ 2πx=λ�, after
adjusting for any small amount of atom loss, with the
wavelength being fixed by the fit to the initial profile. We
extract both the phase ϕ and amplitude A of the sinusoidal
fit as a function of time, normalizing the amplitude by its
initial value Að0Þ. The main results of this paper are derived
from tracking the decay of the amplitude AðtÞ with time.
Any change in the phase with time is a result of the

distance the center of mass “falls down” the tilt as the
system heats up in the first band of the lattice potential.
More precisely, an initial state with energy density corre-
sponding to a finite temperature in the nontilted Fermi-
Hubbard system will evolve down the gradient of the tilted
potential. As it evolves, the tilt does work of about FΔxc:m:
per particle for a bulk shift of Δxc:m:, and this work gets

FIG. 2. Time decay of density waves. Fitted normalized relative
amplitudes of the periodic density modulation (circles) vs time
for wavelengths 11.46(3) (green), 15.16(5) (orange), 19.33(7)
(purple), and 23.3(2) (pink) in units of alatt. The lines are
exponential fits to the decay at late times after any initial average
heating (phase change). (Insets) Log-log plot of the fitted
decay times vs wavelength (yellow circles) and a power-law
fit of the form τ ∝ λα (green line). (a) Data set for tilt strength
Falatt=th ¼ 0. (b) Data set for tilt strength Falatt=th ¼ 2.00ð3Þ.
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converted locally to kinetic and interaction energy in the
system (the th and U terms) [19]. Since the th and U terms
can only accommodate up to an energy of order about
th þ U per particle before reaching infinite temperature, the
shift of the c.m. of the system cannot be more than about
ðth þUÞ=F. We observe phase changes during the early-
time dynamics that are consistent with this approximate
bound [27]. We corroborate that the atoms are not excited
to higher bands using a technique described in Ref. [31].
At late times, we observe an approximately exponential

decay of the density modulation (see Fig. 2). We fit an
exponential to these curves to extract decay times τ as a
function of λ and F. This process is done at tilts
Falatt=th ∈ f0; 0.39ð1Þ; 0.99ð3Þ; 2.00ð3Þ; 3.88ð9Þ; 6.1ð2Þg,
and for initial density waves with wavelengths
λ=alatt ∈ f11.46ð3Þ; 15.16ð5Þ; 19.33ð7Þ; 23.3ð2Þg. We also
use λ=alatt ¼ 7.69ð3Þ for Falatt=th ≈ 6 as the decay time of
the longest-wavelength modulation becomes very large for
this tilt. Decay times that we observe vary increasingly with
the tilt strength F, from 1–5 ℏ=th at zero gradient up to
103–104 ℏ=th for Falatt=th ≈ 6. At each value of the tilt
strength, we fit a power law of the form τ ∝ λα to our
measured decay times. Diffusive relaxation has a character-
istic τ ∝ λ2 dependence (α ¼ 2), while values of α > 2
indicate slower subdiffusive dynamics. Figure 2 shows the
full analysis for two of the values of F. From the extracted
exponents α, we observe a crossover from diffusive
relaxation at weak tilts, where α ≈ 2, to subdiffusive
behavior with an exponent of α ≈ 4 at stronger tilts. This

crossover is shown in Fig. 3, along with the theoretical
prediction of our hydrodynamic model.
Our observation of diffusive dynamics at weak tilts is

consistent with the analysis of Ref. [19] and with the
diffusive transport observed in previous experiments on the
same system at F ¼ 0 [18], albeit at lower temperatures.
The crossover to subdiffusion with α ≈ 4 at strong tilts was,
until now, previously unobserved, and its observation and
explanation is the main result of this work. Below, and
more completely in the Supplemental Material [27], we
construct a hydrodynamic model of our system to help
explain these observations. We also further test our under-
standing of the mechanism behind the subdiffusive trans-
port by experimentally verifying our model’s predictions
for the local temperature profile.

