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In this work we introduce two code families, which we call the heavy-hexagon code and the heavy-
square code. Both code families are implemented by assigning physical data and ancilla qubits to both
vertices and edges of low-degree graphs. Such a layout is particularly suitable for superconducting qubit
architectures to minimize frequency collisions and cross talk. In some cases, frequency collisions can be
reduced by several orders of magnitude. The heavy-hexagon code is a hybrid surface and Bacon-Shor code
mapped onto a (heavy-) hexagonal lattice, whereas the heavy-square code is the surface code mapped onto
a (heavy-) square lattice. In both cases, the lattice includes all the ancilla qubits required for fault-tolerant
error correction. Naively, the limited qubit connectivity might be thought to limit the error-correcting
capability of the code to less than its full distance. Therefore, essential to our construction is the use of flag
qubits. We modify minimum-weight perfect-matching decoding to efficiently and scalably incorporate
information from measurements of the flag qubits and correct up to the full code distance while respecting
the limited connectivity. Simulations show that high threshold values for both codes can be obtained using
our decoding protocol. Further, our decoding scheme can be adapted to other topological code families.
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I. INTRODUCTION

Fault-tolerant quantum computing with quantum-error-
correcting codes (QECCs) [1–3] is a scalable way to
achieve universal quantum computation which will be
capable of performing quantum algorithms that offer
significant advantages over classical algorithms. With the
rapid development of quantum-computing platforms such
as superconducting circuits and ion traps in the past decade,
the path toward achieving logical qubits with Oð100Þ
physical qubits and demonstrating fault tolerance in
near-term devices looks very promising.
Leading candidates for QECCs in the near term include

topological stabilizer codes such as the surface code [1,2]
and subsystem codes such as the Bacon-Shor code [4,5].
These codes belong to the class of quantum low-density-
parity-check codes, and hence, error correction consists of
measuring low-weight Pauli operators whose size is inde-
pendent of the code distance. The standard schemes to
implement these codes typically choose a square lattice
which is motivated by minimizing the depth of the
syndrome measurement circuits while allowing syndrome

measurements to be performed using nearest-neighbor
interactions.
For implementations with superconducting circuits,

promising architectures include fixed-frequency transmon
qubits coupled via the cross-resonance (CR) gates [6,7],
tunable-frequency transmons coupled via the controlled-
phase gate [8,9], systems using tunable couplers [10,11],
and so on. In the context of the CR gates, the relative
stability of microwave control as opposed to flux drive or
tuning results in high-fidelity gates which have achieved
error rates below 1% [12] and hence approaching the
surface-code-error threshold. Demonstrations of syndrome
measurements and fault-tolerant protocols using postselec-
tion in small-scale devices has also been achieved [13–16].
However, to implement the standard surface code within
this architecture requires data and syndrome measurement
qubits placed on a square lattice, where each vertex has
degree four (with four neighboring qubits). Therefore, a
minimum of five distinct frequencies are required for the
experimental implementation to ensure individual address-
ability of the CR gates and the avoidance of cross talk [17].
The large number of distinct frequencies imposes a
significant challenge to the device fabrication process
which has to avoid possible frequency collisions limiting
the code performance. Similar problems of cross talk also
exist in other superconducting architectures such as those
using the controlled-phase gates.
In this paper, we design codes on low-degree graphs

which can minimize the possibility of frequency collisions
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and optimize the hardware performance within supercon-
ducting qubit architectures. In particular, we design a
family of subsystem codes on a “heavy-hexagon” lattice
with a mixture of degree-two and degree-three vertices,
which can be considered as a hybrid surface and Bacon-
Shor code and a family of modified surface codes on a
“heavy-square” lattice with a mixture of degree-two and
-four vertices. These codes reduce the distinct number of
frequencies to only three in the bulk. The price of reducing
the degree is to introduce more ancilla qubits mediating the
entanglement for the syndrome measurement, which results
in the increase of the depth of the syndrome extraction
circuits, and hence, potentially increases the logical error
rate. On the other hand, the extra ancillas can also become
resources for the decoding process. In particular, we design
a protocol using the ancillas as flag qubits [18–24], which
allows errors to be corrected up to the full code distance,
and hence, significantly suppresses the logical error rate
(throughout the manuscript, unless specified otherwise, the
term ancilla is used for both syndrome measurement and
flag qubits). When implementing the flag decoder, the
heavy-square code can achieve an error threshold of
approximately 0.3% for both X and Z errors, while the
heavy-hexagon code achieves a threshold of approximately
0.45% for X errors. Both of them are close to the standard
surface-code threshold (approximately 0.67%) with the
added benefit of being suitable for superconducting hard-
ware which significantly reduces issues arising from
frequency collisions. Our schemes are optimized for
architectures using the CR gates, but they are also similarly
useful for other architectures, such as those using the
controlled-phase gates. Note that for the heavy-hexagon
code, since Z errors are corrected using a Bacon-Shor-type
decoding scheme, there is no threshold for such errors.
However, low logical errors are observed for the code
distances that are considered (d ≤ 13).
More generally, our work here extends the previous

fault-tolerant quantum-computation schemes with flag
qubits, which are mainly in the context of small-size codes,
to the realm of topological and subsystem codes. The
decoding scheme that we introduce is scalable and can be
efficiently implemented for large code distances. We also
prove that there exists topological stabilizer codes with flag
qubits defined on a general genus-g surface with gapped
boundaries and holes, such that our flag decoder can
achieve fault tolerance up to the full code distance.
The paper is organized as follows. In Secs. II A and II

B, we give a complete description of the heavy-hexagon
and heavy-square codes by describing the gauge gener-
ators to be measured and their construction. In addition,
we describe the two-dimensional layout and decoding
graphs of both code families and provide a scheduling for
the controlled-NOT (CNOT) gates which minimizes the
circuit depths for the X- and Z-type parity measurements.
A more detailed analysis of how edge weights for the

Bacon-Shor and surface-code-type decoding graphs are
calculated is provided in the Appendix A. In Sec. II C, we
discuss the implementation of the heavy-hexagon and
heavy-square codes using the cross-resonance gate and
discuss how frequencies can be assigned to different
qubits to increase the yield during the fabrication process.
Numerics comparing the average number of frequency
collisions for the heavy-hexagon, heavy-square, and
rotated-surface code are provided. In Sec. III, we provide
a detailed description of the decoding algorithm for
topological codes which makes use of information from
flag-qubit measurement outcomes to correct errors. We also
discuss how the decoder can be applied to topological
codes on a high-genus surface and topological codes with
hole defects (more details are provided in Appendixes B 1
and B 2). In Sec. IV, we provide numerical results for the
logical failure rates of the heavy-hexagon and heavy-square
codes and provide an estimate of their threshold values.
Lastly, in Sec. V, we summarize our results and provide
directions for future work.

II. HEAVY-HEXAGON AND
HEAVY-SQUARE CODES

Suppose that we have a family of topological codes
where the qubits and ancillas are represented as vertices of
some graph, and the edges of the graph represent the
connectivity between the qubits and ancillas. Given a
vertex of degree four, it is always possible to reduce the
degree to three by adding additional ancilla qubits as shown
in Fig. 1. By reducing the degree of the connectivity of a
given graph, we show below that the degree reduction can
potentially reduce the number of frequency collisions that
can occur when applying two-qubit gates using a cross-
resonance interaction [25].

