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Quantum field theory is a powerful tool to describe the relevant physics governing complex quantum
many-body systems. Here, we develop a general pathway to extract the irreducible building blocks of
quantum field theoretical descriptions and its parameters purely from experimental data. This determination
is accomplished by extracting the one-particle irreducible (1PI) correlation functions from which one can
construct all physical observables. To match the capabilities of experimental techniques, our approach
employs a formulation of quantum field theory based on equal-time correlation functions only. We illustrate
the theoretical foundations of our procedure by applying it to the sine-Gordon model in thermal equilibrium
and then demonstrate explicitly how to extract these quantities from an experiment where we quantum
simulate the sine-Gordon model by two tunnel-coupled superfluids. We extract all 1PI correlation functions
up to the 1PI four-point function (interaction vertex) and their variation with momentum, encoding the
“running” of the couplings. The measured 1PI correlation functions are compared to the theoretical
estimates, verifying our procedure. Our work opens new ways of addressing complex many-body questions
emerging in a large variety of settings from fundamental science to practical quantum technology.

DOI: 10.1103/PhysRevX.10.011020 Subject Areas: Atomic and Molecular Physics,
Quantum Physics

I. INTRODUCTION

Quantum field theory (QFT) has a wide range of very
successful applications from early-Universe cosmology
and high-energy physics to condensed matter physics. A
central aspect of QFT is that it describes the many-body
limit of complex interacting quantum systems, which is
also relevant for quantum technology if devices become
large. Present large-scale analog quantum simulators using
ultracold atoms explore the many-body limit described by
QFT, e.g., Refs. [1–18]. Therefore, they may also be used to
solve outstanding theoretical problems of QFT that are
beyond classical computational techniques.
One of the big experimental challenges is probing the

complex many-body states. One strategy is to detect every
constituent (atom, superconducting qubit, quantum dot,

etc.) and its state. Such detections constitute a projective
measurement of the many-body wave function in the
constituent basis. For large systems, such a measurement
contains way too much information to be ever analyzed
fully. This fact is reflected by the exponential complexity of
“tomography” that prevents a complete characterization of
the many-body quantum states [19].
By contrast, there are important simplifications occur-

ring in the many-body limit described by QFT. In QFT,
often only a small subset of the microscopic details of the
underlying theory is relevant for the computation of
measurable physical properties. This effective loss of
details has its mathematical foundation in the renormaliza-
tion program of QFT [20]. As a result, for a quantum
simulation of such a theory, many of the detailed properties
of the microscopic quantum device have no effect on the
simulation outcome for quantities of interest [21].
This fact raises the important question of how to extract

from experimental data the relevant information content of
QFT. It is well known that an efficient description of QFT
can be based on one-particle irreducible (1PI) correlation
functions, called irreducible or proper vertices [20]. They
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represent the irreducible building blocks from which all
physical observables may be constructed. These observ-
ables can be, e.g., the effective Hamiltonian determining
the macroscopic dynamics, a possible spectrum of quasi-
particles, and their effective interaction strength. In a
general setting, these vertices are functions of space and
time or momentum and frequency, encoding the “running”
of couplings prominently discussed in high-energy physics
in the framework of the Standard Model of particle physics.
In principle, the irreducible vertices can be extracted

from higher-order correlation functions [20]. The standard
procedure employs correlation functions involving large
time differences. While this procedure is very suitable for
high-energy collider experiments, where an analysis is
based on the concept of asymptotic states in the infinite
past and future, it is not adequate for many realizations of
strongly interacting many-body systems where the notion
of an initial state “long before” and a final state “long after”
the collision is not physical. Moreover, often these systems
are studied at a given snapshot in time, without any direct
reference to states in the asymptotic past or future, which is
especially true for cold-atom experiments where one takes
pictures, for example, measuring every atom either after
time of flight [22] or in situ [23,24].
In this paper, we develop a pathway to extract the

irreducible vertices of a quantum many-body system from
experimental measurements. Our approach employs a
formulation of QFT based on equal-time correlation func-
tions only [25,26]. Equal-time correlation functions can be
extracted from snapshot measurements [9,15,27] and,
therefore, match well with experimental capabilities. We
lay out the theoretical foundations of this approach and
illustrate the derivations using the sine-Gordon model. The
irreducible vertices at equal times are estimated for this
model both analytically and using numerical simulations.
In particular, we show how to recover from the vertices the
effective Hamiltonian underlying the dynamics. These
theoretical results provide the basis for the benchmark
verification of the QFT description extracted from the
experimental measurement. In the experiment, the sine-
Gordon model is quantum simulated with two tunnel-
coupled superfluids in thermal equilibrium [9]. We show
how to extract the irreducible vertices from the experi-
mental setup and compare the measurements to the theo-
retical estimates. The agreement of the experimental results
with the theoretical expectations within errors provide a
proof-of-principle verification of the approach. This veri-
fication represents an important step towards quantum
simulator applications that are beyond the reach of classical
computational techniques. A first example of such an
application is the recent experimental extraction of the
irreducible two- and four-vertices for a strongly correlated
spin-1 Bose condensate far from equilibrium [18], where
no theoretical solution is available and which has been
performed in parallel to this work.

The paper is organized as follows. We start in Sec. II with
a self-contained description of an equal-time formulation
of quantum field theory and equal-time correlation func-
tions as they arise naturally in experiments. In particular,
we show how the 1PI vertices, which constitute the
fundamental building blocks of the QFT description of
the many-body system, can be extracted from the measured
equal-time correlation functions. In Sec. III, we illustrate
these theoretical foundations in the framework of the
quantum sine-Gordon (SG) model [28–31], calculate
the 1PI correlation functions and the effective action in
the classical field theory limit in thermal equilibrium,
and compare it to numerical simulations. As a proof of
principle, we show in Sec. IV an application to an experi-
ment with two tunnel-coupled superfluids, which realizes
the SG model [9,32]. We conclude our work in Sec. V.
Extensive Appendixes contain detailed calculations.

II. EXTRACTING THE IRREDUCIBLE VERTICES
FROM EQUAL-TIME CORRELATIONS

In the standard formulation of quantum field theory, one
starts from a typical scattering experiment which gives
access to the transition amplitude between an initial state at
times long before the collision and its final state at much
later times. These transition amplitudes determine the S-
matrix elements, which can be expressed in terms of time-
ordered correlation functions of the underlying quantum
field theory [20]. Knowledge of all time-ordered correlation
functions is then equivalent to solving the quantum
theory [33,34].
However, time-ordered correlation functions and the

description by an S-matrix formulation are conceptually
less suitable in the analysis of strongly correlated complex
quantum systems, which are often studied at a given
snapshot in time. Such measurements at a given instant
of time lead to the notion of equal-time correlation
functions. In quantum field theory, these can be represented
by expectation values of Weyl-ordered products of field
operators [25,35]. Knowledge of all equal-time correlation
functions at a given time t contains all information about
the many-body system at this instant of time. For example,
the factorization properties of higher-order correlation
functions directly reveal if the system is free (factorizing)
or interacting (nonfactorizing) [9]. To extract the interaction
constants of the underlying (effective) Hamiltonian, one
has to extract the so-called 1PI correlation functions [20],
which represent the full nonperturbative interaction vertices
of the quantum system.
While there are standard textbook concepts to extract the

1PI correlation functions from time-ordered correlation
functions, the possibility to extract them from equal-time
correlation functions is much less explored. Here, we
illustrate how to extract them from the equal-time corre-
lations and thereby show how to determine the effective
Hamiltonian from the experiment at a snapshot in time.
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We start in Sec. II A with an introduction to quantum
field theory in an equal-time formalism. At the example of a
scalar field theory, we show the relation to Wigner’s phase-
space formalism commonly used, e.g., in quantum optics.
We further summarize how to extract connected correlation
functions (Sec. II B) and one-particle irreducible vertices
(Sec. II C) by introducing suitable generating functionals.
Finally, we approximately calculate the 1PI effective
action in thermal equilibrium in Sec. II D, which provides
a direct connection to the parameters of the microscopic
Hamiltonian, and give a recipe on how to proceed (Sec. II E).