IV. HYDRODYNAMIC MODEL

We denote the nontilt energy density due to th and U
terms by eðx; tÞ and the number density of fermions by
nðx; tÞ. Our system is, on average, uniform along the y
direction, so e and n are assumed to only depend on x and t.
Here, n is a conserved density and so is ϵ ¼ e − Fxn, the
total energy density including the tilt potential.
For nonzero tilt, our system heats up to near infinite

temperature within the lowest band, where the thermody-
namic properties are readily calculated using the high-
temperature expansion. There are then three unknown
transport coefficients in the most general formulation of
our model: Diffusivities for each of the two conserved
densities and a thermopower coefficient that might be
significant for this system since the energy and atom
transport are strongly coupled by the tilt. Our data do
not have enough detail to allow us to estimate all three of
these transport parameters. However, in the stronger-tilt
regime where τ ∼ λ4, a tilt-dependent thermal diffusivity is
the only transport coefficient that enters in the relaxation,
and thus this parameter can be determined from our
measurements. We therefore present our hydrodynamic
model in this strong-tilt regime here and encourage
interested readers to see the Supplemental Material [27]
for a more detailed presentation of the theory that includes
the weaker-tilt diffusive regime.
Let us first consider the infinite-temperature equilibrium

that our system thermalizes to at late times. This equilib-
rium is a limit of zero inverse temperature (β → 0) and
infinite chemical potential (μ → ∞), with a finite spatially
uniform βμ; we call this equilibrium value β̄μ. This uniform
equilibrium has atom number density n̄ ¼ 2eβ̄μ=ð1þ eβ̄μÞ
per site and zero expectation value of the hopping kinetic
energy (the th term in the Hamiltonian). It is convenient
when separating the energy into tilt and nontilt terms
to choose the interaction term at each site to be
U½n↑ − ðn̄=2Þ�½n↓ − ðn̄=2Þ�. This choice amounts to chang-
ing the total energy and potential VðxÞ by constants, so it

FIG. 3. Diffusive-to-subdiffusive crossover. Extracted scaling
exponent α for τ ∝ λα from data sets at different tilts (orange
circles). As the tilt is increased from Falatt=th ¼ 0 to
Falatt=th ≈ 6, the relaxation of initial density waves crosses over
from characteristically diffusive (α ¼ 2) to subdiffusive with
α ≈ 4. The shaded curve is a prediction of our hydrodynamic
model, which is derived in detail in the Supplemental Material
[27].
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does not change the physics. With this choice, the equi-
librium nontilt energy density vanishes: ē ¼ 0.
The density profile at finite long times has an additional

sinusoidal component: nðx; tÞ ¼ n̄þ A0e−t=τ cos kx, with
k ¼ 2π=λ (choosing the origin so there is no added phase in
the argument of the cosine). In the strong-tilt, long-time,
small-k regime we are considering now, this density profile
is at local equilibrium with a time-dependent and spatially
nonuniform inverse temperature βðx; tÞ. We assume the
system is also near global equilibrium, so we work to
lowest order in A0 and β. Near position x, if we have local
equilibrium in the tilted potential VðxÞ ¼ −Fx in this
high-temperature limit, the density is given by nðxÞ ¼
2eβðμþFxÞ=ð1þ eβðμþFxÞÞ. So, in the long-wavelength limit
we are considering here, the density gradient is

dn
dx

¼ Fn

�
1 −

n
2

�
βðxÞ: ð1Þ

For positive β, the sign of this density gradient is familiar:
At equilibrium, the density increases as one goes to lower
potential energy since the atoms are favored to sit at lower-
energy positions. At negative temperature for fermions in a
band, higher-energy positions are favored instead, so the
density gradient is of the opposite sign. Quantitatively, the
product Fβ captures how much a system at inverse temper-
ature β “notices” the tilt F. Thus, indeed, we expect that
when the system maintains local equilibrium, dn=dx ∝ Fβ
holds to leading order near β ¼ 0. It follows that to leading
order, the temperature profile is given by −A0ke−t=τsinkx¼
Fn̄½1−ðn̄=2Þ�βðx; tÞ. Using this result, along with a high-
temperature expansion to write e as a function of β to
leading order, we obtain the nontilt energy profile

eðx; tÞ ¼ A0

F

�
4t2h þ U2

n̄
4

�
1 −

n̄
2

��
ke−t=τ sin kx ð2Þ

at local equilibrium to lowest order in A0 and k. Now that
we have determined the profiles of n and e by assuming
local equilibrium; next, we consider the dynamics and use
energy and number conservation to determine the relaxa-
tion time τ. In the regime we are now considering, the rate-
limiting bottleneck is the transport of nontilt energy (heat)
through the system. This bottleneck limits the rate at which
tilt energy can be converted to heat and dissipated to the rest
of the system, and thus the rate at which the whole system
relaxes.
The relaxation of the number density implies, via the

continuity equation for atom number, an atom number
current density of

jnðx; tÞ ¼
A0

kτ
e−t=τ sin kx: ð3Þ

This current density flows locally along the tilt direction,
locally converting tilt energy to nontilt energy. In addition,

there is a heat current jhðx; tÞ ¼ −Dth∇eðx; tÞ flowing
due to the temperature gradients, where DthðFÞ is a tilt-
dependent thermal diffusivity. Conservation of energy is
then