A. Heavy-hexagon code

In this subsection, we describe a code family, the heavy-
hexagon code, encoding one logical qubit and defined on a
heavy-hexagonal lattice. The adjective “heavy” is used to
say that qubits are placed on both the vertices and edges of
a hexagonal lattice. About 60% of the qubits are therefore
degree two (i.e., they can interact with just two other
qubits), while the rest are degree three. The average qubit

FIG. 1. Reduction of a degree-four vertex to two vertices of
degree three. The vertices represent ancillas and data qubits of
some topological code. By adding an additional ancilla qubit and
entangling with the original ancilla, the degree of the connectivity
can be reduced by one.
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degree is then just 12=5, a large improvement over the
degree-four square lattice traditionally used for the topo-
logical code standard, the surface code. This is also an
improvement over the degree-three connectivity required
to implement the Bacon-Shor code on a hexagonal lattice
(see, e.g., the Bacon-Shor layout in Appendix C of
Ref. [26]). An illustration of the distance-five heavy-
hexagon code, along with the scheduling of the CNOT

gates for syndrome extraction, is shown in Fig. 2. The data
qubits (yellow vertices) in this code, which are used for the
encoding of the logical information, reside on an effective
square lattice. Hence, the data qubits can be labeled by row
and column indices (i; j).
The heavy-hexagon code is a subsystem stabilizer code

[4,5,27]. In this case, the logical information is encoded and
protected in a subsystem with Hilbert spaceHL lying inside
a larger Hilbert space H ¼ ðHL ⊗ HGÞ ⊕ HR, where HG
describes the additional gauge subsystem not necessarily
protected against noise and HR the rest of the full
Hilbert space.
The gauge group of the heavy-hexagon code is

G ¼ hZi;jZiþ1;j; Xi;jXi;jþ1Xiþ1;jXiþ1;jþ1;

X1;2m−1X1;2m; Xd;2mXd;2mþ1i ð1Þ

(with i; j ¼ 1; 2;…; d − 1,m ¼ 1; 2;…; ðd − 1=2Þ, and the
constraint that iþ j is even for the second term), which is
generated by weight-two Z-type gauge generators (blue
areas), weight-four X-type gauge generators (red areas) in
the bulk, and weight-two X-type gauge generators (red

areas) on the upper and lower boundaries, as illustrated in
Fig. 3(a). Here, d is the code distance and is taken to be odd
throughout the paper in order to optimize the logical error
rate. The Z-type and X-type gauge generators are used to
correct bit-flip and phase errors, respectively.
The stabilizer group which specifies the logical subspace

HL is the center of the gauge group or, explicitly,

S ¼
D
Zi;jZi;jþ1Ziþ1;jZiþ1;jþ1; Z2m;dZ2mþ1;d;

Z2m−1;1Z2m;1;
Y
i

Xi;jXi;jþ1

E
ð2Þ

(with the constraint iþ j odd for the first term). Here,
Zi;jZi;jþ1Ziþ1;jZiþ1;jþ1 is a weight-four surface-code-type
stabilizer in the bulk, which can be measured via taking the
product of the measured eigenvalues of the two weight-two
gauge generators Zi;jZiþ1;j and Zi;jþ1Ziþ1;jþ1. As we show
below, the way Z stabilizers can be factorized greatly
reduces the circuit depth for syndrome measurements,
and hence significantly suppresses the error propagation.
In addition to the bulk stabilizers, weight-two surface-code-
type stabilizers lie on the left and right boundaries. On the
other hand,

Q
i Xi;jXi;jþ1 is a Bacon-Shor-type stabilizer

[4,5], where the Pauli-X operators are supported on a two-
column vertical strip, as illustrated in Fig. 3(b). It can be
measured via taking the product of the measured eigen-
values of all the weight-four bulk X-type gauge generators
and weight-two boundary X-type gauge generators lying
inside the strip. All the operators inside the gauge group G

FIG. 2. The left side of the figure corresponds to the actual layout of the d ¼ 5 heavy-hexagon code, which encodes one logical qubit.
The data qubits are represented by yellow vertices, white vertices are the flag qubits, and dark vertices represent the ancilla to measure
the X-type gauge generators (red areas) and the Z-type gauge generators (blue areas). In the bulk, products of the two Z-type gauge
generators at each white face form a Z-type stabilizer. The right side of the figure provides a circuit illustration of the heavy-hexagon
code with the scheduling of the CNOT gates used the measure the X-type and Z-type gauge generators.
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commute with the stabilizers in the group S, which are
themselves mutually commuting. However, the overlap-
ping gauge operators with different Pauli types do not
necessarily commute. Therefore, only the stabilizer eigen-
values are used to infer the errors. The heavy-hexagon code
can be considered as a hybrid surface and Bacon-Shor
code, where the X and Z errors can be corrected, respec-
tively, with the surface-code-type and Bacon-Shor-type
decoding procedure, respectively. The surface-code part
corresponding to the X-error correction is a classical
topological code [28], and we show that the flag-qubit
measurement outcomes can be used to ensure that the code
can correct errors up to the full code distance (see Sec. III).
We note that in Ref. [29], compass codes, which are

defined as gauge fixes of Bacon-Shor codes, were studied
for the purpose of dealing with asymmetric noise models.
Such codes include rotated-surface codes and Bacon-
Shor codes. Thus, ignoring the extra ancilla qubits of
the heavy-hexagonal lattice, the heavy-hexagon code can
be viewed as belonging to the compass code family.
In general, a distance d version of the code has d data

qubits along each row and each column of the hexagonal
lattice so that the code parameters are given by ½½d2; 1; d��. In
addition, a distance d implementation of the code requires a
total of ½ðdþ 1Þ=2�ðd − 1Þ syndrome measurement qubits
and dðd − 1Þ flag qubits. Hence, the total number of qubits
in the implementation of the code is ½ð5d2 − 2d − 1Þ=2�.
Complementing the right-hand side of Fig. 2, an illus-

tration of the circuits for measuring the X- and Z-type gauge
generators is given in Fig. 4. The CNOT scheduling was
chosen to minimize the total number of error locations for

one round of syndrome measurements. Such a scheduling is
implemented in 11 time steps, which includes qubit initial-
ization and measurement.
Although the circuit depth of the heavy-hexagon code is

larger than that of the rotated-surface code (which requires
a total of six time steps for the X and Z stabilizer
measurements) [2,30], the flag qubits can be used to correct
weight-two errors arising from a single fault during the
weight-four X-type gauge measurements. In Sec. III, we
provide a new decoding algorithm which uses information

(a) (b)

FIG. 3. (a) Gauge generators: Weight-four X-type in the bulk, weight-two X-type on the upper and lower boundaries, and weight-two
Z-type. (b) Stabilizer operators: A two-column vertical strip with X-type, weight-four Z-type in the bulk, and weight-two Z-type on the
left and right boundaries.