A. Equal-time formulation of quantum field theory

The use of equal-time correlations is motivated by the
progress of cold atomic setups which nowadays allow one
to extract highly resolved images at a given instant in time.
It has long been known that QFT can be set up by
employing only such equal-time information, without
relying on multitime correlations [25,26]. This formulation
has, however, never been widely used. Theoretical progress
in solving the equal-time formalism is hampered by the
lack of appropriate approximation schemes. Nevertheless,
an equal-time formulation is perfectly suited to extract the
irreducible vertices from experimental data representing a
snapshot of the system at a fixed time.
Setting up an equal-time formulation relies on measure-

ments of conjugate elementary operators that are non-
commuting. As a consequence, one has to choose an
ordering prescription [35]. Since correlations in cold atom
systems are straightforwardly obtained by multiplying and
averaging single-shot results, the obtained correlations
correspond to a fully symmetrized (so-called Weyl) order-
ing of the quantum operators. Moreover, as we show
below, this choice of ordering leads to a definition of
1PI correlators that is directly related to Hamiltonian
parameters. For the rest of this paper, we thus focus on
Weyl-ordered correlation functions. A short discussion of
other ordering prescriptions is given in Appendix B 1.
For simplicity, we start with a real scalar field theory

with Schrödinger field operators Φ̂ðxÞ and Π̂ðxÞ that fulfill
the canonical commutation relation

½Φ̂ðxÞ; Π̂ðyÞ� ¼ iℏδðx − yÞ: ð1Þ

A general quantum state at time t is in the Schrödinger
picture described by the density operator ρ̂t. Equivalently,
knowing all correlations characterizes the state ρ̂t (see
Appendix B 2 for more details). Formally, all correla-
tions can be conveniently summarized in the generating
functional

Zt½J� ¼ Tr½ρ̂t exp ðJφxΦ̂x þ JπxΠ̂xÞ�: ð2Þ

Here, we introduce a notation where repeated indices are
integrated over, e.g., JφxΦ̂x ¼ R

ddxJφðxÞΦ̂ðxÞ. The J’s are

so-called source fields, i.e., auxiliary variables that encode
the dependence of ρ̂t on Φ̂ and Π̂, as indicated by φ and π.
In the definition of Zt, we implement the choice of ordering
by treating the conjugate fields Φ̂ and Π̂ symmetrically. The
resulting correlation functions, which are obtained taking
functional derivatives, are Weyl ordered. For example, at
second order, we have

Gð2Þ
x;yðtÞ ¼

� hφxφyiWt
hφxπyiWt

hπxφyiWt
hπxπyiWt

�
; ð3Þ

which consists of the three independent correlators

hφxφyiWt
¼ δ2Zt½J�

δJφxδJ
φ
y

����
J¼0

¼ 1

2
Tr½ρ̂tðΦ̂xΦ̂y þ Φ̂yΦ̂xÞ�; ð4aÞ

hφxπyiWt
¼ δ2Zt½J�

δJφxδJπy

����
J¼0

¼ 1

2
Tr½ρ̂tðΦ̂xΠ̂y þ Π̂yΦ̂xÞ�; ð4bÞ

hπxπyiWt
¼ δ2Zt½J�

δJπxδJπy

����
J¼0

¼ 1

2
Tr½ρ̂tðΠ̂xΠ̂y þ Π̂yΠ̂xÞ�: ð4cÞ

This result is explicitly verified in Appendix B 1, where
also the higher-order case is discussed.
For a general quantum many-body system, Zt½J� may

involve more than one pair of canonically conjugated fields.
These can be incorporated by adding appropriate sources J
and essentially does not affect the general discussion.
In the following, we consider only correlators of φ to

lighten the notation. Nevertheless, φmay stand for either of
the two fields, and π is written explicitly only when
necessary to avoid confusion. In general, we then denote
all Weyl-ordered correlators as

GðnÞ
x1;…;xnðtÞ ¼ hφx1

…φxniWt
¼ δnZt½J�

δJx1…δJxn

����
J¼0

: ð5Þ

We refer to Appendix A for a summary of all notational
conventions used throughout this paper. In Eq. (5), we
assume a proper normalization, Trρ̂t ¼ 1, which implies
Zt½0� ¼ 1.
To make use of established, powerful QFT tools, we

seek a representation of Zt in terms of functional integrals.
As shown in Appendix B 3, the expression (2) can be
rewritten as

Zt½J� ¼
Z

DφDπWt½φ; π� exp ðJφxφx þ JπxπxÞ: ð6Þ

The integration kernel Wt can be interpreted as a quasi-
probability distribution:

Wt½φ; π� ¼
Z

Dφ̃

�
φ −

φ̃

2

����ρ̂t
����φþ φ̃

2

�
exp

�
i
ℏ
φ̃xπx

�
; ð7Þ
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the so-called Wigner functional. Here, jφi denotes an
eigenstate of the field operator Φ̂ with eigenvalue φ.
The Wigner function itself has previously been applied
successfully in the context of quantum optics [36] and also
plays a prominent role in the semiclassical description of
nonequilibrium quantum dynamics [37,38]. Equation (6) is
the basis of the equal-time formulation of QFT and allows
us to apply established procedures in the following.

B. Connected correlation functions

In QFT (and analogously in classical probability theory),
it is well known that the correlations encoded in Zt are
largely redundant [20,39]. The first step is the removal of
additive redundancies, by the introduction of another
generating functional:

Et½J� ¼ logZt½J�: ð8Þ
We denote the corresponding correlations, called con-

nected correlators, as

GðnÞ
c;x1;…;xnðtÞ ¼

δnEt½J�
δJx1…δJxn

����
J¼0

: ð9Þ

Explicitly, as shown in Appendix B 4, up to fourth order
they are given by

Gð1Þ
c;x1

¼ Gð1Þ
x1
; ð10aÞ

Gð2Þ
c;x1;x2

¼ Gð2Þ
x1;x2 −Gð1Þ

c;x1G
ð1Þ
c;x2 ; ð10bÞ

Gð3Þ
c;x1;x2;x3 ¼ Gð3Þ

x1;x2;x3 − ðGð2Þ
c;x1;x2G

ð1Þ
c;x3 þGð2Þ

c;x2;x3G
ð1Þ
c;x1

þGð2Þ
c;x3;x1G

ð1Þ
c;x2Þ − Gð1Þ

c;x1G
ð1Þ
c;x2G

ð1Þ
c;x3 ; ð10cÞ

Gð4Þ
c;x1;x2;x3;x4 ¼ Gð4Þ

x1;x2;x3;x4 − ðGð3Þ
c;x1;x2;x3

Gð1Þ
c;x4 þ Gð3Þ

c;x2;x3;x4G
ð1Þ
c;x1 þ Gð3Þ

c;x3;x4;x1G
ð1Þ
c;x2 þ Gð3Þ

c;x4;x1;x2G
ð1Þ
c;x3Þ

− ðGð2Þ
c;x1;x2G

ð2Þ
c;x3;x4 þ Gð2Þ

c;x1;x3G
ð2Þ
c;x2;x4 þ Gð2Þ

c;x1;x4G
ð2Þ
c;x2;x3þÞ − ðGð2Þ

c;x1;x2
Gð1Þ

c;x3
Gð1Þ

c;x4 þ Gð2Þ
c;x1;x3G

ð1Þ
c;x2G

ð1Þ
c;x4

þGð2Þ
c;x1;x4G

ð1Þ
c;x2G

ð1Þ
c;x3 þ Gð2Þ

c;x2;x3G
ð1Þ
c;x1G

ð1Þ
c;x4 þGð2Þ

c;x2;x4G
ð1Þ
c;x1G

ð1Þ
c;x3 þGð2Þ

c;x3;x4G
ð1Þ
c;x1G

ð1Þ
c;x2Þ

−Gð1Þ
c;x1G

ð1Þ
c;x2G

ð1Þ
c;x3G

ð1Þ
c;x4 ; ð10dÞ

where we suppress the overall time dependence for brevity.
For every order n, the connected part GðnÞ

c is obtained by
subtracting the information already given by lower-order

functions Gðm<nÞ
c .

This step can be visualized by a graphical representation
in terms of Feynman diagrams, which is very helpful to
organize the underlying combinatorics. By careful exami-
nation of this reorganization, exemplified in Fig. 1, one
learns that only connected graphs contribute to the corre-
lators generated by Et, hence the name connected

correlations. In short, taking the logarithm of Zt in
Eq. (8) removes all disconnected diagrams.
Physically, this result means that, by inspecting the

factorization of higher-order correlation functions, one
can determine whether or not the quantum system is
described by a Gaussian density operator ρ̂t. Since
Gaussian distributions correspond to free (noninteracting)
QFTs, this result, in principle, allows one to determine the
basis of conjugate fields which diagonalizes the quantum
many-body Hamiltonian that governs the system at hand.

(a)

(b)

(c)

(d)

FIG. 1. Feynman diagrams relating full and connected corre-
lation functions. At first order (a), the correlations are identical.
At second order (b), there is one disconnected diagram that
contains redundant information. At higher orders, an increasing
number of disconnected diagrams need to be considered. We
explicitly show the third-order (c) and fourth-order (d) correla-
tions. The dots indicate permutations of the diagrammatic
structure within the brackets, similar to (c).