_e ¼ Dth∇2eþ Fjn; ð4Þ
showing the contribution of heat diffusion and the con-
version of energy from tilt to nontilt due to the atom current
jn. In the strong-tilt regime we are considering, the two
terms on the rhs of Eq. (4) are each much larger in
magnitude than the lhs: The motion of the atoms converts
tilt energy to nontilt energy, which is dissipated by thermal
transport, while the amplitude of the inhomogeneities
decays slowly (Dthk2τ ≫ 1). In this strong-tilt regime,
the decay rate is

1

τ
¼ Dthk4

F2

�
4t2h þ U2

n̄
4

�
1 −

n̄
2

��
≪ Dthk2; ð5Þ

and the condition for the validity of this regime is

k2
�
4t2h þU2

n̄
4

�
1 −

n̄
2

��
≪ F2: ð6Þ

We use Eq. (5) to extract the infinite-temperature thermal
diffusivity DthðFÞ as a function of tilt strength F in the
regime consistent with τ ∝ λ4 and plot the result in Fig. 4.
From the validity condition of Eq. (6), we can also
estimate the location of the crossover shown in Fig. 3.
Plugging in the experimental values of U=th ¼ 4 and
n̄ ¼ 0.6, and any value of k from the experimental range
kalatt ∈ ½2π=24; 2π=12�, we get the condition that α ≈ 4
when Falatt=th ≫ 1, which is consistent with the data
shown in Fig. 3. A more complete model is detailed in

FIG. 4. Thermal diffusivity. Extracted thermal diffusivity
(circles) vs gradient. The values are extracted by performing a
fit of our hydrodynamic model to all wavelengths of each
gradient simultaneously [27].
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the Supplemental Material [27], and this model is used to
derive the superimposed curve of Fig. 3, which agrees
quantitatively with our experimental results. This more
detailed model also gives the thermal diffusivity Dth in
terms of all of the transport coefficients, including the
thermopower. We therefore conclude that our hydrody-
namic model captures the essential physics leading to the
main observation of this paper: the crossover from diffusive
to subdiffusive relaxation with τ ∝ λ4 as the tilt becomes
strong.
The infinite-temperature thermal diffusivity DthðFÞ that

we are able to measure in this long-wavelength limit is the
thermal diffusivity in the presence of a tilt potential and the
absence of a mass current. In this long-wavelength limit
(k → 0), the heat current becomes much larger than the
mass current: jh ∼ A0k2=F ≫ jn ∼ A0k3=F2. In the limit of
small tilt, this thermal diffusivity must be of order tha2latt=ℏ,
with an order-one prefactor that depends on n̄ and U=th. In
the large-tilt regime where Falatt ≫ 4th, this heat must be
conducted by processes that are second order in the
hopping, with one uphill hop and one downhill hop and
the intermediate virtual state off shell in energy by Falatt.
This method produces an effective matrix element of about
t2h=F for these processes, which should result inDth ∼ 1=F2

at large F. But our results are actually in an intermediate
regime of F, where we are able to access this subdiffusive
regime, but we are not fully in the large-F regime where
one step in the tilt energy is large compared to the
interaction U and the bandwidth 4th for motion along
equipotential rows. The results in Fig. 4 seem consistent
with matching to these expected small- and large-F limiting

behaviors, but we leave a quantitative theoretical estimation
of DthðFÞ for future work.
The picture we have laid out in this section is one where,