FIG. 4. Circuit to perform the X- and Z-type parity measure-
ments of the heavy-hexagon code. Two flag qubits (white circles)
are used to measure the weight-four X-type gauge generators.
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from the flag measurement outcomes to correct errors up to
the full distance of the code [31].
An important ingredient in the implementation of

minimum-weight perfect matching using Edmond’s
method [32] is the matching graphs used to correct X-
and Z-type Pauli errors with appropriate edges and edge
weights. We illustrate such two-dimensional graphs for the
distance-five heavy-hexagon code in Fig. 5. The graphs are
constructed by assigning an edge to each data qubit
and vertices for the ancilla qubits used to measure the
X-type gauge generators [Fig. 5(a)] and Z-type stabilizer
generators [Fig. 5(b)]. The blue edges are boundary edges
which have zero weight. In general, edge weights are given
by wE ¼ − logPE where PE is the total probability of error
configurations resulting in an error at the edge E (see
Ref. [33] for examples of optimizations performed on the
surface code and Appendix A for edge-weight calculations
of the heavy-hexagon and heavy-square code). Correctable
Z-type errors result in highlighted vertices of the graph in
Fig. 5(a), while correctable X-type errors result in high-
lighted vertices of the graph in Fig. 5(b). If an odd number
of vertices are highlighted, a square vertex (chosen at
random) is highlighted to ensure that the total number of
highlighted vertices is always even. Note that for one round
of syndrome measurements, the matching graph for X-type
stabilizers is one dimensional since a vertex along a column
is highlighted if the sum of the measured eigenvalues of all
X-type gauge generators along a strip is odd. To detect
measurement errors, the gauge measurements must be
repeated d times [1,2,34]. Thus, the matching graph

consists of d copies of the matching graph for one round
of gauge measurements with vertices connected by vertical
edges. For the X-type gauge measurements, we obtain a
two-dimensional graph, whereas for the Z-type stabilizers,
we obtain a three-dimensional graph. In addition, diagonal
edges connecting the graphs from two consecutive meas-
urement rounds must be added to ensure that any single
fault in the circuits of Fig. 4 corresponds to an edge in the
final graph. Minimum-weight perfect matching is then
applied on the subgraph of highlighted vertices.

B. Heavy-square code

In this subsection, we present a mapping of the surface
code onto the heavy-square lattice. In the implementation
of the rotated-surface code in Ref. [30], each qubit in the
bulk, both data and syndrome measurement qubits, inter-
acts with four qubits. By adding two flag qubits to each
stabilizer measurement in the bulk, the rotated-surface code
can be mapped onto a heavy-square lattice, as shown in
Fig. 6, where now the average qubit degree is 8=3. The
distance d code belonging to the family has parameters
½½d2; 1; d�� with d2 data qubits and 2dðd − 1Þ flag and
syndrome measurement qubits. Hence, the total number
of qubits required for the implementation of the code is
3d2 − 2d. In what follows, the code family is referred to as
the heavy-square code. With the addition of the flag qubits,
it can be seen that the degree of both ancilla and data qubits
is reduced to two in the bulk, at the cost of having flag
qubits with degree four. In Sec. II C, more details are

(a) (b) (c)

FIG. 5. (a) Example of the minimum-weight-matching graph for five rounds the X-type gauge measurements of the d ¼ 5 heavy-
hexagon code. Since only the stabilizer measurements are used to correct errors, the graph is one dimensional for one measurement
round. Diagonal edges connecting two consecutive one-dimensional graphs are necessary to correct space-time-correlated errors arising
from CNOT gate failures. The weights and directions of the diagonal edges depend on the CNOT gate scheduling and are chosen such that
a single fault in the measurement circuits corresponds to an edge in the final graph. Labelsm, b1, bu, d1, d01, and d2 correspond to edges
with different weights computed based on the probabilities of occurrence for a given edge. The edge d01 is a bulk feature that appears only
in odd columns excluding the first and last column (for instance, columns three and five in the d ¼ 7 graph would contain edges d01).
More details are given in Appendix A. (b) Example of the minimum-weight-matching graph for one round of the Z-type stabilizer
measurements of the d ¼ 5 heavy-hexagon code. The full graph for d rounds of Z-type stabilizer measurements is three dimensional.
Cross edges are given by dashed lines since they are present only in the presence of nontrivial flag measurement outcomes (during the
X-type gauge measurements) represented by green circles. More details are provided in Sec. III. (c) Diagonal edges connecting two-
dimensional graphs are added to ensure that a single fault in the measurement circuits corresponds to an edge in the final graph.
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provided showing that the heavy-square code does reduce
the number of frequency collisions relative to the standard
implementation of the surface code.
The circuit for measuring the X and Z stabilizers of the

heavy-square code in the bulk, following the CNOT sched-
uling of Fig. 6, is illustrated in Fig. 7. It can be seen that the
total number of time steps required to perform the stabilizer
measurements is 14, compared to 11 for the heavy-hexagon
code. The increase in the number of time steps compared to
the heavy-hexagon code is due to the fact that both X and Z
stabilizers have weight four compared to the weight-two
Z-type gauge generators of the heavy-hexagon code.
Examples of the matching graphs for the d ¼ 5 heavy-
square code are given in Fig. 8. An illustration of the
possible weight-two errors arising from a single fault along
with the flag-qubit outcomes is given in Fig. 9.

We conclude this section with an important remark
regarding the role of the flag qubits for the heavy-square
code. The logical X̄ operator of the heavy-square code has
minimum support on d qubits in each column of the lattice
(i.e., is a horizontal string). From the CNOT scheduling of
Fig. 6, a weight-two X error arising from a single fault
(which results in a nontrivial flag measurement outcome) is
orthogonal to X̄ since its support remains in one column. On
the other hand, a logical Z̄ operator of the heavy-square code
has support in each row of the lattice (i.e., is a vertical
string). A weight-two Z error arising from a single fault is
thus parallel to Z̄ (since just like for X errors, its support is
along a single column). For the surface code, this problem
can be avoided by finding a scheduling (see Ref. [30]) such
that weight-two errors arising from a single fault are
always orthogonal to the logical operator of the same type.
Performing an exhaustive numerical search, such a sched-
uling is not possible for the heavy-square codewhen the flag
qubits are used to reduce the degree of data and syndrome
measurement qubits. Hence, if the flag measurement out-
comes are omitted when decoding the heavy-square code,
the effective distance of the code deff will satisfy deff < d. In
Sec. III, we provide a decoder that uses the flag measure-
ment outcomes allowing such weight-two Z errors arising
from a single fault (which are parallel to Z̄) to be corrected.
We show that with such a decoder, the code can correct any
error arising from at most ðd − 1Þ=2 faults so that deff ¼ d.

C. The cross-resonance gates and frequency
collision reduction

The designs of the heavy-hexagon and heavy-square
codes are motivated by the experimental implementation
of fault-tolerant quantum computation with a supercon-
ducting architecture. The low-degree property of the graphs
significantly mitigates the issues of frequency collision and
cross talk and is applicable to a wide range of architectures
including CR gates [6,7], controlled-phase gates [8,9],
and systems with tunable couplers [10,11]. In this section,
we show that our codes are optimized for a CR gate
architecture.
The CR gate implements a CNOT gate between a control

and a target qubit using only microwave pulses and not the
magnetic flux drive needed in other gate types [8–11].
When employed to couple fixed-frequency transmon qubits
via microwave-resonant buses, this architecture is hardware
efficient and insensitive to the charge-noise-induced
dephasing noise source [13,14]. The current fidelity of
the gate exceeds 0.99 in a two-qubit setup [12], approach-
ing the error threshold for the surface code. Small-scale
multiqubit demonstrations of fault-tolerant protocols have
been achieved recently [13–16].
In the CR gate, a drive tone at the target qubit’s

resonance frequency is applied to the control qubit. This
requirement can produce “frequency collisions” among
nearby qubits whose energies are degenerate. As transmon

FIG. 6. Illustration of the d ¼ 5 heavy-square code with the
scheduling of the CNOT gates. The data qubits are represented by
yellow vertices, white vertices are the flag qubits, and the dark
vertices are the syndrome measurement qubits. The red faces
correspond to X-stabilizer measurements and the blue faces to
Z-stabilizer measurements.