TORSTEN V. ZACHE et al. PHYS. REV. X 10, 011020 (2020)

011020-4



C. One-particle irreducible vertices

The connected correlators of order higher than two still
contain redundant information. In order to access the
irreducible vertices, we define the effective action

Γt½Φ� ¼ −Et½JðΦÞ� þ JxðΦÞΦx ð11Þ

as a Legendre transform of Et. In Eq. (11), the relation
ΦxðJÞ ¼ ðδEt½J�Þ=ðδJxÞ thus has to be inverted to obtain
JxðΦÞ. We emphasize that the above notation is an
abbreviation for a double Legendre transform in both of
the conjugate fieldsΦ andΠ. Accordingly, equations in this
section implicitly include appropriate sums over the two
fields.
Expanding the effective action in a functional Taylor

series, we have

Γt½Φ� ¼
X∞
n¼2

1

n!
ΓðnÞ
x1;…;xnðtÞ

Yn
j¼1

½Φxj − Φ̄xjðtÞ�: ð12Þ

Here, Φ̄xðtÞ ¼ hφxiWt
is the mean value at time t, for

which the effective action is stationary, i.e., ðδΓt½Φ�Þ=
ðδΦÞjΦ¼Φ̄ ¼ 0. The 1PI vertices

ΓðnÞ
x1;…;xnðtÞ ¼

δnΓt½Φ�
δΦx1…δΦxn

����
Φ¼Φ̄

ð13Þ

are the expansion coefficients in this series. In Eq. (12), the
sum starts at n ¼ 2, because we omit an irrelevant constant
Γð0Þ and the first order Γð1Þ vanishes by construction due to
the expansion around Φ̄. Physically, Φ̄ can take a non-
vanishing value, which plays a crucial role, e.g., in the case
of spontaneous symmetry breaking or the false vacuum
decay [40].
As shown in Appendix B 5, the 1PI vertices up to fourth

order are related to the connected correlation functions as
follows:

Γð1Þ
x1 ¼ 0; ð14aÞ

Γð2Þ
x1;x2 ¼ ½Gð2Þ

c �−1x1;x2 ; ð14bÞ

Γð3Þ
x1;x2;x3 ¼ −Γð2Þ

x1;y1Γ
ð2Þ
x2;y2Γ

ð2Þ
x3;y3G

ð3Þ
c;y1;y2;y3 ; ð14cÞ

Γð4Þ
x1;x2;x3;x4 ¼ −Γx1;y1Γx2;y2Γx3;y3Γx4;y4G

ð4Þ
c;y1;y2;y3;y4

þ Γð2Þ
x1;y1Γ

ð2Þ
x2;y2Γ

ð2Þ
x3;y3Γ

ð2Þ
x4;y4Γ

ð2Þ
z1;z2ðGð3Þ

c;y1;y2;z1G
ð3Þ
c;z2;y3;y4 þ Gð3Þ

c;y1;y3;z1G
ð3Þ
c;z2;y2;y4 þ Gð3Þ

c;y1;y4;z1G
ð3Þ
c;z2;y2;y3Þ: ð14dÞ

We again emphasize that the explicit equations should be
understood including appropriate sums over φ and π
correlators (see Appendix B 5). For higher orders, these
relations become more complicated, and calculations are
conveniently performed with the graphical notation exem-
plified in Fig. 2. These diagrams also explain the attribute
1PI: The diagrams representing the vertices cannot be

disconnected by cutting a single line. In this sense, they
are the irreducible structures from which all correlation
functions and, thus, all physical observables can be
recovered.
This observation also justifies the name effective action:

Γt is the quantum generalization of a classical action
including all corrections due to quantum-statistical

(a)

(b)

(c)

FIG. 2. Feynman diagrams relating connected and 1PI corre-
lation functions. At second order (a), the correlators are each
other’s inverse. At third order (b), the connected correlator is
“built” from connected two-point functions that are connected by
the irreducible three-vertex. At fourth order (c), the structure is
similar to (b) with contributions from the four- and three-vertices.
Given the 1PI vertices ΓðnÞ, all connected correlations can be
calculated by summing so-called tree diagrams, which separate

into two disconnected parts upon cutting a single line Gð2Þ
c and,

hence, do not contain any loop diagrams.
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fluctuations. However, in contrast to the “standard”
(unequal-time) action, there is one stationarity condition
for each time t. Together, they do not give a time evolution
equation for the one-point function in the usual sense but
one differential equation for each time t. In that sense, the
time t is treated as a label in the equal-time formulation
of QFT.

D. Measuring the effective Hamiltonian

So far, we equivalently rewrite the quantum-statistical
information of a system described by a density operator ρ̂t
in terms of generating functionals Zt, Et, and Γt which
encode full, connected, and 1PI correlation functions,
respectively. While the entries of the density matrix are
typically inaccessible and less intuitive, the equal-time
correlators can be measured in experiments and are directly
related to relevant observables and structural information,
such as occupation numbers and couplings. Next, we
employ the equal-time formalism to relate parameters of
an Hamiltonian to the 1PI correlators.
As a generic example, we consider a relativistic scalar

field theory with potential V described by the Hamiltonian

Ĥ ¼
Z
x

�
1

2
Π̂2

x þ
1

2
ð∇xΦ̂xÞ2 þ VðΦ̂xÞ

�
: ð15Þ

Given the Hamiltonian Ĥ, it is possible to derive an
evolution equation for Γt [25]. For simplicity, we focus
on the case of thermal equilibrium, which is a stationary
solution Γβ, described by the density operator ρ̂β ∼
exp ð−βĤÞ with the prefactor fixed by normalization.
In order to obtain the generating functional Eq. (6), we

need to calculate the Wigner functional Eq. (7). In the
interacting case, the involved functional integration can be
performed only approximately. It is, however, possible to
derive an exact equation for the thermal Wigner functional
(see Appendix B 6). It takes the form of a functional flow
equation, ∂βWβ ¼ −ðH0 þ ℏ2H1 þ � � �ÞWβ, with

H0 ¼
Z
x

�
1

2
π2x þ

1

2
ð∇xφxÞ2 þ VxðφÞ

�
: ð16Þ

It is straightforward to solve the equation for Wβ perturba-
tively by a semiclassical expansion in powers of ℏ.
The leading order is the classical field theory limit,

where we obtain Wβ ∼ exp ð−βH0Þ with the classical
Hamiltonian H0. Then the generating functional Eq. (6)
becomes

Zβ½J� ∼
Z

DπDφe−βH0þJφxφxþJπxπx : ð17Þ

Thus, βH0 plays the role of a classical action for the
fluctuating fields φ and π. This result allows us to calculate
the effective action Γβ in the equal-time formalism using

established QFT methods, such as the background field
method employed below.
We note that the two conjugate fields φ and π decouple in

the present limit, which implies that the effective action
separates as

Γβ½Φ;Π� ¼ Γβ½Φ� þ Γβ½Π� ð18Þ

with Γβ½Π� ¼ ðβ=2Þ RxΠ2
x þ const, as shown in

Appendix B 7. The separation Eq. (18) is a property of
the classical field approximation. In general, the quantum
effective action of the full quantum theory requires knowl-
edge of all equal-time correlators of φ and π, including
mixed terms. However, symmetries such as time translation
invariance simplify the discussion; see Appendix B 8.
By means of the background field method, we can

calculate the effective action in a loop expansion. In the
present formalism, we split

Γβ½Φ� ¼ βH½Φ� þ Γ0
β½Φ�; ð19Þ

where H½Φ� ¼ H0½φ ¼ Φ; π ¼ 0�. As shown in
Appendix B 9, the “rest” Γ0

β obeys the following functional
integro-differential equation:

e−Γ
0
β ½Φ� ¼

Z
Dφ exp

�
−βK½φ;Φ� þ δΓ0

β½Φ�
δΦx

φx

�
; ð20Þ

where we abbreviate

K½φ;Φ� ¼ H½Φþ φ� −H½Φ� −
Z
x

δH½Φ�
δΦx

φx: ð21Þ

The solution of this equation is organized diagrammatically
as an expansion in the number of loops. At leading order
(tree level) in this expansion, Γ0

β ¼ 0, and, thus, the equal-
time effective action is directly related to the microscopic
Hamiltonian. Consequently, the 1PI vertices correspond to
the interaction constants of the underlying system. Beyond
the leading-order approximation, the notion of the micro-
scopic Hamiltonian becomes a less useful concept. The
effective action then plays the role of an effective
Hamiltonian, with all corrections from quantum-statistical
fluctuations taken into account.
Returning to the leading-order approximation, which

gives rise to the tree-level 1PI vertices, we explicitly have

Γð2Þ
x;y ¼ ∇2

xδðx − yÞ þ
Z
z

δ2VzðΦÞ
δΦxδΦy

����
Φ¼Φ̄

; ð22aÞ

ΓðnÞ
x1;…;xn ¼

Z
z

δnVzðΦÞ
δΦx1 � � � δΦxn

����
Φ¼Φ̄

; ð22bÞ

where n ≥ 3. Equation (19) or, more explicitly, Eq. (22)
directly shows the relation between the 1PI correlation
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functions and the parameters of the microscopic (or, more
generally, an effective) Hamiltonian. Together with the
procedure to obtain the 1PI correlators, outlined below,
they provide an experimental prescription for measuring a
quantum many-body Hamiltonian.