at strong tilts and long wavelengths, the system quickly
achieves local equilibrium, locking the local inverse tem-
perature to the density profile [Eq. (1)]. As the density
profile decays, local number density currents flow, and by
conservation of energy, this necessitates the flow of nontilt
energy in the system. It is this flow of nontilt energy that
bottlenecks the relaxation in the large-F regime, and thus
Dth sets the relaxation rate of the system. This mechanism
only relies on the fact that the system thermalizes, has a
finite maximum kinetic and interaction energy per particle,
and obeys energy and charge conservation. Thus, our
qualitative conclusions are not specific to the Fermi-
Hubbard system we study but can be considered universal.
A prediction of this understanding is local equilibrium
between βðx; tÞ and nðx; tÞ summarized in Eq. (1). We
verify this prediction by measuring the single-component
density and singlon occupancy profiles in our system and
by solving for the inverse temperature in the atomic limit,
which is an effective method of thermometry at such high
temperatures. In Figs. 5(a) and 5(b), we show both the
density and local inverse temperature profiles, the decay
of both of their amplitudes, and the phase difference
between them in time (inset). We see that the βðx; tÞ profile
is at local equilibrium near infinite temperature (β ¼ 0),
locked at a quarter-wavelength phase shift from the density
profile, and both profiles decay together in time, as
predicted by our understanding of the subdiffusive regime
of this system.

FIG. 5. Local inverse temperature. Near infinite temperature, the density of singles can be used for thermometry. For a tilt strength of
Falatt=th ¼ 3.4ð1Þ [the potential is VðxÞ ¼ −Fx] and periodic modulation of wavelength 7.69(3) alatt, we measure the average single-
component density (green) and the density of singles (not shown) in order to extract the local inverse temperature of the cloud (orange).
(a) The measured average single-component density (green circles) and extracted inverse temperature βth (orange circles) with sinusoid
fits (solid lines) after a decay time of 15.1 ℏ=th. In the case of the inverse temperature, the dashed line is the predicted inverse
temperature profile from the density fit and local equilibrium [Eq. (1)]. The fitted offset of the inverse temperature is β̄th ¼ −0.002ð8Þ, in
agreement with an infinite average local temperature. (b) The amplitude of the density (green) and inverse temperature (orange)
modulations vs time (circles) with exponential decay fits (solid lines). (Inset) The phase difference of the sinusoid fits between the
single-component density and the extracted local inverse temperature vs time (yellow circles).
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V. SUMMARY AND OUTLOOK

We studied a new regime of thermalization in a square-
lattice cold-atom Fermi-Hubbard system subject to an
external linear potential. Our system was effectively closed
and evolved under its own unitary dynamics starting from
prepared initial density waves of various wavelengths λ. By
observing how the amplitude of these initial density
modulations evolved in time, we found two qualitatively
different hydrodynamic regimes and a crossover between
them: At weak tilts, the system relaxes diffusively, in
accordance with previous theory [19] and experiments [18].
At strong tilts, we found a new regime where the system
relaxes subdiffusively, with a decay time τ that scales as
τ ∝ λ4. We argued that this subdiffusive behavior is a result
of having to “drain” the large reservoir of tilt energy via the
bottleneck of heat transport en route to global equilibrium,
and it is captured effectively by a hydrodynamic descrip-
tion, with the system remaining near local equilibrium. To
test this understanding, we measured the local temperature
profile and indeed found that the system remains near local
equilibrium as it relaxes in this subdiffusive regime. In the
Supplemental Material, we also develop and present a more
complete and detailed hydrodynamic model that quantita-
tively captures the universal crossover between the diffu-
sive and subdiffusive regimes (Fig. 3). In the strongly tilted
regime, we used our model to extract the tilt-strength-
dependent thermal diffusivity that bottlenecks the relaxa-
tion of the system. One perspective on why this novel
subdiffusive regime appears is that, in the strong-tilt
and long-wavelength limit, the center-of-mass potential
energy is the dominant part of the total energy, so energy
conservation becomes an emergent almost-conservation of
the center of mass.
In contrast to recent theoretical studies of potential

ergodicity breaking in tilted 1D systems [22,23], in this
work we focused on the novel effects of a tilt on the
approach to equilibrium in an isolated system that does
indeed thermalize. This thermalization was robust because
our system had a tilt potential along only one of the two
principal axes of the lattice, and the resulting unconstrained
motion of atoms in the perpendicular direction produced
good thermal baths in each such row of the lattice. To arrest
this thermalization more microscopically, one avenue of
future exploration will be to apply tilt potentials along both
axes of the lattice to suppress such local thermalization.
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