FIG. 7. Circuit for the measurement of the X stabilizers
followed by the Z stabilizers of the heavy-square code.
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qubits are weakly anharmonic, the j0i → j1i, j1i → j2i,
and j0i → j2i transitions are all relevant. Two nearest-
neighbor qubits must not have degenerate ω01, nor one
qubit’s ω01 degenerate with another’s ω12 or ω02=2. Among
next-nearest-neighbor qubits joined to a common control
qubit of the CNOT gate, degeneracies of ω01 and ω12 are also
forbidden, as is a control qubit’s ω02 being degenerate
with the summed ω01 of two of its nearest neighbors.
On the other hand, if a control and target’s ω01 frequencies
are too far apart, the gate rate becomes too slow [35]. To
avoid all these collision conditions, we designate each qubit
to have one of a minimal set of distinct frequencies
according to a defined pattern. The relative frequencies of

nearest-neighbor qubits therefore fix the CNOT direction
among each pair. In order to reverse certain CNOT directions
to implement the measurement circuits in the codes devel-
oped above, we can conjugate the existing CNOT gates by
Hadamards on the control and target qubits. Since the single-
qubit errors on current superconducting architectures are at
least an order of magnitude lower than the two-qubit gate
fidelities, the errors due to these extra Hadamards are
negligible.
In Fig. 10, we show the qubit frequency assignments of

the heavy-hexagon and heavy-square codes, respectively.
The solid black lines indicate the connections and CNOT

gates on the actual device. The control qubits are repre-
sented by black dots assigned with frequency f1, while the
target qubits in the bulk are represented by green and white
dots corresponding to frequency f2 and f3. In addition, in
both codes, there are additional boundary target qubits with
frequency f4 represented by blue dots (shown in the left
panels). In both the heavy-hexagon and heavy-square
codes, the controls reside on the degree-two vertices of
the graph, such that they have only at most two neighboring
targets. With this configuration, there are only three distinct
frequencies (f1, f2, and f3) in the bulk, which greatly
reduces the possibility of frequency collisions. We note that
the extra frequency f4 from the boundary targets is due to
the modification or simplification of the heavy-hexagon
and heavy-square lattice structure on the boundaries in
order to shorten the circuit depth of the boundary gauge or
stabilizer generators. If we recover the original heavy-
hexagon and heavy-square lattice structure on the boundaries
at the price of introducing additional ancillas and increase the
depth of the measurement circuits (as shown on the right
panels of Fig. 10), we again have only three distinct

(a) (b) (c)

FIG. 8. Example of the graphs used to implement minimum-weight perfect matching for the d ¼ 5 heavy-square code for (a) Z-type-
stabilizer measurements and (b) X-type-stabilizer measurements. The green vertices in (a) correspond to flag measurement outcomes
during X-stabilizer measurements. Similarly, the green vertices in (b) correspond to flag measurement outcomes during Z-stabilizer
measurements. In (c), we illustrate the graph associated with Z-stabilizer measurements with 3D diagonal and vertical edges connecting
the two-dimensional graphs.

FIG. 9. Flag outcomes arising from a single fault resulting in a
weight-two data qubit error during the measurement of a weight-
four operator. In this example, the flag qubits are prepared in the
jþi state and measured in the X basis. Starred measurements give
a nontrivial outcome due to the errors. In the above examples, if
the ZZ error is replaced by an IZ error, the same flag outcomes
will occur resulting in a weight-one data qubit error.
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frequencies (i.e., removing all the blue dots). By contrast, a
rotated-surface-code architecture, in which all qubits reside
on degree-four vertices, must have five distinct frequencies
in order to avoid all collision conditions [17].
For practical implementations, a code with its graph

and set of frequencies must be robust against the
disorder that develops among dozens of transmon qubits
prepared together on a single chip. This disorder
arising from imperfections in fabrication may be charac-
terized by the parameter σf, the standard deviation in
frequency of a population of fixed-frequency transmons.
For typical multiqubit devices whose transmons have
f01 ∼ 5 GHz and f12 − f01 ∼ −330 to −340 MHz (similar
to Refs. [12,36]), achieving σf < 50 MHz requires all
device parameters to be controlled with precision better
than 1%, which is not a simple task when the transmons
incorporate nanoscale tunnel junctions and capacitances
of tens of fF. We therefore seek a lattice and code for
which the transmons may have the largest possible
imprecision σf while still avoiding frequency collisions.
For a quantitative comparison among the lattices and
frequency patterns of Fig. 10, we perform Monte Carlo
simulations in which we populate these lattices and

related designs with a random disorder in frequency
characterized by σf. Taking “collisions” as we describe
above, we forbid regions of frequency space where we
expect the resulting gate errors to exceed other typical
causes [12,35,36]. In Fig. 11, we show the mean number
of collisions found among various lattices as a function of
σf, each case derived from at least 103 Monte Carlo
repetitions [37]. While this model does not quantify gate
errors, it does enable us to compare frequency crowding
in different graphs using consistent means. As a practical
matter, we seek to achieve <1 average collision. We see
that in any case, this goal is achievable only for precisions
σf < 30 MHz.
For all three types of codes, i.e., the heavy-hexagon

code, heavy-square code, and the rotated-surface code, we
plot the mean number of collisions vs σf for both distance
d ¼ 3 and distance d ¼ 5. For the heavy-hexagon code, we
show the three-frequency design for both d ¼ 3 (magenta
dashed line) and d ¼ 5 (magenta solid line) corresponding
to the right panel of Fig. 10(a) and also the four-frequency
design at d ¼ 3 (blue dashed line) and d ¼ 5 (blue solid
line) corresponding to the left panel of Fig. 10(a). Note that
the behavior of the two types of designs at d ¼ 5 is similar,

(a)

(b)

FIG. 10. Frequency assignments of the heavy-hexagon code (a) and the heavy-square code (b). Solid black lines indicate the actual
connections and CNOT gates in the fabricated superconducting device. The black dots indicate control qubits, while the other three colors
indicate target qubits. The original heavy-hexagon and heavy-square codes on the left panels feature three distinct frequencies in the
bulk and an additional frequency on the boundary, while the modified codes on the right panels remove the extra frequencies (white
dots) on the boundaries.
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with the four-frequency design having slightly more
collisions, which is expected since the lattice shape differs
only on the boundary. For the heavy-square code, we show
the four-frequency design for both d ¼ 3 (red dashed line)
and d ¼ 5 (red solid line) corresponding to the right panel
of Fig. 10(b). We can conclude that the heavy-hexagon
and heavy-square codes behave similarly for each code
distance (red vs blue lines). Each of these codes is,
however, distinctly better than the rotated-surface code
with degree four and a five-frequency pattern (black dashed
and straight lines). Although the rotated-surface code
requires 10% to 20% fewer qubits than the other two
codes at each distance d, it requires qubits to be prepared
nearly twice as precisely in order to eliminate frequency
collisions. Or put another way, for a given distance (d ¼ 3
or d ¼ 5) and fabrication precision σf, the rotated-
surface code exhibits roughly an order of magnitude more
frequency collisions than do the heavy-hexagon or heavy-
square codes. Therefore, the design of error-correcting

codes on a low-degree graph indeed improves the fabrica-
tion of the hardware significantly.