E. Recipe to extract 1PI correlators

The extraction of 1PI correlators, which are the funda-
mental irreducible building blocks for the QFT description,
from equal-time data proceeds in the following steps.
(1) Identify the degrees of freedom of interest which

constitute the elementary fields φ of the QFT.
(2) Obtain many realizations (i ¼ 1;…; N) of the

desired field φiðxÞ at the times t of interest.
(3) Estimate the full correlators up to the order of n by

averaging GðnÞ
x1;…;xn ≈ ð1=NÞPi φiðx1Þ…φiðxnÞ.

(4) Obtain the connected correlators GðnÞ
c by subtracting

the disconnected contributions according to Eq. (10).
(5) Calculate the 1PI correlators ΓðnÞ by reducing the

connected correlators according to Eq. (14).
This procedure corresponds to a shift of representation

from the density operator ρ̂ to Γ, the generating functional
for 1PI correlators. In the following two sections, we
illustrate and verify the method in the case of the sine-
Gordon model with numerically simulated data (Sec. III)
and with experimental measurements (Sec. IV).

III. EXAMPLE: SINE-GORDON MODEL

As an explicit example, we consider the sine-Gordon
model [28–31] in thermal equilibrium. It is an interacting
relativistic scalar field theory described by

βĤSG¼
Z
x

	
βgΠ̂2

xþ
λT
4

�
1

2
ð∂xΦ̂xÞ2−

1

l2
J
cosðΦ̂xÞ

�

; ð23Þ

where β ¼ ðkBTÞ−1 is the inverse temperature. The specific
form of the Hamiltonian ĤSG given above is motivated by
the recent progress to quantum simulate the SG model by
two tunnel-coupled 1D superfluids [9,32]. See Sec. IV for
the physical origin of the fields Φ̂ and Π̂, the microscopic
parameter g, and the length scales λT and lJ.
The semiclassical approximation Eq. (17) is valid for

ffiffiffiffiffi
4γ

p
≪ min

�
1;

4

Q

�
; ð24Þ

where the dimensionless parameters are γ ¼ 16gβ=λT and
Q ¼ λT=lJ. In the semiclassical limit, the loop expansion is
controlled by Q with the tree-level approximation valid for
1=Q ≪ 1 (see Appendixes B 6 and B 9 for details). We
therefore consider in the following λT ¼ 17.35 μm and
vary lJ such that 1≲Q≲ 20.
Following the general discussion of the previous section,

the tree-level vertices corresponding to Eq. (23) are

Γð2Þ;tree
p ¼ λT

4

�
p2 þ 1

l2
J

�
; ð25aÞ

Γð2nÞ;tree
p1;…;p2n−1 ¼ −

λT
4l2

J
ð−1Þn; ð25bÞ

Γð2n−1Þ;tree
p1;…;p2n−2 ¼ 0; ð25cÞ

where n > 2 and we switch to momentum space correla-
tors. Here and in the following, we always consider

the diagonal part in momentum space, i.e., ΓðnÞ
p1;…;pn ¼

ð2πÞδðp1 þ � � � þ pnÞΓðnÞ
p1;…;pn−1 , which removes the vol-

ume factors arising from translation invariance. Note that
Γð2n−1Þ ¼ 0ð ∀ n ≥ 1Þ remains valid beyond the tree-
level approximation due to the symmetries of the SG
Hamiltonian.
Employing a stochastic process based on a transfer

matrix formalism [41], we numerically obtain thermal
profiles of the field φx, corresponding to the operator
Φ̂x. These are exact solutions of the SG model within the
semiclassical approximation and, hence, have contributions
up to arbitrary order in the above loop expansion. With
these statistical samples, we carry out the procedure
described in Sec. II E and calculate the 1PI correlators
up to fourth order.
So far, we have implicitly assumed in Eq. (25) that the

correlations are obtained for an infinite system with
periodic boundary conditions. The employed numerics,
however, yield correlators from a finite subsystem, which is
better described by open boundary conditions. We therefore
employ a cosine transform and translate the results to
momentum space, i.e., Fourier momenta (for details, see
Appendix C).
Figure 3 shows the calculated 1PI vertices in momentum

space for a large value ofQ ≈ 11.5 and different volumes L.
Note that due to the periodicity of the sine-Gordon potential
[42] the value of p ¼ 0 is not defined for the correlations
considered. Therefore, the fact that the correlation function
is diagonal is crucial to be able to perform the inversion of
the connected second-order correlation function in order to
obtain Γð2Þ. The diagonal form allows one to do the
inversion for p ≠ 0 without knowing the value for p ¼ 0.
We find excellent agreement with the tree-level predic-

tions for the momentum diagonal of the two- and four-
vertex. This agreement demonstrates the possibility to carry
out the procedure described in the previous section, which
allows one to directly measure the microscopic parameters
through equal-time 1PI correlation functions if higher-order
loop corrections can be neglected.
However, when the system becomes strongly correlated,

the microscopic details become irrelevant and replaced by
effective, momentum-dependent (so-called running) cou-
plings. This behavior is precisely captured by the 1PI
correlation functions, which effectively replace the
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microscopic coupling parameters appearing in the
HamiltonianHSG. We therefore adjust the parameters away
from the weakly coupled limit Q ≫ 1. In general, we
observe an increasing deviation from the tree-level approxi-
mation, which is expected because loop corrections due to
increasing fluctuations modify the physics.
Quantitatively, the corrections to the 1PI two-point

function are summarized in the self-energy Σ, defined via

Γð2Þ
p ¼ Γð2Þ;tree

p þ Σp: ð26Þ

In Appendix C 3, we calculate the leading correction

Σone-loop
p ¼ −1=ð4lJÞ: ð27Þ

In Fig. 4, the 1PI two-point function and the self-energy
are plotted as a function of p. Generically, tree level
dominates in the ultraviolet (i.e., at high momenta), which
we also observe numerically. The 1PI two-point function

approaches the power law ∝ p2 in this limit, and the
(normalized) self-energy vanishes.
In the infrared (low momenta), however, loop corrections

are important. It is this regime where collective macro-
scopic phenomena emerge and the microscopic details are
washed out. We observe a negative self-energy and, hence,
a reduction of the 1PI two-point function, which agrees
with the one-loop result over an intermediate range of
momenta (and Q). Physically, this result implies stronger
fluctuations asQ decreases, consistent with the expectation
for a strongly correlated regime of the sine-Gordon model.
Similarly, the loop corrections to the 1PI vertices lead to

the notion of running couplings, i.e., momentum-dependent
interaction vertices that deviate from the constant micro-
scopic values. In Appendix C 3, we calculate the one-loop
vertex

FIG. 3. The 1PI vertices in the weak coupling regime at Q ≈
11.52 calculated from the numerical data for different volumes
L ¼ 20 (red squares), 50 (orange circles), and 100 μm (blue
diamonds). The 1PI two-point function (upper) and 1PI four-
vertex (lower) show excellent agreement with the tree-level
prediction (dashed black line) for a wide range of momenta.
The results are obtained from 108 samples. The error bars indicate
the standard error of the mean.

FIG. 4. Loop corrections to the 1PI two-point function for
different Q in the strong coupling regime, Q ¼ 8.14 (blue
diamonds), 5.76 (orange circles), and 4.07 (red squares). The
calculated two-point function (upper) always approaches the
corresponding tree-level predictions (black dashed lines) at high
momenta, as expected. In the infrared, we observe deviations due
to loop corrections. The corresponding colored dashed-dotted
lines include the one-loop correction. The corresponding self-
energy (lower) quantifies the deviations from the tree-level
prediction. The corrections become more pronounced for smaller
Q, as expected. Numerical results are calculated for L ¼ 200 μm
and a sample size of 108.
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Γð4Þ;one-loop
p ¼ −

λT
4l2

J
−

1

8l3
J

1

p2 þ 1=l2
J
: ð28Þ

Again, it is expected that loop corrections vanish for high
momenta and the 1PI four-vertex converges to the tree-level
result, i.e., the microscopic parameters of the Hamiltonian,
which is confirmed by our numerical simulations.
This behavior is demonstrated in Fig. 5, where the 1PI

four-vertex is shown for the same values of Q as in
Fig. 4. For very high momenta, we are again limited by
finite statistics. In the infrared, we clearly observe
the momentum-dependent, i.e., running, coupling. The
increased values indicate stronger interactions, qualitatively
consistent with the one-loop calculation. The effect is again

more pronounced for smaller values of Q, as expected in
the strongly correlated regime of the sine-Gordon model.
We observe a qualitative difference between large and

small values of Q. For Q≳ 4, the magnitude of the 1PI
four-vertex is increased in the infrared and shows a running
coupling towards the smaller tree-level value. For Q≲ 3,
the magnitude of the vertex decreases in the infrared as
compared to the tree-level value at higher momenta. This
behavior is also clearly visible in Fig. 6, where we show the
four-vertex as a function of Q for fixed momenta.