III. DECODING THE HEAVY-HEXAGON AND
HEAVY-SQUARE CODES USING FLAG QUBITS

In what follows, when a flag qubit has a nontrivial
measurement outcome, we say that the flag qubit flagged.
We also assume the following depolarizing circuit-level
noise model:
(1) With probability p, each single-qubit gate location is

followed by a Pauli error drawn uniformly and
independently from fX; Y; Zg.

(2) With probability p, each two-qubit gate is followed
by a two-qubit Pauli error drawn uniformly and
independently from fI; X; Y; Zg⊗2nfI ⊗ Ig.

(3) With probability ð2pÞ=3, the preparation of the j0i
state is replaced by j1i ¼ Xj0i. Similarly, with
probability ð2pÞ=3, the preparation of the jþi state
is replaced by j−i ¼ Zjþi.

(4) With probability ð2pÞ=3, any single-qubit measure-
ment has its outcome flipped.

(5) Lastly, with probability p, each idle gate location is
followed by a Pauli error drawn uniformly and
independently from fX; Y; Zg.

When measuring the weight-four Pauli operators in
Fig. 4 and 7, we have already discussed how a single fault
can lead to a weight-two data qubit error while at the same
time resulting in a flag [38] (see Fig. 9). In Fig. 5 and 8, we
illustrate the matching graphs corresponding to Z- and
X-type-stabilizer measurements of the heavy-hexagon and
heavy-square code by adding green vertices representing
the flag measurement outcomes. For the heavy-hexagon
code, faults resulting in X errors during the X-type gauge
measurements can result in nontrivial flag outcomes, and
the syndrome of the resulting data qubit errors is measured
during the Z-type-stabilizer measurements. Note that a non-
trivial flag outcome indicates that either a weight-one or
weight-two data qubit error occurred, or a measurement
error triggered the flag. Flag outcomes for the heavy-square
code have an analogous representation but are present for
both X- and Z-stabilizer measurements. In Fig. 12, edges
(corresponding to data qubits [39]) that can be afflicted by an
error from a single fault resulting in a flag are shown.
Because of the shape of the highlighted area, we refer to such
edges as boomerang edges. Each diamond has two green
vertices (which we refer to as left or right flags) since two
flag qubits are used to measure the weight-four operators of
the heavy-hexagon and heavy-square code. Note that flags
can also arise from measurement errors. Therefore, flag
qubits can flag without the presence of data qubit errors.
However, by analyzing the circuits of Fig. 4 and 7, it can be
shown that a single fault which results in both left and right
flags cannot induce data qubit errors. Thus, when both left
and right flags are highlighted, information from the flag-
qubit measurement outcomes is ignored.

FIG. 11. Monte Carlo simulations of the collision rate due
to qubit frequency scatter caused by fabrication imprecision.
Averages of >103 Monte Carlo repetitions. The x axis is the
frequency precision of the fabrication σf (MHz). The y axis is the
mean number of collisions for each device for each value of σf.
Heavy-hexagon code using the three-frequency design in the
right panel of Fig. 10(a): d ¼ 3 (magenta dashed line) and d ¼ 5
(magenta solid line). Heavy-hexagon code using the four-fre-
quency design in the left panel of Fig. 10(a): d ¼ 3 (blue dashed
line) and d ¼ 5 (blue solid line). Heavy-square code using the
four-frequency design in the left panel of Fig. 10(b): d ¼ 3 (red
dashed line) and d ¼ 5 (red solid line). Rotated-surface code,
degree-four, and five-frequency pattern: d ¼ 3 (black dashed
line); d ¼ 5 (black solid line).
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The goal of this section is to present a new decoding
algorithm which integrates the flag-qubit measurement
outcomes into the minimum-weight perfect-matching algo-
rithm to ensure that errors arising from at most ðd − 1Þ=2
faults are always corrected [40]. The decoder should be
efficient so that it can be implemented via Pauli frame
updates [3,42]. In order to do so, we make the following
observations. Note that a single fault resulting in a left or
right flag occurs with probabilityOðpÞ. In general,m left or
right flags, each arising from a single fault, will occur with
probability OðpmÞ. Having both m flags in addition to l
errors outside boomerangs is an OðpmþlÞ event.
Sincedata qubit errorswithin boomerang edges occurwith

probabilityOðpÞ, weights of edges E outside of the boomer-
angs are renormalized so thatwE ¼ − logpmPE, whereas the
weights of edges within the boomerangs are computed based
on the leading-order error configurations giving rise to those
edges. More formally, the decoding protocol using the flag-
qubit measurement outcomes is given as follows:
Decoding protocol using flag qubits.— Consider a

distance d heavy-hexagon or heavy-square code. After
performing d rounds of error syndrome measurements,
suppose there are a total of m left or right flag outcomes
associated with the graph G.
(1) Leave all edge weights inside the boomerangs cor-

responding to left or right flag outcomes unchanged.
(2) LetE be an edge outside a highlightedboomerang and

PE the probability of all error configurations resulting
in an error on edge E. Replace PE by P0

E ¼ pmPE.
(3) Replace the edge weight wE of E by w0

E ¼ − logP0
E.

(4) Define G0 to be the graph G with new edge weights
computed from the previous steps.

(5) Vertices in G0 are highlighted if the corresponding
X- or Z-type-stabilizer outcomes change in two
consecutive rounds. If an odd number of vertices
are highlighted, highlight a boundary vertex.

(6) Implement the minimum-weight perfect-matching
algorithm on the graph G0 to identify all pairs of
highlighted vertices to be matched.

(7) Find the minimum-weight path connecting all pairs
of matched vertices of G0.

(8) If G0 is a d-dimensional graph, the highlighted edges
in G0 are mapped to edges in the corresponding
(d − 1)-dimensional planar graph addedmodulo two.

(9) The correction is applied to the remaining high-
lighted edges.

Note that the probabilities assigned to edges outside of
the boomerang’s do not always correspond to the correct
probability distribution for such edges. As an example,
suppose there are m flags and two data qubit Z errors
outside the boomerang’s for a graph associated with the
X-stabilizer measurements. Assume that the Z errors result
in two highlighted vertices, as for example, in Fig. 13
(where one flag qubit flagged). The assigned probability for
the path connecting the two vertices will be Oðp2ðmþ1ÞÞ
instead of the actual probability Oðpmþ2Þ and will thus
have a higher weight. One could be concerned that the high
preference for edges within a boomerang could distort
paths such that a correctable error configuration (under
standard minimum-weight perfect matching) would go
uncorrected. However, as we show below, the decoder
described above can correct error configurations arising
from at most bðd − 1Þ=2c faults and is thus fault tolerant.
Consider the worst-case scenario where m1 > 0 flags

occur, which are all caused by measurement errors so that
paths within boomerangs contain no data qubit errors. In
addition, suppose there are m2 consecutive X or Z data
qubit errors (whether it is X or Z is irrelevant as long as all
errors are of the same type) which result in two highlighted
vertices. We are interested in the case where m1 þm2 ≤
bðd − 1Þ=2c so that the total number of data qubit errors is
correctable by the code. Thus, the number of edges α1 and

FIG. 12. Edges (highlighted in red) that can be afflicted by an
error from a single fault resulting in a left or right flag. A
highlighted cross edge (corresponding to a weight-two data qubit
error) corresponds to X or Z data qubit errors on edges e1 and e2
(which is equivalent to two-data-qubit errors on edges labeled e3
and e4 up to a stabilizer). Edges e4 and e1 correspond to weight-
one data qubit errors. Such edges are referred to as boomerang
edges due to the shape of the highlighted area.