IV. EXPERIMENTAL RESULTS:
PROOF OF PRINCIPLE

As a proof of principle to extract the 1PI vertices from
experimentally measured correlations, we apply the for-
malisms discussed above to the physical system of two
tunnel-coupled one-dimensional superfluids in a double-
well (DW) potential on an atom chip. Such a system can be
seen as a quantum simulator of the sine-Gordon model
[9,32]. The relative phase φx between the superfluids
corresponds to Φ̂ in Eq. (23) in Sec. III, while the relative
density fluctuations correspond to the conjugate field Π̂.
A schematic of the experimental system is given in

Fig. 7. The parameters in HSG [Eq. (23)] are related to the
experimental parameters via λT ¼ 2ℏ2n1D=ðmkBTÞ, lJ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð4mJÞp

, and g ¼ g1D þ ℏJ=n1D. Here, the 1D effective
interaction strength g1D ¼ 2ℏasω⊥ is calculated from the
s-wave scattering length as and the frequency ω⊥ of the
radial confinement; n1D is the 1D density, andm is the mass
of the 87Rb atoms which the superfluids consist of. The
single-particle tunneling rate between the wells is denoted
by J.

FIG. 6. The 1PI four-vertex as a function ofQ for three different
momenta p ¼ 0.031 (blue diamonds), 0.125 (orange circles), and
0.219 μm−1 (red squares). At large momenta, the vertex ap-
proaches the tree-level prediction (black dashed line). At low
momenta, loop corrections lead to a suppression or an enhance-
ment depending on the values of Q and p (cf. Fig. 5). Numerical
results are calculated for L ¼ 100 μm and a sample size of 108.

FIG. 5. Loop corrections to the 1PI four-vertex for different
values of Q. The (negative) four-vertex (blue diamonds, orange
circles, and red squares), shown for larger values of Q (upper,
corresponding to Fig. 4), clearly approaches the corresponding
tree-level predictions (colored dashed lines) at high momenta. In
the infrared, we observe a strong momentum dependence,
increasing the effective coupling. For decreasing values of Q
(lower), the (negative) four-vertex is increasingly suppressed in
the infrared. The results are consistent with the approach of the
tree-level prediction (colored dashed lines) for high momenta.
Numerical results are calculated for L ¼ 100 μm and a sample
size of 108. The error bars indicate the standard error of the mean.
Note that we exclude data points at high momenta with errors
larger than the mean from this plot.
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In the experiment, the two superfluids are prepared by
slow evaporative cooling in the DW potential (the same
way the slow-cooled data presented in Ref. [9] are
prepared). However, in contrast to Ref. [9], the data used
here are taken for a boxlike longitudinal confinement [43]
of 75 μm length. Matter-wave interferometry [44] gives
access to the spatially resolved relative phase fluctuations
φx between the two superfluids. More details about the
experimental procedure and the data analysis can be found
in Refs. [9,45].
Starting from the measured phase profiles, we can

calculate the 1PI vertices in the same way as is done for
the numerics (see Sec. III and Appendix C). For boxlike
potentials, one naturally gets Neumann boundary condi-
tions (BCs) for the phase from the condition of vanishing
particle current on the edges [43]. From the cosine trans-
form (compatible with the Neumann BCs) of the complete
system, we therefore simply get the 1PI vertices of the
Hamiltonian with this BC. Acknowledging that our system
is still too short to get results free from finite size effects, we
nevertheless apply the conversion factors to Fourier
momentum space given in Eqs. (C2) and (C3) for con-
sistency when presenting ΓðnÞ.
Let us start the discussion of the experimental results

with the cosine transformed second-order correlation
function

G̃ð2Þ
c;p;p0 ¼ 2

L
ðhφ̃pφ̃p0 i − hφ̃pihφ̃p0 iÞ: ð29Þ

Here, φ̃p represents the cosine transform (C1b) over the
finite interval with length L, and we choose the prefactors
for later convenience. The factor 2 comes from the identity
(C2) and the factor 1=L from the delta function. We
see from Fig. 8 that the correlations are approximately

diagonal. Furthermore, note that density-phase two-point
correlations hπφiWt

vanish due to time-translation invari-
ance of the thermal state, even beyond the semiclassical
approximation Eq. (17). Together, these results enable us to
calculate the 1PI two-point correlator as

FIG. 9. Experimental 1PI two-point function. The four different
measurements correspond to Q ¼ 4.5 (blue circles), 3.1 (red
diamonds), 2.4 (orange squares), and 1.3 (purple triangles). The
error bars represent the 80% confidence intervals obtained using
bootstrapping. We see good agreement with the theory prediction
from the sine-Gordon model in thermal equilibrium calculated for
106 numerical realisations (black solid lines). The height of the
green bars indicates the 80% confidence interval for the numeri-
cal predictions considering the finite experimental sample size.
Note that all uncertainty comes from the finite sample size; no
uncertainty in the parameters λT and Q is assumed. The width of
the bars is chosen arbitrarily.

FIG. 7. Schematics of the experimental setup. We consider two
tunnel-coupled one-dimensional superfluids in a double-well
potential at a common temperature T. Changing the barrier
height of the potential (blue lines) allows for an adjustable tunnel
coupling J between the two superfluids. The superfluids are
described in terms of density fluctuations δρ1;2 around their equal
mean densities n1D and fluctuating phases θ1;2 (black lines). From
these quantities, we define the relative degrees of freedom π and
φ, which represent the conjugate fields in the sine-Gordon
Hamiltonian. This figure is adapted from Ref. [9].

-50 0 50 -40 -20 0 20 40

FIG. 8. Cosine transformed second-order connected correlation
function. Results for different phase-locking strengths as indi-
cated by the values ofQ stated above the respective subplots. The
color represents the values for cosine transformed second-order

connected correlation function G̃ð2Þ
c;p;p0 as defined in Eq. (29). Note

that the value (249.9 in the left subplot and 93.9 in the right
subplot) for the lowest leftmost data point lies outside the color
range. The color range is chosen to get better visibility.
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Γð2Þ
p ¼ 1

G̃ð2Þ
c;p;p

; ð30Þ

where we neglect the small off-diagonal elements of G̃ð2Þ
c;p;p0 .

The results are presented in Fig. 9.
All experimental results presented in this paper are

corrected for the expected influence of the finite imaging

resolution. In our simple model, the imaging process leads
to a convolution of the true phase profiles with a Gaussian
function with σpsf ¼ 3 μm [45]. In momentum space,
this convolution simply leads to a multiplication with
expð−p2σ2psf=2Þ, which can be easily corrected by dividing
the cosine transformed relative phase φ̃ðpÞ by this factor.
In order to connect the experimental results to the

theoretical model (Sec. III), we estimate λT ¼ 11 μm for
all the different measurements. The values for Q ¼ λT=lJ

FIG. 11. Running coupling. Like Fig. 10, but showing Γð4Þ
p as a

function of p for the four measurements with the biggest
experimental sample size. Depending on the value of Q indicated
in the different subplots, one can see a clear momentum
dependence, i.e., “running coupling.” Note that the vertical axis
of the uppermost subplot is different from the rest. However, the
logarithmic range is the same as in the other subplots.