FIG. 13. Example of two Z errors resulting in two highlighted
vertices for the graph GX. In addition, we consider the case where
another fault occurs which results in a flag as shown in the figure.
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α2 connecting the two highlighted vertices to the nearest
boundary of the graph satisfies α1 þ α2 ≥ bðdþ 1Þ=2c. An
illustration is provided in Fig. 14.
Clearly, the path which corrects all the data qubit errors is

one which goes through all the diamonds shown in Fig. 14,
which does not contain a boomerang (the edges belonging
to the correct path are highlighted in red). However,
each edge E along such path will have weight wE ¼
− logpm1PE compared to the edges E0 in the boomerangs
which will have weight wE0 ¼ − logPE0 . For the boomer-
angs to distort the minimum-weight path connecting the
highlighted vertices in such a way that a logical fault
occurs, the path would need to connect the highlighted
vertices to the boundary of the graph. But since m1þ
m2 ≤ bðd − 1Þ=2c, there must be at least ðdþ 1Þ=2 edges
along such a path that does not belong to a boomerang and
thus has weight wE ¼ − logpm1PE. Consequently, such a
path would have weight w1 ≥ − logpm1bðdþ1Þ=2cQ

E0 PE0

compared to the path which corrects the errors, which has
weight w2 < − logpm1bðd−1Þ=2cQ

E PE, which has smaller
weight [43]. Therefore, the minimum-weight path will
correct the errors as required.
We point out that in Ref. [44], information from flag-

qubit measurement outcomes was used in a neural-network
decoder to decode topological color codes resulting in
improved thresholds. However, the scheme is not scalable,
as it requires an exponential increase in training data as a
function of the code distance.
Although the above discussion applies to heavy-square

or -hexagon codes and more generally to topological

stabilizer codes with open boundaries, it also applies to
the cases when these codes are defined on a closed surface
(no boundaries) with nonzero genus g. The above analysis
can be straightforwardly adopted to the g ¼ 1 case, i.e.,
codes defined on a torus, which can be constructed by
identifying the opposite edges of the square patch (periodic
boundary condition) in Fig. 14. In the general genus-g case,

FIG. 14. Illustration of a case where there arem1 flags, each resulting from a measurement error, andm2 consecutive Z errors resulting
(the particular error type is not important) in two highlighted vertices. We have the constraint that m1 þm2 ≤ bðd − 1Þ=2c. The graph
can be any graph associated with a distance d heavy-square or heavy-hexagon code. Hence, α1 þ α2 ≥ bðdþ 1Þ=2c. The dark lines
represent the boundaries of the graph.

(a)

(b)

FIG. 15. Minimum-weight paths on (a) a genus-g surface and
(b) a surface with hole defects. The red dots indicate the
syndromes. The red lines correspond to the actual data qubit error
string and the correct minimum-weight path. The blue dashed lines
indicate the distorted path which induces a logical error.
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the code distance d is given by the systole of the entire
surface, i.e., the shortest noncontractible loop. The logical
operators correspond to the noncontractible loops on the
surface characterized by the first homology groupH1 ¼ Z2g

2 .
In order to distort the minimum-weight path to form a
noncontractible loop corresponding to a logical error, as
illustrated by Fig. 15(a), the distorted path again needs to
have at least bðdþ 1Þ=2c edges outside the boomerang
edges, which has higher weight than the actual error path
with length bðd − 1Þ=2c.
Similarly, the same proof also applies to the case where

logical information is encoded using holes with gapped
boundaries [2,45,46], as illustrated by Fig. 15(b), as well as
the most general case where all of these encoding schemes
coexist [48]. Hence, we reach the following theorem:
Theorem 1: There exists topological stabilizer codes

with flag qubits defined on a genus-g surface with p open
boundaries, q holes such that the flag-decoding scheme
achieves fault tolerance with the full code distance (g,
p, q ∈ f0;Nþg).
In this paper, we prove the existence with the explicit

construction of the heavy-square topological code, which
has essentially the same topology-dependent logical encod-
ing as the conventional toric code (e.g., both corresponding
to the homology group H1 ¼ Z2g

2 on a genus-g surface).
The explicit construction of (1) the heavy-square code on a
high-genus surface by gluing two layers of punctured
surfaces [49] and (2) the heavy-square code with hole
defects [2,45] are shown in Appendix B. We note that the
methods we describe above apply to arbitrary constructions
of high-genus surfaces with stabilizers of weight at most
four, while the bilayer construction is the simplest one with
local connectivity. We caution that more general construc-
tions such as higher-genus hyperbolic surfaces will typi-
cally require stabilizer measurements of weight greater than
four [50–53], and thus, the methods we describe above do
not directly apply. However, with more flag qubits, it is

possible to adapt the edge-weight renormalization scheme
that we describe in this work [41]. The heavy-hexagon
subsystem code, on the other hand, is “half-topological”
(corresponding to the Z stabilizers) as we mention above
[54], and it turns out that the flag-decoding scheme also
achieves fault tolerance with the full code distance.
Lastly, we point out that for codes with stabilizer

generators of weight w > 4, depending on the support of
logical operators, one could potentially require v-flag
circuits to measure the stabilizer generators where v ¼
ðw=2Þ − 1 (see Ref. [20] for the definition of a v-flag
circuit). If a v-flag circuit is required (with v > 1), then
edges should be renormalized based on the number of faults
that result in a particular flag outcome. For instance, if two
faults result in a particular flag outcome, then edges with
support on the data qubits that could have errors resulting
from the flags should be renormalized by p, and edges
not in the support should be renormalized by p2. Thus, to
guarantee the correction of errors arising from up to
bðd − 1Þ=2c faults, extra flag qubits could be required
to distinguish how many faults result in a particular flag
outcome.