FIG. 10. Experimental four-vertex. The red bullets represent the
experimental results for the four-vertex as a function of
Q ¼ λT=lJ . The points in one particular subplot correspond to
separate measurements with different tunneling strengths. The
different subplots show the results for the lowest three values of p
indicated in the upper left corner of the subplots. The error bars
represent 80% confidence intervals obtained using bootstrapping.
The numerical prediction from the sine-Gordon model in thermal
equilibrium is given by the green bars. The height of the bars
indicates the 80% confidence interval for the theory predictions
considering the finite experimental sample size. Note that all
uncertainty comes from the finite sample size; no uncertainty in
the parameters λT and Q is assumed. The width of the bars is
chosen arbitrarily. The solid black line represents the theory
prediction from 106 numerical realisations and the dashed black
line the tree-level prediction (25).
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are then self consistently fitted from hcosðφÞi [45]. We see
good agreement between the experiment and thermal sine-
Gordon theory for the 1PI two-point function in Fig. 9.
Having obtained the two-point function and using that

the third-order correlation functions vanish for symmetry
reasons, we can calculate the diagonal part of the four-
vertex as

Γð4Þ
p ¼ −

8

3

1

L
hφ̃4

pic × ðΓð2Þ
p Þ4: ð31Þ

Here, hφ̃4
pic stands for the diagonal elements of the cosine

transformed fourth-order connected correlation function.
The factor 8=3 comes from the identity (C3), and the factor
1=L again comes from the delta function. The results for
the three lowest-lying momentum modes are presented in
Fig. 10 as a function of Q. We find qualitative agreement
between the experiment and theory as well as the expected
approach towards the tree-level result for higher momenta.
The momentum dependence for the measurements with a
large experimental sample size (Fig. 11) reveals a running
coupling with a qualitative agreement between the experi-
ment and thermal sine-Gordon theory.

V. CONCLUSION

The presented method provides a general framework to
extract and test the effective or emergent quantum field
theoretical description of generic quantum many-body
systems from experiments. For the example of the sine-
Gordon model, which is quantum simulated with two
tunnel-coupled superfluids, we have demonstrated how
to experimentally obtain the irreducible vertices in thermal
equilibrium and compared to theoretical expectations. This
demonstration represents an essential step in the verifica-
tion of the approach, which opens a new pathway to study
fundamental questions of QFT through large-scale (analog)
quantum simulators.
This approach becomes especially interesting for

strongly correlated systems and in nonequilibrium situa-
tions, where it is often not possible to solve the theory using
classical computational techniques. Extracting the irreduc-
ible building blocks of quantum many-body systems, and
how they change with time, promises to provide detailed
insights into the dynamics for these cases. The recent study
of a spin-1 Bose condensate far from equilibrium [18],
which has been performed in parallel to this work and
employed similar methods, presents an example where
currently no theoretical solution is available. In turn, the
insight from experimental measurement can support theo-
retical developments in devising new approximation
schemes and effective field theory descriptions.
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APPENDIX A: NOTATIONAL
CONVENTIONS

In Table I, we summarize the different generating func-
tionals and the involved fields which appear throughout
this paper.
We use the following notations: Operators are always

indicated by a hat. Tr½…� indicates a trace over the full
Hilbert space. The absence of a hat implies a c number
(i.e., commuting objects). In the whole formalism, the
time t is treated as a label and often left out for brevity.
Repeated spatial indices are integrated over, e.g., JφxΦ̂x ¼R
ddxJφðxÞΦ̂ðxÞ; we write explicit integrals if there is room

for confusion.
In the Appendixes, we also use collective latin indices,

a ¼ ðφ=π;xÞ; then repeated indices are integrated or sum-
med over as appropriate, e.g., JaΦ̂a ¼

R
ddx½JφðxÞΦ̂ðxÞþ

JπðxÞΠ̂ðxÞ�. It is useful to think of correlation functions as

tensors; e.g., Gð2Þ
c;ab and its inverse Γð2Þ

ab are the components

of 2-tensors that fulfill Gð2Þ
c;abΓ

ð2Þ
bd ¼ δad. Here, δad is the

product of a discrete Kronecker delta and a continuous
Dirac delta distribution.

TABLE I. Overview over the different objects that appear in the
general discussion. “G.f.” abbreviates “generating functional”.

ρ̂½Φ̂� Density operator
W½φ� Wigner functional
Z½J� G.f. for full correlators GðnÞ
E½J� G.f. for connected correlators GðnÞ

c

Γ½Φ� G.f. for 1PI correlators ΓðnÞ

Φ̂ Field operator (noncommuting)
φ Fluctuating (microscopic) field
J Auxiliary source field
Φ Macroscopic field
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APPENDIX B: TECHNICAL DETAILS
OF SEC. II

In this Appendix, we show explicit calculations and
detailed discussions that we leave out in the discussion of
equal-time correlation functions.

1. Operator ordering at equal time

There are three obvious choices of different orderings,
often referred to as symmetric (Weyl), normal (P), and
antinormal (Q). In terms of creation and annihilation opera-
tors âp and â†p, respectively, which fulfill ½âp; â†q� ∼ δpq,
they can be realized by the definitions

ZðWÞ
t ½J� ¼ Tr½ρ̂t exp ðJpâ†p − J�pâpÞ�; ðB1aÞ

ZðPÞ
t ½J� ¼ Tr½ρ̂t exp ðJpâ†pÞ exp ð−J�pâpÞ�; ðB1bÞ

ZðQÞ
t ½J� ¼ Tr½ρ̂t exp ð−J�pâpÞ exp ðJpâ†pÞ�: ðB1cÞ

In general, there is a continuum of other choices that
smoothly connect these three cases. However, all different
choices are fully equivalent in the sense that they contain all
measurable information and the main difference lies in the
associated quasiprobability distributions. For more details,
we refer to Ref. [35].
Explicitly, for the choice of the main text, the ordering is

resolved as

exp ðJφxΦ̂x þ JπxΠ̂xÞ ¼ eJ
φ
xΦ̂xeJ

π
xΠ̂xe−ði=2ÞJ

φ
xJ

π
x ðB2aÞ

¼ eJ
π
xΠ̂xeJ

φ
xΦ̂xeði=2ÞJ

φ
xJ

π
x ; ðB2bÞ

where we use the Baker-Campbell-Hausdorff formula in
the form

eÂþB̂ ¼ eÂeB̂e−ð1=2Þ½Â;B̂�; ðB3Þ

which is valid for ½½Â; B̂�; B̂� ¼ ½½Â; B̂�; Â� ¼ 0. Thus, deriv-
atives acting on exp ðJφxΦ̂x þ JπxΠ̂xÞ from the left result in
operators and additional sources according to

δ

δJφx
→ Φ̂x −

iJπx
2

;
δ

δJπx
→ Π̂x þ

iJφx
2

: ðB4Þ

Using this correspondence, it is straightforward to generate
explicit expression for all correlators. For instance, at
second order, we have

δ

δJφx

δ

δJπy
→

δ

δJφx

�
Π̂y þ

iJφy
2

�

→

�
Π̂y þ

iJφy
2

��
Φ̂x −

iJπx
2

�
þ i
2
δðx − yÞ: ðB5Þ

Setting the sources to zero proves that

hφxπyiWt
¼ Tr½ρ̂tΠ̂yΦ̂x� þ

i
2
δðx − yÞ

¼ 1

2
Tr½ρ̂tðΦ̂xΠ̂y þ Π̂yΦ̂xÞ�; ðB6Þ

where we use the canonical commutation relations and the
normalization of ρ̂t. In the following, we drop the label t for
brevity.

2. Correlations and the density operator

The density operator ρ̂ can formally be recovered from Z
as [35]

ρ̂ ¼
Z

DJφDJπZ½J�½exp ðJφxΦ̂x þ JπxΠ̂xÞ�−1: ðB7Þ

Furthermore, the mappings between the different functionals
are invertible (under appropriate mathematical assumptions):
W and Z are related by Fourier transforms, Z and E by an
exponential (or logarithmic) map, and E and Γ by Legendre
transforms. Thus, it is completely equivalent to work with
theWigner functionalW or any of the generating functionals
Z, E, and Γ instead of the density operator ρ̂.

3. Functional integral representation, Eq. (6)

We seek a representation of Z in terms of classical
(commuting) instead of operator-valued fields. To this end,
we evaluate the trace as

Z½J; ρðtÞ� ¼
Z

DφþDφ−hφþjρðtÞjφ−ihφ−jeJφxΦxþJπxΠx jφþi

ðB8aÞ

¼
Z

DφþDφ−Dπ̃hφþjρðtÞjφ−ihφ−jeJφxΦx jπ̃ihπ̃jeJπxΠx jφþi

× e−ði=2ÞJ
φ
xJ

π
x ðB8bÞ

¼
Z

DφDφ̃Dπ̃

�
φþ φ̃

2

����ρðtÞ
����φ −

φ̃

2

�

× eJ
φ
x ½φx−ðφ̃x=2Þ�þi½φx−ðφ̃x=2Þ�π̃xþJπxπ̃x−i½φxþðφ̃x=2Þ�π̃x−ði=2ÞJφxJπx

ðB8cÞ

¼
Z

DφDφ̃Dπ̃DπWt½φ; π�

× eiπxφ̃xþJφx ½φx−ðφ̃x=2Þ�þJπxπ̃x−iφ̃xπ̃x−ði=2ÞJφxJπx ðB8dÞ

¼
Z

DφDπWt½φ; π� exp ½Jφxφx þ Jπxπx�: ðB8eÞ

In the above calculation, we again use the Baker-Campbell-
Hausdorff formula, perform a change of variables
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φ� ≡ φ� φ̃=2, and employ the definition of the Wigner
functional.