IV. NUMERICAL RESULTS

Using the decoding protocol with flag qubits and the
edge weights given in Appendix A, we compute the
logical error rates of the heavy-hexagon and heavy-square
codes for odd distances 3 ≤ d ≤ 13. Error rates are
computed by performing 107 Monte Carlo simulations
given the noise model described in Sec. III. Logical X-
and Z-error rates [55] for both codes are given in Figs. 16
and 17.
For the heavy-hexagon code, since Z errors are cor-

rected using Bacon-Shor-type stabilizers, there is no
threshold for logical Z errors [see Fig. 16(b)]. However,
for physical error rates close to 10−4, it can be seen that
the logical error rate does decrease significantly for the

(a) (b)

FIG. 16. (a) Logical X-error rates and (b) logical Z-error rates for the heavy-hexagon code. The asymptotic threshold for logical X
errors is approximately pth ¼ 0.0045. Since Z errors are corrected using Bacon-Shor-type stabilizers, there is no threshold for Z errors.
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code distances that we consider. X-type errors are cor-
rected using a surface-code-type decoding scheme. The
X-error-rate threshold is found to be pth ¼ 0.0045, which
is fairly competitive with the results obtained for the
surface code [2,8,33,34].
Similar to logical X-error rates of the heavy-hexagon

code, the heavy-square code also exhibits high thresholds
even though the circuit depth for the stabilizermeasurements
is 14 compared to 6 for the surface code. For both logical X
and Z errors, the computed asymptotic threshold is found to
be approximately pth ¼ 0.003.
Despite the large circuit depths, the high-threshold

values are obtained mainly due to our new decoding
scheme, which uses information from the flag-qubit meas-
urement outcomes. We already prove in Sec. III that the full
code distance can be achieved. To further support our
claims, we also compute the logical error rates for the

heavy-square code ignoring the flag-qubit measurement
outcomes and using the standard minimum-weight perfect-
matching methods used for the surface code. The plots are
given in Fig. 18. As we discuss in Sec. II B, weight-two Z
errors arising from a single fault are parallel to the logical Z
operator of the heavy-square code. It is thus not surprising
to see that when flag information is ignored, the logical Z-
error rates in Fig. 18(b) are about an order of magnitude
higher than those in Fig. 17(b). Further, the threshold for
logical X errors in Fig. 18(a) is approximately pth ¼ 0.002,
which is less than half the value obtained when flag
information is used to correct errors.

V. CONCLUSION

In this work, we introduce two families of codes which
we call the heavy-hexagon code and heavy-square code.

(a) (b)

FIG. 17. (a) Logical X-error rates and (b) logical Z-error rates for the heavy-square code. The asymptotic threshold can be seen to be
approximately pth ¼ 0.003.

(a) (b)

FIG. 18. (a) Logical X-error rates and (b) logical Z-error rates for the heavy-square code when flag-qubit information is ignored. The
threshold for logical X errors is approximately pth ¼ 0.002, half the value obtained when flag information is used to correct errors.
Further, due to the error propagation properties of the heavy-square code, logical Z-error rates are about an order of magnitude worse
compared to those obtained when flag information is kept.
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The heavy-hexagon code (where qubits are located on a
heavy-hexagonal lattice) is a hybrid surface and Bacon-
Shor code where weight-four X-type gauge generators
form Bacon-Shor-type stabilizers and products of weight-
two Z-type gauge generators form surface-code-type
stabilizers. The heavy-square code is a family of surface
codes mapped onto a heavy-square lattice. For super-
conducting qubit architectures using the CR gate, both
code families achieve the goal of reducing the number of
frequency collisions as compared to surface-code devices.
For a code of distance d, heavy-square and heavy-
hexagon implementations require 10% to 20% more
qubits than a rotated-surface code. However, when con-
sidering the practical effect of fabrication-related disorder
σf in the qubits’ frequencies, for a given distance d, the
heavy-square and heavy-hexagon codes achieve nearly an
order of magnitude fewer frequency collisions than the
rotated-surface code and can accept roughly twice the
disorder while remaining collision-free.
One of the key ingredients in the fault-tolerant imple-

mentation of the above codes is the use of flag qubits for
the weight-four X- and Z-type gauge and stabilizer
measurements. We provide a scalable decoding scheme
which makes use of the flag-qubit information and can
correct errors up to the full code distance. Performing
Monte Carlo simulations for a depolarizing noise model,
we show that the heavy-square code exhibits competitive
threshold values (approximately pth ¼ 0.003) with the
surface code. Since Z errors are corrected via Bacon-
Shor-type decoding schemes for the heavy-hexagon code,
there is no threshold for Z errors (although low logical
error rates can be achieved for physical error rates of the
order of 10−4). However, the heavy-hexagon code
achieves a threshold of approximately pth ¼ 0.0045 for
X errors.
In this work, we also show how our flag-qubit-decoding

scheme can be applied to codes defined on a surface with
nonzero genus g. An interesting avenue for future work is
to apply the flag-qubit-decoding scheme to topological
codes with stabilizer generators of weight greater than four
(such as the color code) to ensure that errors are corrected
up to the full code distance. Such an approach could result
in thresholds which are closer to thresholds obtained for
surface codes. When including the overhead cost of
performing a universal gate set, such codes with flag-
qubit decoders could be a preferred alternative to the
surface code. Another interesting avenue would be to
extend the ideas presented in this work to topological
codes with twist defects [47] and to more general sub-
system codes. We also point out that in the presence of m
flags, instead of renormalizing edge probabilities for edges
outside boomerangs by pmPE, numerical optimizations
could be performed to find the optimal coefficient α
(potentially using machine-learning techniques) such that
edge probabilities would be renormalized by pαPE. Such

optimizations will inevitably be highly dependent on the
underlying noise model afflicting the stabilizer measure-
ment circuits.
Lastly, in Ref. [56] it was shown how some families of

subsystem codes achieve better error-correcting capabilities
compared to the surface code in the presence of leakage
errors. An interesting direction for future work would be to
analyze the performance of codes defined on low-degree
graphs in the presence of leakage errors to see if such codes
also have favorable error-correcting capabilities compared
to more standard implementations such as in the sur-
face code.
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APPENDIX A: EDGE-WEIGHTS
CALCULATIONS FOR THE

MATCHING GRAPHS

In this Appendix, we provide examples of how to
compute the weights of the edges for the graphs of
Fig. 5 and 8. We then give the edge weights for all edges
in the graphs used for correcting X and Z Pauli errors.
Consider the circuit containing the scheduling of the

CNOT gates of the heavy-hexagon code in Fig. 2. In what
follows, we focus on CNOT gates in the bulk of the lattice.
An error of the form XX occurring after the CNOT gate
implemented at time step eight for a Z-type parity meas-
urement results in an X error on the corresponding data
qubit, which then propagates through the CNOT gate
implemented in the ninth time step. Thus, both Z-type
parity measurements interacting with a bulk data qubit will
detect the X error in one measurement round and will
contribute to the edge weight of 2D TLBR (see Fig. 19).
The full list of errors which contribute to the weight
of 2D TLBR is fXX; YY; XY; YXg for CNOT gates at the
eight time step, fXI; XZ; YI; YZg for the CNOT gates at the
ninth time step (on the lower right of a white face),
fIX; ZX; IY; ZYg for the CNOT gates at the third and fourth
time step (lower left of the X-type gauge measurement),
and data qubit X and Y errors. From the noise model
defined in Sec. III, the total probability (to leading order in
p) for an error to result in an edge E of type 2D TLBR
is given by PE ¼ ð16p=15Þ½1 − ð4p=15Þ�3½1 − ð2p=3Þ�þ
½ð2pÞ=3�½1 − ð4p=15Þ�4.
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On the other hand, an error of type XI occurring after a
CNOT gate at the eight time step (where X is on the control
qubit of the CNOT) introduces a data qubit error which
propagates through the CNOT applied at the ninth time
step. Hence, for the measurement round at which the error
occurs, only one of the two syndrome measurement
qubits in the Z-type parity measurements are highlighted.
In the next measurement round, the data qubit has an X
error so that both of the syndrome measurement qubits of
the Z-type parity measurement are highlighted. Therefore,
such an error results in the edge 3D TLBR of Fig. 19.
The types of errors leading to such an edge are
fXI; XZ; YI; YZg for CNOT gates at the eight time step
and fXX; YY; XY; YXg for CNOT gates at the ninth time

step (bottom right of a white face in Fig. 2). Hence, to
leading order in p, the probability associated with the
edge 3D TLBR is given by PE ¼ ð8p=15Þ½1 − ð4p=15Þ�.
The probabilities associated with the other edges of
Fig. 19 can be computed using similar methods as the
ones we describe above.
Using the same methods as above, we compute the edge

weights for the edges corresponding to the X-type gauge
measurements of the heavy-hexagon code [Fig. 5(a)].
However, one important difference is that only the odd
parity of a configuration of errors is relevant when decod-
ing Bacon-Shor-type codes. Taking into account all odd
configurations of errors giving rise to particular edge types,
we obtain
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FIG. 19. Edges for the graph obtained from Z-type-stabilizer measurements of the heavy-hexagon code [Figs. 5(b) and 5(c)] and their
associated probabilities to leading order in p. The label TLBR should be read as top left to bottom right. Similarly, the label BLTR
should be read bottom left to top right. The cross edge is activated only when a left or right flag occurs. Lastly, 3DV is the vertical edge
associated with measurement errors in the syndrome measurement qubits.
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Lastly, the probabilities associated with the edges for the
X- and Z-stabilizer measurements of the heavy-square
code are the same as those in Fig. 19 except for the edge
3DV, which has PE ¼ 32p

15
½1− ð8p=15Þ�3½1− ð4p=15Þ�4

½1− ð2p=3Þ� þ ð16p=15Þ½1− ð8p=15Þ�4½1− ð4p=15Þ�3½1−
ð2p=3Þ� þ ð2p=3Þ½1− ð8p=15Þ�4½1− ð4p=15Þ�4 (for both
graphs in Fig. 8).

APPENDIX B: ENCODING LOGICAL QUBITS
INTO A HIGH-GENUS SURFACE AND A

SURFACE WITH HOLE DEFECTS

In this Appendix, we explicitly construct the heavy-
square codes on a high-genus surface, or a surface with
hole defects [57,58], in order to prove Theorem 1. In this

way, we also show the more general encoding scheme
that multiple logical qubits are encoded into a single code
block, which can facilitate the logical gate operation.).

1. High-genus surface

A straightforward way to construct a high-genus surface
is to have two layers of heavy-hexagon codes with holes,
and “glue” them together along the boundaries of the
holes and the outer edges of the two layers [49]. Here, by
“gluing,” we mean identifying the corresponding qubits
along the top and bottom layers along the corresponding
boundaries. In other words, the two identified qubits on the
two layers are experimentally implemented with a single
qubit. We illustrate the construction of a g ¼ 3 surface in
Figs. 20(a) and 20(b). Here, the vertical dashed lines in
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Fig. 20(b) show all the identified data and syndrome
measurement qubits. In particular, the blue dashed lines
represent the gluing of the hole boundaries, and the green
dashed lines represent the gluing of the outer edges
of the two layers. Note that the X (red) and Z (blue)
plaquettes aligned vertically are switched for the top and
bottom layers, which makes sure that the neighbors of the X
(red) plaquettes are always the Z (blue) plaquettes and
vice versa.
We also illustrate the corresponding logical strings in the

bilayer systems in Fig. 20(c), which corresponds to the
logical strings along three different noncontractible cycles
in Fig. 20(a). As we can see, these three logical strings
have minimum operator support 6, 4, and 4, respectively.
Therefore, in this specific example, the length of the systole

(i.e., the shortest noncontractible loop) of this surface, and
hence, the code distance, is d ¼ 4. Typically, one will
construct the surface such that all these logical strings have
the same length in order to optimize the information
storage. As we state in Theorem 1 in Sec. III, the flag
decoder can correct up to bðd − 1Þ=2c faults, i.e., with
weight less than half of the systole length. The ability to
correct such faults can be seen from the fact that the
measured operators have weight at most four. Therefore,
weight-two errors arising from a single fault will lie in
boomerang edges, and the same arguments as in Sec. III
apply.
We note that a bilayer architecture for superconducting

qubit lattices is within the reach of current superconducting
quantum-computing technology [17]. The interlayer cou-
pling can be implemented via 3D integration technologies
such as the flip-chip [59] and the bump-bond [60] archi-
tectures, as well as the through-substrate vias architecture
[61]. The stabilizers near the edge of glued punctures
(which we call handles) will necessary need vertical
interlayer couplings with the 3D integration technologies.
All possible code deformations correspond to the map-

ping class group of the genus-g surface, which can be
generated by three types of Dehn twists (3g − 1 in total)
[49]. The Dehn twists can be implemented inOð1Þ time via
a constant-depth circuit (independent of the code distance
d) using long-range connectivity according to the protocol
in Ref. [49]. With only local connectivity, one can imple-
ment the Dehn twists in OðdÞ time with the protocol in
Ref. [62]. The protocol in Ref. [62] is formulated for the
general situation of Turaev-Viro codes, which contain the
surface code as a specific case. Finally, we note that since
the heavy-square code has the same braiding statistics as
the surface code, the code deformation corresponding to the
mapping class group of the genus-g surface is contained in
the Clifford group.

2. Hole defects

A more experimentally feasible way is to encode
multiple logical qubits into a single-layer planar code
with hole defects [2,45]. As we show in Fig. 21, we can
construct two types of hole defects equivalent to the
smooth defect (Z-cut qubit) and rough defect (X-cut qubit)
in the standard surface codes, respectively [2]. As we show
in Fig. 21(b), the smooth defect (Z cut) has only X-type
weight-two stabilizers on the hole boundary, while the
rough defect (X cut) has only Z-type weight-two stabi-
lizers on the hole boundary. In this example, we show a
“double Z-cut qubit” on the left and a “double X-cut
qubit” on the right. The double Z-cut qubit has the
logical Z string going around the holes, while the logical
X string connecting the two wholes, with length 6 and 3,
respectively. On the other hand, the double X-cut qubit has
the logical X string going around the holes, while the
logical X string connecting the two holes. The code

(a)

(b)

(c)

FIG. 20. (a) A g ¼ 3 surface with the illustration of logical
strings on three noncontractible cycles. (b) Explicit construction
of the g ¼ 3 surface by identifying the hole boundaries and outer
edges of two layers of heavy-square topological codes. The blue
and green dashed lines show the identification of the hole
boundaries and outer edges, respectively. The vertically aligned
plaquettes on the top and bottom layers have different types of
stabilizers (indicated by different colors). (c) Logical strings
corresponding to those shown in panel (a). The parentheses
indicate Pauli operators identified with those on the top layers,
which hence, should not be included when counting the weight of
the logical strings.
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distance in this case is d ¼ 3, i.e., the length of the shortest
logical string. Again, the flag decoder can correct up to
bðd − 1Þ=2c faults in this case as well. Braiding of a Z-cut
defect around another X-cut defect implements a logical
CNOT gate.
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