4. The connected correlators, Eq. (10)

To discuss the explicit form of the connected and 1PI
correlators, we use the shorthand notation, where sources
Ja have a single index indicating space x, as well as any of
the two fields φ and π. Repeated indices are summed and
integrated over. Similarly, we abbreviate the fields as φa.
At first order, the connected correlators are directly

related to the full Weyl-ordered one-point function:

δE
δJa

¼ δ logZ
δJa

¼ 1

Z
δZ
δJa

: ðB9Þ

Setting the sources to zero, we have Z½J ¼ 0� ¼ 1, which
proves Eq. (10).
At second order, we calculate

δ2E
δJaδJb

¼ δ

δJa

�
1

Z
δZ
δJb

�
¼ 1

Z
δ2Z

δJaδJb
−

1

Z2

δZ
δJa

δZ
δJb

; ðB10Þ

which proves Eq. (10b).
The higher orders follow analogously by the combina-

torics of the derivatives. For example, the third order
[Eq. (10c)] is obtained by

δ3E
δJaδJbδJc

¼ 1

Z
δ3Z

δJaδJbδJc
−
�
1

Z2

δ2Z
δJaδJb

δZ
δJc

þ 2 perm

�

þ 2
1

Z3

δZ
δJa

δZ
δJb

δZ
δJc

ðB11Þ

and using Eqs. (B9) and (B10).

5. The 1PI vertices, Eq. (14)

The expression for the 1PI two-point function is central
for the construction of the higher orders. It follows by
considering a derivative of the stationarity condition:

δ2Γ
δΦaδΦb

¼ δJb
δΦa

: ðB12Þ

This expression is the matrix inverse of the derivative of the
one-point function (in the presence of sources)

δΦaðJÞ
δJb

¼ δ

δJb

�
1

Z
δZ
δJa

�
¼ δ2E

δJaδJb
: ðB13Þ

Thus, we find Eq. (14b), or

δ2Γ
δΦaδΦb

¼
��

δ2E
δJδJ

�−1�
ab
; ðB14Þ

which also holds without setting the sources to zero.
The higher orders follow by taking derivatives of this

equation (with nonzero sources). To this end, we replace a
derivative by

δ

δΦc
¼ δJc0

δΦc

δ

δJc0
¼ δ2Γ

δΦcδΦc0

δ

δJc0
ðB15Þ

and calculate the derivative of the inverse of a matrixMðyÞ
depending on a parameter y according to

d
dy

ðM−1Þ ¼ −M−1 ·
dM
dy

·M−1: ðB16Þ

This calculation results for the third order in

δ3Γ
δΦaδΦbδΦc

¼ −
δ2Γ

δΦaδΦa0

δ2Γ
δΦbδΦb0

δ2Γ
δΦcδΦc0

δ3E
δJa0δJb0δJc0

;

ðB17Þ

which proves Eq. (14c).
Similarly, the fourth order [Eq. (14d)] follows by the

combinatorics of taking further derivatives:

δ4Γ
δΦaδΦbδΦcδΦd

¼ −
δ2Γ

δΦaδΦa0

δ2Γ
δΦbδΦb0

δ2Γ
δΦcδΦc0

δ2Γ
δΦdδΦd0

δ4E
δJa0δJb0δJc0δJd0

þ δ2Γ
δΦaδΦa0

δ2Γ
δΦbδΦb0

δ2Γ
δΦcδΦc0

δ2Γ
δΦdδΦd0

�
δ3E

δJa0δJb0δJe

δ2Γ
δΦeδΦf

δ3E
δJfδJc0δJd0

þ 2 perm

�
: ðB18Þ

6. The thermal case and the classical limit

In thermal equilibrium, the canonical density operator
ρ̂β ∼ e−βĤ fulfills the equation ∂βρ̂β ¼ − 1

2
ðĤρ̂β þ ρ̂βĤÞ.

Employing the quasiprobability formalism [36], one can
show that this equation translates to an equation for Wβ. It
takes the form

∂βWβ ¼ −
1

2
½Hþ

W þH−
W �Wβ; ðB19Þ

whereH�
W ¼ HW ½φ� ðiℏ=2Þðδ=δπÞ; π ∓ ðiℏ=2Þðδ=δφÞ� is

a functional differential operator obtained from the Weyl
transform HW ½φ; π� of the Hamiltonian Ĥ by replacing the
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arguments with the given operators [36]. With the
initial condition Wβ→∞ ¼ const, which follows from the
high-temperature limit, this functional flow equation

can be solved perturbatively by expanding Wβ ¼
exp ½P∞

n¼0 ℏ
nWðnÞ

β � in powers of ℏ and comparing the
coefficients.
The first order in this expansion is the classical field

theory limit, where Wβ ∼ e−βH with the classical
Hamiltonian H ¼ HW . Parametrically, this approximation
is valid when ℏ is small. Since ℏ is a dimensionful quantity,
the precise power counting of this expansion has to be
determined for each theory separately. In general, any
quantum system in thermal equilibrium will be governed by
(at least) two dimensionless parameters ϵq and ϵth that
control the strength of quantum and classical fluctuations,
respectively. A sufficient condition for the validity of the
classical approximation is

ϵq ≪ min½1; ϵth�: ðB20Þ

The parameters ϵq and ϵth are obtained by rescaling the
Hamiltonian and the fundamental fields to dimensionless
quantities. Explicitly, for the sine-Gordon model in the
form of Eq. (23), we have

βĤ¼ 1

ϵth

Z
dx0

	
1

2
½ðΠ̂0Þ2x0 þ ð∂x0Φ̂0

x0 Þ2�− cosðΦ̂0
x0 Þ


; ðB21Þ

together with the rescaled commutation relations

½Φ̂0
x0 ; Π̂

0
y0 � ¼ iϵqδðx0 − y0Þ; ðB22Þ

such that we find

ϵq ¼
ffiffiffiffiffi
4γ

p
; ϵth ¼

4lJ

λT
¼ 4

Q
: ðB23Þ

Here,

γ ¼ mg
ℏ2n1D

¼ γLL þ
1

n21Dl
2
J

ðB24Þ

is dominated by the 1D Lieb-Liniger parameter γLL ¼
mg1D=ðℏ2n1DÞ, such that the semiclassical approximation
is valid in the weakly interacting regime γLL ≪ 1, as
expected.

7. Derivation of Eq. (18) and the Π dependence

From Eq. (17), the generating functional separates into a
product Zβ½J� ¼ Zφ

β ½Jφ�Zπ
β½Jπ� with

Zφ
β ½Jφ� ∼

Z
Dφe−β

R
x
½ð1=2Þð∇xφxÞ2þVxðφÞ�þ

R
x
Jφxφx ; ðB25aÞ

Zπ
β½Jπ� ∼

Z
Dπ exp

�
−
β

2

Z
x
π2x þ

Z
x
Jπxπx

�

∼ exp

�
1

2β

Z
x
ðJπxÞ2

�
: ðB25bÞ

This product directly implies that E½J� ¼ logZφ
β ½Jφ�þ

logZπ
β½Jπ� þ const, and, thus, the effective action becomes

Γ½Φ;Π� ¼ Γφ½Φ� þ Γπ½Π� þ const, which proves Eq. (18).
Carrying out the Legendre transform in Jπ , we solve

ΠxðJπÞ ¼
δZπ½Jπ�
δJπx

����
J¼0

¼ Jπx
β

⇒ JπxðΠÞ ¼ βΠx ðB26Þ

and finally obtain

Γπ½Π� ¼ − logZπ½JπðΠÞ� þ JπxðΠÞΠx ¼ β

2

Z
x
Π2

x: ðB27Þ

8. Time translation invariance

For a stationary system, all observables are time inde-
pendent, ∂tTr½ρ̂t…� ¼ 0. If, additionally, the Hamiltonian
is of the form Ĥ½Φ̂; Π̂� ¼ Ĥ½Π̂� þ Ĥ½Φ̂� with Ĥ½Π̂� ¼
1
2

R
x Π

2
x, then it follows that 0 ¼ Tr½ρ̂tðΦ̂xΠ̂y þ Π̂xΦ̂yÞ�

and furthermore hφxπyiWt
¼ 0. As a consequence, the

two-point function becomes block diagonal, which sim-
plifies the inversion:

Gð2Þ
c ¼

� hφφi 0

0 hππi

�
⇒ Γð2Þ ¼

� hφφi−1 0

0 hππi−1
�
:

ðB28Þ

9. Loop expansion of the effective action

Starting from Eq. (19), we calculate

e−Γ
0
β ½Φ� ¼ e−Γβ ½Φ�þβH½Φ� ¼ elogZ½JðΦÞ�−JxðΦÞΦxþβH½Φ� ðB29aÞ

¼
Z

Dφe−βH½φ�þJxðΦÞφx−JxðΦÞΦxþβH½Φ� ðB29bÞ

¼
Z

Dφe−βðH½φþΦ�−H½Φ�ÞþJxðΦÞφx ðB29cÞ

¼
Z

Dφe−βðH½φþΦ�−H½Φ�−ðδH½Φ�=δΦxÞφxÞþðδΓ0
β ½Φ�=δΦxÞφx :

ðB29dÞ

Here, we use Eqs. (11) and (17), then perform a change of
variables φ → φþΦ, and finally express the sources
as JxðΦÞ ¼ ðδΓ½Φ�Þ=ðδΦxÞ.
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The first nontrivial correction (one-loop) is obtained by
neglecting all terms beyond quadratic order in the fluctuat-
ing fields φ. The remaining Gaussian integral can then be
performed analytically, which gives

e−Γ
0;one-loop
β ½Φ� ¼

Z
Dφe−ðβ=2ÞφxG−1

x;y ½Φ�φy ¼ ðdet βG½Φ�Þ−1=2:

ðB30Þ

The name “one-loop” stems from the expansion in terms of
the tree-level two-point function G0. To see this expansion,
we rewrite

Γ0;one-loop
β ½Φ� ¼ −

1

2
log det

1

β
G−1½Φ� ¼ −

1

2
Tr log

1

β
G−1½Φ�

ðB31aÞ

¼ −
1

2
Tr log ðG0G−1½Φ�Þ þ 1

2
Tr log

1

β
G−1

0 ðB31bÞ

¼ −
1

2

X∞
n¼1

ð−1Þn
n

TrfG0ðG−1½Φ� −G−1
0 Þgn; ðB31cÞ

where we use the identity log detA ¼ Tr logA, employ the
series expansion of the logarithm, and drop the irrelevant
constant. Graphically, the result can be pictured as a sum of
loops consisting of lines that stand for G0 connected by
field insertions coming from ðG−1½Φ� − G−1

0 Þ. For more
details about the loop expansion, we refer to Ref. [20].
Note that, in the standard (unequal-time) formalism, the

loop expansion is used as an expansion in weak quantum
fluctuations. Here, in the context of the classical field
theory limit in thermal equilibrium, it is employed as an
expansion in weak thermal fluctuations. In terms of the
dimensionless parameters introduced in Appendix B 6, the
loop expansion is applicable for ϵth ≪ 1. Thus, the tree-
level approximation (i.e., the leading order in the loop
expansion), which is used in the main text to extract the
microscopic Hamiltonian parameters, is applicable when
the following separation of scales holds:

ϵq ≪ ϵth ≪ 1: ðB32Þ

Colloquially speaking, this separation is the limit of
weak thermal fluctuations and even weaker quantum
fluctuations.

APPENDIX C: DETAILS ABOUT THE DATA
ANALYSIS

This Appendix contains more technical details concern-
ing the practical example, which is discussed in the
main text.

1. Cosine vs Fourier transform
and the boundary conditions

For an infinite system with translation invariance, the
correlation functions in (Fourier) momentum space are
directly related to the correlators obtained by a cosine
transform. Explicitly, with the transforms

φp ¼
Z

dxe−ipxφx; ðC1aÞ

φ̃p ¼
Z

dx cosðpxÞφx ¼
1

2
ðφp þ φ−pÞ; ðC1bÞ

the two-point functions are related as

hφ̃2
pi ¼

1

2
hφpφ−pi; ðC2Þ

where we assume translation invariance; thus, hφ2
pi ¼ 0.

Similarly, for the four-point functions, we have

hφ̃4
pi ¼

3

8
hφpφpφ−pφ−pi; ðC3Þ

where the prefactors arise from the six nonvanishing
contributions out of 24 ¼ 16 combinations.
In practice, we deal with a finite system without periodic

boundary conditions. A discrete Fourier transform is then
not appropriate, as it yields numerical artifacts. Since the
calculation of 1PI correlators simplifies tremendously in
Fourier space, we still prefer to work in a Fourier basis.
Therefore, we calculate the correlators with a discrete
cosine transform, which reduces the artifacts from the
boundary conditions. Then, we translate the correlators
using the factors of 1=2 and 3=8 to Fourier-space corre-
lators and subsequently calculate the 1PI correlation
functions. For sufficiently large system sizes, this pro-
cedure yields the desired results and reduces numerical
artifacts in a controlled way.

2. The 1PI vertices from the numerical data

In practice, the numerical and experimental profiles
live on a spatial lattice with lattice spacing Δx and a finite
number of lattice sites N; i.e., we have φx for
ðx=ΔxÞ ∈ f0; 1;…; N − 1g. We employ a discrete cosine
transform of the individual realizations to obtain profiles
φ̃plat

and later translate the results to the Fourier transform.
The lattice momentum takes the values plat ¼ jð2π=ΔxNÞ
with j ∈ f−ðN=2Þ;…; ðN=2Þ − 1g. We correct for some
artifacts of the discrete transform at large momenta by
considering physical momenta

pphys ¼
2

Δx
sin

�
platΔx

2

�
: ðC4Þ
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The two- and four-vertex densities (normalized to have
units of 1=L with L ¼ NΔx) from the main text are
obtained, respectively, by

Γð2Þ
p ¼ L

hjφpphys
j2i

c

; ðC5aÞ

Γð4Þ
p ¼ −

L3hjφpphys
j4i

c

hjφpphys
j2i4

c

: ðC5bÞ

Here, the expectation values are

hjφpj2ic ¼ hφpφ−pic ¼ 2hφ̃2
pic; ðC6aÞ

hjφpj4ic ¼ hφpφpφ−pφ−pic ¼
8

3
hφ̃2

pic; ðC6bÞ

where the index c indicates connected correlators according
to Eq. (10).

3. One-loop corrections

To obtain the one-loop correction to the effective action,
we approximate

βK½φ;Φ� ¼ β

�
H½φþΦ� −H½Φ� − δH½Φ�

δΦx
φx

�
ðC7aÞ

¼ λT
4

Z
x

	
1

2
ð∂xφxÞ2 −

1

l2
J
cosΦx½−1þ cosφx� −

1

l2
J
sinΦx½φx − sinφx�



¼ 1

2
φxG−1

x;y ½Φ�φy þOðφ3Þ ðC7bÞ

with G−1
xy ½Φ�¼ðλT=4Þ½−∂2

xþð1=l2
JÞcosðΦxÞ�δðx−yÞ. From

Eq. (B31), we then have

Γ0;one-loop
β ½Φ� ¼ −

1

2

X∞
n¼1

1

n

�
λT
4

2

l2
J

�
n
Tr

	
G0sin2

�
Φ
2

�

n
;

ðC8Þ

where

G0;xy ¼
Z

dp
2π

eipðx−yÞG0;p ðC9Þ

with G0;p ¼ ð4=λTÞ=ðp2 þ 1=l2
JÞ.

The one-loop corrections to the 1PI vertices are now
obtained by taking derivatives of Eq. (C8), evaluated
at Φ ¼ 0 in the symmetric case. Explicitly, we find at
second order

ΔΓð2Þ;one−loop
xy ¼ −

1

2l2
J
G0;xxδðx − yÞ ðC10Þ

and at fourth order

ΔΓð4Þ;one−loop
xyzw ¼ 1

2l2
J
G0;xxδðx − yÞδðx − zÞδðx − wÞ

−
1

2l4
J
½G0;xyG0;zwδðx − zÞδðy − wÞ

þ 2 perm�: ðC11Þ

The involved loop integrals are given by

Z
∞

−∞

dq
2π

1

q2 þ 1=l2
J
¼ lJ

2
; ðC12aÞ

Z
∞

−∞

dq
2π

1

q2 þ 1=l2
J

1

ðp − qÞ2 þ 1=l2
J
¼ lJ

ð2=lJÞ2 þ p2
;

ðC12bÞ

which results in the expressions given in the main text:

Γð2Þ;one-loop
p ¼ λT

4

�
p2 þ 1

l2
J

�
−

1

4lJ
; ðC13aÞ

Γð4Þ;one-loop
p ¼ −

λT
4l2

J
−

1

8l3
J

1

p2 þ 1=l2
J
: ðC13bÞ

Note that the one-loop correction is indeed of the order of
OðϵthÞ ¼ Oð1=QÞ ¼ OðlJ=λTÞ compared to the tree-level
approximation.
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